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CHAPTER 1

Introduction

It is widely known and accepted that most of the software costs represent mainte-
nance and evolution activities [7]. Therefore significant efforts are being made in
developing techniques for prediction, risk management and quality evaluation of
software projects. Software metrics are “quantitative approaches to understand,
manage and improve software engineering” [15]. They are the foundation for tech-
niques and research done in the field of software engineering [13, 14, 8, 21, 18].

Measurements of software project properties can be easily obtained these days
due to the the growth of open source. Large datasets of software metrics can be
generated by mining existing software repositories and foundations such as GitHub,

SourceForge, Google Code, Apache or directly downloaded from platforms such as
Ohloh.

Surprisingly, the quality of these datasets is not a common concern and a sys-
tematic review of the literature performed by Liebchen [9] retrieved 161 papers
that address data quality in the empirical Software Engineering field since 1993.
This is a small number compared to the number of published papers, which is in
the order of thousands. Secondly, the review pointed out that it was a “minority
practice to even explicitly discuss data quality” [15] although “a substantial ma-
jority of papers, 138 out of 161, considered data quality to be a threat to analysis
of empirical data” [9].

Data quality is clearly an important factor to consider in the empirical Software
Engineering and in the recent two to five years more efforts are made to improve
it. According to De Vaux and Hand [22], between 60 to 95% of the time needed
for the analysis is spent on cleaning the data.
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Our research focuses on how to assess and improve the quality of large software
engineering datasets. We found three challenges to this:

1. Data quality in general

The problem of data quality is challenging by itself as it is extremely difficult
to know, in general, the “true” value of a data item [10]. Furthermore, similar
to software where we can not guarantee the absence of bugs even after testing,
we can not guarantee the correctness of datasets even after using cleaning
techniques.

2. Large datasets

For large datasets, manual inspection is not a feasible solution. Therefore
in our research we aim to use automated approaches that can improve the
quality of these datasets. Using techniques from the Machine Learning field
we aim to automatically find abnormalities in big datasets of software metrics
obtained from Ohloh.

3. Modeling real world datasets

To test an approach, it is common practice to artificially induce noise and
try to detect it. This has the shortcoming that the noise induced might not
represent real noise and that the data could already have noise in it.

We used, for our validation, real world data mined from Ohloh [6] that
contains information for different types of projects, from smaller ones that
started only a few months ago, to bigger ones that started years ago (e.g.
Mozila Firefox). The task of assessing the quality has added complexity
because of the dataset itself which is unknown to us and very heterogeneous.
Projects have a diverse evolution in time and are created using different
programming languages. More about the Ohloh datasets can be found in
Chapter 5.

Different automated approaches were tried in research for noise or outlier de-
tection. To address our challenges, we experimented with the Gaussian Processes
technique, a method known in Machine Learning that creates flexible models.
Gaussian Processes define a probability distribution over non-linear functions and
the model they create could be viewed as a non-linear mean function that has an
adaptable Gaussian variance around it. The main contributions of this thesis are:

e Evaluate the Gaussian Processes technique for noise detection.
From our knowledge, Gaussian processes were not used until now for noise
detection in the field of empirical Software Engineering, according to the lit-
erature review of Liebchen [9] or in the Artificial Intelligence field according
to the survey of Hodge and Austin [46]. In this thesis, we show a method to
use these techniques for noise detection and evaluate our approach on a data
with artificially induced noise and on two large, real world datasets obtained
from Ohloh
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e Asses the quality of the Ohloh datasets. The data obtained from
Ohloh was unknown to us and we had no prior labels about the quality of
the measurements. We used Gaussian Processes to assess the quality of the
data. Our approach highlighted different interesting points and several errors
in the dataset were found and mentioned in this paper.

In the following chapter we outline the literature found on data quality and how
Machine Learning techniques were used to assess and improve it. Chapter 3 de-
scribes approaches to noise detection and especially Gaussian Processes. Chapter
4 presents an experiment done in controlled settings with simulated noise, to as-
sess the capabilities of our approach, while Chapter 5 presents the tests performed
on the Ohloh data. The conclusions are in the last chapter, while the Appendix
shortly describes the source code.




CHAPTER 2

Background

In this chapter we present related literature found on data quality and how Ma-
chine Learning was used to improve it. The concepts explained are necessary for
appreciating the rest of the thesis.

“The decisions made are only as good as the data upon upon which they are

based” [26]

There are many definitions of data quality but the most widely accepted one
describes it as “fitness for purpose” [10]. This implies that in order to consider the
quality of a dataset, we need to understand what will it be used for. Many datasets
are used for research in empirical Software Engineering, for diverse purpose as
deciding the quality, predicting the evolution, effort, costs, bugs etc. We believe
that the research done in this field stands on the data it uses and “great care is

needed to ensure sufficient attention is paid to the data as well as the algorithms”
[17].

Data quality is seen in literature as a multidimensional concept on which re-
searchers do not have a common agreement [32]. Wand and Wang enumerated
four dimensions that are repeatedly mentioned in literature [32] :

e accuracy
e completeness
e consistency

e timeliness

The timeliness dimension raises the issue that historical data might not repre-
sent current situations. For example productivity changes over time according to
Shepperd [30]. Therefore, using old data to make predictions for current produc-
tivity could create bad results. Completeness, is easy to evaluate even on large
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datasets. By creating a script missing measurement can be fast identified. A con-
sistent dataset presumes that a “data value can only be expected to be the same
for the same situation”[32].

Accuracy, has no clear definition, incorporating precision of measurements in
some cases. We are not interested in precision, as for a given dataset, we can
not increase the precision now; this being an early technique to increase data
quality. We will follow the definition of Wand and Wang [32] which propose that
“inaccuracy implies that information systems represent a real-world state different
from the one that should have been represented”. This is much harder to assure
as distortions or noise are not easy to discover in large datasets.

Noise, is defined as bad data, an incorrect instance in our dataset. It could
have different reasons for appearing: bad data collection, errors in manipulating
it or errors in interpreting it. It is certain, that we want to remove noisy instances
from our dataset as they can impact our research. This can be achieved by pre-
ventive techniques or correcting techniques. In our research, we will focus on the
latter.

Outliers are highly atypical values, that appear in rare circumstances. They
can also be affected by noise. E.g. If we keep track of activities done each day by
people in the USA, ”landing on the moon” might be correct for Louis Amstrong but
it is certainly not a common activity, yet. Therefore, Louis Amstrong’s ”landing
on the moon” activity would be an outlier in our dataset. On the other hand, if
”landing on the moon” is reported for us, as our activity for today, it will be most
likely noise.

In Machine Learning some researchers considered outliers to be noise [10] since
they can create difficulties in research. We consider that depending on the question
we want to answer we should exclude outliers from our data or not. This relates
to the definition of quality as "fitness for purpose”.

2.1 Noise detection using Machine Learning

Because of its great impact, data quality is also a concern in other fields and
automatic ways to identify noise were tried out using Machine Learning techniques.
One broad definition of Machine Learning is the study of algorithms that improves
automatically through experience [3]. The typical approach for noise detection is
to learn some classifier based on the data, predict the labels of the points and
consider wrongly classified points as suspect. In this section, we will present some
automated techniques, used by researchers in different fields for noise identification.

In medicine, many diagnostics are made based on data, making the quality
an important factor. Different techniques have been investigated to detect noise
in data and correct it. Gamberger uses compression based induction to handle
noise [11]. Their idea is founded on the MDL (Minimum Description Length),
which proposes that the best hypothesis for a given dataset is the one that lead
to the best compression of the data. By cleaning the dataset in this way, they
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managed to improve the classification for early diagnosis of rheumatic diseases.
Similar techniques have been tried with success by Gamberger and colleagues for
detecting coronary artery disease in [12].

MLD is a formalization of Occam’s Razor, which states that among all models
that correctly fit the training data, we should select the simplest. In the same
category of algorithms decision trees were built in [19] which were simplified by
pruning techniques. PCA (Principle component analysis), a dimensionality reduc-
tion algorithm could also be used.

Brodley and Friedl [23] focus on datasets used for automated land-cover map-
ping from satellite data, credit approval, scene segmentation, road segmentation
and fire danger prediction. They used a different approach, by splitting their
dataset into n parts. They created n models, with n — 1 segments of data, and
used the remaining piece for testing. Contrary to the previously described algo-
rithms, in this case, the training and testing data are kept separately; we learn
the model on one part and we make our prediction on the remaining. Moreover,
in [23], they introduced the idea of multiple base classifiers. Basically they used
decision trees, nearest neighbor and a linear machine algorithm as base classifiers
to separately model the data and make classification. Afterwards, each classifier
votes for each point, if it is noisy or not.

Finally, another class of techniques to deal with noise, is data polishing [9].
These methods detect noise but instead of removing it, they correct the erroneous
values. For small collections, removing noise from the dataset decreases the number
of instances, making polishing an interesting technique. We do not consider this
is of interest in the case of large datasets. In this case it is better to remove noise,
not to create artificial points in our data.

In this thesis, in order to detect noise we use Gaussian Processes, a probabilistic
approach. They are based on different mathematical concepts than the previously
mentioned techniques. Also, the problem that we approach on the Ohloh dataset,
is different from the aforementioned ones since we do not have labeled data or a
secondary framework that we could test our resultson; as Gamberger had a tool
that predicted coronary artery disease. They improved its performance by cleaning
the data. Nevertheless, we can notice some similarities to the other techniques.
From some perspective, the way we use Gaussian processes, could be seen similar
to a data compression technique since we learn a model that approximates the
data. Second, we can keep training and test data separately and we can generate
more models on different parts of the data. Last, since Gaussian Processes make
predictions, we can polish our data by replacing the measured values with our
prediction for the instances we consider noise.
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2.2 Data quality addresses in Software Engineering

In empirical Software Engineering the main efforts are done by Khoshgoftaar and
colleagues [24, 25, 26], Liebchen and Shepperd [10, 9, 20]. Liebchen in his thesis [9]
researched how empirical analysts address the problem of data quality. He found
that out of 161 studies:

1. 50 studies (31%) Avoid poor data by improving the data collection pro-
cedures. This is a noise prevention technique, which is not always possible
since many times we analyse data sets that were collected somewhere in the
past.

