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Abstract

Due to a shortage in security analysts, a company called Codean aims to build a Review Envir-
onment (RE) to make security analysts more productive. The objective of this thesis is to create
a tool applicable to multiple programming languages to be implemented in the RE. It makes use
of symbolic execution to find a set of values for variables that satisfies all constraints to reach a
particular line of source code. Tree-sitter is used to parse source code from different programming
languages to an intermediate representation. The constraints imposed on the reachability of each
line are extracted from the resulting syntax trees. The Z3 Theorem Prover computes a model that
satisfies the constraints imposed on a line. A subset of the C preprocessor language is utilised as a
test subject for the tool. While the tool seems to be extendable to other programming languages,
the results indicate the possibility of the tool giving back false positives and false negatives. A
more detailed evaluation is needed in future work. In order to know the severity, the tool needs
to be applied to real use cases. To properly evaluate whether the tool can be extended to other
languages, additional languages need to be implemented.
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Chapter 1

Introduction

Where there is technology, there are hackers. This means that anyone who deals with valuable
digital information needs to properly protect it. It is becoming more difficult now than ever, due
to the increase in software complexity and number of criminal hackers [65]. Along with this comes
an increase in cost: Based on historical cyber crime figures, it is expected that over the next four
years, global cyber crime costs will grow by 15 percent per year [47]. By 2025, the global costs
are estimated to reach over 10.5 trillion euros. Therefore, preventing cyber crime is becoming
increasingly important.

Security vulnerabilities stem from the lack of, or incorrect verification of, input and output
data. A security vulnerability in a program allows for someone to make this program behave
in unintended ways. This can have drastic consequences such as allowing this person access to
read and alter sensitive information. These mistakes in source code are easily made, as many
programmers have never been taught how to prevent them: Out of the 24 top universities in the
United States, only one undergraduate program of computing science requires the student to take
a security course [8]. Besides the great number of security vulnerabilities, there is a shortage of
people in cyber security to mitigate the vulnerabilities: It is estimated that, globally, there are
over 1 million unfilled cyber security jobs [14].

When analysing source code for security vulnerabilities, it is paramount to ensure that each
verification step is done correctly. In the case of large code bases or complex software, these
verification steps can be scattered throughout the code base, which makes it difficult for a human
to keep track of and verify that all individual verification steps together properly protect the input
and output data. Automatic tools for vulnerability testing intended for software developers, while
fast, require human involvement to interpret the results [54]. This means that automatic tools
cannot replace a human tester. They can, however, be of support for security analysts.

Codean is a company developing a toolbox named the Review Environment (RE) [20]. The
RE’s purpose is to improve on the traditional Integrated Development Environment (IDE) when
it comes to analysing the security of code. Indeed, the IDE is designed specifically for writing code
instead of reviewing its security. The RE will be optimised for security code review with tools
that aid the security analyst in reviewing more code in less time by automating tedious tasks. It
is estimated that only 15.74 percent of programs are written in the most popular programming
language, Python [61]. Hence, it is essential for the RE to support multiple languages.

To aid security analysts in code reviews, certain software testing techniques can be utilised.
Symbolic execution is one of these techniques that helps identify software vulnerabilities by ana-
lysing the effect certain inputs have on how a program executes [39]. This technique abstractly
represents variables as symbols, without requiring specified input values. The result is a set of
constraints for each unique control flow path in the analysed code to be executed. From these
constraints, a constraint solver can be used to form instances for each variable that would produce
property violations. This helps the security analyst identify states that one should not be able to
reach with a certain input, that can in fact be arrived at.

There are several existing implementations of analysis tools using symbolic execution. However,
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CHAPTER 1. INTRODUCTION

these implementations have one single target language, focus on several instruction sets like x86,
or support an intermediate representation like LLVM. The aim of this paper is to present a more
generalised implementation for a subset of the C preprocessor (CPP) language, that could be
expanded to include other imperative programming languages.

This results in the following question: Can we construct symbolic execution in a way to make
it work for multiple programming languages? This challenge consists of three parts, namely

• converting source code to an intermediate representation in a way that can be applied to
other programming languages;

• extracting a set of symbolic constraints for a given line of code from this representation; and

• solving these constraints.

To simplify extracting the constraints from the textual source code, a parser-generator tool named
Tree-sitter is used to parse it into a machine-readable data structure [62]. To generate satisfiable
values for variables, Microsoft’s Satisfiability Modulo Theories (SMT) solver Z3 is utilised [48]. It
is expected that this will result in a complete implementation of symbolic execution, that can be
expanded to programming languages that are supported by Tree-sitter.

2 A Generalised Implementation of Symbolic Execution Using the Z3 Theorem Prover



Chapter 2

Problem description

Keeping in mind the importance of preventing cyber crime and the shortage of people that prevent
it as motivated in Chapter 1, the security analyst needs to become more efficient. This chapter
introduces the security analyst as well as the specific domain knowledge and theory that will be
employed in this paper.

2.1 Security analysis

Software security is concerned with the software behaving as intended when under attack by a
malicious attacker. Security testing is not the same as software testing. While both are concerned
with ensuring the software functions as intended, software security is concerned with the software
behaving as intended specifically when under attack by a malicious user. Software testing only
tests for the normal use of the program.

The goal of security analysis is to identify flaws that could be exercised or exploited to cause
harm to a system. Such a flaw is called a vulnerability, and is formally described as an “internal
fault that enables an external fault to harm the system” [3]. There are multiple classifications of
vulnerabilities that can be exploited in different ways.

To mitigate a vulnerability, ideally one should avoid it. However, as discussed in Chapter 1,
software developers lack the knowledge to do so. If a vulnerability is not avoided, it can still be
found, fixed and monitored. This is where security analysis comes in.

Security analysis can often be split into two parts, namely black box testing and white box
testing [49]. In black box testing, the internal structure and code of a program are not used
in the analysis. Only the external aspect of the program is tested, which means the behaviour
of the program in response to abnormal inputs is observed. However, in white box testing, the
tester can make use of the implementation of the program in the form of source code in order
to spot vulnerabilities. Instead of output, the internal operations are analysed as well. Mixing
these techniques, where the implementation of the program is partially known, is called grey box
testing.

The more information the security analyst has, the more informed the assessment will be.
Unfortunately, white box testing has its cons. Besides requiring a skilled tester to identify vulner-
abilities from code, this testing technique is time intensive, especially when dealing with a large
code base. Reviewing projects consisting of over 300,000 lines of code is not unusual at Codean.

A security analyst can use tools to automate some tasks. These tools can be divided into two
groups. Dynamic analysis involves evaluation of a system during runtime. Examples of this are
fuzzing, logging and tracing, or using an interactive debugger. Static analysis entails evaluating
a system by examining its source code without executing it. A simple example is style checking,
where warnings are given when one is in violation of naming conventions.

Automatic testing can be used as support for the security analyst. It can save the security
analyst time by performing repetitive and time-consuming tasks. Automatic testing tools cannot,
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2.2. SYMBOLIC EXECUTION CHAPTER 2. PROBLEM DESCRIPTION

however, replace security analysts. In their current form, the tools work fine for simple tasks.
Nonetheless, they have not tackled complex tasks [45]. Besides, the vulnerabilities the tool finds
need to be interpreted and often mitigated by a human. Furthermore, the tool can present false
positives, meaning it reports a vulnerability where there is none.

2.2 Symbolic execution

For certain sections of code, restrictions may be imposed on input values for the code to execute.
Think of an IF statement, for instance. The conditions imposed by this IF statement need to hold
true in order for the code block contained by the statement to execute. Either this code block
always executes, it never executes or the result of the conditional statement is dependent on input.

