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Abstract

In the area of high volume websites, database scalability is an ongoing chal-
lenge. Many solutions exist, using various partitioning techniques, to dis-
tribute data over multiple servers. For highly interrelated data however,
like social networking graphs, up-scaling is often preferred over out-scaling
in order to avoid the latencies caused by collecting data from many different
servers.

In this thesis I will propose a new architecture for a distributed database that
efficiently handles distribution of graph data over multiple server nodes. The
design is optimized so that common queries which are performed on social
networking graphs can be completed using a total of three server nodes
at most, thereby limiting the overhead that would occur from inter-node
communication.
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Chapter 1

Introduction

1.1 Background

Hyves (http://www.hyves.nl/) is the largest social networking website in
the Netherlands. Hyves has seen tremendous growth over the past years.
Currently over 6.7 million members are subscribed, and the site generates
around 150 million pageviews daily.

At the center of a social networking website is the social network that con-
nects its members together. Members can be friends with each other, at
which point they enter each other’s friend network. Apart from direct friends
— the first degree friend network — there are also friends of friends — the sec-
ond degree friend network. Of course, a third degree network also exists,
and so on.

At the time of writing, the social network consists of 6.7 million members,
and over 245 million friend relations. Needless to say, the network is con-
tinuously growing.

Currently, the network is stored in a single MySQL table. This table consists
of two columns, from_member_id and to_member_id, and thus every row
in this table represents a directional relation between two members. Two
indices exist on this table, making it possible to look-up relations in both
directions. The database containing this table is also referred to as the
friend database.

Using the current database implementation, Hyves is expecting scalability
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problems in the (near) future. The large amount of memory required to store
the table is main cause for these problems. The indices alone are 12GB, and
the data itself accounts for about 4GB. Right now, the servers can still keep
all data and indices in main memory at once. However, as the number of
relations is growing at a quadratic rate compared to the amount of members,
and the amount of members has roughly doubled last year, Hyves should
be preparing for a situation where this network does no longer fit into main
memory.

The current database is placed in a master-slave setup. Within this setup,
the master handles all the writes to the database, while the slaves handle all
the read queries. Modifications to the table which are done on the master
are replicated to the slaves. Because there are multiple slaves, the read
capacity of the database can be scaled virtually without limit. Writes to the
database however, are still limited by the capacity of the master.

1.2 Motivation

As Hyves continues to grow, solutions should be sought for the bottlenecks
that are being faced. Of course, up-scaling is always an option. Up-scaling,
as opposed to out-scaling, is the process of adding more powerful hardware
in order to handle a problem. Out-scaling on the other hand, adds more
servers, thus spreading the task over multiple machines.

Hyves has a strong commitment to using commodity hardware for its servers.
Commodity hardware is generally cheaper, can be ordered on a short period
of time, and can be replaced quickly in case of failure. At the moment
though, such commodity servers do not scale further than 32GB of main
memory, and servers with this capacity are already in use for the friend
database.

This means if Hyves were to apply further up-scaling for the friend database,
it would have to buy itself some really heavy, and expensive, servers. Not
only would this result in increased hardware costs, but costs for server man-
agement would also increase due to added complexity in logistics, increased
dependence on the chosen supplier, and so on.

Because of the undesirability of further up-scaling, I will be researching
solutions to be able to effectively apply out-scaling to the friend database.



1.3 Research Goals

The goal of this research is to find a distributed database setup that will
enable Hyves to apply out-scaling to the friend database such that no ex-
pected scalability problems remain in the foreseeable future. In particular, I
will look for a solution that will not have issues with memory consumption
on commodity hardware nor be limited by the capacity of a single master
server.

Additionally, I will aim for a solution that is highly efficient and will have
as little overhead as possible. While these goals may appear somewhat
conflicting, I believe it is possible to find a good compromise that will satisfy
both.

With these goals in mind, I have developed the following two hypotheses:

1. Memory consumption of the friend database can be reduced consid-
erably by using an alternative data representation, giving sufficient
room for further growth of the social network.

2. Communication overhead between server nodes can be kept at a min-
imum using the right caching techniques.

Both hypotheses will be validated against the proposed solution, which is
described in detail in chapter 3.

1.4 Scope

As mentioned in the previous section, the goal of this research is to find a
scalable, distributed database setup for the Hyves friend database. By doing
so, I will focus on partitioning the social network over multiple server nodes,
implementing caching to avoid communication overhead, and on reducing
memory usage.

This research will also strongly focus on the queries on the social network
which are important to Hyves. I will not aim to implement a general purpose
database, and the database solution will not have to support random queries
outside the scope of the network queries.



Also, while it is a goal to partition the social network over multiple nodes,
the emphasis here is on partitioning in order to achieve scalability. The par-
titioning does not have to be particularly smart such as graph partitioning
algorithms which aim to minimize cross-set edges [6].



Chapter 2

Context

2.1 The Hyves Network

The Hyves Network is a large social network [14] that is used by its members
to stay in touch with each other. Members are connected by creating friend-
ships'. From the user’s point of view, their direct friends are the people they
are most interested in and which they interact the most with. Friends of
friends are also interesting, though they are mostly interesting in order to
find people to create new friendships with.

Unsurprisingly, this social network can be clearly represented in the form
of a graph. Members are represented by the vertices of the graph, while
friendships are expressed as edges. Because friendship relations are always
bidirectional, this graph is undirected.

At the time of writing, the social graph consists of 6.7 million vertices, and
245 million undirected edges (or 420 million directed edges using Hyves’
current implementation). Because of the high fan-out of the vertices — ver-
tices on average are connected to about 73 other vertices — and the fact that
the total number of edges has grown at a quadratic rate compared to the
number of vertices, we can speak of a dense graph [10].

Not all the vertices of the graph are connected, which is easily supported by
the fact that there is a considerable amount of members which have made

Tt should be noted that all relationships on Hyves are considered friendships, though
many users will also have relatives, colleagues or other acquaintances in their friends list.
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no friendship relations at all. Those are most likely attributed to fresh new
members, individuals (most likely from outside the Netherlands) that found
no friends on the network, or accounts which have been created in the past
by bots. It is likely though there also exist small isolated networks which
are not connected to the majority of the other vertices.

While no direct evidence is available, there is also a strong indication that
the network has the topology of a scale-free network [1]. In a scale-free
network, network nodes are not connected using a random distribution.
Instead, there are relatively few nodes, which are called hubs, which have
exceptionally many connections to other nodes.

This is supported by the fact that members on average have about 73 friend-
ship relations, and only 3.5% has more than 300 friendships. Furthermore,
only 0.03% has more than 1000 friendships, and a mere total of 6 members
(which are all celebrities) have over 100,000 friendship relations. This shows
a strong correlation to the power law distribution seen in scale-free networks.
A graph showing the distribution is given in figure 2.1.

All together, we can state the Hyves network is a dense, undirected, uncon-
nected graph, that exhibits characteristics of a scale-free network.