2. 35 studies (22%) Manually check the quality of the data. This is done
by inspecting the measurements, measuring the same attributes in different
ways and comparing the results, visual inspection.

3. 18 studies (11%) Use meta-data, for example to describe the perceived level
of quality for each attribute or instance. This is commonly used by in the
ISBSG benchmark data sets, which assign grades from A(highest quality)
to D(lowest qulity) to their measurements. [27]. Their grades describe the
completeness of the data, having no missing values, which is not equal to
ensuring quality.

4. 16 studies (10%) Use automated noise detection techniques to improve their
data quality

5. 21 papers (13%) Carried out an empirical analysis of noise.

A comprehensive list with descriptions of used algorithms is found in Chapter
2 and 3 of Liebchen’s PHD thesis [9]. We will briefly summarize some of the used
techniques in this section.

Khoshgoftaar propose noise detection techniques based on boolean rules gen-
erated from the data [24]. They test their research by artificially injecting noise in
NASA datasets, obtaining good results.

Secondly, they proposes the Pairwise Attribute Noise Detection Algorithm or
PANDA. PANDA analyses each two attribute pairs from the dataset and calculates
the mean and variance base on all the records for these two attributes. Then, for
each instance, a score is assigned that describes its probability to be noise. Large
deviations from normal, have higher contributions to the score. The final score for
each instance is computed based on all the scores obtained for each combination
of two attributes. The authors showed that PANDA found more noisy instances,
fewer outliers and fewer clean instances than the nearest neighbor outlier detection
technique.

Liebchen used in his thesis [9] three types of decision tree methods to handle
noise: Robust Filtering, Predictive Filtering and Filter and Polish. He validates
his approach on real data sets, using domain experts to decide on the correctness

9



Background

of their classification. Their results are good, but when testing the algorithm on
simulated data the results are less promising. This shows how hard it is to create
a solution that can handle different types of noise, in different domains.

More efforts to maintain high quality datasets in the empirical software engi-
neering field have been made by the PROMISE Group which currently has 20 data
sets.

Most proposed techniques are evaluated by injecting artificial noise in datasets.
The first limitation of this is that we do not know if the data that we use and
inject noise into, does not have noise already. Second, the noise is usually added
randomly with a distribution, but this might not accurately simulate real world
noise.

This thesis examines the use of Gaussian Processes for noise detection on soft-
ware engineering datasets. We test our approach on simulated noisy datasets but
also on real world data with noise. We believe Gaussian Processes could perform
well in detecting noise, since they create flexible models and are non-parametric ap-
proaches. Therefore, we do not need to set ourselves parameters that describe our
data, they are learned in the training phase. This is a big advantage for datasets
of which we have no prior knowledge. From what we know, Gaussian Processes
have not been used until now for noise detection, this implies a beginning risk for
us. Also their computational complexity is O(3) , which could create problems for
our big datasets from Ohloh.

10



CHAPTER 3

Approaches to noise detection

We can see the task of detecting noise in two different ways, depending on the
data we have.

1. If we have pre-labeled data, which describes in advance whether each instance
is noise or not, we can treat our problem as a classification task. We train our
classifier and predict the class for each instance. Different options can be used
for the classifiers, e.g. Support Vector Machines(SVM), Neural Networks,
Decision Trees, K Nearest Neighbor, etc.

2. If we do not have prior knowledge of the data, no labels, we can not use a
classifier. In this situation the approaches are similar to unsupervised clus-
tering and the solutions is to model somehow the “normal” state, according
to the training data, and consider the instances that are furthest from nor-
mal as suspect of having noise. Such methods are K-Means, Gaussian Model
Mixtures, Linear Regression, etc.

The second problem is harder than the first, since we do not know in advance
what are the possible problems that can appear. We can see the first problem as
a sub-problem of the second, as all the methods used to find noise in non-labeled
data can be applied on labeled collections.

In our research, using the Ohloh datasets, we have no labels for our instances,
we do not even know what is the distribution of our data and what are the possible
errors that could be in our dataset. Therefore, we are facing the second class of the
problem and our aim is to learn what is normal for our dataset and then highlight
the points that are furthest from normal, as suspect of noise.

In this chapter, we will shortly explain how can we learn what is normal in
our data, how do Gaussian Processes work, how we used them in our research to
detect noise in our dataset and why did we chose them. We will limit our examples
to two dimensional data, as visual representations can be easily generated in this
case.

11
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3.1 Examples of how to define what is normal in data

K-means

To learn what is normal in a dataset, different models can be used. A very simple,
but actually powerful technique for noise detection is K-means, used in [43, 44, 45].
K-means is a clustering algorithm that splits the data into K clusters, each instance
belonging to the nearest mean. To calculate the means that best fit our model
is NP-hard, but efficient approximation methods are used that converge fast to a
local minimum. In Figure 3.1, we see on the left how that specific data would be
split in two clusters based on the two centroids. The total space is split by a line,
what is on one side is green and what is on the other side is brown. This is how
K-means would be used for clustering.

For noise detection, we should calculate the means and afterwards select a
variance around the means that we consider normal. The points that are close
to one of the means, are normal points while the other ones are noise. This is
represented in the picture, where the brown points inside the circles are normal,
while the green ones are noise. By using mixtures of Gaussian, we can change the
circles in eclipses and create a more flexible model. Nevertheless, the principles
and the form of the model is the same.

Figure 3.1: (left) Clustering with K-means. (right) Noise detection using K-means

Linear Regression

Another approach, is to learn a correlation between the two features, which is
actually learning to predict one feature from the other. Linear regression was
used in literature and some examples are decribed in [46]. We will use it also to
exemplify.

We do not have a predefined class for our instances, therefore we choose one
of the attributes to be the class that we want to predict. In Figure 3.2, after we
learn the linear function we can make predictions for new points, e.g. the red
point in the graph on the left. It is probably not an exact prediction but it is the
estimation we can make, based on what we learned. This is how linear regression

12



Approaches to noise detection

would normally be used.

In our case we are not interested in the predictions, we need to detect noise. To
judge if a point is noisy or not, we should calculate the Euclidean distance between
its real value and its prediction and if it is higher than a prior selected tolerance
we should report it as possible noise. In this approach, we are generating a model
that varies around a linear function with a certain variance.

Figure 3.2: (left) Linear regression. (right) Noise detection using linear regression

The two models are different, each being better suited for particular domains.
K-means, has the advantage that it can handle data that is grouped around some
points, anywhere in space but it would have difficulties to model linear functions
for example. While linear regression can have difficulties to fit non-linear data,
e.g. data distributed on a circle.

Gaussian Processes

Because we do not have prior information about the Oholoh dataset and we want
to be as flexible as possible, we chose Gaussian Processes(GPs). GPs define a
probability distribution over non-linear functions and the model they create could
be viewed as a non-linear mean function that has an adaptable Gaussian variance
around it. The way our model looks can be changed by the choices we make for
the covariance function and mean. Models like the ones presented in Figure 3.3
can be obtained. Some are more smooth or more continuous than others.

N W

output, y
output, y

-1 0 1
input, x input, x

Figure 3.3: GP model with different covariance functions [28]
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3.2 Gaussian Processes basics

The study of Gaussian Processes and their use for prediction is far from new
[34]. The astronomer Thiele used Gaussian Processes since 1880 [33] for time
series analysis, while in 1948 Wiener-Kolmogorov proposed predictions theories
using Gaussian Processes for trajectories of military targets [34]. In this chapter
we will explain concisely the mathematical background of the Gaussian Processes,
using the introduction written by Boyle in [2] as outline. The deeper mathematical
concepts are explained in Mackay [35] and Rasmussen [38]. For more details please
read these papers, follow the online lectures [37] or read some of the other materials
[29, 28]

In machine learning, the use of Gaussian Processes has gained more interest
with the introduction of back-propagation for learning in neural networks. Neural
networks are composed of connected layers of non-linear functions (neurons), each
connection having a weight that establishes its importance. If we view this from a
Bayesian perspective, these weights are basically defining a prior probability over
the non-liniear functions. The back-propagation training methods from neural
networks adapts these weights, which basically can be seen as defining a poste-
rior probability for the non-linear function. The obtained model is a composition
of non-linear function with certain probabilities learned while training. Neal [36]
showed that Gaussian Processes can substitute the parameterized normal neural
networks, facilitating simpler computations using matrices instead of more com-
plicated parameter optimization for neural networks. He showed that the prior
distribution of the non-linear functions are a subclass of probability distributions
of Gaussian Processes, while the hyperparameters of the neural network determine
the lengthscale of the Gaussian process.

In our thesis we use Gaussian Processes for regression. We describe the princi-
ples behind GPs starting from the notion of Parametric Regression, then explaining
Bayesian Regression and last Gaussian Processes.

Parametric Regression

We will use X to define all the N input vectors x(;, each z(; of dimension I, and
real numbers Y for targets y; corresponding to the inputs. A regression problems
presumes to learn a mapping between the inputs X and the targets Y .

In parametric regression, our mapping is a function f(x;w) defined in terms
of the parameters w. The objective is to find the parameters that "best” describe
the data.

One way to compare what is a better description of our data, would be to
minimize a cost function. A typical cost function is the least squares, which
basically measures the square distance between the predictions and targets.

N

Lw) = S (i — flasw))? (3.1)

i=1
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In this approach, the parameters that generate the lower value for the cost
function, created the "best” model. As examples of parametric approaches we
can think of polynomial regression, where the parameters are the coefficients of
the polynomial, or fed-forwards neural networks, where the parameters are the
weights.

There are three shortcomings of using cost functions. First, is the lack of error
bars for predictions. This means that we obtain just a predicted value, but no
measurement of how likely is it that this prediction is correct. Secondly, we need
to initialize the parameters w, which can have a big impact on the resulting model.
Third, we need to deal with problems of overfitting. Using the least squares cost
function, we are are minimizing the function errors on the training data. We can
obtain very low values for L(w), close to zero for some domains, if we use more
complex models (e.g. higher order polynomials) but this will most likely give
bad performance on the test data because we overfit, learn details of the training
data instead of general properties. If we choose simpler models (e.g. lower order
polynomials) we might not be able to learn enough about our data and therefore
also have bad prediction performance. The solutions is somewhere in between.