In nested conditional statements, there could be a number of constraints on a variable. These
constraints on the input accumulate into what is called the path constraint. An example in
pseudocode is illustrated in Figure 2.1. In line 4, a constraint is placed on the variable X. This
means that lines 5-11 can only be reached if X satisfies this constraint. In other terms, lines 5-11
are control dependent on line 4. Line 5 presents another constraint forX. This constraint’s domain
is line 6. This makes the path constraint for line 6 the accumulation of the constraint imposed
on line 5 and the constraint imposed on line 6. If a path constraint is satisfied, an execution
can follow the particular associated path. Symbolic execution offers an overview of what the
restrictions are on input values for a certain program path. Instead of the input consisting of fixed
values as is the case in concrete execution, in symbolic execution input values are represented
by symbols denoting arbitrary values. These symbols are called symbolic inputs. An interpreter
walks through the program using these symbolic inputs, and each input-dependent variable it
encounters is expressed in terms of the symbolic inputs. It also collects constraints on the possible
outcomes of each conditional branch the program can take. The set of constraints for a certain
path is known as the path condition.

These different branches or paths a program can take can be represented in a tree. If you
add the constraints to reach the paths, one gets what is called a control flow graph or execution
tree. Figure 2.2 depicts the execution tree for the code in Figure 2.1. A node shows a conditional
statement and the outgoing branches show what occurs when the condition holds and when it
does not.

On each level you go deeper into the tree, a constraint is added. These constraints can be
solved in order to have an example of what possible inputs will cause a certain branch to be
executed. Line 12 in the pseudocode example in Figure 2.1 is unreachable, since X would need
to be smaller than 3 and equal to 3 at the same time. Due to this contradiction, this line is dead
and it is not represented in the execution tree.

Surprisingly, symbolic execution does not involve the execution of a program. It is a form of
static analysis. Symbolic execution has uses including program proving, software testing (symbolic
debugging), generation of test data and in proving the program quality [23]

Unfortunately, symbolic execution has its limits. Most importantly, as programs get larger,
the number of feasible program paths can grow exponentially and may cause the tool to run out
of memory. If a program contains unbounded loops, this leads to path explosion and symbolic
execution will follow all of these paths, causing it to never terminate [2]. There are tricks to
alleviate path explosion like merging similar paths into one [41].

Another weakness of symbolic execution is its inherent complexity. It is hard to symbolically
reason about calls to operating-system, library functions and program statements like pointer
manipulations and floating-point operations [2]. This issue can be mitigated by using concrete
values to simplify constraints. The result is a simplified, partial symbolic execution [33].

Symbolic execution is different from unit testing. In a unit test, concrete values are presented
to the program to inspect whether the unit they affect behaves as expected. However, symbolic
execution aims to explore the paths of the entire program by using symbolic values and concludes
the values that lead to those paths. Unit testing will not catch system-level errors or errors on
the integration between the units.

4 A Generalised Implementation of Symbolic Execution Using the Z3 Theorem Prover



CHAPTER 2. PROBLEM DESCRIPTION 2.3. THE C PREPROCESSOR LANGUAGE

Figure 2.1 Pseudocode example

1: I =< input >;
2: X = I − 6;
3: y ← 0;
4: if X < 3 then
5: if X = 1 then
6: y ← 10;
7: end if
8: if X = 2 then
9: y ← 20;

10: end if
11: if X = 3 then
12: y ← 30;
13: end if
14: end if

X < 3

X = 1

...

true

X = 2

...

true

X = 3

...

false

false

false

true

...

false

Figure 2.2: An execution tree illustrating the control flow of Figure 2.1

Another similar, but different, static analysis tool is abstract interpretation. It can approximate
all possible runtime states of a program. Like symbolic execution, it maintains constraints (in the
form of invariants or path conditions) during execution [1]. What it cannot do, however, is explore
all possible execution paths of a program.

2.3 The C preprocessor language

A preprocessor is used by a compiler to modify a program before compilation. It is, however, not
a part of the compiler itself: It is a separate step in the compilation process. The compiler is
instructed by the preprocessor to carry out necessary preprocessing before the compilation of the
next language occurs.

The CPP is a language-independent tool that serves as the macro processor for the C, C++
and Objective-C programming languages [58]. The CPP is often called a macro processor since
it allows the user to define macros. A macro is a brief instruction, which automatically expands
into a larger set of commands to carry out a particular task. It can be seen as an abbreviation,
providing a convenient way to represent common programming idioms.

Besides being a macro processor, the CPP has further uses. Some of its primary capabilities
are inclusion of header files, conditional compilation, line control and diagnostics.
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• Header files are files with extension .h that can be substituted into your program. The files
contain C function declarations and macro definitions. Header files allow for easy sharing of
its contents between source files.

• Conditional compilation allows the user to include or exclude blocks of code in the program
by setting various conditions.

• Line control permits the user to set the line number and file name of a source file, which will
result in more meaningful error messages from the subsequent compiler.

• The CPP supports the use of diagnostics, meaning it allows for problems to be detected at
compile time instead of runtime by printing error or warning messages.

The CPP is widely used in practice and it can be a great aid in reducing programmer effort, im-
proving portability, performance and readability when used in a disciplined matter [28]. However,
its users believe the CPP makes C programs more difficult to understand and modify [28]. Its lack
of structure, while increasing flexibility, may complicate the comprehension of the C source code
by both programmers and tools. Even the designer of the C++ language has some critiques about
the CPP language: “Occasionally, even the most extreme uses of CPP are useful, but its facilities
are so unstructured and intrusive that they are a constant problem to programmers, maintainers,
people porting code, and tool builders” [59]. Nevertheless, the CPP is heavily used [28].

The grammar of the CPP is related to the grammar of the C programming language. The main
dissimilarity is the use of the hash symbol (#). All operations in the CPP language are triggered
by preprocessing directives. In the CPP language, directives start off with this hash symbol. The
hash is followed by the name of the directive. Some directives are followed by arguments. The
CPP language consists of 25 directives. A list can be found in Table 2.1. It is good practice to
start directives in the first column to maintain readability.

#assert deprecated alternative to macros
#define define a certain macro
#elif stands for else if, when the #if does not hold
#else when the #if and #elif do not hold
#endif end a conditional
#error stop compilation
#ident a string constant is copied into a special segment of the object file
#if test whether the expression that follows it is true

#ifdef return true if a macro is defined by #define
#ifndef return false if a macro is defined by #define
#import deprecated alternative to #include
#include insert a header from another file

#include next insert file with this name that occurs after current file in the directory
#line specifies the original line number

#pragmaGCCdependency issue a command to the compiler
#pragmaGCCerror issue a command to the compiler
#pragmaGCCpoison issue a command to the compiler

#pragmaGCCsystem header issue a command to the compiler
#pragmaGCCsystem header issue a command to the compiler

#pragmaGCCwarning issue a command to the compiler
#pragmaonce issue a command to the compiler

#sccs no documentation of what it should do
#unassert undo #assert
#undef cancel the definition of a macro

#warning continue compilation, but issue a warning message

Table 2.1: A list of all C preprocessor directives [30]

6 A Generalised Implementation of Symbolic Execution Using the Z3 Theorem Prover
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2.4 Tree-sitter

Code written in a form readable by humans first needs to be translated in order to be understood
by a machine. The translation is performed by an interpreter or compiler. One component of this
translator is called a parser. Parsers break the input they get into smaller elements, preparing it
for further translation.

Tree-sitter is an open-source parsing toolkit developed at GitHub and written in C and C++
[62]. Where each programming language has a parser to go from source code to machine-executable
code, Tree-sitter can serve as a parser for multiple programming languages. This allows the
transformation of source code from different languages to machine-readable data structures with
the same interface. The generated data structure is in the form of a concrete syntax tree. As
a parser generator with tree matching support, it is comparable to Rascal[40], StrategoXT[11],
DMS[7], TXL[21] and ANTLR[51].