2.2 Other Social Networks

Hyves is not the only social networking site in existence, and several other,
competing sites exist which are faced with similar challenges when it comes
to scaling the social network graph. Understandably, little information is
disclosed by competitors on how such scalability issues have been resolved.
However, some information that could be found includes:

e Hi5 is the third largest social networking site in the world with a
total of over 70 million members?. In October 2007, they gave a great
presentation on database scalability and their own experiences from
the huge growth they have been through. Unfortunately, no specifics
on the social network graph were mentioned. [4]

e LinkedIn is a more business oriented social networking site. Interest-
ing to note is that with 22 million members they have over 3 times as

2While the video from 2007 reported 70 million members, current numbers actually
put them at over 80 million members.
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Figure 2.1: Distribution of the amount of friends per member.
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much members as Hyves, but their social network “only” contains 120
million edges (though unmentioned, these are likely to be directional),
compared to the 420 million edges from Hyves. This makes the so-
cial network graph from Hyves many times as dense as the one from
LinkedIn. LinkedIn reportedly relies primarily on up-scaling for their
friend database, mentioning that partitioning graphs is hard. [3]

2.3 Related Work

Of course, many techniques and solutions exist in the field of database scal-
ability. I will list some of the solutions which are relevant in the context of
this research:

e Sharding is the technique of splitting a database into mostly indepen-
dent chunks, or shards. This technique is often applied to relational
databases, where each shard contains the same set of tables, but a
different subset of the rows. Sharding is an easy, and already widely
applied method of database scaling, but is not well-suited to highly
inter-related data like graphs, because queries can only access data
from one shard at a time. [5]

e Object databases are an alternative to relational databases. Whereas
relational databases store their data in tables, consisting of columns
and rows, object databases store data in objects of different classes,
just like object oriented programming languages. While controver-
sial for use as a general purpose database, object databases can offer
astonishing performance in certain scenarios. [7]

e BigTuable is Google’s approach to building a highly scalable database.
BigTable stores its data in big, three-dimensional tables which are
transparently stored in a distributed file system (GFS). Unlike graph
processing though, where many small amounts of data are queried,
BigTable is mostly optimized for high throughput on large amounts of
data. [2]

13



Chapter 3

Proposed Solution

In this chapter, I propose a new architecture for the friend database which
will both overcome the scalability issues being faced by Hyves, and at the
same time provide outstanding performance.

The architecture I propose is based around three pillars:

e An object-based data representation is chosen over a relational table-
based representation. This representation is more compact, obsoletes
most memory consuming indices, and provides good data locality.

e Partitioning (sharding) is applied to spread both load and memory
usage over multiple server nodes making cheap out-scaling possible.

e Caching of objects is introduced to obsolete the vast majority of in-
ternal communication overhead and to reduce query latencies.

An overview of the architecture is given in figure 3.1.

In the next section, I will tell some more about how the object representation
works, my motivation for using an object representation and the actual data
structures used.

In section 3.2 1T will explain how the objects are partitioned over multiple
nodes and how objects are located.

In section 3.3 I will talk about the various queries that are supported, and
how they are implemented.

14
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Section 3.4 will cover the caching mechanism, and how it helps to reduce
the overhead for query execution.

Finally, in section 3.5 I will explain how persistence is implemented and how
data integrity is preserved.

3.1 Object Representation

One of the main design choices for the proposed solution is to use an object-
based data representation rather than a relational table-based representa-
tion.

Using this representation, every object represents exactly one member, and
every object contains a list of IDs, which are nothing more than simple
integers, of the first degree friends of that member. The list of friend IDs
is always sorted, reducing the time complexity of looking up a specific ID
from O(n) to O(logyn).

My main motivation for selecting this type of representation is twofold:

e Memory usage is cut down tremendously. The main reason for this is
that not every individual friendship relation is indexed anymore, but
only the member objects are indexed. Also, when storing relations
in a table, every relation specifies both the source and the target of
the relation, whereas all relations in an object share the same source
specified in the object.

e Except for the look-up of a single relation, all queries which are in-
terested in one relation from a certain member are also interested in
the other relations from that member. Therefore, spatial locality is
increased by storing these relations together. Because of this locality
of reference, such objects are also good atomic units for distribution.

For a more detailed comparison of object-based representation versus table-
based representation, I refer to appendix A.

3.1.1 Data Structure

The data structure used for representing member objects is defined in table
3.1.

16



Field Description Type

memberld Unique ID of the member 4 bytes unsigned integer

isOnewayMember | Flag indicating whether the | 1 byte boolean
member is a oneway member
(see section 3.4.2)

of friends of the member

numFriends Integer indicating the number | 4 bytes unsigned integer

unsigned integer

friends Array with IDs of all friends numFriends * 4 bytes

Table 3.1: Data structure for member objects.

In addition to the memory for the objects themselves, nodes will need to
store for every object whether they are the master node for the object and
how many references they have to the object (see section 3.4.1 about refer-
ence counting). These attributes, a one byte boolean and a four byte integer
respectively, are not properties of the actual objects however.

3.1.2 Indexing

An index on the memberld field will be necessary for quick look-up of objects.
While a B+ Tree index or a hash table could be used, I have chosen to just
use a simple one-dimensional array for this. The reason for this is that an
array is both extremely simple and extremely fast.

Using such an array may not be very memory efficient if a node contains
only relatively few objects, but still compared to the memory required for
storing the objects, the memory cost is negligible.

For example, if the array is allocated for 25 million members, the memory
cost will be 200MB on 64-bit processors, which accounts for 0.6% of main
memory on servers with 32GB RAM.

It should be noted though that the highest member ID is always a bit higher
than the total amount of members due to members that deleted their ac-
counts. Therefore, in this example the array should be increased in size
when the highest member ID approaches the 25 million.

17



3.1.3 Memory Usage

Now that we know the data structure used and the type of indexing, we
can construct formulas for determining the amount of memory required by
a node:

index_size = 1.5 x8*xm
data_size =20xn+4x fxn
mem_size = index_size + data_size

Where m is the total number of members, f is the average number of friends
per member, and n is the number of objects stored on that particular node.

While it may be true that the average number of friends per member does
not have to be same across all nodes, in practice this is generally the case.
Of course, there might be a small error margin though.

The index size is calculated by allocating 8 bytes for every pointer in the
index array (all servers at Hyves have 64-bit processors). The factor 1.5
is used as slack to account for the offset between the highest member 1D
and the total number of members (which has a factor of approximately 1.1
now), and the fact that enough memory should be allocated to allow for new
members to be created.

The data size is calculated by taking the memory required for the data
structure listed above, plus the memory required for storing master infor-
mation and the number of references, which makes a total of 20 bytes in
a memory-aligned structure, excluding friends. 4 bytes are added for every
friend.

The total memory required on every node for storing its objects is then
calculated by summing the index size and the data size. The result is the
memory usage in bytes.

3.2 Partitioning

In order to allow for out-scaling, member objects are distributed over mul-
tiple nodes. This means that every node is responsible for a different subset
of all objects.

I will call the objects for which a node is responsible that node’s master

18



objects. The other way around, the node responsible for an object is that
object’s master node.

3.2.1 The Meta-Node

There is no static scheme for determining which node is an object’s master
node. Therefore one special type of node exists, the meta-node. The meta-
node contains a list, the meta-index, that maps every object to its master
node.

When a client wants to submit a query it should therefore first contact the
meta-node to find out which node to submit the query to.