A second approach to compare what model is better, is to add a noise model
besides the function:

yi = flz;w) + ¢ (3.2)

where ¢; is independent noise, usually of Gaussian distribution N(0,0). Now we
can use a likelihood function p(y|X,w,c?) as in [2], to obtain error bars for our
predictions.

Bayesian Regression

We can use, for these parametric approaches, Bayesian theory to minimize the
overfitting problem. With Bayes rule we can calculate the posterior distribution

[2]:

Pyl X, w,0?)p(w)

PlIIX,7?) (3:3)

plwly, X, 0?) =

where p(w) is the prior density function and it is set prior, based on what we
think the mode should look like for the specific data. p(y|X,w, o?) is the likelihood
function and p(y|X, 0?) is the marginal likelihood that we calculate by integrating
over the parameters w.

To make the prediction y, for z,, we calculate the probability (error bars) using
the formula from [2]:

p(lzey, X, 0%) = / P(ale, W, 02)p(wly, X, 0)dw (3.4)
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The formula shows one important thing: that not only a single set of parameters
contributes to the predictions, but all parameters do; “the predictive contribution
from a particular set of parameters is weighted by its posterior probability” [2].
Combining models with different parameters to obtain the final one makes the
generated model less likely to overfit our training data.

Gaussian processes

Gaussian Processes can be considered replacements for many parametric models.
The major advantage is that the functions are not explicitly parametrized, making

them more useful in situations were we do not know beforehand what the data
looks like and how to choose the parameters.

We define a probability density function p(f) over a function space F. We
then sample function f, f : X — R from F, according to the distribution p(f).
If we calculated f(x), where z € X for multiple sampled functions f we obtain a

random variable f(z) with a certain distribution. An example is shown in Figure
3.4 from [2].

2 1 5
T [
0.8} [
[
- I
= 0.6¢ -
e | |
= 04f / I|
/o
- /
. D . _ . I'"\-\
0 05 1 1.5 2 -2 0 2
X fi1)

Figure 3.4: (Left)Multiple sampled functions f. (Right) Distribution of f(1) after
normalizing the histogram of 1000 sampled functions at f(1) [2]

If x € X and the distribution of f € R for any finite N is a multivariate
Gaussian, we call this stochastic process a Gaussian process.

Gaussian processes are non-parametric methods and are fully defined by a
mean function p and a covariance function C(x,z’). The prior mean function
i is usually unknown, therefore it is set to zero and learned from the training

data. The covariance function must be chosen by us and it defines how smooth
the models looks like.

Having these two set, we have a prior for our Gaussian Processes. Nevertheless,
the prior specifies only the properties of the functions and does not depend on the
training data. For this hyperparameters 6 are introduced to describe the mean
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and the covariance functions, making them more adaptable. By inferring 6 from
the training data we are afterwards able to make predictions.

The mathematical theory of how the hyperparameters are learned from the
training data and how the predictions are made using matrix multiplications, will
not be presented in this thesis. Please read the papers suggested at the beginning of
this Chapter for more details. We will not present some graphical representations
of Gaussian Processes produced with different covariance functions.

Covariance functions Choosing the covariance function seems to have the greatest
impact on the generated mode. To be a valid covariance function it must be
positive semidefined which means it has to respect the condition:

/C(;E,$’)f(a:)f(a:’)du($)dy(x’) >0 (3.5)

Some of the used covariance functions are presented in Table 3.1.

covariance function | expression
constant ob
linear Z?:l oGT Ty
polynomial (v’ + ag)?

. 2
squared exponential | exp(— 5?)
exponential exp(—1)
y-exponential exp(— 27)
rational quadratic | (1 + 555)"*

T /
neural network sinY( 2 2r )
/(14227 Y x) (142207 Y o)t

Table 3.1: Several covariance functions [29]

We present in the Figures 3.5, 3.6, 3.7 how changing the covariance function
can affect the generated model.

Figure 3.5: Three sample GP functions with squared exponential covariance, lenth-
scale A =5 and a = 1 from [40]
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The squared exponential covariance from Figure 3.5, has unrealisticly strong
smoothness assumptions. Nevertheless it is the most used in Machine learning
because it is infinitely differentiable.

The Matern covariance from Figure 3.6, is rougher than the squared exponen-
tial being considered by some to better map real work circumstances. If we would
set the hyperparameter v — co, Matern becomes actually the squared exponential
covariance function.

Figure 3.6: Three sample GP functions with Matern covariance, v = 1/2, lenth-
scale A =5 and a = 1 from [40]

The neural network covariance from Figure 3.7, is a nonstationary function.
The prior functions were stationary covariances. Nonstationary covariances allow
the model to adapt to functions whose smoothness varies with the inputs. E.g. If
the “noise variance is different in different parts of the input space, or if the function
has a discontinuity, a stationary covariance function will not be adequate” [42].

output, f(x)

input, x

Figure 3.7: Samples GP functions with neural network covariance, oy = 2 and o
shown on the image [29]
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Advantages

Using Gaussian Processes has the following advantages:

e non-parametric: Successful methods in machine learning are essentially
non-parametric. Moreover, being able to adapt the hyperparameters from
the training data and not setting them prior permits a lot of flexibility in
unknown datasets.

e flexible: Many popular non-parametric methods used in machine learning
can be substituted by particular Gaussian Processes. Flexible models can
be generated which have been shown to consistently outperform the more
conventional methods.[4]

e unlikely to overfit: Overfitting, is adapting our model too much on our
training data. We end up having a great performance for the training data,
but not describing the underlying relationships, therefore obtaining bad pre-
dictions on newly seen data. GPs are known to be less prone to overfitting
[2] which should help us create a generalized model from the training data,
that could describe well the test data.

e can measure the probability of our predictions. We do not only obtain
a prediction based on the learned model, but we also estimate the probability
of our prediction to be true, based on the model we learned.

All these propose GPs to be a valid technique for noise detection, that could
achieve good results. A first known disadvantage of GP is the computational
complexity. This is O(n?®), n=number of datapoints. For our datasets of more
than 800 000 instances, it was a problem to use all instances for training. We
solved this by training only on a portion of the data(1%), which made our script
execute only two hours. Secondly, we are expecting GPs not to be able to detect
systematic errors, because they would be learned by our model. For removing
these, rule based filtering might be more appropriate.
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3.3 Matlab framework

To build our tool, we used the framework supplied by Rasmussen and Williams [28].
It includes several predefined functions to choose from for the mean or covariance,
and methods to compute our model and predictions. To define our GP, four choices
need to be made:

Mean function: We set this to 0 and learn it from the training data. This
is the normally used approach in case no prior information is known about
the mean.

Covariance function: There are many possibilities of covariances functions
that are predefined in the matlab framework, more can be generated by com-
posing (adding or multiplying) these covariances or by manually specifying
new ones.

Likelihood functions: “The likelihood function specifies the probability of
the observations given the latent function, i.e. the GP (and the hyperpa-
rameters) “ [28]

The inference methods “specify how to compute with the model, i.e. how
to infer the (approximate) posterior process, how to find hyperparameters,
evaluate the log marginal likelihood and how to make predictions”[28].
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CHAPTER 4

Simulated noise experiment

Before running the GP algorithm on the unknown Ohloh data, we measure its
potential in identifying noise in controlled settings. By this we test:

e if Gaussian processes are capable to detect noise
e if our methodology, our way of setting up the experiment, is correct and

e experiment with different GP settings and see their influence on the results

As a ground truth experiment we chose a known dataset, added artificial noise
to it and measured the noise detection performance of our approach. The following
sections describe the chosen dataset, the experimental setup, the results obtained
and states our conclusions.

4.1 Dataset description

In order to determine if Gaussian Processes is a viable algorithm for our problem,
we first selected a known database for experimenting. We chose from the UCI
repository the Housing dataset. It contains 506 instances, each of them describes
14 characteristics of housing in the suburbs of Boston. The description of all the
attributes can be seen in Table 4.1.

We considered this dataset an appropriate one for our experiment since it is
highly used in the Machine Learning community, increasing our trust in the validity
of the data. Moreover it has similarities with Ohloh :

e it is positively defined and has no missing values for attributes

e contains 13 continuous attributes (including ”class” attribute "MEDV”) and
1 binary-valued attribute [5]. This is ideal for regression and similar to Ohloh
where all attributes are continuous.
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Abbreviation | Description

CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town

B 1000( Bk — 0.63)% where Bk is the proportion of blacks by town
LSTAT % lower status of the population

MEDV Median value of owner-occupied homes in $1000’s

Table 4.1: Housing attributes

e it is complex enough not to represent a trivial test for GP. The number of
features is higher than for our Ohloh dataset and their correlation is diverse
as shown in the Figures 4.3 4.1, 4.4, 4.2.

Figure 4.1: Correlation be-
tween DIS and RAD
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Figure 4.3: Correlation be-
tween CRIM and INDUS
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Figure 4.2: Correlation be-
tween ZN and MEDV
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Figure 4.4: Correlation be-
tween MEDV and CRIM
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4.2 Experimental setup

For our experiment, we considered the first 13 dimensions as input features, while
MEDYV is the attribute that we want to predict. Our objective is to answer the
question:

“If we modify the predicted MEDV value of the house, for some instances,
between -100% and +100%, can we detect the noisy points in our data using
Gaussian processes? ”

New points with noise were created by randomly sampling 50 instances from
the existing housing dataset and afterwards adding random noise to them. Adding
noise presumes, in our case, modifying the MEDV values by randomly multiplying
them with a coefficient between -1 and 1, while keeping the other features intact.
This is equivalent to saying, that in case all the other properties of an instance
remain the same, the predicted median value of the home will increase or decrease
with max 100%.