Figure 2.3 shows an example of a syntax tree generated by Tree-sitter. The example is based
on the source code given in Listing 2.1. The output given by Tree-sitter was converted to the
graph description language DOT and visualised by GraphViz [26].

1 #i f X < 3
2 #i f X == 1
3 . . .
4 #end i f
5 #end i f

Listing 2.1: A simple example written in C

Each node from the syntax tree holds some information. A node has a type, text, start point,
end point, list of children and a parent. Each of these properties can be visualised in the syntax
tree as seen in 2.3.

This means the syntax tree can be traversed like a traditional tree: Given a node, one can
access its parent, siblings and children. One starts at the root node. Additionally, Tree-sitter
allows querying the syntax tree. Such a query must contain one or multiple patterns and will
return any matches found. The pattern denotes the node’s type, and optionally, the types of the
node’s children.

Tree-sitter offers incremental parsing, which means that once a file is parsed, it will not need
to be re-parsed again entirely when the file is edited. Instead, the edited information is added on
or subtracted from the previous parsing. This increases speed and uses less memory than similar
parsers which do not offer incremental parsing, since parts of the old and new file are shared.
Additionally, Tree-sitter offers error recovery. This means that even if the source code is invalid
by containing errors, Tree-sitter will not abort and give an error message. Instead it inspects the
code and finds the start and end of the invalid code section and give a useful syntax tree regardless.

Tree-sitter has language bindings in 11 different languages and it can currently parse 45 lan-
guages, with an additional 18 in development.

A Generalised Implementation of Symbolic Execution Using the Z3 Theorem Prover 7
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Figure 2.3: An example of a syntax tree produced by Tree-sitter

2.5 The Z3 theorem prover

The boolean satisfiability problem (SAT) determines whether an interpretation exists such that
a certain boolean formula is satisfied. If we generalise this to mathematical formulas instead of
boolean formulas, we get a more complex problem involving equality reasoning, arithmetic, fixed-
size bit-vectors, arrays, quantifiers, and other useful first-order theories [48]. An SMT solver is
a tool that solves SMT problems. Microsoft Research has developed such an SMT solver named
the Z3 Theorem Prover (Z3). It was designed specifically for program verification and dynamic
symbolic execution, although today it is utilised more generally in software verification and analysis
applications. Z3 has language bindings in C, C++, .NET, Java, Python and ML/OCaml.

To use Z3, one creates variables of certain data types in Z3 that do not contain a value.
Constraints can be added onto these variables. For example, some integer has to be larger than a
certain number. When constraints are created, we say the constraints have been asserted in the
solver. The solver can check whether the mathematical formula is satisfiable, and if so, suggest
valid values for the variables. This solution is also called a model or witness for the set of asserted
constraints. A model is an interpretation that makes each asserted constraint true.

8 A Generalised Implementation of Symbolic Execution Using the Z3 Theorem Prover



Chapter 3

Preliminaries

3.1 Symbolic execution

It is a popular concept since introduced in the 1970s, with some of its fundamental papers describ-
ing different systems like the Select system [10], the EFFIGY system [39], the DISSECT system
[35] and Clarke’s system [18]. Since then, symbolic execution has been mentioned in over 32.000
papers, of which a little over 2000 were published in the last year 1.

Different adaptations of symbolic execution have been developed. To name some examples,
differential symbolic execution reduces cost of symbolic execution and improves the quality of
analysis results by making use of the fact that different versions of a program are largely similar
[53]. Selective symbolic execution is a technique that aims to create the illusion of full-system
symbolic execution, yet it symbolically runs only the code that is of interest to the developer
[16]. Directed symbolic execution can be used when one is looking for program executions that
reach a particular target line, instead of the entirety of the source code [44]. Another example
is probabilistic symbolic execution, which estimates the probability of executing portions of a
program [32]. However, a language-generalised adaptation of symbolic execution has not been
developed before.

Concolic execution is a testing technique based on, and similar to, symbolic execution [55].
Concrete execution, that is “regular” execution with concrete values, is combined with symbolic
execution. The idea is to simplify implementation of symbolic execution by running it alongside
concrete execution, each receiving feedback from the other. Similar to the goal presented in this
paper, the aim of concolic testing is to generate inputs that would exercise all the feasible execution
paths of a sequential program [55]. However, these inputs are not generated for one line in source
code only. Additionally, the method of reaching the goal differs as well: The first path that gets
explored is random. The next path follows the previous one, except the result of one conditional
argument gets flipped with the help of symbolic execution. This means that in the worst case, all
paths would need to be computed to find the one we desire. Concolic execution is an extremely
expensive but also valuable method as it can show the absence of security issues next to their
presence. Large companies like Microsoft employ it in their vulnerability analyses of high-profile
software like Microsoft Office and Windows [38].

3.2 The C preprocessor language

Similar to the aim of this paper, the goal of Hu et al. is to use symbolic execution to find the
conditions for any given preprocessor directive or C/C++ source code line to be compiled [36].
Nevertheless, this is not the objective of the paper you are reading. To reach the goal in this
paper, one must first implement a tool which finds the conditions for any given line of code to be

1as found on Google Scholar.
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executed. The key is that it needs to be generalised for as many languages as possible, and the
CPP language is merely a guinea pig. The tool implemented by Hu et al. is not suitable to be
extended to multiple languages easily, since CPP specific extractors and analysers were developed
and used.

A more scaleable approach for symbolic execution in the CPP language was implemented by
Latendresse [42]. This implementation can be brought into play with large C/C++ software. It
utilises symbolic execution under the term “symbolic evaluation”. For the symbolic representation,
the term “conditional values” is coined. The notion of conditional values used in the paper avoids
the combinatorial analysis of paths that occurs in traditional symbolic execution, making for a
faster version. The author went on to write a more complete rendition of the same tool [43].
Where the first implementation lacked in its interaction with macro expansion and evaluation, the
latter implementation transforms them into Boolean expressions to be handled by the symbolic
evaluator.

3.3 Tree-sitter

The design of Tree-sitter was inspired by six papers [68] [64] [67] [66] [60] [52]. While these differ
in their area of research, the most prominent area is generalised left-to-right derivation parsing
(GLR parsing), which Tree-sitter is built on top of [19]. What sets this parsing algorithm apart
from others is its capability to parse any context-free grammar [25].

Tree-sitter is integrated in the Atom text editor as well as the GitHub website to handle syntax
highlighting [62]. However, GitHub also uses it for a form of static analysis similar to symbolic
execution, namely symbolic code navigation. Symbolic code navigation allows the developer to
select a named identifier in source code to navigate to the definition of that entity, and it allows
the opposite as well: given a definition of some identifier, it can list all the uses of that identifier
within the project [19].

3.4 The Z3 theorem prover

The idea of using the Z3 theorem prover to implement symbolic execution is not a new one. This
is no surprise, as fundamental papers of symbolic execution hint at the use of a theorem prover [39]
[23]. Additionally, Z3 is the leading solution for SMT solving [4]. Z3 has been used for symbolic
execution in popular analysis platforms like Mayhem [15], SAGE [34] and Angr [56].

Other notable SMT solvers include cvc5 [5], Bitwuzla [50], Boolector [12], CVC4 [6], MathSAT
[13], OpenSMT2 [37], SMTInterpol [17], SMT-RAT [22], STP [31], veriT [9] and Yices2 [24].

10 A Generalised Implementation of Symbolic Execution Using the Z3 Theorem Prover



Chapter 4

Methods

The objective of this paper is to find a method to implement a tool that can find a set of values that
satisfies the conditions imposed on any given line of code to be executed, for as many languages
as possible.