Because all clients, as well as other nodes, will submit many queries to
the meta-node, there is a risk of the meta-node becoming a new scalability
bottleneck. Should a single meta-node not be able to process all queries
however, there is always the possibility of using multiple meta-nodes. This is
rather easy to do because the object-to-node map is a simple one-dimensional
data structure which is trivial to partition over multiple nodes. For this
thesis though, I will assume a single meta-node is sufficient.

Finally, because the meta-index is mostly static, this index may even be
cached on the object nodes as well.

For new members, new entries are created in the index and occasionally
entries get removed for deleted members, but entries for existing members
never change (assuming no dynamic redistribution is going on). Therefore,
a lazy caching mechanism would be ideally suited for this situation.

For simplicity’s sake though, I will assume no caching for the meta-node is
implemented in the rest of this thesis.

Meta-Index Consistency

One potential problem with the use of a meta-node is that there is a risk of
the meta-index to become inconsistent with the actual state of the object
nodes.

To minimize this risk all updates to the meta-index should be performed in
a single transaction which is coordinated with the object nodes. This can be
achieved using a two-phase commit protocol [11], which will guarantee that
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either both nodes complete the transaction, or both will fail, thus keeping a
consistent state.

Nevertheless, should a worst-case scenario occur where the meta-index has
become corrupted, it would still be possible to rebuild the index by querying
all object nodes for the master objects they contain.

3.3 Query Handling

Important to consider are the queries which are performed on the graph,
as they are an important influence to the chosen distribution scheme. The
queries which are supported can be divided into four categories.

3.3.1 Friend Fetching

One category of queries is the fetching of a list of friend IDs. In fact, two
queries are supported in this category:

e Fetch a list of all 15* degree friends of a member.

e Fetch a list of all 279 degree friends of a member.

The first query is the easiest. It is implemented by looking up the object of
the specified member, and returning the list of friend IDs that in the object.

The second query is implemented by locating the object of the specified
member, plus all objects of his friends and inserting all the friend IDs in
those friend objects in a hash-table-based set, thus eliminating all duplicates.
The IDs in this set are then returned as a plain list. Note that this list may
also contain first degree friends, but it does not have to.

3.3.2 Pathfinding

Another category is pathfinding. Pathfinding is supported in three flavors:

e Check whether two members are direct friends.

e [Find common friends between two members.
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e Find paths from one member to another in the third degree network.

The first query again is the easiest. It is simply implemented by looking
up the object of one the members and determining, using binary search,
whether the ID of the other member is in the friend list of that member.

The second query is still rather easy. The objects of both members are
located, and then an intersection is created from the friend lists of both
members.

The third query however, is harder. First, the objects of both members
are located, plus all friend objects of the first member. The algorithm then
performs a depth-first walk through all the friend objects of the first member
and the friend IDs in those objects. Every destination of those second degree
paths is then looked up in the set of friends of the second member. If the
destination is found in the other friend list, a third degree path can be
created.

3.3.3 Update Queries

There are also a few queries for performing updates, which are:

e Create a friendship between two members.

Delete a friendship between two members.

Create a new member.

Delete a member.

Set /unset the isOnewayMember flag.

Creating and deleting friendships between members both work about the
same way. The objects of both members are located, and the ID of the one
member is added to or deleted from the friend list of the other member,
and the other way around. Changes to the objects are then replicated, as
explained in section 3.4.3.

Creating a new member is also quite easy. A new, empty object is created
and registered with the meta-node. The node to store the new object on is
determined using a simple modulo calculation on the object ID.

21



Deleting a member is a bit harder, because all existing friendship relations
will be removed before the member object is deleted and unregistered from
the meta-node. This triggers updates in all objects which have friend refer-
ences to the deleted member.

Finally, setting and unsetting the isOnewayMember flag is no more work
than looking up the object, updating the flag, and replicating the changes.

3.3.4 Friend Suggestions

One special type of query is the so-called friend suggestions query. This
query, as its name suggests, is used for offering suggestions to members,
about other members, who might likely be friends of them.

In detail, what the query does is construct the second degree friend network,
just as with the second degree friends fetch. With one big difference, which
is that it also counts how often each second degree friend ID occurs. Finally,
when the set is complete, it removes all the first degree friends, and creates
a sorted list based on the registered counts. This list is returned as a list of
suggestions, with the first member ID being the second degree friend with
the highest number of connections to the original member’s direct friends.

3.4 Caching the First Degree Network

Having seen how the various queries are implemented in the previous section,
it becomes clear that for every query no more objects are required than those
of at most 2 members, and the objects of the first degree friends of one of
these members.

This means if it is possible for every node to act as a master for a set of
objects and also keep in memory copies of all objects in the first degree
network of the master objects, then nodes can answer all their queries using
at most one additional object from another node.

From this assertion arises the third major design decision: All objects of
the first degree friend network of a node’s master objects are cached on that
node.

As a direct result of this, any node is always able to construct the full
second degree friend network of all objects for which it is the master node.
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Cached objects

Figure 3.2: Tracking references to first degree friend objects.

Of course, the node may not have all the objects of all second degree friends
of all master objects, but it will be guaranteed to know the IDs of those
objects.

3.4.1 Reference Counting

In order to determine which objects should be included in the cache, and
which objects may be removed from the cache, all objects are reference
counted. Reference counting is implemented by counting all references to
an object from the master objects on the same node.

Using this mechanism, it is easy to determine which objects should be
cached. Any non-master object should be cached if, and only if, it has
a reference count higher than 0.

Because only the references from master objects are counted, cycles among
the cached objects cannot prevent cached objects from being discarded from
the cache when they are no longer referenced by any master objects.

An illustration depicting reference counting is given in figure 3.2.
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3.4.2 Directional versus Bidirectional Relations

In order to perform reliable reference counting, it is important that all friend
relations are bidirectional.

For example, consider the scenario where objects are redistributed and a
node gets assigned an object which was not yet in the cache. At this point
it would be an extremely expensive operation to check all master objects and
check how many references there are to this particular object. However, if
relations are always bidirectional, the same result can be achieved relatively
cheap by iterating over the object’s friend list and checking for which of
those friends the node is registered as the master node.

While this may seem rather trivial, because friendship relations by defi-
nition are bidirectional, this is actually a change from the current Hyves
implementation, which relies on the usage of directional relations.

In the current Hyves database there is a special group of members called
oneway friendship members, or just oneway members for short. Relations
with these members are always directional (unless two oneway friendship
members create a friendship with each other). The reason directional rela-
tions are used for these members is that they can have a lot more friends
than normal members.

Normal members are limited to having 750 friends at Hyves, while gold-
members (which have bought a premium membership) are limited to 1000
friends. Celebrities however, often have many fans who also want to become
friends at Hyves. For example, our premier Jan-Peter Balkenende has over
100,000 friends.

Now, with some members having such huge amounts of friends, it is easy to
see that certain queries, like friend suggestions, would come to a crawling
halt if they had to process such members. Therefore, relations originating
from oneway friendship members are left out of the friend graph, so that
such queries will automatically ignore them.

In order to both guarantee that all relations are bidirectional and to not let
the search space of the queries explode, I introduced the isOnewayMember
flag that indicates whether a member is a oneway member. Using this flag,
queries can ignore such members if desired.
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3.4.3 Replication

When an object has been modified by a node, the other nodes that have a
cached copy of the object should also receive the update. The nodes that
are not master nodes for an object, but which contain a cached copy, are
referred to as slave nodes for that object.