The distribution of the used noise is presented below. This distribution has
impact on our experiment, since adding 2% to MEDV is much harder to detect as
noise (maybe it should not even be considered noise) than adding or subtracting

90% of the original MEDV, which should be definitely highlighted.

nutnber of paints

Figure 4.5: Histogram of percentage of noise added to MEDV

After creating the noisy points, the dataset was randomly split in two parts.
We obtained 259 data points for training and 247 for testing. To the testing dataset
we added the 50 new noisy points, ending up to a total of 297.
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Finally, we used the GPs regression algorithm on our data. We aimed to test
three characteristics:

1. The success of GP in the default settings
2. What is the impact on the results when varying the hyperparameters?

3. How does changing the covariance function impact the results?

Our results are discussed in the following section.

4.3 Results

4.3.1 Gaussian processes in the default settings

To show the capabilities of the GP algorithm, several experiments were run on the
housing dataset. In the default GP process, we chose the following configuration :

e mean function: it is set to zero and learned from the training data.

e covariance function: We used the neural network covariance function with
the posterior hyperparameters learned from the training data.

e likelihood function: The Gaussian likelihood with posterior standard de-
viation learned from the training data.

e the inference method is exact, without approximations.

e maximum number of function evaluations is set to 100.

Using this trained model, we calculated the log-probabilities of each of the
points from the test dataset(including the new noisy instances) and computed
the Receiver operating characteristic(ROC)curve. This captures both the true
positive rate (TPR), the noisy points correctly classified, and the false positive
rate(FPR), the percentage of normal points classified as noisy of the model when
the discriminating threshold is varied.

Figure 4.6 shows how selecting different thresholds (minimum accepted prob-
abilities) we can detect the noise in the test dataset and the effect it has on the
FPR(normal instances wrongly classified as noise). We notice that we can find
54% of the added noise with less than 9% FPR.

By sorting the log probabilities of points to be noise, in the first 50 most prob-
able we had 27 actual noise points. These results show a very good performance of
the algorithm for the current dataset. Our approach does not make the difference
between outlier and noise. Therefore we should consider that in the first 50 most
probable points, besides the 27 noisy ones, we could have also highlighted outliers
in fact, which could be of interest in some cases.
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Figure 4.6: ROC curve for GP algorithm on all the test dataset.

By manually inspecting the log-probabilities assigned to each point, we noticed
that the first 12 most probable points are labeled correctly as noise. On the other
hand, the last 4 points, that should have the lowesst probability to be noise, are
actually noisy points induced by us. We can explain this by recalling the noise
distribution from Figure 4.6. From the histogram we can see that the added noise
can be between -100% to 100%. It is clear that bigger changes make it easier
for us to identify noisy points. In our case the last 4 points were changed with
approximately 2%, 12%, 4.7% and 4%.

Nevertheless, this should not make them more probable than points that have
not been changed at all. The complete explanation lies in the way we generated
noise. We randomly selected 50 points from all our data and created new instances
with noise from them. Thus some of the original instances were split in training
others in test data. The original measurements for these 4 data points ended up
in the training dataset and the modeled managed to fit them very well. This,
correlated with the small amount of noise added, made the disturbed instances
from the the test data hard to distinguish.

Our manual analysis highlighted two concerns. First, small changes are im-
possible to detect and might not be noise, as our inputs are continuous and slight
variation in value estimation is normal. Second, if the noise is similar to the
training data (or part of the training data, as it will be in the Ohloh dataset) its
probability to be classified as noise will decrease.

We ran more tests on the dataset, to measure how would our performance
change if we remove the noisy instances, from the test data, that changed the
initial measurement with less than 20% respectively 40%.

The ROC obtained after removing less clear noise shows a visible increase in
performance. Also in Table 4.2 we compare the difference in performance based
on the given noise. The decrease in FPR is significant when the noise is more
significant.
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Figure 4.7: ROC after removing noise points that affect MEDV with less than
20% (left) and 40% (right)

Test data with Remaining FPR Number of in-

noise for 50% | stances found in
recall the first 50

All the noise 50 9% 27

Noise with more than 20% | 39 4.4 % 26 (22 out of first 30)

deviation from original

Noise with more than 40% | 30 1.2 % 25 (19 out of first 30)

deviation from original

Table 4.2: Comparison between the 3 test data containing different amount of
noise

4.3.2 Impact of the hyperparameters

The posterior hyperparameters of the Gaussian Process are learned from the train-
ing data. Nevertheless, the number of function evaluations is manually set by us.
This parameter sets the maximum number of evaluations preformed, if convergence
is not reached before. We tested how varying it can influence our performance.

We realized that the performance of the algorithm can be significantly changed
as noticed by the results in Figure 4.8. In these figures we tested the performance
of each of the models created on the three types of testing data (all instances, or
instances with noise variance higher than 20% and 40% from normal) by varying
the number of function evaluations from 1 to 100. We measured the FPR to detect
A minimum 50% of the noisy points. We are aiming to obtain the smallest values
for the FPR.

The best results are obtained when the parameter is set to 12. In this case the
FPR becomes 4.8% for the test data with all the noisy points, 0.8% and 0% for
test data with more than 20% respectively 40% variance from normal.

The performance can be greatly changed when setting the parameter to 13.
On the test data with all the points, the FPT reaches 100%, meaning that we can
not detect 50% of the noise without looking at all the other normal inputs from
the testing dataset. This is highly undesirable.

The negative log probability likelihood obtained for the different number of
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Figure 4.8: FPR to detect minimum 50% of the noise on the 3 test datasets when
varying the maximum number of function points

function evaluations is plotted in Figure 4.9. We want to minimise this. A smaller
value, states that the obtained model is more likely to correctly approximate the
training data. We notice that 15 function evaluations is a cutting point, after which
our approximation of the training data becomes better. Therefore convergence is
reached on this dataset by setting the maximum number of function evaluations
higher than 15. It is safer, in general, to choose a substantially higher number.

x10° Test data with all noisy points
4
T T T

negative log marginal fikeihaod
T
I

Figure 4.9: Variation of the negative log probability likelihood with the maximum
number of function evaluations

We conclude that to minimize the problem, it is safer to choose a higher number
of basis functions and have a stable prediction, instead of working in the risky area.
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4.3.3 Impact of the covariance function
The Matern covariance
We tested how changing the covariance function would affect our performance.

Based on our data, we considered that the Matern covariance function would be
another suitable option. In Figure 4.10 we plotted the ROC curve.

e
- m W
T T T
I I I

=
m
T
I

o o o
3] [} E=

S
1 1 1

Percentage of noisy points labeled as noisy
[}
[ag]
Il

=
|

D 1 1 1 1 1 1 1 1 1
i 01 02 03 04 05 0B OF 0B 09 1
Percentage of normal points labeled as noise

Figure 4.10: ROC for Matern covariance function

The differences between the ROCs of these functions are not that high, never-
theless the area below the curve is higher for the Matern covariance than of the
model obtained with the neural network function. On the other hand, looking at
the beginning of the curve we notice that the FPR has a increasing hop around
20% recall, while for neural networks it is around 30%. This would mean that
the first 20% of noise instances can be noticed with a small FPR for the Matern
covariance function while for Neural Network we can detect 30% before increasing
the FPR, making it more convenient for big datasets. If we would aim to detect a
higher percentage of noisy points the Matern covariance function would be more
appropriate.

4.3.4 Varying other settings

Using the Inverse Gaussian likelihood function for strictly positive data and the Laplace
approximation

To force our prediction to be in the positive domain we can change the likelihood
function and the inference method. This combination generated the ROC from
Figure 4.11 on all the dataset.

The result is noticeably better than the previous inference method, creating
an increased steep at the beginning of the curve, meaning that more noise can be
detected with less false positives. This is confirmed by our second measurement;
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Figure 4.11: ROC for the Inverse Gaussian likelihood function

we detected 50% of the noise with 1.21% FPR instead of 9%. On the other hand,
when usingh the Inverse Gaussian likelihood, the domain of the output is forced
to be strictly higher than zero, which is not the case for our Ohloh dataset where
we have zero values.

Using approximation methods for big data sets

The computational complexity of the normal GP is O(n®) where n is the num-
ber of data points. Approximation methods have been developed that lower the
computational complexity to O(n? * m) where m is a smaller parameter set by
the approximation method. We tried these methods on our data and obtained the
ROC in Figure 4.12. As expected the accuracy of our noise detection decreases
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Figure 4.12: ROC for approximation methods

significantly. This has also been shown in other research [41], where a full GP has
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better performance than approximation methods. Based on these, we will use the
full GP for Ohloh, which can support up to 10 k points.

4.4 Discussion

Our ground truth experiment confirmed that GP can be successfully used
to detect artificially induced noise in the data with good accuracy and that
our experimental setup is valid, but also highlighted several challenges that we will
have to confront on the Ohloh dataset:

e False positive rate (FPR) becomes more important in big datasets. Putting
it in perspective, for the Ohloh dataset we have more than 800 000 points.
A 9% FPR would mean that around 82 000 points are wrongly classified,
which is a big amount of wrongly labeled data.

e If we train our model on noisy points, these points might become
harder to detect afterwards. In the Ohloh dataset we do not have the
luxury of knowing what points are noise and exclude them from the training
dataset.

e Outliers and noise can not be differentiated, since we do not have
labeled data. The instances that we highlight need to be manually inspected
in order to conclude if they are noise, outliers or false positives.

e The performance is influenced by the noise type. Our approach is
influence by the noise amount (deviation from normal). Small noise is very
hard to detect, while big variations from the normal case will be easier to
detect.

e The maximum number of functions evaluated influences the per-
formance of the GP algorithm. A high number should be chosen; this
would let the inference converge by itself and not stop it prematurely.

e Using likelihoods function for strictly positive data can increase
our performance also in Ohloh. On the other hand our outputs can have
zero as a value, are not strictly positive, which means it would not be able
to calculate the probabilities for these points. We could adapt all zeros to
be a bit higher than zero but this would presume altering much of the data.
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CHAPTER 5

Noise detection on real world data

One of our research goals was to evaluate the quality of the Ohlhoh dataset. Since
the dataset is large, an automatic approach was needed, which led us to using
Gaussian Processes. In the previous chapter we shown that Gaussian Processes
can obtain good results on artificial noise. In this chapter we will test how Gaussian
processes will perform on a real world dataset.