The full process can be split into three main parts.

• The first part involves parsing the source code into an intermediate representation so that
source code from distinct programming languages is portrayed in the same manner. In this
paper, the intermediate representation is materialised in the form of a concrete syntax tree.
The syntax trees are generated from the source code with the help of Tree-sitter. This parser
was selected due to its wide-reaching scope of languages it can parse, as well as its efficiency
in doing so. Additionally, the concrete syntax trees produced by Tree-sitter are easy to
traverse as well as easy to comprehend when visualised.

• In the second part, the aim is to go from the intermediate representation to a list of con-
straints for any given line of code to be executed. These constraints can come from multiple
lines of code, that is, multiple positions and nodes in the tree. The tree needs to be traversed
and the constraints need to be appended to a list.

• Finally, for each variable in the path constraint for any given line, a value needs to be given
so that the list of constraints for this line is satisfied. This set of values that satisfies the
given constraints is called a witness. A witness can be found using an SMT solver. The
selected SMT solver for this implementation is the Z3 theorem prover, as it is the leading
solution for SMT solving [4].

The full pipeline can be seen in Figure 4.1. The security analyst can use the witness of a line to
visualise its otherwise long list of constraints. Additionally, the witness can be used as input to
see how the program behaves before and on this particular line.

To illustrate an example and assess how well this pipeline could work, the CPP language
is used. To create a minimal viable prototype, the implementation assumes variables to be of
the integer type. Additionally, expressions containing logical operators (&& and ||) are ignored.
Unsupported types trigger an error in the implementation.

The tool is implemented in Python as both Tree-sitter and Z3 have a Python API. Codean
had a preference for Python, since Python is known for its active and large community.

Due to the fact that security analysts inspect all lines in source code instead of just one, the
choice was made to compute a witness for all lines in a single run of the tool. This is feasible as
the source code does not change often, meaning the tool would not have to recompute frequently.
Additionally, this means the tool would only need to be run at start-up and the security analyst
will not need to wait for the tool to compute a witness each time they require one for a certain
line.
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source code

concrete syntax tree

nodes representing
conditional statements

constraints per line

witness per line

1. #if X < 1
2. int y = 1;
3. #endif

parse with Tree-Sitter

depth-first search

extract the expression

solve model

1.
2. X < 1, defined(X) == True
3.

1. []
2. [X = 0, defined(X) = True]
3. []

Figure 4.1: The full pipeline of the tool.
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4.1 Parsing the source code

The Tree-sitter documentation lists detailed instructions to build the library and use the parser
[63]. Once the library is installed and imported, one can create a parser, set its language, and
build a syntax tree based on the source code. The source code is be passed to Tree-sitter as a
string. The root note can then be obtained from the syntax tree. Tree-sitter allows the tree to be
printed as an S-expression, in case one wants to inspect it.

By default, the syntax tree produced by Tree-sitter is a concrete syntax tree. This means
that for every individual token in the source code, a node is created. If details like commas and
parentheses are not needed, Tree-sitter can produce an abstract syntax tree instead. Even if the
type of tree would not matter for analysing source code written in the CPP language, concrete
syntax trees are used in this implementation. This is done due to the intention of expanding to
other languages. Using an abstract syntax tree creates the possibility of important details being
left out.

4.2 Extracting constraints

Now that the syntax tree for the entire source code is obtained, the constraints imposed on each
line need to be found. These are computed in the order in which the lines appear in the source
code. To do this, the tree is iterated over fully while keeping track of the current line. Once the
last line is handled, this step is complete.

Using Z3, a general purpose solver object can be created. Constraints can be added to this
solver at any time. When a constraint is added, we say it has been asserted in the solver.

The constraints need to be expressed as Z3 variables in order to add them to the solver. For an
integer, this is as easy as using the Int(‘x’) function [27]. The ‘x’ is the name of the Z3 variable.
If there are multiple constraints on the same variable, this variable should have the same name in
the Z3 variables as well.

If a solver holds and solves the constraints, and each line of code has different constraints
imposed on it, we need a solver for each line of code. Luckily, many lines of code share the same
constraints. We say lines for which the constraints are identical belong to the same scope if they
are enclosed by the same conditional statement(s). Consult Listing 4.1. Clearly, lines 3-5 belong
to the same scope. One can also plainly see that lines 7-9 belong to a different scope than line
3-5 do. Finally, even though lines 13-15 have the same simplified constraints imposed on them as
lines 3-5 do, they belong to a different scope as the lines are not enclosed by the same conditional
statements.

1 #i f X < 3
2 #i f X == 1
3 . . .
4 . . .
5 . . .
6 #e l i f X == 2
7 . . .
8 . . .
9 . . .

10 #end i f
11 #end i f
12 #i f X == 1
13 . . .
14 . . .
15 . . .
16 #end i f

Listing 4.1: A section of C code, serving to explain scopes

Lines belonging to the same scope only need one single solver to compute a witness that suits all
of them.
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The nodes are handled on a case by case basis. A node is only of interest when it imposes
a constraint. In the CPP language, constraints are imposed by the directives #ifdef, #ifndef,
#if, #elif and #else. When a node of any of these types is encountered, it means a constraint is
imposed on the set of lines it encapsulates.

To find the set of nodes that affect a line, the information each node contains is utilised. As
raised in Chapter 2.4, each node has a start- and end point. The start point consists of two
numbers separated by a colon (:). The first number denotes the line on which it is called. The
column on which it is called is indicated after the colon. The end point works similarly. The range
of a line, that is, the lines from the start point up to and including the end point, showcases the
lines it affects.

As mentioned earlier, the constraints on the lines are computed in the order of which the
lines appear in the source code. This means we start at line 1. Depth-first search (DFS) is used
recursively to traverse the tree. This ensures the nodes are visited in the same order as the lines
they represent.

If the start point of a node is higher than the number of the line we are currently working on,
it means all nodes that affect this line have passed and the list of constraints is complete. When a
constraint is added, a new scope is entered. A copy of the current constraints is made, and given
to a new solver to add on to. In the CPP language, one exits a scope when an #endif , #elif or
#else statement is encountered. It can also be derived from the end points given in the nodes.

Once all nodes in the tree have been visited, this step is complete.

4.3 Finding a witness

When the constraints for each scope have been extracted and asserted in the solver, all that is left
is to find a witness for each line of code. This is handled by the Z3 theorem prover.

The Z3 method check() solves the asserted constraints [27]. If a solution is found, this method
will return sat for “satisfiable”. This means a set of numbers exists for which all constraints
hold, that is, a witness can be found. If no witness exists for this set of constraints, the method
returns unsat for “unsatisfiable”. In other terms, one can say the system of asserted constraints
is infeasible. Besides these two possible results, it is also a possibility that the solver is unable to
solve for this set of constraints. In that case, the check() method will return unknown.

The model() method can produce a witness. In this context, “model” is a synonym for “wit-
ness”, that is, an interpretation that makes each asserted constraint true [27]. This method will
result in an error if the check() method gave anything but sat as its output. If not, it produces a
list with each item containing the name of a Z3 variable that was used in any number of constraints,
along with a value for that variable that makes the constraints satisfiable.
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Chapter 5

Results

In order to estimate whether this tool could be useful for Codean, we need to evaluate whether
this implementation...

• ...can be extended to other languages.

• ...can be valuable to the security analyst.

5.1 Extension to other languages

Adding a language to the tool should be realistically possible to do without an excessive amount
of effort.

5.1.1 Implementing a new language step by step

The individual steps are as follows.

Step 1: Parse Add the desired language to the Tree-sitter parser.

Step 2: Identify Identify any statements or expressions in the language that impose a condition.

Step 3: Visualise and explore Visualise example trees for each type of conditional statement, in
order to get a grasp of names and structures in the syntax tree.

