
 RadCal: Design and Theory of Reliable Numerical
Programming Languages with First-class Errors

Jurgen J. Vinju
NWO-I Centrum Wiskunde & Informatica

TU Eindhoven

TODO: evaluation of automated precision
tracking on

common statistical methods
such as Pearson correlation

Programming languages use floating point
numbers that can behave weirdly,
and users also provide inaccurate inputs…
How to trust the outcomes of numerical software?

Design Elements
- decimal rationals 0.0001123
- decimal repetents 1 / 3 = 0.(3)

- midpoint radiuses 5 ± 0.1 == [5-0.1, 5+0.1]

- precision literals ±5.0 == 5±0.05

- error obliviousness

- algebraic laws

Results
- axiomatized midpoint radius algebra based on rational numbers (fractions)
- readable (in)exact outputs 0.(3) ± 0.1
- unlike floats, RadCal behaves well with proven associativity and commutativity

- unlike intervals, RadCal has distributivity and (weak) inversion

- fully automatic accuracy tracking with “reasonably tight” bounds (!)
- error refactoring, static error analysis, dynamic error-guided optimizations, all

enabled by “error obliviousness” (midpoints are independent of the error estimates)

TODO: efficient implementation for the
Rascal metaprogramming language on the

JVM using fractions and automatically
scaled bigintegers

Disclaimer: RadCal is probably prohibitively slow for
supercomputing purposes, and prohibitively expensive

for optimally green computing.

What if….
programming languages

would implement correct and exact numbers only?
and what if…

programming languages would track
inaccurate inputs to inaccurate outputs?

VERSEN