5.1 Description of the dataset

For our experiments, we mined our data from Ohloh “an open source directory that
anyone can edit. It features comprehensive metrics and analysis on thousands of
open source projects” [6]. As presented even in its description, Ohloh offers editing
rights to anybody; the name, description can be changed, but also more interesting
things: history, code location, etc. Modifying these, can have a significant impact
on the metrics obtained.

The Ohloh repository contains in total 65,712 projects of which we downloaded
the metrics for 12,360. The data was mined by M. Bruntink and can be found
publicly on Git!. He selected the first projects that Ohloh offered from their API,
based on activity (most active projects).

For each project we obtain three files ActivityFacts, SizeFacts and MetaData.
The MetaData.xml file contains general information about the project e.g.: main
programming language, other languages, licence, average rating etc. However, we
did not use it in our research. In Table 5.1 we show what each of the other two
files contains, the name of metrics being self-explanatory. The measurements are
taken monthly, therefore each month we create an activity fact and a size fact.

In Figure 5.1 we capture project ages from our dataset. We can see that most
of the projects live for about 60 months, but we have also much older ones. Also
by inspecting the size facts we found that projects can have different sizes, varying

! https://github.com/MagielBruntink/OhlohAnalytics/tree/searhus
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ActivityFacts file | SizeFacts file

month month
code added code (total)
code removed comments (total)

comments added blanks (total)
comments removed | comment ratio

blanks added commits (total)
blanks removed man months (total)
contributors

commits

Table 5.1: Metrics saved for each month in each of the xml files mined from Ohloh

from 12 LOC to 158 milion LOC (project DD-WRT).
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Figure 5.1: Histogram of the project length in months

We selected the first 10 000 instances from our dataset and generated images
that show the correlation between some attributes. Figures 5.2, 5.3, 5.4, 5.5 ex-
emplifies the correlations between attributes in the activity fats file, while Figures
5.6, 5.7, 5.8, 5.9 exemplifies the correlations between attributes in the size facts
file. We can see the correlations are diverse some similar to the Housing dataset,
while others not.

From Figures 5.7, 5.8 and 5.9 we can already notice that in the size facts file,
some instances have negative errors since the plot does not start in the coordinated
(0,0). This is an early detection of noise in our data, obtained by simple visual
inspections.
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5.2 Experimental setup

The goal of these experiments is to test the capacity of Gaussian Processes to
detect noise on large real world data and to assess the quality of the Ohloh datasets.
We have two big experiments on two datasets generated from the Ohloh activity
and size facts and a smaller experiment that we ran only on the Rascal project.
Our hypothesis is that GPs will suggest to us interesting instances in our data,
abnormal peaks in the evolution of the projects, that could be considered noise for
some purposes. We will describe on this section the steps we took to set up the
two big experiments.

First, the Ohloh dataset is split in two, activity facts which are gathered from
the ActivityFacts files of all the projects and size facts from the SizeFacts files.
We did not merge them because for some projects (e.g. which have no activity)
the activity facts is logged for each month, while only one size fact is written in
the size file. For activity facts we obtained an array of 889 117 instances with 10
columns. Besides the columns from the xml files, we added an extra column that
is our project id. This column is not used to learn the model, it is used afterwards
by us to manually inspect the data. For size facts we obtained 838 158 instances
with 8 columns, of which one is the project id. For both datasets, the month was
transformed from a date format to numbers representing the month of life for a
project (e.g. first months of activity). More explanations of the process can be
found in the Appendix.

Second, we learn our model for each of the dataset. We used the commits
as attributes that we want to predict (class attribute) for activity and size facts.
Ideally, we would use all the data to learn and test the model, but because of the
size of the data it was computationally too expensive. We chose to use as training
only 1% of the data, that was randomly selected. Alternatively, approximation
methods are available that can reduce the time, but they affect the performance.
By training only on a subset and testing on the entire data, the cleaning process
takes around two to three hours to execute.

Afterwards, we tested our models on the entire dataset. Our learner was con-
figured the same way as in the default Housing experiment, having :

e mean function: set to zero and learned from the training data.

covariance function: neural network covariance function.

likelihood function: Gaussian likelihood.

the inference method is exact, without approximations.

e maximum number of function evaluations is set to 100.

As a result, we obtained the prediction based on our model of each of the
testing point and the log probabilities of the predictions to be true, compared to
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the actual measurement written by Ohloh. We sorted all the data, so the less
probable prediction would be first, these being most likely noise or outliers.

During the process of transforming the data from xml to matlab structures, or
before running our tool, we found several errors in our data. From the total of
12,360 projects:

e 426 projects have missing ActivityFacts files

433 projects have missing SizeFacts files

161 projects have empty SizeFacts files; the file contains no entries or only
one entry that is 0.

3 projects have — Infinity for comments ratio in the size file. This is because
the code + comments is 0 (zero) and Ohloh uses this to make divisions.

70 projects have a total of 1432 entries with negative values in the size facts.

The projects that encountered one of the first 3 types of errors were removed
from the dataset. Only the monthly instances that encountered —Infinity values
were removed from the size data. The negative numbers were left, as we wanted
to test if our automated approach would also be able to detect them.

5.3 Results

In this section, we will present the results obtained on data from the activity files
and from the size files from Ohloh. But first, we ran a small experiment on the
Rascal project to test if Gaussian Processes can model the type of data measured
by Ohloh.

5.3.1 Rascal experiment

The first experiment we ran, was on a sub-piece of the Ohloh data. We selected a
project well know to us, Rascal, and tried to see what our method would suggest
to be noise. By doing this we wanted to confirm that our method can model
attributes measured by Ohloh.

We know one atypical event that happened when generating the documenta-
tion, which is highlighted in Figure 5.10 with a red dot above. A good outcome
for this experiment would be if this point is ranked in the top most probable noisy
points.

We trained and tested our GPs algorithm on the 58 months of activity facts
from Rascal. We sorted the rows, which represent one month of activity facts, by
the predictive log probability. Table 5.2 shows the months that are most probably
noisy and one of the least probable noisy months (the last 17 months have the
same probability).
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Figure 5.10: Rascal graphs from Ohloh

The most probable noisy instance is declared September 2011. This is the
known month where the documentation was generated (several times) adding a
big number of HTML files that were afterwards removed. Next probable noisy
months were August 2010 and October 2009. Looking at the table 5.2 we can see
that in Aug. 2010 there was a lot of activity for only 4 contributors. In Oct. 2009,
comparing to previous months where the contributors were less and the commits
were much higher (403), these two metrics varied inversely, therefore this month
the model probably had to adapt. Nevertheless, after looking in the commit logs
and checking the history we could not find any reason why these two months of
measurements should be noise.

Rascal Metrics 1% ond 3 most normal month
month 36 (Sept 2011) | 23(Aug.2010) | 13(Oct. 2009) | 55(April 2013)

code added 870 709 195 155 69 646 4 200

code removed 518 752 166 422 66 685 2 798

comments added 5 621 16 577 1573 238

comments removed | 5 100 12 511 1 300 242

blanks added 38 104 15 272 5 372 640

blanks removed 1 063 10 417 4 728 210

contributors 4 4 8 9

commits 165 131 222 87

Table 5.2: Most probable noisy months and one of the most normal months.

Conclusion The experiment on Rascal, showed that GPs can model the fea-
tures measured by Ohloh and correctly identified the noisy point from our data.
The next suggested instances are normal from our perspective, but we knew no
other abnormal month for this project.
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5.3.2 Activity facts results

In this section we discuss the results we obtained using Gaussian Processes on
the activity data. According to literature [41], GPs can train on up to 10,000
instances without using approximation methods, but the time increases fast with
the increasing size; e.g. it took around one hour to train on 7,500 instance and it
takes around two to train on 8,500 inputs. We chose to use 1% of the data, around
8,500 instances randomly sampled, to learn our model and then make predictions
for the entire dataset.

As we mentioned before, we predicted the commits of each month for all the
projects and calculated the log probability of our predictions to be true. The other
features were considered inputs. At the end, we sorted our data based on the log
probabilities, having the predictions that are ranked as less probable on top. These
are the points suspected to be noise. The histograms of the commit values from all
the activity data and only the training set are plotted in Figure 5.21. We zoomed
in, to be able to visualize the results, since about half of our data has zero commits
and the first bin of the histogram is actually much larger that all the rest.
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Figure 5.11: (Left) Zoomed in histogram of all commits form the activity array.
(Right) Zoomed in histogram of all the commits form the training set of the activity
data

To interpret our results, we looked at the first points and judged if they are
noise, outliers or normal points. As expected it was difficult to decide on the
quality of an entry, as limited information could be obtained for these projects.
We analyzed the quality of data having in mind two possible purposes:

e predicting the project’s death

e cstimating the general productivity per person, in a project

In the first 10 points that we inspected we found measurements from 3 projects
which will be further discussed .
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ApacheFlex project

The first and fourth most probable noisy points were from ApacheFlex. Their
values are presented in the Table 5.3 and the graph of the projects evolution are
in Figure 5.12. We marked the points that we are discussing about on the graph
with a small red dot.

ApacheFlex metrics | 1% point 4 point
month of life(month) 1 (2012-01-01) | 2 (2012-02-01)
code added 2 291 792 4 872 344
code removed 669 122 131 966
comments added 2 542 260 518 488
comments removed 633 480 81 117
blanks added 559 541 1 692 530
blanks removed 94 326 7 260
contributors 4 4
commits 118 176 31 868
predicted commits 23.56 30

Table 5.3: 1% and 4" most probable noisy points from our dataset.
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Figure 5.12: ApacheFlex graphs from Ohloh

Discussion

These two instances are very unlikely points because 4 contributors add
2.2 million lines of code in the first month and 4.8 million LOC in the second
month with 118 176 respectively 31 868 commits. These two months are, most
likely, initial imports thus explaining the bad correlation between measurements.
Relating to our two possible purposes:
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e if our objective is to predict a project’s death, these points should not be con-
sidered noise. They might actually be of interest to detect. Maybe repeated
big variations like these could be a cause for the death of projects (this is
just an untested hypothesis).

e if our objective is to estimate the general productivity per person, in a project,
the quality of these entries is questionable. Having 4 contributors add that
much activity to a project could affect our conclusions, therefore we should
consider these points noise and remove them from the data.