The replication process is illustrated in figure 3.3. In this illustration Node 1
is the master node of the object for which modifications are being replicated.
The other nodes are slaves. As can be seen in the figure, replication messages
to slaves are all sent in parallel.

This type of replication of updates does not differ a lot from replication as
implemented in Hyves’ current master-slave setup. There are two important
changes though:

e There no longer is a single master, but every node is a master for a
subset of objects.

e Not all slaves receive updates for all replication messages anymore.
Instead, nodes act as slaves for a subset of objects.

The first change is not very significant. Any node can simply replicate
updates to its master objects to other nodes.

The second change is more difficult however. Before a master node can
send replication messages to the slaves, it will first need to find out who the
slaves are. But, there is no central registry of which nodes are slaves for
which objects.

One option might be to simply replicate to all nodes and to let the nodes
which are no slaves of the object simply ignore the message. Using a little
trick however, it’s possible to avoid these unnecessary messages.

The trick is to send the updated object to the meta-node. The meta-node
can then create a list of all the master nodes of the friends of the specified
object. Since all relations are bidirectional, the master nodes of an object’s
friend objects correspond exactly to the slaves of that object. Using this
knowledge, the master node can send its replication messages to just the
slaves of the object.

Finally, it should be noted that replication messages are always send asyn-
chronously, and therefore do not block the query in which the update is
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performed. This means it is possible for a subsequent query, which is sub-
mitted to a different node, to not see the changes performed by the previous
query. This fact can lead to results from queries which are not entirely
correct and which show outdated information.

However, because the master nodes always do have the latest version of their
objects, inaccuracies resulting from replication delays will only occur at the
second or third degree friend network, and results which only involve the
first degree network will always be accurate. As also stated by LinkedIn
[3], inaccuracies outside the first degree friend network will hardly ever be
noticed by users. Hyves also considers such inaccuracies to be acceptable.

3.5 Persistence

Whereas the previous sections have dealt extensively with the in-memory
data structures, this section will cover how such structures are written to
disk in order to preserve data should a crash, or some other failure occur.

Admittedly, because no current scalability bottlenecks exist with the Hyves
friend database concerning disk writes or persistence and no such bottlenecks
are expected either, this part of the design is described in less detail than
the other parts.

3.5.1 Storage Engine

Fortunately, many existing solutions for disk storage exist, and there is no
need to re-implement an entire storage engine for this architecture. For this
setup I have chosen to use Berkeley DB [9] as the storage engine. Berkeley
DB was chosen because it is a proven, fast and well-known database for
storing nothing but key-value pairs. As we will see throughout this section,
all data that needs to be stored can easily be mapped to such key-value
pairs.

3.5.2 Object Node State

The entire state of an object node consists of the objects the node contains,
both the master objects and the cached objects. Of these objects, only the
master objects are stored on disk.
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The reasons for not writing cached objects are threefold. First of all, it
would be redundant, as they are already stored on their respective master
nodes. Second, it would cost unnecessary disk writes to write all changes to
cached objects to disk. The third reason is consistency. While every node
is authoritative for its master objects, it is not for the objects it has cached.
Therefore, should a node have to reload a cached object, it would be better
to ask the respective master node for the object, rather than rely on its own
disk storage.

Master objects are saved to disk though, and the in-memory representation
and on-disk versions are always kept in sync. This means that updates to
master objects will be immediately synchronized to disk before the update
is considered complete.

Objects are saved in the Berkeley database using the object ID as key, and
a serialized representation of the object data structure as value.

In order for an object node to restore its state after is has been down it will
reload all the master objects from the Berkeley DB. All objects referenced
from the master objects, but not yet loaded, will be retrieved from other
nodes and so the cache is reinitialized. During this process the index will also
have been transparently rebuilt, and the node will be ready for operation
again.

3.5.3 Meta-Node State

The state of the meta-node consists of the mapping from object IDs to node
identifiers (which could be hostnames, IP addresses, or some other method
to identify the nodes).

Clearly, this mapping is easily translatable to the Berkeley key-value pairs
as well, as object IDs would be used as key and the node identifier as value.

The meta-node, just like the object nodes, keeps its entire data structure in
memory, and keeps the on-disk representation in sync upon changes.

Should the meta-node have to recover its state after having been down all
it would need to do is load the data structure from the Berkeley DB again.
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Chapter 4

Analysis and Validation

In this chapter, I will make an analysis of the scalability of my proposed
solution. I will also analyze the communication overhead between server
nodes in order to measure the effectiveness of the caching mechanism.

Before I will look at the various properties of the architecture however, I
will take a look at how the network has grown in the past. Based on this,
combined with current knowledge, I will make a prognosis of the future
network growth over the coming 5 years. This is the least amount of time
for which the architecture should be sufficiently scalable. This prognosis can
be found in the next section.

In section 4.2 I will tell about the prototype I've built for measuring various
properties of the proposed architecture.

With the prognosis in mind, and using the prototype I built, I will then
analyze the aspects of the proposed architecture most relevant for scalability
and performance. I will start by analyzing memory usage in section 4.3.
Second, I will analyze the inter-node communication in section 4.4. Finally,
I will analyze the actual processing of queries in section 4.5.

4.1 Prognosis

At present, the social network of Hyves consists of 6.7 million members, and
250 million friend relations, but what is the size Hyves should be preparing
for? As we can see in appendix B, Hyves should prepare for a linear growth in
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the next couple of years, accounting for an increase of 2.75 million members
annually, and at most an additional 28.7 friendships per member per year.

If we continue this trend, the Hyves network will have a total of 20.5 million
members in just 5 years, each having an average of 216.8 friendships®. This
would result in a total of about 2.2 billion friendship relations (or 4.4 billion
directional relations).

These numbers should be regarded as a minimum scalability requirement
for the proposed architecture. If it cannot handle a network of this size,
it is probably insufficient. However, scalability should also not stop at this
point, and I will also make an attempt at making a prognosis on how much
further the current architecture can be scaled. Finally, I will try and propose
back-up solutions, should scalability limits be reached.

4.2 Prototype

In order to measure various aspects of the proposed architecture, I've cre-
ated a simple prototype. This prototype is capable of loading the entire
friend graph into memory from a backup copy of the Hyves live database,
and perform actual queries on this graph. Unlike a full implementation
however, this prototype does not actually use multiple physical nodes, but
emulates the use of multiple nodes in memory. For this reason there is no
actual communication overhead between nodes, but instead the prototype
will register all communication between the nodes through method calls.

Additionally, the prototype does not implement any form of persistence and
updates are all performed in memory only.

Using this prototype I have performed various simulations in order to mea-
sure how much and the type of communication messages would be sent
between nodes, and the amount of memory that would be used per node.

For these simulations a copy of the friend graph was loaded into memory
from a snapshot containing just over 5,000,000 members. For some exper-
iments however, the snapshot was capped at 1,000,000 members. In this
case, the graph naturally only contained the relations between those first

'To be honest, I find it unlikely that members will have an average of 216.8 friends
in 5 years time, and expect it to be a lot less. Nevertheless, it’s better to be safe than
sorry, and I will continue to use this prognosis for the friends ratio. After all, it’s the best
objective guess we have.
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million members.