Step 4: Locate conditional statements When traversing the tree using depth-first search as already
implemented, ensure that when a conditional statement is encountered, additional steps are
performed.

Step 5: Locate expressions Iterate from the node representing the conditional statement to the
expression contained within it.

Step 6: Locate elements From the expression, extract the identifier(s), operator(s) and literal(s).
These can also include other types, depending on what the language allows in an expression,
like function calls.

Step 7: Infer types Infer the type of the identifier(s) from the literal(s) and operator(s).

Step 8: Form constraints Form the constraints by creating a Z3 variable for each identifier and
assigning it a constraint using the operator(s) and literal(s). Add the constraints to the
solver.

Step 9: Negations If any conditional statements indicate the negation of any previous statement,
this negation should be added to the solver as a constraint.

Step 10: End of scope If any conditional statements indicate the end of any previous statement,
an older solver should be used. This is already implemented.
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5.1.2 Implementing the C preprocessor language step by step

As an example, this is what each step would look like for the CPP language.

Step 1: Parse The desired language can be added to a list. The parser checks the extension of the
source code and selects the appropriate language from the list.

Step 2: Identify The conditional statements in the CPP language are #ifdef, #ifndef, #if, #elif
and #else.

Step 3: Visualise and explore An example tree for an #if statement can be seen in Figure 5.1.

Step 4: Locate conditional statements The representation of an #if statement in the syntax tree
is called ‘preproc if’, so if a node matches this type, additional steps need to be taken.

Step 5: Locate expressions In the example, the expression is of the type ‘binary expression’, which
is in all cases the direct child of the conditional statement. Longer expressions are split into
multiple binary expressions. Recursion is used to formulate the entire expression.

Step 6: Locate elements Iterate through the expression’s children to find its components. This
step has already been implemented. However, it does not work for logical operators.

Step 7: Infer types The type of the node that is not an identifier, is of the type ‘number literal’.
For the CPP language, this means the identifier is an integer.

Step 8: Form constraints To form the constraint, a z3.Int() variable is created and the operator
and ‘number literal’ are used to form the constraint. Add the constraint to the solver using
‘solver.add(constraint)’.

Step 9: Negations #elif and #else statements indicate that the previous conditional statement
must not hold. The previous conditional statement of #elif and #else statements is its
parent in the syntax tree. The negation of the constraints imposed by the parent node is
added to the solver.

Step 10: End of scope #endif, #elif and #else statements indicate that the previous statement
no longer holds.

Figure 5.1: An example tree of the #if conditional statement
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5.1.3 Analysing each step of the CPP case

Each individual step is analysed for effort and likelihood of error. A measure used in statistics
is the number of Type I and Type II errors, also known as ‘false positives’ and ‘false negatives’,
respectively. In this scenario, a false positive occurs when the tool incorrectly lists a witness that
could never occur. A false negative entails the tool missing a witness that should have been there.

Step 1: Parse Adding the desired language to the Tree-sitter parser is done by simply creating
a Language object from the Tree-sitter library in the list of languages that can be used. The
languages are already implemented by Tree-sitter and thoroughly tested for errors. This step
takes minimal effort and will not impact the accuracy and precision of the tool.

Step 2: Identify Identifying the conditional statements of a language should be done by looking
at its documentation. It is often clearly defined and, again, should be simple to do correctly.

Step 3: Visualise and explore Visualising the way the conditional statements are represented
in the syntax tree is a way of preventing error later on. It gives an overview of different structures
that can occur so that one can take it into account before starting the implementation of the
language. Therefore, the more time spent on it, the better. Missing a possible structure could
result in false positives, as a constraint could be missed and a false witness would be given.
However, new structures can be added at any time. This step is very time intensive.

Step 4: Locate conditional statements Finding lines that impose a constraint is done by
checking the type of each node when the tree is being iterated. This step is simple and quick.

Step 5: Locate expressions Once a line that imposes a constraint is found, the corresponding
expression can be found in its children. The type of the nodes can be checked to see if it matches
any type of expression, be it unary, binary, or other if the language allows it. Binary expressions
have already been implemented. If something was missed in the visualisation step, an expression
could be overlooked which could result in missing constraints entirely. This gives rise to false
negatives. If the visualisation step was done correctly, however, this step does not take much
effort.

Step 6: Locate elements Extracting the elements of the expression is more strenuous, as one
does not know what to expect. Depending on the language, expressions could have numerous
different structures. One might have to iterate the tree in complex ways to access each element.
The visualisation step is, again, fundamental to this step. It could take long to explore all struc-
tures and make sure that in each expression, all elements are extracted. Mistakes here are easily
made, but can also easily be found by testing the code from the visualisation step. Layered binary
expressions (for example, X ∗ 2+Y == Z, which can be divided into multiple binary expressions)
are already handled in this implementation.

Step 7: Infer types Once all the literals and operators are known, one can infer what type
the identifier is. If there are no literals or arithmetic operators in the expression (X == Y , for
example), one does not know the type. Giving them the wrong type may result in false positives
and false negatives, as one constraint that should not be there could be added, and another missed.
A constraint can still be formed as long as one sets all identifiers as the same type. Within one
expression, all identifiers and literals are of the same type. Expressions separated by logical
operators (&& and ||) can contain different types. Depending on the types that can occur in an
expression in the language, the type might be difficult to keep track of. Giving the wrong type
only occurs in the absence of arithmetic operators and literals as described above.
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Step 8: Form constraints Creating a Z3 variable from an identifier can be done in a single
statement. This part is already implemented for integers and linear arithmetic. Every type that
can occur in a conditional statement in the language needs to be implemented, along with all
operations that could be performed on it. For each element, the type is found either by inspecting
the type of its node (for operators and literals), or the type of the nodes surrounding it (for
identifiers). Then, the identifiers and literals need to be translated into Z3 types or ‘sorts’. If
that the sort is not supported, Z3 allows one to define their own sorts [46]. Once the constraint
is complete, it is added to the solver automatically. If one needs to define new sorts, this process
can get difficult. However, once all the sorts needed are available, this step is simple and fast. If
no mistakes were made in the previous step, the implementation of this step will not affect the
accuracy and precision of the tool.

Step 9: Negations In conditional statements that negate the previous statement, one needs to
iterate to the node of the previous statement, compute its constraints like described in the steps
above, and add the negation of the constraints to the solver. This should take minimal effort, as
computing the constraints is already implemented. False positives and false negatives can only
arise if mistakes were made in the previous steps.

Step 10: End of scope In conditional statements that end the previous statement, a scope
is exited and the previous version of the solver needs to be used. This is already implemented,
but one needs to indicate the statements this is triggered for. If one knows which statements this
applies to, it is easy to implement.

To illustrate the claim that switching to a new language is facilitated by using a parser gen-
erator like Tree-sitter, we demonstrate the commonalities and differences between comparable
code snippets in different languages in Figures 5.2 to 5.5. However. this can not be taken as a
complete or sound analysis. It is meant to illustrate the expectation that adding the next language
may be an effort comparable to the steps taken for the CPP.

Figure 5.2: A syntax tree of a simple if statement in the CPP language. The corresponding code
can be found in Listing 5.1.

1 #i f X < 1
2 i n t y = 1 ;
3 #end i f

Listing 5.1: A simple if statement in the CPP language.

1 i f ( x < 1) {
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Figure 5.3: A syntax tree of a simple if statement in the C programming language. The corres-
ponding code can be found in Listing 5.2.

2 i n t y = 1 ;
3 }

Listing 5.2: A simple if statement in the C programming language.

Figure 5.4: A syntax tree of a simple if statement in the JavaScript programming language. The
corresponding code can be found in Listing 5.3.