A rule could be generated that could highlight similar points. e.g.: if the
contributors are less than 10, the LOC added should not be above 1 million
and the commits not more than 10,000 in that month.

While inspecting these points we noticed two other flaws:

e in the activity facts, January 2012 is the first month of the project while on
the graph we have activity since May 2009.

e the exported measurements contradict what is shown on the graph. Accord-
ing to the activity facts we should have 1 622 670 LOC in the first month,
but on the graphs the total code was 1 770 327 LOC. From 2 separate mea-
surements we have 2 different values, which is a clear sign of error in the
Ohloh system.
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OpenVZ project

Four points from the top ten that are highlighted as having a high probability of
noise, are from the OpenVZ project. Their values are presented in Table 5.4 and
a visual representation of the project’s evolution is presented in Figure 5.13.

OpenVZ metrics | 2"¢ point 37! point 5" point 9" point
month of life(month) | 18 (2006-09-01) | 31(2007-10-01) | 26 (2007-05-01) | 28(2007-07-01)
code added 5 277 281 6 812 835 4 749 627 3395 710
code removed 2 530 006 4 203 349 2 576 007 2 897 968
comments added 1 003 888 1412 474 843 530 611 152
comments removed 410 235 810 728 400 821 600 354
blanks added 740 500 1 142 649 758 198 508 052
blanks removed 228 259 581 321 340 077 378 180
contributors 500 642 637 649
commits 12 786 23 146 17 359 19 042
predicted commits 3 059 1 006 759 1132

Table 5.4: Most probable noisy points from the OpenVZ project
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Figure 5.13: OpenVz graphs from Ohloh

Discussion

For the OpenVZ project, the instances that are highlighted are peaks in the
number of contributors and commits, while having a high number of code added
and removed. The biggest variance for commits is for the month of October 2007

when we have 20,680 commits while in the next and previous months there are
only 7,590 and 8,760.

We further inspected the release history ? near the reported months (marked
as bold in the table), also shown in Table 5.5, and noticed some correlations to

’http://freecode.com/projects/vzkernel/

40


http://freecode.com/projects/vzkernel/

Noise detection on real world data

month date of release | release version branch comments
April 2008 11 Apr 2008 2.6.18-53.1.13.e15-028stab053.10 | RHEL5 2.6.18 | Minor bugfixes
March 2008 26 Mar 2008 2.6.24-ovz004.1 2.6.24 Minor bugfixes

01 Mar 2008 2.6.24-0vz002.2 2.6.24 Initial freshmeat announcement
February 2008 15 Feb 2008 2.6.18-028stab053.6 2.6.18 Major security fixes
January 2008 18 Jan 2008 2.6.18-53.1.4.e15-028stab053.4 RHELS5 2.6.18 | Major security fixes

18 Jan 2008 2.6.18 028stab053.4 2.6.18 Major security fixes
December 2007 04 Dec 2007 2.6.18-53.el5 028stab051.1 RHELS5 2.6.18 | Minor security fixes

04 Dec 2007 2.6.18-028stab051.1 2.6.18 Minor security fixes
November 2007 17 Nov 2007 2.6.22-0vz005 2.6.22 Major feature enhancements

17 Nov 2007 2.6.18-8.1.15.el5 028stab049.1 RHELS5 2.6.18 | Minor bugfixes

17 Nov 2007 2.6.18-028stab049.1 2.6.18 Minor bugfixes

01 Nov 2007 2.6.18-8.1.15.el5 028stab047.1 RHELS5 2.6.18 | Minor security fixes

01 Nov 2007 2.6.18-028stab047.1 2.6.18
October 2007 01 Oct 2007 2.6.18-8.1.14.el5 028stab045.1 RHELS5 2.6.18 | Major security fixes

01 Oct 2007 2.6.18-028stab045.1 2.6.18 Major security fixes

01 Oct 2007 023stab044.11 RHEL4-2.6.9 | Major security fixes
September 2007 11 Sep 2007 2.6.22-0vz003.1 2.6.22 Initial freshmeat announcement
July 2007 30 Jul 2007 2.6.18-028stab039.1 2.6.18 Major bugfixes

30 Jul 2007 2.6.18-8.1.8.el5 028stab039.1 RHELS5 2.6.18 | Major bugfixes
June 2007 14 Jun 2007 2.6.20-0vz007.1 2.6.20 Minor bugfixes

13 Jun 2007 2.6.18-8.1.4.el5 028stab035.1 RHELS5 2.6.18 | Major security fixes

13 Jun 2007 2.6.18-8.1.4.el5 028stab035.1 RHELS5 2.6.18 | Major security fixes

13 Jun 2007 2.6.18-028stab035.1 2.6.18 Major security fixes

04 Jun 2007 2.6.18-028stab033.1 2.6.18 Minor bugfixes
May 2007 29 May 2007 2.6.9-023stab044.4 RHEL4-2.6.9 | Minor bugfixes

02 May 2007 2.6.9 023stab043.2 RHEL4-2.6.9 | Minor bugfixes

02 May 2007 2.6.18-8.el5 028stab031.1 RHELS5 2.6.18 | Minor security fixes

02 May 2007 2.6.18-028stab031.1 2.6.18 Minor security fixes
September 2006 | 28 Sep 2006 2.6.16-026test018.1 2.6.18 Minor feature enhancements

28 Sep 2006 2.6.8-028stab078.21 RHEL4-2.6.9 | Minor bugfixes

Table 5.5: Release history of the OpenVZ project

our activity graphs. First, we will discuss the three months that are close to each
other, from 2007: May, July, October. This period is with many peaks and we
suppose one of the reasons could be the ”"Major feature enhancements” release
from November 17. Only four releases were tagged as major feature releases, on
the dates: 17 Nov 2007, 02 Nov 2006, 19 May 2006 and 20 Apr 2006. We can
presume that for such a release, the development team did not work only 17 days
in November, but most likely worked the previous months and reserved some time
for testing in the last period. This would explain the highest peak from October,
when besides the 3 major security releases, many of the new features were probably
developed. November, the month of the big release, was actually a quite month;
less development was probably done, more testing and maybe the developers took
a short period to plan or relax after finishing the big sprint. We notice that after
this release the project started dying also, the commits decreased rapidly and the
number of releases decreased also.

August was a month of holidays, most likely, since no releases were planned.
This would explain the high activity from July when many people finished up
things before taking their vacation. We could not really explain May, even with
the release history available.

September 2006, is the most probable noisy month of this project. We can see
that at the end of the month, 28 September, a minor feature release was launched.
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Besides normal updates, fixes as other releases have, this one mentioned in its
notes two developments of interest: ” updates from the stable branch” and "a
mainstream update up to 2.6.16.29. Code cleanups from sparse”. These merges
and cleanups could explain the increased code added and removed, for the small
number of commits and contributors.

We could not find more information from the OpenVZ repositories but from
these findings we can see some interesting activities in the reported months. If our
purpose would be to predict a project’s death, they should be kept in the dataset,
maybe they should even be highlighted, since the reported month of October 2007
could be consider the month after which this project started dying. Otherwise, if
we would want to measure productivity, we should think more if the projects we
want to measure productivity for are similar to this one? These points could be
considered outliers, in some cases.
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KDE project

The KDE project has 4 points in the top 10 most probable noisy points. The
values of these points are in Table 5.6 and the evolution is presented in Figure
5.14.
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Figure 5.14: Kde graphs from Ohloh

KDE metrics 6™ point 7" point 8™ point 10 point
month of life(month) | 151 (2009-10-01) | 152(2009-11-01) | 155 (2007-05-01) | 157(2010-04-01)
code added 3 389 734 5997 357 11 771 004 6 561 374
code removed 2 372 109 3 107 546 4 541 292 4 287 693
comments added 1 017 856 1574 175 2 364 451 1415 746
comments removed 666 669 1075 331 1 045 022 954 298
blanks added 490 359 897 508 1 651 042 886 058
blanks removed 313 872 507 238 650 380 496 462
contributors 501 509 523 498
commits 18 797 19 205 18 827 16 312
predicted commits 288 127 1254 499

Table 5.6: Most probable noisy points from the KDE project

We further inspected the release history 3. The table bellow presents the latest
releases, covering the dates we are interested in. Starting with release 4.1 they
have a similar pattern. Each new major release starts with by freezing different
parts of the system, tagging versions and releasing versions starting with Beta
releases and ending at the X.X.5 release. The older versions are not the same,
being longer and less structured.

3http://techbase.kde.org/Schedules
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release | start month end month
4.12 October 2013 April 2014
4.11 May 2013 Jan 2014

4.10 October 2012 July 2013

4.9 May 2012 January 2013
4.8 October 2011 July 2012

4.7 April 2011 December 2011
4.6 October 2010  July 2011

4.5 April 2010 January 2011
4.4 October 2009  June 2010

4.3 April 2009 January 2010
4.2 October 2008  June 2009

4.1 April 2008 January 2009
4.0 April 2007 January 2008
3.5 August 2005  August 2008
Table 5.7: Release dates for KDE project

Discussion

For the KDE project, the first 3 suggested noisy points are as for the OpenVZ
project peaks in the measurement. The variations for these months are high having
up to 11 million LOC added per month. The fourth point does not stand out on
the graph but looking at the table 5.6, we can see that 6M LOC were added that
month and 4M were removed.

For the 4.0 release of the KDE, May 2007 started by freezing the ”kdelibs Soft
APT” on the 1st. On the 3rd an alpha release was tagged, on the 8th we had
the milestone "New Application Freeze and Usability and Accessibility Review”
and on the 1st of June the milestone "Module Freeze”. For the 3.5 release May
2007 had the following milestones: " Tagging KDE 3.5.7”, "Expected release date
of KDE 3.5.77. Thus May 2007 is a month where two release have overlapping
activity.