During simulations, any number of nodes can be emulated, and objects are
distributed over those nodes. Distribution is based on a simple modulo of
the member ID, which given the law of large numbers [12] results in an even
distribution among nodes.

4.2.1 Query Logs

For simulations where measurements were performed on the number of mes-
sages passed between nodes during query execution, I replayed a batch of a
total of 100,000 queries which were logged from the live website. The queries
are executed in the same order as they were performed on the live database,
though they only represent a subset of all queries that were executed during
the logging period. This is a necessity, as logging of all queries would have
flooded the logging servers. Nevertheless, because of the size of the sample,
the set of queries is still expected to be statistically representative.

4.2.2 Timing Measurements

In order to be able to do measurements on the performance of queries, I
also wrote an algorithm for constructing worst-case graphs of different sizes.
By constructing such graphs in incremental sizes and measuring the time
needed to complete different queries on those graphs, I was able to measure
the time complexity of those queries.

A worst-case graph of size n is constructed as follows: A single member is
created as a starting point. Then n friends are created for this member.
Finally, new friends for those members are continuously created until all
these friends have n friends as well, and this is repeated up to the desired
depth of the graph. Cycles in the graph are intentionally avoided within the
search space of the queries to make sure all queries will need to process all
paths.

Of course, there are some limitations to this approach of time measuring.
First of all, a simple workstation machine was used for measurements, and
the absolute times recorded are not representative for the more powerful
machines at the Hyves server park.

Second, because the entire prototype runs in a single-threaded process, the
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timings are only representative for the time needed to do the actual pro-
cessing of the query, but do not cover latencies for communication overhead.
Fortunately, as we will see later on, this overhead is mostly a constant factor.

Finally, we should consider the fact that no concurrency or associated lock-
ing mechanisms are implemented in the prototype, which may impact the
performance of a real implementation as well. It is believed though that all
read queries in the proposed architecture can be implemented without the
need for locking.

The prototype was implemented in C++ using the Qt 4.4.0 framework on
a Linux platform using GCC 4.2.3, running on an Intel Core2 Duo CPU at
2.4GHz with 4MB cache and 4GB RAM.

4.3 Memory Usage

As explained in section 3.1.3, total memory usage consists of two parts, the
memory used for storing objects, and memory used for indices. As we will
see, the first is partially scalable using out-scaling, the second does not need
any further scaling at all.

4.3.1 Object Memory

The amount of memory required per node for storing objects is directly
related to the amount of objects stored on that node, and the size of those
objects. There are two types of objects on every node though, master objects
and cached objects.

Master objects can easily be distributed evenly over multiple nodes, using
a modulo distribution. The amount of memory available for storing master
objects can therefore be linearly scaled by adding more server nodes.

The amount of memory required for the cache is a lot harder to assess
though. This is because the amount of objects in the first degree network is
dependent on the number of master objects, on the number of friends these
master objects have and on the ratio in which these master objects share
common friends. Finally, for the exact memory consumption it also matters
how much friends the objects in the first degree network have.

The main culprit here is the common friends ratio. The reason for this is
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Figure 4.1: Number of objects compared to the number of nodes.

that this ratio is almost impossible to predict, and is highly dependent on
the particular partitioning of the objects among the nodes. For this reason I
have performed some experiments in the prototype to see how many objects
were in the cache under varying circumstances. Because of memory and
time constraints, the experiments were performed on a subset of the live
friend graph, containing only 1,000,000 members, rather than the just over
5,000,000 members that were present in the snapshot. This subset is still
expected to be statistically representative, which is supported by the fact
that it shows similar scale-free characteristics.

First of all, I've measured how the amount of objects in the cache reacted
to the amount of nodes that were used. The results of which can be found
in figure 4.1.

As we can see in the figure, memory usage does not decrease linearly with
the number of nodes. This is because as the total number of master objects
on a node decreases, the overlap in friends of these objects (the common
friends ratio) also decreases. Because of this, the amount of cached objects
needed per master object increases.
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It should be noted though that the number of cached objects needed for
a single master object never exceeds the number of friends of that master
object and therefore the average ratio of cached objects per master object
will not exceed the average number of friends per members.

Second, I've measured how the amount of objects changes as the number
of members increases. For this experiment, more and more members were
created, and friendships were created for these members in order to keep the
friends per member ratio constant. 10 nodes were used in this experiment.
The results can be found in figure 4.2.

In this figure we can see the size of the cache increase almost linearly with
the number of master objects as more and more are created. The ratio of
increase is not the same though. The number of members doubles, while the
total number of objects triples. This already suggests that the growth ratio
should slowly decline, as the number of objects per node simply cannot grow
larger than the total number of objects in the graph. This is supported by
the fact that the figure shows a very slightly flattening curve.
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Third, I’ve measured how the amount of objects changes as the number of
friends per member increases. With the subset of the graphused, members
on average had 18,9 friends, and this was increased to 38,9 friends per mem-
ber during the experiment. Again, 10 nodes were used in this experiment.
The experiment was performed by randomly creating additional friendships
between members. The results can be found in figure 4.3.

This figure shows us that the total number of objects per node quickly
increases as members get more and more friends. This increase flattens
however as the number of objects per node approaches the total number of
objects in the graph.

4.3.2 Index Memory

The amount of memory required for the index is only dependent on the
number of members. Or, to be precise, on the member ID of the newest
member. Because of the array implementation of the index, it does not
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matter how many nodes there are, how many members are actually located
on any given node. Because nothing but the object IDs is being indexed,
the number of friends of objects does not have any influence either. All of
this implies that the memory requirements for the index cannot be scaled
using out-scaling.

Fortunately, the array does not use a lot of memory to begin with, and
out-scaling is not expected to be necessary at all. Looking at the expected
amount of members in 5 years, 20.5 million, we can calculate the amount
of memory needed for this index using the formula given in section 3.1.3.
Filling in the formula gives us the following;:

1.5 * 8 % 20, 500, 000 = 246, 000, 000

Therefore, 246 million bytes, or almost 235MB, should be reserved for this
index. This corresponds to 0.72% of main memory on a server with 32GB
RAM.

Even if Hyves would get 10 times as much members as anticipated over the
coming 5 years, possibly making them the largest online social network in
the world, the memory required for this index would still only take up 7.2%
of main memory. I believe it is therefore safe to state that indices will no
longer pose any scalability issue in the foreseeable future.

Nevertheless, should all assumptions fail, and should the index still cost
too much memory, it is always possible to fall back to a regular hash-based
index, at the cost of decreased look-up performance.

4.3.3 Conclusion

As we can see, because of the introduced cache, and to a lesser degree
because of the use of a plain array as index, there is actually less memory
left for growing the friend network. Additionally, available memory cannot
be linearly scaled by adding more nodes, because memory usage per node
does not decrease linearly with the added number of nodes.

The good news though is that overall memory requirements have already
been reduced considerably. Using the formula from section 3.1.3, even if
members on average have 216.8 friends, a single node would be able to
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keep a friend graph in memory containing at least 35 million members?. A
single node therefore can already keep in memory a graph 70% larger than
predicted by our prognosis. Given that the graph will not be stored on a
single node, but on multiple nodes, the total graph size will be allowed to
be even larger.