1 i f ( x < 1) {
2 var y = 1 ;
3 }

Listing 5.3: A simple if statement in the JavaScript programming language.

1 i f x < 1 :
2 y = 1
3

Listing 5.4: A simple if statement in the Python programming language.
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Figure 5.5: A syntax tree of a simple if statement in the Python programming language. The
corresponding code can be found in Listing 5.4.

5.2 Value to the security analyst

In order for the tool to be valuable to the security analyst, it needs to do its job quickly and
correctly.

5.2.1 Runtime

Compared to other SMT solvers, Z3 is relatively fast. The SMT-COMP 2022 mentioned in 3.4
measured the performance of Z3 and other SMT solvers making models for quantifier-free equality
and linear arithmetic sequentially [57]. Out of 891 benchmarks, 852 were handled correctly and
the remaining 39 benchmarks resulted in a timeout.

To test the scalability of the implementation, the runtime is measured against the number
of conditional statements over 100 iterations. This is computed in different settings. The first
is a setting in which the conditional statements are not nested, as depicted in Listing 5.5. In
the second setting, the conditional statements are nested like in Listing 5.6. Each conditional
statement further restricts the variable. The last setting contains nested conditional statements,
but the constraints in each statement are imposed on a different variable. An example can be seen
in Listing 5.7. The results are shown in Figure 5.6.

1 #i f X < 1
2 . . .
3 #end i f
4 #i f X < 1
5 . . .
6 #end i f

Listing 5.5: A piece of code that is not nested, containing two conditional statements, with one
variable per statement.

1 #i f X < 2
2 #i f X < 1
3 . . .
4 #end i f
5 #end i f

Listing 5.6: A piece of code that is nested, containing two conditional statements imposed on the
same variable, with one variable per statement.
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Figure 5.6: The runtime of the tool in different circumstances, measured over 100 iterations.

1 #i f X < 1
2 #i f Y < 1
3 . . .
4 #end i f
5 #end i f

Listing 5.7: A piece of code that is nested, containing two conditional statements imposed on the
different variables, with one variable per statement.

The figure indicates close to linear time complexity for the ‘not nested’ setting. Both ‘nested’
settings show a similar runtime to each other. The time complexity for the ‘nested’ settings is
worse than the ‘not nested’ setting.

5.2.2 Accuracy and precision

In the context of the CPP language, the tool can give false positives and false negatives. One reason
is that the current implementation cannot handle logical operations (&& and ||). Additionally, in
expressions that do not contain literals and operators, one does not know the type of the identifiers.
If one chooses not to add a constraint in this situation, this will result in false negatives. If one
instead chooses to guess the type of the identifiers, constraints could be imposed on the wrong
type. This implementation assumes that every variable is an integer. If the identifiers turn out to
be characters instead, it results in both false negatives and false positives.

It is currently assumed that all variables are independent of each other. If this is not the
case, a constraint on one variable might trigger a constraint on a different variable. This second
constraint would be missed, which results in false negatives.

False positives occur when an incorrect constraint is given. In theory, Z3 can give false positives
in complex, undiscovered situations. However, due to the limited directives and types supported
by the CPP language, this does not occur in practice.
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Discussion

6.1 Threats to validity

Claims made about adding languages other than the CPP language could be questioned, since
just a single language has been implemented. To make a more accurate estimation of how difficult
it would be to extract constraints from a tree in a language other than the CPP, one can compare
syntax trees produced for different programming languages to the one produced on CPP source
code.

Figures 5.2 to 5.5 show the syntax trees produced by Tree-sitter for similar pieces of code, in
different languages. The differences in the trees are not so much in the structure, but more so in
the terms used for certain types of nodes. Additionally, the structural differences that can be seen,
are due to the difference in syntax in the languages. These particular dissimilarities in structure
are to be expected.

However, it is not the syntax that needs to be translated to constraints. The witnesses need to
work semantically. This opens up a whole new world of complex translations. Consider the C++
programming language, where operators can be overloaded. How does one translate an operator
to a constraint, if it has more than one definition? A similar problem is encountered for method
calls in conditional statements. In the Java programming language, two methods could have the
same name, but still differ due to the amount of arguments they take. How does one translate the
appropriate method?

From the information that is currently collected, it is hard to estimate the amount of work it
would take to add another language. It appears that the current design of the tool does not stand
in the way of adding more languages, but additional research will have to determine its feasibility.

6.2 Complexity of adding a new language

The results show step by step instructions to add a new language to the existing implementation.
With complex languages, the ‘visualise and explore’ step could take up a lot of time. If someone
is already familiar with the language or the general structures Tree-sitter produces, time could be
saved. This means adding a new language when one has already added one before could increase
efficiency.

Complex steps are the ‘locate elements’ and ‘infer types’ ones. Because of their complexity,
both steps take a longer time to implement than other ones, and the steps are more probable to
produce errors.

The ‘locate elements’ step has already been implemented for binary expressions, but other
languages could have more types of expressions. For example, the C programming language offers
conditional expressions. Once implemented for one language, the ‘locate elements’ step will be
simpler for other languages.
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The ‘infer types’ step, while easy to implement for literals, will be tougher for identifiers. This
is due to the fact that the type of the literals needs to be known prior. The literal is contained
in a sibling node of an identifier, or a child of its sibling node. Again, once implemented for one
language, this step will become less complex for other languages.

In conclusion, the complexity of adding a new language will decrease as more languages are
added. Additionally, the complexity is dependent on the language to be implemented, and its
similarity to languages that have already been implemented.

6.3 Analysis accuracy

The accuracy of our analysis is defined by the correctness of the binary classification of every
witness discovered by Z3 being true or false. The results show the possibility of false positives
and false negatives occurring. A false negative, where a witness is missed, may lead the security
analyst to think the code is unreachable.

A false positive, where a false witness is given, could result in a witness that does not lead to
the path of the desired line. The security analyst may be led to think that, when using the witness
as input, a certain line is reached that may not be reached at all. Both false positives and false
negatives could lead to security issues being overlooked.

6.4 Runtime

The runtime of conditional statements that are serial instead of nested appears to be linear, but
the runtime for nested conditional statements is not as favourable. This is to be expected, since
the more constraints are asserted in a solver, the more strenuous it is to find a witness. Moreover,
in a nested statement, only the outermost lines have no constraints imposed upon them. In serial
statements, more lines are free from constraints.

With regard to its importance, the runtime should improve on the time it takes for a security
analyst to find a witness. For a single conditional statement containing one variable, the tool uses
0.13 seconds on average to compute a witness. For 256 nested conditional statements, the tool
takes 40.35 seconds on average to compute a witness for every line. Not only the time difference
between the computation of the tool and the security analyst is spared, but meanwhile, the security
analyst is able to focus on other matters.
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Future work

7.1 Improving the tool

To be of use for Codean’s RE, the tool needs to be able to produce a witness reliably for multiple
popular imperative programming languages. The implementation of the CPP language needs to
be completed.

The CPP language is a relatively simple language considering it only has 25 directives, as listed
in Chapter 2.3. The expressions in the conditionals may contain...

• Integer constants

• Character constants

• Arithmetic operators

• Macros

...which means any other types can be disregarded [29].
The supported operations in this implementation are addition (+), subtraction (−), multiplic-

ation (∗) and division (/). The implemented comparisons are equal to (==), greater than (>),
less than (<), greater than or equal to (>=), lesser than or equal to (<=) and not equal to (! =).
Any bitwise operations, shifts, comparisons and logical operations have not been implemented to
limit the scope of the paper. Additionally, there is the limit of the tool automatically assuming
integers and thus not acknowledging characters. This limit is imposed not due to inability, but to
reasonably limit the scope of this paper. Implementing the missing parts will eliminate some of
the false positives and false negatives, thus improving the tool.