October and November 2009, the highest peaks in the commits graph, had
also activity for two overlapping major releases. For 4.3 the following milestones
were set: "Tag KDE 4.3.2”7, "Release KDE 4.3.2”, "Tag KDE 4.3.3”, ”"Release
KDE 4.3.37, "Tag KDE 4.3.4”. For the release 4.4 we had the milestones: ”Trunk
depends on Qt 4.6, Soft Feature Freeze”, ”Hard Feature Freeze”, ” Message Freeze”,
"Tag KDE SC”, 74.4 Beta 1”.

In April 2010 the 4.5 release started and the 4.4 release was finishing up.

Overall, we can see that there are some months every year where two release of
the KDE are both active in development. All the highlighted points, are months
like these. As for the OpenVZ points, we can not firmly classify these points as
noise but we notice they are of interest. For the task of estimating the productivity,
these points could be considered outliers.
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Performance on small projects

By looking at the first 10 most probable points, we noticed that large projects
are favored by our approach. Of course, if we put all the projects together from
one person projects to big-renown projects, it is hard to create a model perfectly
adaptable for all types.

After our first inspections, we now searched what are the smaller entries (that
have less than 0.5 M LOC added) that rank higher as possibly having noise. The
first entries were at positions 41, 57 and 60. The values are shown in Table 5.8
and the graphs for these projects are plotted in Figures 5.15, 5.16 and 5.17.

metrics 41" point, project html5lib | 577 point, project mifos | 60™ point, project gaia-ajax
month of life(month) | 1(2006-12-01) 57(2010-12-01) 8(2009-06-01)
code added 10 508 210 234 32 193

code removed 7 470 154 380 25 687
comments added 1907 36 705 5249
comments removed 1 366 25 918 4 544

blanks added 1 365 26 375 5514

blanks removed 802 15 382 4 284
contributors 5 19 4

commits 320 582 103
predicted commits 10 065 9 495 7 837

Table 5.8: Most probable noisy points from the KDE project
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Figure 5.15: Htmlb5lib graphs from Ohloh
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Figure 5.16: MIFOS graphs from Ohloh
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Figure 5.17: Gaia-Ajax graphs from Ohloh

Discussion

For these 3 projects, the suggested noise are peaks in the data. First point is
an initial commit. The point from MIFOS is a peaks in the code added correlated
with a decrease in commits and contributors. The instance from Gaia Ajax is a
peak on all the three graphs.

In this cases, because the projects are also smaller, the excesses or uncorrelation
are not that exaggerated as the point from ApacheFlex but are noticeable on the
graphs. This shows that although the methods favours big project it also highlights
interesting instances on smaller/medium projects.
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How do lower ranked points look like?

Further, we investigated how points that are not highly ranked look like? Until
now, we noticed that the GPs detect peaks in the activity data, which could be
considered outliers. We inspected the first 10 points plus three other points for
smaller projects and peaks in the data have been detected. Nevertheless, since
we have little information regarding the dataset itself, we verified if our ranking
is consistent. In the extreme and unreal case, the part of the data that we have
not seen could be only peaks. In this case we did not detect any abnormalities,
we just sampled normal instances, very likely to exist in our data. Therefore, we
wanted to approximate when would the peaks in data stop and would the next
points be less outstanding if we look at the graphs. This would suggest that we
have a consistent ranking for our algorithm, the peaks are on top of the ranking
while the other points are at the bottom.

Figure 5.18 shows the log probability of the first 2,500 instances from the
activity results. We can see from it that the first points have a much lower log
probability and it increases in big steeps, while after 500 points until 1,000, the log
probability increases more slowly. Therefore we decided to inspect points starting
with 1,000. If we would find that after 1,000 points the instances are still peaks,
we could suspect that the data might actually contain many peaks.

"

-

o
- .

ns( -

p i

log probabilities

L L L L
500 1000 2m

£
ordered activity facts

Figure 5.18: Gnome graphs from Ohloh

Project month commits | predicted commits | after inspection
1000. Gnome 2010-11-01 | 4377 990 not a peak
1001. LinuxACPI | 2008-04-01 | 5460 2395 not a peak
1002. linux-davinci | 2009-12-01 | 5727 2753 not a peak
1003. linux-davinci | 2006-01-01 | 4000 386 not a peak
1004. openinkpot | 2009-05-01 | 3744 219 not a peak

Table 5.9: Instances 1000 to 1004 from the activity results
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Figure 5.19: Gnome graphs from Ohloh

Discussion

Table 5.9 shows what project are found after the first 1000 most highly noisy
points. Figure 5.19 shows the point that was highlighted from Gnome(the other
images are similar). As we can see, these points are not peaks and according to
the information we have, should not be considered noise. After this inspection we
can have more trust in our ranking.

48



Noise detection on real world data

Prediction accuracy

Our method is based on making predictions about the commits per month accord-
ing to the other attributes. We evaluate in this section our prediction capabilities
by calculating the absolute difference between our prediction and the real value. In
Figure 5.20, on the X axis we vary the difference between prediction and real value
from 1 to 1,000 and on the Y axis we plot the percentage of points that have a
smaller difference.
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Figure 5.20: Prediction accuracy for activity facts

Discussion

On the figure we see that our of 889 117 instances we can predict around
50% of them with less than 1 commit difference. This high starting percentage is
given mainly by the 403 760 measurements that have zero commits and zero for
the other attributes. Nevertheless, our predictions have a difference from the real
value between (—1, 1) for 446 676 and between (—10, 10) for 555 938 points. 75%
of the points are predicted with a absolute difference smaller than 40 commits.
Based on these we could say that we have leaned a good model for the activity
data using Gaussian Processes.
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Conclusions for the activity dataset

In this section we tested how Gaussian Processes perform on data formed of activity
facts from 12,360 projects from Ohloh. This generated a set of 889,117 monthly
measurements for projects.

Since we do not know in advance if the instances are noise or not, we manually
judge the results. We consider two possible purposes to decide on the quality of
points: predicting a project’s death or estimating the general productivity per
person, in a project.

From the results on the activity dataset we can draw the following conclusions

e It is hard to assess the quality of reported instances Even when set-
ting up a purpose, it was hard to estimated the quality of instances without
knowing what actually happened in that months of development. This was
much easier for Rascal, were we had access to history logs and developers
of the projects. Interpreting the quality of the points was driven by judging
their visual evolution. Peaks in projects suggested a higher change of having
a noisy point.

e We were able to model the activity data using Gaussian Processes:
By manually sampling points from the results, we observed that they were
sorted in a meaningful way (peaks at the beginning and not at the end) and
the predictions that were make are good considering the heterogeneity of the
data.

e We were able to find noise in the activity data For the purpose of
estimating productivity we found points that are noise in the first 10 entries
that we inspected.

e Our model favors big projects By leaving all the projects together in the
dataset, we created a model that favors the bigger ones. If we desire to have
a more refined analysis of projects, we could either penalize big projects or
we could split the projects in categories based on size (or other attributes)
and create a model for each of the groups. Now, most of the first instances
were from big projects, smaller ones started appearing only at position 41.
Nevertheless, the highlighted months for the small instances appeared as
peaks in the graph.

Overall, we consider that Gaussian Processes performed well on the activity
data, reporting interesting points that for some purposes should be considered
noise and excluded from the dataset. Having an additional classifier that would, for
example, predict a project’s death could help us to better evaluate the performance
of our approach in cleaning the Ohloh data for this specific purpose. We can
compare the performance of the classifier before and after removing the most
highly ranked noise from the data. A classification improvement would reflect a
good cleaning procedure.
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5.3.3 Size facts results

Running our method on the size facts data, started with diverse challenges. We
were obtaining very inaccurate predictions or errors, which led us to finding several
errors in the data:

e 110 projects have NaN values for comments ratio.

e 70 projects have negative measurements. The projects that have -Infinity

for comments also showed that negative values could be in our data. When
checking, we found that 70 projects have a total of 1432 instances with
negative measurements.

2 entries from our training data created numerical problems. These are from
the ddwrt project, the biggest in our dataset with 129 million LOC. The
entries are for the code added metric for the months of March 2009 and
June 2010 were 163,976,569 LOC respectively 258,756,226 LOC were added.
Although we can not say these are noise, we had to remove them from the
training data in order for our method to be able to make calculations. If a
different samples of training data are to be randomly selected, metrics that
are as high as 100 million should be excluded from the the set.

The instances that had -Infinity or NaN for comment ratio were removed from
the array.

We first plotted the histograms for the training set and all the data. We see
that around 1100 instances have zero total commits. This is similar to activity
facts (but there we zoomed in). But, in this case we notice the max number of
commits is very high. This is because in our training data we have a size fact from
with 341 402 commits, from the project django sorting. This number of commits
is much higher than the rest.
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Figure 5.21: (Left) Histogram of all commits form the size array. (Right) His-
togram of all the commits form the training set of the size data

The results, for the size activity, showed the limitations of modeling this data
using Gaussian Processes. In the first 300 point all except two had more than
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5 million LOC and those two had 4.8 million LOC. The first 59 highest ranked
instances were measurements from KDE. They are the months from September
2009 until the last one measured, July 2013. If we recollect the activity results,
we remember that in the same period we had two suggested outliers in the months
of October and November 2009. These point and the next one in April 2004
are still marked on the graphs from Figure 5.22. We see therefore that in that
short period we have two outliers detected in the activity facts and we also start
reporting oultiers in the size data.

These results are understandable. Size facts measure totals of the metrics, from
when the project started. Activity reports only the current month metrics. For
activity facts, we could have one abnormal month and the next ones normal. But
for size facts, once a month disrupts the normal correlation between inputs and
outputs this is maintained as long as there is no correction. To correct, probably
a peak in the different direction is needed. E.g. if we add a lot of code with few
commits; to correct, next month we should add few code with many commits.
This is not the case for KDE, since instead of having corrections it actually has
more outlies next months, according to the GPs.
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Figure 5.22: KDE graphs from Ohloh

As seen from Figure 5.23 our prediction accuracy also dropped significantly,
comparing with the activity facts. This could also be partly explained by the
bigger range of possible values.
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Figure 5.23: Prediction accuracy for size facts

Conclusion

Modeling the size facts does not give the same good results as the model for
activity facts. We believe that the most likely reason, is the data itself. As before,
we have projects of totally different sizes, but in this case we measure the totals for
each project not the activity for each month. Some projects end up having very
high values for their attributes and once they do that it will remain constantly like
that unless a peak in the opposite direction appears in the next months.