Furthermore, there is an important side note related to the experiments
above. In all the experiments where network growth was simulated, new
friendship relations were created randomly. This is not realistic, as we have
already found that the network does not have random connectivity, but
rather looks like a scale-free network. Randomly creating new friendship
relations therefore is not very realistic for natural growth. The upside here
is that creating new relations in a scale-free manner (which would have been
very hard to simulate truly realistically) would have resulted in a higher com-
mon friend ratio, because it would have increased the chances of members
becoming friends with people they know indirectly. A higher common friend
ratio would have resulted in less objects being cached per node. Therefore
the graphs that were presented are most likely more pessimistic than what
we would see with real network growth.

Thus as far as we can see, even with the caching, the solution appears
sufficiently scalable when it comes to memory requirements for the next 5
years, and probably beyond.

Still, it should be considered what to do if the graph grows faster than
anticipated anyway. For one thing, it’s probably a safe bet that in 5 years
time, commodity servers will be available with 64GB of RAM, or even more.
At this point, we would be able to grow the graph at least twice as big again
using up-scaling.

Finally, if all else fails, it can still be decided to (partially) disable the cache,
at the expense of an increased network load.

4.4 Inter-Node Communication

In this section, I will analyze the communication between nodes.

Basically, there are two areas where communication between nodes is nec-

2For this calculation, I make the assumption that a node containing 32GB of RAM,
will have 30GB at its disposal just for the friend graph (including index).
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essary. The first area is the query pre-processing, where the correct node
for processing a query is located and the necessary data is gathered. This
is handled in detail in section 4.4.1. The second area is the replication of
updates to objects, which is handled in section 4.4.2.

Figure 4.4 gives a detailed overview of the interaction between nodes during
the entire process of handling an update query. Note that handling of a read
query is exactly the same, minus the replication.

4.4.1 Query Pre-Processing

Before any query can be processed there are a few things that need to be
done. First of all, the correct node that will process the query needs to be
found. This is achieved by performing a query on the meta-node, which I
will simply call a meta-query. This is step 1 in figure 4.4.

The purpose of the meta-query is to locate the master node of the object
specified by the query?. The only exception is the query for creating a new
object, in which case there is not yet a defined master node, and the meta-
node can return any node. In my simulations, the meta-node will determine
the node for a new object based on the modulo of the ID of the new object,
but other methods may be used as well.

Once the correct node has been located, the query is submitted to this node.
This is step 2 in the figure. For some queries however — the pathfinding
queries and some of the update queries — a second object is required which
may not be on the same node. If this is the case, the node will submit a
meta-query for this object as well (step 3), and fetch this object from the
other node (step 4).

At this point, all necessary data is available on the node that will be pro-
cessing the query.

What makes this interesting is that whatever query we are dealing with,
these steps are always the same (of course for some queries the additional
object will be required, and for others it won’t). This means that whatever
query we are dealing with, and no matter how many nodes our setup con-
tains, there are always either 2 or 4 queries between nodes. One meta-query
from the client to the meta-node and the actual query from the client to one
of the object nodes. And optionally one more meta-query from an internal

3Some queries specify two objects, in which case either of those can be used.
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node to the meta-node and one object fetch between two internal nodes.
While it may occur more often that 4 queries are required rather than 2 as
the number of nodes increases, no matter how far the setup is scaled out,
more than 4 queries will never be required.

4.4.2 Update Replication

Finally, after the query has been processed and the result returned to the
client, any possible changes made to objects should be replicated to other
nodes containing the object. This step therefore only applies to update
queries.

The first type of replication applies to the creation and deletion of relations.
Because these queries always perform updates on two objects, it is possible
for the node which is processing the query to only be the master node of
one of these objects. In this case, the change to the other object should be
immediately committed to the master node of the other object as well. This
replication step, step 5 in figure 4.4, requires a two-phase commit protocol
[11] to make sure one node does not commit the transaction, while the other
fails. Only when both nodes confirm a successful commit of the transaction,
will the query return successfully to the client.

Looking at the first replication step, we can conclude that this again is a
constant factor, which requires a total of 4 messages between the nodes
because of the two-phase commit (or no messages at all if the node happens
to be the master of both objects).

The second type of replication applies to all updates to objects, and is
performed after the result of the query has been returned to the client. This
step concerns replication of updates to all the slave nodes of an object. To do
this, first it should be determined which nodes are the slaves of the object.
This is step 7 in the figure and the mechanism to determine the slaves nodes
is explained in section 3.4.3. When the slaves are known, they are all sent a
message with the update.

If we take a close look at this second step, we can see that as the number
of nodes increases, the number of slaves for objects will likely increase as
well. Therefore, the number of replication messages that have to be sent
will increase as well.

To analyze the impact of this I have monitored the amount of replication
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messages while a query log consisting of 100,000 queries was executed on the
backup copy of the Hyves friend graph in the prototype. This experiment
was performed with an increasing number of nodes, so as to measure the
increase in replication messages as the number of nodes increases. The
results of this can be found in figure 4.5.

To put this into perspective, figure 4.6 contains a graph of the overall increase
in messages (including meta-queries and object fetches for the query pre-
processing).

Additionally, I have split up the different types of messages, and a detailed
overview of the increase of various types of messages can be found in tables
4.1 and 4.2. The first table shows the increase in messages when the cache is
used, whereas the second table is for comparison with the situation without
cache. Note that the last row in both tables includes the 200,000 queries
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Number of Nodes: 1 5 10 15 20 25
Object Fetches 0 1,895 2,765 3,601 4,410 5,366
Meta-Queries 3,028 4,923 5,793 6,629 7,438 8,390
Replication Messages 0] 11,460 | 24,883 | 37,444 | 49,235 | 60,235
Total Internal Messages 3,028 | 18,278 | 33,441 | 47,674 | 61,083 | 73,991
Total Messages 203,028 | 218,278 | 233,441 | 247,674 | 261,083 | 273,991
Table 4.1: Messages passed under varying number of nodes with caching.

Number of Nodes: 1 5 10 15 20 25
Object Fetches 0 | 210,884 | 237,989 | 247,543 | 252,408 | 256,199
Meta-Queries 0 | 210,884 | 237,989 | 247,543 | 252,408 | 256,199
Replication Messages 0 0 0 0 0 0
Total Internal Messages 0 | 421,768 | 475,978 | 495,086 | 504,816 | 512,398
Total Messages 200,000 | 621,768 | 675,978 | 695,086 | 704,816 | 712,398

Table 4.2: Messages passed under varying number of nodes without caching.

and meta-queries from the client as well.

As we can see, overhead for replication messages increases a little less than
linearly with the number of nodes. This increase looks indeed to be caused
by the increasing number of slaves that needs to be replicated to. Given
that every member has a limited amount of friends, the maximum number
of slaves per object is limited as well. Therefore it is expected this graph
would flatten more as more nodes are added.

There is one more observation we should make however. As said, there is a
constant amount of meta-queries for figuring out who the slaves are. There
is one “flaw” in this statement though, which is that it is based on the
assumption that there is only one meta-node. In section 3.2.1 it is explained
however that it may be necessary to use multiple meta-nodes if a single
one cannot take the load. In this case, it may be necessary to query all
these meta-nodes in order to determine all slaves of an object. Nevertheless,
I believe it is safe to assume there will always be less meta-nodes than
other nodes, therefore the overhead caused by using multiple meta-nodes
will always still be less than the replication overhead.
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4.4.3 Conclusion

As explained in this section, no matter how many nodes there are, there is a
constant upper limit to the amount of messages required for any single query.
The only exception is replication which increases even less than linearly as
the number of nodes increases.