Moreover, the way to find the type of an identifier can be improved. Currently, the type is
always assumed to be an integer. One can often infer the type of an identifier from the remaining
part of the expression, but if this is not the case, there should be a different way to be certain
of the type of an identifier. The assumption that variables are independent is another problem,
which can result in false negatives.

Perhaps a solution to the issues above could be to ask the user of the tool for more information.
After all, the goal of Codean’s Review Environment was never to fully automate tasks. Instead,
it was created with symbiotic cooperation of man and machine in mind.

The tool, in its current state, is not more helpful to the security analyst than any other
symbolic executor is. For it to become a useful addition to the RE, it needs to be expanded to
other languages.

Another improvement could be made on the runtime of the tool. Chapter 3.1 mentions different
adaptations of symbolic execution. One of these adaptations is differential symbolic execution [53].
It reduces the cost of symbolic execution by making use of the fact that different versions of source
code are largely similar. This could be useful, because it is good practice to review source code
again after it is updated.
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One more potentially useful adaptation of symbolic execution is directed symbolic execution
[44]. Instead of finding the constraints per line of code, this modification allows finding the
constraints for one line of code only. The security analyst could have the option of computing
a witness for all lines of code, or only the ones they desire. An advantage of directed symbolic
execution is that if the security analyst wants to have a witness for a line of code soon after
importing the source code, they would not have to wait for the tool to compute all the lines. A
disadvantage, however, is that the security analyst will have to wait each time they want to learn
a witness for a line, instead of it being precomputed.

7.2 Evaluating the tool

Accurately evaluating the tool is a project in and of itself. Not only does it involve assessing
the current implementation for its speed and accuracy, but to be certain whether a multitude of
languages can be implemented, a multitude of languages actually need to be implemented.

To properly evaluate whether the current implementation of the tool, without implementing
other languages, can be of use, it needs to be assessed on real use cases. The presence of false
positives and false negatives is known, but also important is the frequency of them. Furthermore,
when such an error does occur, how does this affect the work of the security analyst? Can
intervention from the security analyst eliminate the errors? And if so, does this labour weigh up
to the automation the tool provides?
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Conclusion

With software becoming more complex, the number of digital hackers increasing and the world
becoming progressively more reliant on software, the need for secure software is at an all-time
high. Security analysts need to become more effective in their task.

Codean has developed the RE, which is aimed to assist the security analyst in reviewing more
code in less time. A technique that can be utilised to aid security analysts is symbolic execution.
The goal in this implementation is to generate a witness for a given line, which is a set of values
that satisfies all constraints imposed on the execution of that line. It is essential that this tool
supports multiple languages in order to be used in the RE. It was expected that such a tool
developed with Tree-sitter and Z3 results in a complete implementation of symbolic execution,
that can be expanded to programming languages that are supported by Tree-sitter.

This resulted in a generic architecture for symbolic execution of conditional execution paths
in programming languages, using the CPP language as a test subject. The implementation of
this particular language is not yet 100% accurate, as it generates both false positives and false
negatives. The difficulty of adding on another language depends on the similarity of the language to
the previously implemented languages as well as the amount of previously implemented languages.

The next step forward is proper evaluation of the tool, followed by the implementation of
characters and logical operators to complete the CPP language. Adding more languages to the
tool will increase its reach. False positives and false negatives need to be diminished. One possible
solution is allowing interaction between the tool and the security analyst. The runtime of the tool
could be improved by using adaptations of symbolic execution.
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Appendix A

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

1 from z3 import *

2 from .parser import C_LANGUAGE, parse

3

4 source_code = "examples/stdio.c"

5

6

7 def solve(node):

8 """ Finds the type of a node and transforms its content to a Z3 variable.

9

10 :param node: the node of which we want the type.

11 :return: a Z3 variable containing the value the node provided.

12 """

13 if node.type == "binary_expression":

14 return solve_bin_exp(node)

15 elif node.type == "identifier":

16 return Int("%s" % node.text.decode('utf-8'))

17 elif node.type == "number_literal":

18 return IntVal(node.text.decode('utf-8'))

19 else:

20 raise TypeError(f"node type not supported: {node.type}")

21

22

23 def solve_preproc_defined(children):

24 """ Handles the '#if defined' statements.

25 A negation of a defined ('!defined') results in a unary expression.

26

27 :param children: the children of the binary expression,

28 in this case one of them indicates an

29 '#if defined' statement occurred.

30 :return: the constraints in the form of Z3 variables.

31 """

32 operator = children[1]

33 identifier1 = children[0].children[1]

34 identifier2 = children[2].children[1]

35 if operator.type == "||":

36 if children[0].type == "unary_expression" and children[2].type == "unary_expression": #

Both 'defined' statements are negated.↪→

37 lhs = Bool('defined('+identifier1.children[1].text.decode('utf-8')+')')

38 rhs = Bool('defined('+identifier2.children[1].text.decode('utf-8')+')')

39 return Or(Not(lhs), Not(rhs))
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40 elif children[0].type == "unary_expression": # Only the first 'defined' statement is

negated.↪→

41 lhs = Bool('defined('+identifier1.children[1].text.decode('utf-8')+')')

42 rhs = Bool('defined('+identifier2.text.decode('utf-8')+')')

43 return Or(Not(lhs), rhs)

44 elif children[2].type == "unary_expression": # Only the second 'defined' statement is

negated.↪→

45 lhs = Bool('defined('+identifier1.text.decode('utf-8')+')')

46 rhs = Bool('defined('+identifier2.children[1].text.decode('utf-8')+')')

47 return Or(lhs, Not(rhs))

48 else: # Neither 'defined' statements are negated.

49 lhs = Bool('defined('+identifier1.text.decode('utf-8')+')')

50 rhs = Bool('defined('+identifier2.text.decode('utf-8')+')')

51 return Or(lhs, rhs)

52 elif operator.type == "&&":

53 if children[0].type == "unary_expression" and children[2].type == "unary_expression": #

Both 'defined' statements are negated.↪→

54 lhs = Bool('defined('+identifier1.children[1].text.decode('utf-8')+')')

55 rhs = Bool('defined('+identifier2.children[1].text.decode('utf-8')+')')

56 return And(Not(lhs), Not(rhs))

57 elif children[0].type == "unary_expression": # Only the first 'defined' statement is

negated.↪→

58 lhs = Bool('defined('+identifier1.children[1].text.decode('utf-8')+')')

59 rhs = Bool('defined('+identifier2.text.decode('utf-8')+')')

60 return And(Not(lhs), rhs)

61 elif children[2].type == "unary_expression": # Only the second 'defined' statement is

negated.↪→

62 lhs = Bool('defined('+identifier1.text.decode('utf-8')+')')

63 rhs = Bool('defined('+identifier2.children[1].text.decode('utf-8')+')')

64 return And(lhs, Not(rhs))

65 else: # Neither 'defined' statements are negated.

66 lhs = Bool('defined('+identifier1.text.decode('utf-8')+')')

67 rhs = Bool('defined('+identifier2.text.decode('utf-8')+')')

68 return And(lhs, rhs)

69 else:

70 raise TypeError(f"operator type not understood: {children[1].type}")

71

72

73 def solve_bin_exp(binary_expression):

74 """ Extracts the constraints from the binary expression.

75

76 :param binary_expression: the expression of which we want the constraints.

77 :return: the constraints in the form of Z3 variables.