There could be other explanations for our results on the size facts, but they are
less likely. One issue that might cause problems is us working with big numbers.
We already had numerical issues when training. After removing the two instances,
our algorithms executed but the difference between metrics is still very high there-
fore our precision might become low. Also, as we noticed from the training data
histograms, we have an big outlier in our training set. The point from djanog
sorting has, the highest number of commits from all the projects in the train data
and only few others have even close to him. This might impact negatively the
learned model.

How to model the size facts correctly, remains an open question of our research.
A possible approach could be to learn a model for individual projects and calculate
the log probability of the points according to the model. To increase our numerical
stability and prevent the errors that occurred in our settings, we could normalize
the data.
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CHAPTER 6

Conclusions

The literature review performed by Liebchen [9], concludes that not many publi-
cations in the empirical software engineering address the problem of data quality
and a minority of papers even discuss it. Nevertheless, “a substantial majority
of papers, 138 out of 161, considered data quality to be a threat to analysis of
empirical data” [9].

In this thesis we researched how the quality of data can be asses using Machine
Learning techniques. We chose Gaussian Processes, an approach that has not been
used for noise or outlier detection until now, to our knowledge. We performed tests
on two types of datasets and situations.

First, we used the Housing dataset and induced noise in it. Our method per-
formed very well on this data, having high recall and good false positive rate.
Moreover, we showed different GPs configurations that could improve the perfor-
mance in particular situations.

Second, we tested Gaussian Processes on two real world datasets obtained from
Ohloh, of which we had no prior knowledge or known types of noise. The results
from the first data, the activity facts, showed that our method suggests interesting
points that could be considered noise, depending on the purpose. The task of
manually inspecting the suggested noise points and deciding on their true label
was very hard. To make stronger statements about the success of our approach
we could further test it in other settings as described in the future work section.

The size facts data raised difficulties from the beginning. Many noise values
were found before we could even run the Gaussian Processes script, from negative
numbers, NaN or — Infinity values, to extremely large commits that were causing
numerical errors. After removing these, our technique was not able to learn a
good model. We believe that the different project sizes and the particularities
of this data, made it hard for our method to learn a meaningful model. Future
improvements are suggested in the previous chapter and in the future work.
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Conclusions

6.1 Contributions

This section lists the contributions of our work:

e Evaluate the Gaussian Processes technique for noise detection.

From we know, GPs were not used for noise or outlier detection. The ex-
periments show GPs are capable to detect artificially induced noise but also
highlight suspicious noisy points from real data. On the Rascal project ex-
periment the point ranked most probable to be noise, was actually noise and
on the activity data, several outliers were detected which could be consid-
ered noise, depending on the purpose for which we use the data. GPs showed
their limitations on the size facts data.

e Model real world dataset.

Many researchers validates their approach only on artificially induced noise.
The advantage of this approach is that it can offer a clear benchmarking
methodology. On the other hand, this has two limitations. First, we do not
know if the data we inject noise into does not already have noise. Second, the
noise is added according to a distribution which might not reflect accurately
the real word environment.

We also tested our approach on two real world datasets obtained from Ohloh,
with the results described above.

e Manage large datasets

The Ohloh datasets have more than 800,000 entries each, which imposes
some restrictions on our methodology. To adapt, we trained our model by
using only on a subset of the data.

e Assess the quality of the Ohloh dataset

Data quality is hard to define for a certain instance. This was the case even
on artificially induced noise, that created only a small variance from the
original point. In the Ohloh dataset assessing the quality of a point was
even harder, as we had limited ways of understanding what happened years
ago on certain projects.

Nevertheless, several errors were found on the Ohloh dataset and are men-
tioned in Chapter 5, which raise questions regarding their measurements.
Some of the points highlighted by our approach could be considered noise,
depending on the purpose.
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6.2 Limitations and future work

e Group projects by size or other characteristics. By splitting the entire

Ohloh data, we can create better models, more specific for the group of
interest. This should improve our noise detection performance.

Filter only features of interest. At first, we were running our exper-
iments on an old version of the activity data. We did not used all the 8
features in order to predict commits but only the code added and removed,
the comments added and removed. The results differed and a higher num-
ber of unique projects had instances in the highest ranked noisy points. We
could further research, if we are only interest in the quality of a subset of
features, would it be better to consider as inputs only those attributes or all.

Use meta-techniques from Machine Learning. We can use bagging or
voting techniques on top of our Gaussian Processes. These presume learning
more models on different pieces of the data or using different configurations
for GPs (or even other algorithm), and then deciding if a point is noise or
not taking into account the judgment of all of them.

Better validation of the current approach. The lack of pre-defined
labels for our data made validation a hard task. Gamberger in [12] showed
that by removing noise from the data he improved the accuracy for detecting
coronary artery disease. To better judge the quality of a point and improve
our validation it would be useful to have a system that predicts project
failures or makes other estimations. Then, we could evaluate our performance
on detecting noise by measuring its change in performance. Such a system
is not available in our case would first need to be built.

Experimenting with more covariance functions or inference meth-
ods. In our current approach we tested a few combinations on the Housing
data, but many more combinations could be formed and tested on the Ohloh
data.

Take recent history in consideration Currently time is taken into consid-
eration, but only by adding the month of life for each project measurement.
This creates a weak coupling between the measured metrics and the evolu-
tion of a project. Stronger connections can be made by adding the previous
or even future month to each current month’s feature vector. E.g. For the
activity facts we can extend the input vector for each point from 9 inputs to
27 and add for the 10" month of life the measurements from the 11** and
9" month.

Vary the training set In our experiments we used only one small piece of
the data from Ohloh for training. Ideally, in our case, we would have trained
on a bigger quantity of data or even all of it, but this was computationally
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unfeasible with our methodology. More experiments can be done with ap-
proximation methods or more of the data could be used for training with
meta-techniques.

Systematic errors. We do not believe that a "silver bullet” technique is
possible. If an error systematically appears in our data, the GPs model might
learn it as "normal” and not highlight these instances as noise. Therefore,
we are not expecting our approach to detect systematic errors, in the current
methodology. Generating more models on smaller training datasets and ap-
plying voting procedures to decide on the points label could be a solution.
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APPENDIX A

Source code explanations

Our source code was written in Matlab and versioned on bitbucket on a private
repository. To request access to it please write an email to:
adrianv-vlad.lep@student.uva.nl

Importing the Ohloh data in Matlab

The xml files for the projects were mined from Ohloh by M. Bruntik and uploaded
on the Git public repository:
https://github.com/MagielBruntink/OhlohAnalytics/,

on the searhus branch. The first 12 360 most active projects are in the collection.
We have downloaded the latest version to date(December 2013), with the hash
Tbed672128.

To import the data in Matlab the main.m should be run from the datasets
folder. This script will pass through all the 12360 projects from the folder
datasets/projects and read from ActivityFacts.xml and SizeFacts.xml. The output
of this script will be an activity_data and size_data vector of structures. Besides
these, it will also generate a vector errors_data which can contain three types of
eITors:

1. 426 projects have missing ActivityFacts file, e.g. AgiloforScrum, Avira, Boot-
strapTwitter, BranchingGuidance.

2. 433 projects have missing SizeFacts file, e.g.: darcs, darcsweb, darwinports.

3. 161 projects have empty SizeFacts file; the file contains no entries or only
one entry that is 0. E.g.: asdsa, c-minc, bergamot.

These projects were removed from the dataset. Each of the two structures are
then transformed to input arrays using the script struct_to_array_activity.m. While
running this script we found 3 projects that have -Infinity for comments ratio in
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Source code explanations

the activity file. This is because the code + comments is 0 (zero) and Ohloh
got a division error. These projects were removed from the size facts dataset:
acegisecurity, appcelerator, jflex.

The projects that have —Infinity for comments also showed that negative
values could be in our dataset. We checked using the find_negatives.m script and
found 70 projects having a total of 1432 entries with negative measurements e.g.
FreeMat, LinuxACPI, UniOffice. These entrances

While training out GP on the size facts, we encountered several other errors
that were stopping our algorithm. The cause of that turned out to be the existence
of NaN walues in our data, for comments ratio. There were 1827 instances with
this problems from 110 projects, e.g.: bash-completion, FarseerPhysics, FreeCRM.

Generating the results

The main scripts for each of the two datasets are listed below. Besides these more
functions were created to manipulate data, generate graphics or fulfill other tasks.

Housing data

For the housing data, several script were developed. The main scripts are:

e housing-main.m source code for GPs in default settings

e housing_main_matern.m source code for GPs with Matern covariance
function

e housing-main_positive.m source code for GPs with Inverse Gaussian
likelihood, for strictly positive numbers

e housing_main_aproximation.m source code for GPs with approximation
methods for large datasets.

e create_random_noise.m adds random noise to the housing instances

Ohloh data
For the Ohloh data the main scripts are:
e ohloh_activity_main.m used to generate the results for the activity facts.

e ohloh_size_main.m used to generate the results for the size facts.

e rascal_activity_main.m used to generate the results for Rascal.
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Source code explanations

e ohloh_activity_selection_main.m used to generate results for a selection of the
activity facts features. We selected only commits, code and comments added
or removed.

To run any of the experiments, one of these files needs to be run. They are
dependent on the functions in the folders mean, lik, inf, util, cov and doc,
therefore we need to add them to the path before starting. This can be done from
Matlab, by clicking right on the folder and selecting ” Add to path”.

Results for the Ohloh data

Two .mat files are saved in the repository. ohloh_old.mat is an older version of the
data, from June which had around 10 000 projects. The newer version with more
recent facts and more projects, 12 360, is saved in ohloh_data.mat. This .mat file
contains all the data; inputs, results and variables used.

The complete sorted results are stored in the results_activity and results_size
arrays from theohloh_data.mat file.
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