Furthermore, as can be clearly seen in the figures listed above, the total num-
ber of messages between nodes is decreased considerably by using a cache.
As Hyves has already had past experiences with huge amounts of network
messages causing trouble due to overloaded switches, this is a significant
gain.

Another thing we can see by looking at the tables, is that most of the
overhead when a cache is used is caused by the replication messages. This
is actually another advantage for the setup with cache. When caching is not
used, all object fetches have to be completed in the query pre-processing
stage. With the majority of replication messages however, there is no query
waiting for the replication to be completed, and an increase in replication
messages does not directly increase query latencies.

For these reasons, I conclude that the introduced cache is an effective mech-
anism for reducing inter-node communication. Additionally, further out-
scaling of the setup appears to cause only a little, and less than linear,
increase in internal communication. Therefore, when it comes to communi-
cation, this architecture appears sufficiently, and well scalable.

4.5 Query Processing

Between the gathering of data and returning a query’s result is the actual
processing of the query. This processing needed to get the query result is
analyzed in this section.

4.5.1 Friend Fetching

The first type of query I explained in section 3.3 was friend fetching. In the
first degree, this is nothing more than looking up an object and returning the
friends listed in the object. Here, the look-up is a constant time operation,
whereas the actual time required for serializing and returning the friend list
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is linearly dependent on the size of the friend list. The time complexity thus
is O(n), where n is the maximum amount of friends in the worst case.

Fetching friends in the second degree network is already a bit trickier. The
potential size of the entire size of the second degree network is n?, but
duplicates have to be removed as well. Because a hash-table-based set is used
for storing the network however, checking for duplicates can be performed in
amortized constant time[13]. The worst-case time complexity for processing
this query therefore is still O(n?).

In general, we can state that the complexity of friend fetching as imple-
mented is O(n?) in the worst case, where n is the amount of friends per
member and d is the degree of the network being fetched.

To validate this statement, I have measured the time complexity of both first
and second degree friend fetching in my prototype. The results can be found
in figures 4.7 and 4.8. Along with the measured results, a reference line is
plotted which shows the respective expected complexity formulas, corrected
with a constant ¢ to fit the measurements. As you can see, the worst-case
time complexities are indeed O(n) and O(n?), respectively.

4.5.2 Pathfinding

Pathfinding is implemented up to the third degree. Analysis of the imple-
mentations of each degree follow.

As explained in section 3.3.2, first degree pathfinding is trivial. It involves
nothing more than a binary search in the friend list of one of the members for
the ID of the other member. The time complexity of this query is therefore
determined by the binary search, which is O(logyn) [8]. Again n is the
maximum allowed number of friends per member in the worst case.

For second degree pathfinding, an intersection between two friend lists has
to be created. Using a hash-based implementation, this can be performed
in O(n) time.

Third degree pathfinding again works pretty much the same as second degree
pathfinding, except that not a single intersection has to be performed, but
an intersection has to be calculated for all n friends of one of the members.
Therefore, worst-case time complexity becomes O(n?).

With the exception of first degree pathfinding, which can be considered a
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Figure 4.7: Time complexity measurements of 15 degree friend fetching.
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Figure 4.9: Time complexity measurements of 3'4 degree pathfinding.

special case, we can say time complexity of this implementation of pathfind-
ing is O(n-1).

In order to validate the worst-time complexity, I have now measured the
worst-case time complexity for pathfinding in the third degree. The results
of these measurements can be found in figure 4.9. Again, a reference line
has been plotted for comparison. As you can see, the figure validates the
stated worst-case time complexity for third degree pathfinding.

4.5.3 Update Queries

Four different update queries exist, each of which I will analyze now.

First of all, we have the creation of a relation. In order to create a relation,
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the member IDs of two members should be added to each other’s friend
lists. Insertion in a sorted list is a two-step process: finding the position for
insertion, and the actual insertion, which includes moving all items in the
list after the insert position. The first has a time complexity of O(logan), the
second O(n). Of course, both have to be performed twice, but this has no
relevance for the complexity. Therefore the final worst-case time complexity
of adding a relation in this setup is O(n + logan).

Now that we know how creating relations work, removing is just as easy. The
only difference being that rather than an ID being added, one is removed.
The complexity is the same.

Creating a new member is even easier. A new object is created, and regis-
tered. A constant operation, therefore the time complexity is O(1).

Deleting a member is the toughest though. When a member is deleted, all
his relations should be removed first. Unfortunately, this is not as easy as
just dropping the friends list in the member’s object, because all the objects
of the member’s friends should be updated as well. Removing the relations
to this member from all his friends results in a worst-case time complexity
of O(n? + nlogan). Once this is done, the actual removal of the object is a
constant time operation though.

4.5.4 Friend Suggestions

Finally, there’s the friend suggestions query. This query first constructs the
second degree friend network, meanwhile counting the number of occurrences
of each member. The complexity of this is O(n?), just as with a regular
second degree friends fetch. Once this network is constructed though, all
first degree friends need to be removed from the set and members need to be
sorted in order of number of occurrences. Removal can be accomplished in
O(n) time, because of the hash that is being used. Sorting is implemented
using quicksort, which has an average time complexity of ©(nlogsn), but
a worst case of O(n?). Therefore, the overall worst-case time complexity is
O(n? +n).

Unfortunately, it was nearly impossible to generate friend graphs that would
consistently trigger completely worst-case behavior for this query. This is
because of the quick-sort whose input is extracted from the set containing
second degree friends in undefined order. Nevertheless, if we look at figure
4.10, we again see the plotted reference line match pretty closely with the
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Figure 4.10: Time complexity measurements of friend suggestions.

measured values. Therefore, I believe it’s safe to state that worst-case time
complexity for friend suggestions is indeed at least close to the order of
O(n? +n).

4.5.5 Conclusion

In this section I analyzed the worst-case time complexity of various queries
which are performed on the Hyves friend database. The time complexity of
these queries is actually not influenced by the amount of nodes in the setup,
as all actual processing is performed on a single node. Instead, as we have
seen, complexity is directly related to characteristics of the network graph
on which the queries are performed.

We have seen that the determining factor for a query’s worst-case time com-
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plexity is the number of friends per member. We have also seen the heaviest
queries decrease in performance quadratically to the amount of friends per
member, with the friend suggestions query being even slightly worse. For
this reason, I have to conclude that while the architecture is rather scalable
when it comes to increasing amounts of members or increasing load, Hyves
should be careful when it comes to scaling up the number of friends per
member. Therefore I would advise to keep limiting the maximum amount
of friends per member as is currently the case as well.

If we were to follow figure 4.10, we can estimate that the absolute worst-case
for a friend suggestions query on the Hyves live database, where the number
of friends per member is limited to 1000, would cost about 1.1s to process?.
While this is definitely very slow for a single query, it still is believed to be
acceptable for an absolute worst case which is highly unlikely to occur in

the real friend graph.