78 """

79 children = binary_expression.children

80 assert len(children) == 3, "not 3 children"

81 if children[0].type == "preproc_defined" or children[0].type == "unary_expression": # An '#if

define' statement needs to be handled differently.↪→

82 return solve_preproc_defined(children)

83 lhs = solve(children[0]) # Solve the left hand side of the expression

84 rhs = solve(children[2]) # Solve the right hand side of the expression

85 operator = children[1].text.decode('utf-8')

86 if operator == '*':

87 return lhs.__mul__(rhs)

88 if operator == '+':

89 return lhs.__add__(rhs)

90 if operator == '-':

91 return lhs.__sub__(rhs)

92 if operator == '/':

93 return lhs.__truediv__(rhs)

94 if operator == '==':

95 return lhs.__eq__(rhs)

96 if operator == '>':

97 return lhs.__gt__(rhs)

98 if operator == '<':

99 return lhs.__lt__(rhs)

100 if operator == '>=':
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101 return lhs.__ge__(rhs)

102 if operator == '<=':

103 return lhs.__le__(rhs)

104 if operator == '!=':

105 return lhs.__ne__(rhs)

106

107

108 def find_identifier(binary_expression):

109 """ All identifiers contained in this (nested)

110 binary expression are extracted and collected

111 in a list.

112

113 :param binary_expression: the expression of which the identifiers need to be found.

114 :return: a list of identifiers that belong to the binary expression.

115 """

116 temp_identifiers = []

117 children = binary_expression.children

118 for child in children:

119 if child.type == "identifier":

120 temp_identifiers.append(child)

121 elif child.type == "binary_expression" or child.type == "preproc_defined":

122 temp_identifiers.extend(find_identifier(child))

123 return temp_identifiers

124

125

126 def copy_solver(s):

127 """ This function creates a new solver and

128 copies the constraints from the old solver

129 to the new one.

130

131 :param s: is the solver to be copied.

132 """

133 s_copy = Solver()

134 for assertion in s.assertions():

135 s_copy.add(assertion)

136 return s_copy

137

138

139 def check_nodes(node, s_copy, line_number):

140 """ This function performs checks on the current node.

141 If the current node matches a type that imposes a constraint,

142 additional actions need to be taken to extract this constraint

143 and add it to the solver.

144

145 :param node: is the current node that is evaluated.

146 :param s_copy: is the solver containing the current constraints.

147 :param line_number: is the number of the line that is currently evaluated.

148 """

149 if node.type == "preproc_ifdef": # An '#ifdef' statement is encountered.

150 children = node.children

151 for child in children:

152 if child.type == 'identifier':

153 identifier = child

154 for child in children:

155 if child.type == '#ifdef':

156 s_copy.add(Bool('defined('+identifier.text.decode('utf-8')+')') == True)

157 if child.type == '#ifndef':

158 s_copy.add(Bool('defined('+identifier.text.decode('utf-8')+')') == False)

159

160 if node.type == "preproc_if": # An '#if' statement is encountered.

161 skip = False # The 'skip' variable indicates whether the if constraint applies.

162 # Its 'endpoint' makes it so that '#else' and '#elif' statements are affected by the '#if'.

163 for child in node.children:

164 if child.type in ["preproc_elif", "preproc_else"] and child.start_point[0] <=

line_number:↪→

165 skip = True

166 if not skip:
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167 for child in node.children:

168 if child.type == 'binary_expression':

169 binary_expression = child

170 constraints = solve_bin_exp(binary_expression)

171 s_copy.add(constraints)

172 identifiers = find_identifier(binary_expression) # If a variable is used in an

'#if' statement, it means it cannot be undefined.↪→

173 for identifier in identifiers:

174 s_copy.add(Bool('defined('+identifier.text.decode('utf-8')+')') == True)

175

176 if node.type == "preproc_elif": # An '#elif' statement is encountered.

177 skip = False # The 'skip' variable indicates whether the if constraint applies.

178 # Its 'endpoint' makes it so that '#else' statements are affected by the '#elif'.

179 for child in node.children:

180 if child.type in ["preproc_elif", "preproc_else"] and child.start_point[0] <=

line_number:↪→

181 skip = True

182 if not skip:

183 for child in node.children:

184 if child.type == 'binary_expression':

185 binary_expression = child

186 constraints = solve_bin_exp(binary_expression)

187 s_copy.add(constraints)

188 parent = node.parent # The negation of the parent is added to the constraints.

189 if parent.type == "preproc_if":

190 for child in parent.children:

191 if child.type == 'binary_expression':

192 binary_expression_if = child

193 constraints_if = solve_bin_exp(binary_expression_if)

194 s_copy.add(Not(constraints_if))

195 elif parent.type == "preproc_ifdef":

196 children = parent.children

197 for child in children:

198 if child.type == 'identifier':

199 identifier = child

200 for child in children:

201 if child.type == '#ifdef':

202 s_copy.add(Bool('defined('+identifier.text.decode('utf-8')+')') == False)

203 if child.type == '#ifndef':

204 s_copy.add(Bool('defined('+identifier.text.decode('utf-8')+')') == True)

205 identifiers = find_identifier(binary_expression) # If a variable is used in an '#elif'

statement, it means it cannot be undefined.↪→

206 for identifier in identifiers:

207 s_copy.add(Bool('defined('+identifier.text.decode('utf-8')+')') == True)

208

209 if node.type == "preproc_else": # An '#else' statement is encountered.

210 parent = node.parent # The negation of the parent is added to the constraints.

211 if parent.type == "preproc_if":

212 binary_expression_if = parent.children[1]

213 sat_if = solve_bin_exp(binary_expression_if)

214 s_copy.add(Not(sat_if))

215 elif parent.type == "preproc_ifdef":

216 identifier = None

217 children = parent.children

218 for child in children:

219 if child.type == 'identifier':

220 identifier = child

221 for child in children:

222 if child.type == '#ifdef':

223 s_copy.add(Bool('defined('+identifier.text.decode('utf-8')+')') == False)

224 if child.type == '#ifndef':

225 s_copy.add(Bool('defined('+identifier.text.decode('utf-8')+')') == True)

226

227

228 def dfs(node, s, line_number):

229 """ Perform depth-first search on the generated tree.

230 It starts with printing the lines for which all constraints have been found.
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231 Next it checks whether the current node imposes a constraint.

232 Finally it moves to the next node in line.

233

234 :param node: represents the current node.

235 :param s: is the solver that contains the current constraints.

236 :param line_number: is the number of the line that is currently evaluated.

237 """

238 s_copy = copy_solver(s) # This copy makes sure that the solver of the parent node is not

overwritten.↪→

239

240 while node.start_point[0] > line_number: # The current node is further than the line we last

printed, so we need to print more lines.↪→

241 line_number += 1

242 if s_copy.check() == z3.sat:

243 print(line_number+1, s_copy.model())

244 else:

245 print(line_number+1, "line can never be reached")

246

247 check_nodes(node, s_copy, line_number)

248

249 for child in node.children: # Move to the next node.

250 if child.type == "preproc_else" or child.type == "#endif" or child.type == "preproc_elif":

# Do not use the constraints that their parent got.↪→

251 line_number = dfs(child, s, line_number)

252 else:

253 line_number = dfs(child, s_copy, line_number)

254 return line_number

255

256

257 def solve_per_line(node):

258 """ Creates a solver and initiates the depth-first search.

259

260 :param node: represents the root node of the tree.

261 """

262 s = Solver()

263 STARTING_LINE_NUMBER = -1

264 dfs(node, s, STARTING_LINE_NUMBER)

265

266

267 def print_source_code():

268 """ Prints all the lines of the source code. """

269 file = open(source_code, "r")

270 file_lines = file.readlines()

271 for i in range(len(file_lines)):

272 print(f"line {i+1} ",file_lines[i].strip("\n"))

273

274

275 def main():

276 tree = parse(source_code, C_LANGUAGE)

277 print_source_code()

278 solve_per_line(tree.root_node)

279

280

281 if __name__ == "__main__":

282 main()
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