Besides worst-case time complexity it’s also very interesting to know some-
thing about the average cases. We know that members currently have about
73 friends on average. Therefore the easiest way to apply our knowledge
about the worst-case time complexity to the average case is to just look at
the graphs for worst-case performance and look at the cases where n = 73.
This will naturally still be a bit pessimistic because real-world second degree
friend networks will generally have fewer than 732 members due to common
friends, but it will still be pretty accurate nevertheless. This would lead
us to believe that friend suggestion queries on average can be processed in
about bms (on the workstation used). This would double to about 10ms if
the average number of friends per member were to rise to 100, and so on.

4Oneway members are not taken into consideration here, because such heavy queries
like third degree pathfinding and friend suggestions are simply disabled for these members.
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Chapter 5

Conclusion and Future Work

In this thesis, I have presented a new architecture to replace the current
Hyves friend database. The architecture combines advantages of an object-
based memory structure, together with sharding and a unique caching mech-
anism.

These factors combined make for a database that has a low and well scalable
communication overhead, and which uses considerably less memory than the
current Hyves setup. Measurements indicate that the proposed architecture
will be more than sufficiently scalable in the foreseeable future.

Both important bottlenecks with the current Hyves setup, memory usage
and the single master, have been addressed.

All in all, I believe the proposed solution can successfully replace the existing
solution and is sufficiently capable of resolving the bottlenecks expected by
Hyves. Furthermore, I believe that due to the low amount of communication
overhead, this solution will be able to provide excellent query performance.

5.1 Partitioning Algorithms

In the future, it would be very interesting to investigate to what extent
performance can be further improved using graph partitioning algorithms.
I have performed some quick tests, and preliminary results indicate that
memory usage required for caching can easily be reduced by 20 to 40% by
using a rather simple partitioning algorithm. Furthermore, reducing the size
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of the caches also reduces the number of replication messages required to
keep the caches up-to-date.

Sophisticated graph partitioning algorithms are still rather complex though,
and require a lot of resources to perform the partitioning. Further research
would be needed to determine whether the savings in memory and the re-
duced number of replication messages are worth the expensive of applying
extensive graph partitioning.

5.2 Parallelism

Another area to explore is that while the current implementations of the
queries are all fully serial, there are many places where parallelization may
be applied. For example, pathfinding can be easily parallelized by splitting
the space in which to search for paths into chunks and processing these in
parallel.

Such parallelizations can easily be implemented using multi-threading on
a single-node, after all, that node already contains all the required data.
However, if a single query would become too heavy for a single node to
process in a reasonable amount of time, it should be considered to split the
actual query processing over multiple nodes as well.
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Appendix A

Relational versus Object
Based Graph Representation

There are multiple ways to store the adjacency list representation of a graph,
two of which are a relational representation and an object based represen-
tation:

e In a relational representation, all edges of the graph are stored as rows
in a table containing two columns. The first column in this table then
identifies the originating vertex and the second column identifies the
target vertex. Vertices are not explicitly represented, and a vertex
with no edges from or to it is simply never considered to be a part
of the graph. A big advantage of a relational representation is that
many relational database products are available which use this model.
Additionally, indices can easily be applied to columns in tables. By
applying an index to the second column, it also becomes fast to look
up edges in the reverse direction.

e In the object based representation I selected, every vertex is repre-
sented by an object, which contains a list of all outgoing edges. This
representation is more compact, because all outgoing edges only need
to identify the target vertex, as the originating vertex is represented
by the object itself. While objects can exist with no edges from or
to it, these objects serve little purpose and may be omitted. Another
advantage of this approach is that objects can easily be extended to
contain additional information besides just edges.
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The choice for a relational or object based graph representation also influ-
ences the performance characteristics and memory usage for various opera-
tions that are performed on the graph. To make a fair comparison I make
the following assumptions:

e When the table based representation is used, the table has two indices
both spanning both columns using a B+ Tree. The first index starts
with the first column, the second index starts with the second column.

e When the object based representation is used, all objects are referenced
from a static array, which is possible because of the relatively small
amount of objects. The relations stored in the objects are stored in a
sorted dynamic array.

e [ use the current graph size of the Hyves friend network for calculating
memory sizes. Vertices are identified by member 1Ds, which are stored
in 4 byte integers.

Table A.1 provides a quick overview.

We can see here that because I do no longer need to have two indices on rela-
tions, one for each direction, but just a single index on objects only, memory
usage decreases considerably. What’s more interesting is that memory usage
decreases without sacrificing performance. All objects can be accessed using
very fast array references.

Additionally, while binary search has a worse time complexity than a B+
Tree index look-up, the binary searches are always performed on small con-
trolled datasets which (except for oneway friend members) are never more
than a few kilobytes in size. Because of this, binary searches are arguably
faster on these small datasets because they have less memory overhead and
therefore cause less CPU cache misses.
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Property Relational Object Based
Data size 4GB 2.2GB
Index size 12GB 100MB

Steps required for
fetching a single
relation

Look-up in B+ Tree span-
ning 420M rows.

Array reference, plus
binary search through
the found member’s
friends.

Steps required for
fetching all of a
member’s relations

Partial look-up in B+ Tree
spanning 420M rows, plus
iterating and combining
the found results.

Array reference.

Steps required for
adding or deleting a
relation

Look-up in B+ Tree span-
ning 420M rows, plus
adding or deleting the rela-
tion at the right position,
plus updating the two in-
dices.

Array reference, plus
binary search through
the found member’s
friends, plus inserting
or removing the rela-
tion at the right posi-
tion.

Table A.1: Comparison between relational and object based representations.
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Appendix B

Network Growth

Since the inception of Hyves, the network has grown, both in the amount
of members, as well as the amount of friendships. The trend in growth in
members is well visible in figure B.1.

Putting some numbers to the graph, Hyves had 2.75 million members at the
beginning of 2007, and 5.5 million members at the beginning of 2008, which
is almost exactly twice as much. Looking closely though, we can see that
this exponential trend does not continue into 2008. In June 2008, there were
a total 6.7 million hyvers, and the number continues to grow at a linear pace.
This most likely attributed to the fact that Hyves is still mostly oriented
towards the Netherlands where the market begins to saturate, while uptake
in other countries is much slower. For now, it is safe to assume growth will
continue at a linear pace, therefore a growth of 2.75 million members per
year is reasonable.

The number of friendships however, has grown in a much higher rate than
the number of members, causing the average number of friends per member
to increase. Unfortunately, the recorded data that monitors this trend is
not fully complete, but some data is available which can be seen in figure
B.2.

The graph starts with an average of 32.7 friends per member in February
2007, and ends with 73.3 friends per member at June 2008. Per year, this
comes down to an increase of 28.7 friends per member.

Looking at the graph, there actually isn’t much to see except for a rather
steady, mostly linear increase in the friends/member ratio. To be fair, I don’t
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Figure B.1: Growing number of members.
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Figure B.2: Growing number of friends per member.

quite know how this trend will continue, but of course a further increase is
expected. At the same time, I also believe this can’t go on forever, and it’s
likely there is some natural upper limit. Therefore, if I have to make any
prognosis on future development, it will be that the ratio will likely further
increase, but it will at most be at the current linear pace, and will likely

flatten more at some point in time.
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