
Comprehensible Method Names:

Focusing on the Nouns

Dennis van Leeuwen

July 23, 2012

Master Software Engineering

Supervisor : dr. Jurgen Vinju

Publication status: public

University of Amsterdam

Contents

Abstract 4

Preface 5

1 Introduction 6

1.1 Motivation . 6

1.2 Focusing on the nouns in method names 7

1.3 De�ning co-occurrence of nouns 7

1.4 Research question . 9

1.5 Scope . 9

1.6 Comprehensible method names 10

1.7 Organization of the thesis . 11

2 Background and Related Work 12

2.1 Consistently named identi�ers 12

2.2 Assessment of the verb in the method name 13

2.3 Keyword extraction from documents 14

3 Research method 15

3.1 Mining the strength of the co-occurrence of nouns 15

1

3.2 Manual veri�cation of the comprehensibility 18

3.3 Corpus . 19

4 The strength of the co-occurrence of nouns 21

4.1 Introduction . 21

4.2 Research method . 21

4.3 Results . 23

4.4 Discussion . 25

4.5 Conclusion . 25

5 Comprehensibility of methods 27

5.1 Introduction . 27

5.2 Research method . 27

5.3 Results . 29

5.4 Discussion . 33

5.5 Conclusion . 34

6 Relating the co-occurrence of nouns to the size of a method 36

6.1 Introduction . 36

6.2 Research method . 37

6.3 Results . 37

6.4 Discussion . 38

6.5 Conclusion . 38

7 Using the verbs to �nd the co-occurrences of nouns 39

7.1 Introduction . 39

7.2 Research method . 40

7.3 Results . 43

2

7.4 Discussion . 51

7.5 Conclusion . 52

8 Conclusion 53

9 Future work 55

References 55

A Example to demonstrate initial approach 58

B Analyzed methods on comprehensibility 61

B.1 Methods with co-occurrence of nouns 61

B.2 Methods without co-occurrence of nouns 64

C Found lexicon entries 68

C.1 Methods starting with get . 68

C.2 Methods starting with set . 68

C.3 Methods starting with is . 69

C.4 Methods starting with create 69

C.5 Methods starting with add . 69

D Comparison of lexicon entries 70

D.1 Methods starting with get . 70

D.2 Methods starting with set . 70

D.3 Methods starting with is . 71

D.4 Methods starting with create 71

D.5 Methods starting with add . 72

3

Abstract

The maintenance phase is the most costly phase in the software development
cycle. During maintenance the software is studied in order to create enough
understanding to be able to comprehend the source code. This comprehen-
sion process can be improved if comprehensible identi�ers are used.
In this this is focused on �nding hard-to-comprehend methods using the co-
occurrence of nouns. A co-occurrence of nouns is present in a method if
any of the nouns in the method name occurs at least once in the identi�er
information in the method implementation.
The co-occurrence of nouns was researched using a corpus containing a total
of 31 open source systems. The co-occurrence of nouns was found to occur
in 83% of the methods containing at least one noun in the method name and
one noun in the identi�ers in the implementation.
If a co-occurrence was present in a method, the chance this method was
also found to be comprehensible was higher. This suggests that using the
co-occurrence of nouns hard-to-comprehend methods can be found. How-
ever, the results suggest that not all the methods without the co-occurrence
of nouns are hard-to-comprehend. Therefore the co-occurrence of nouns is
useful to �nd methods that need further manual inspection.
Using the statements and expressions in the implementation of a method,
we searched for the noun causing the presence of a co-occurrence of nouns.
The co-occurring noun was found consistently in speci�c identi�ers used in
speci�c statement and expressions. Therefore not only a possible way to
assess the comprehensibility of the method was found, but also a possible
way to �nd an appropriate noun to use in the method name was found.

4

Preface

This thesis is the result of the master project done between the March 7,
2012 and July 21, 2012. The master project is the �nal ful�lment in order
to obtain the degree: Master Of Science. The master project was performed
at CWI, in Dutch Centrum Wiskunde en Informatica. The global idea of
assessing method names was based on the master thesis subject of Jouke
Stoel.

Since my idea was based on Jouke Stoel's master project, I would like to
thank Jouke Stoel for (unconsciously) inspiring me for a great master project
topic. Furthermore, I would like to thank Jurgen Vinju and Luuk Stevens
for their valuable feedback during the writing of this thesis.

5

Chapter 1

Introduction

1.1 Motivation

The larger a system becomes, the harder it will be to maintain it. During
maintenance it is therefore preferred to use source code that is as easy as
possible to read, so the maintainer is able to understand and modify the
source code as fast as possible. Typically, maintenance consumes over 70%
of the total life cycle cost of a software product[2]. During that time the
source code will be studied in order to create enough understanding to be
able to comprehend the source code.
Sametinger stated that the comprehension process takes over 50% of the
time spent on the maintenance task[13]. Therefore, if the comprehensibility
can be improved, the time and cost consumed during maintenance can be
reduced[3]. Fang stated that hardly any software is maintained for its whole
life by the original author[5]. It is therefore important that the source code
is easy to comprehend, since the programmer himself probably will not be
the only one maintaining the source code.

The operations in source code can be explained in two possible ways:

• Use comments to explain the work �ow in the program.

• Use meaningful identi�ers to explain the elements in the work �ow and
the actions that are executed.

Lawrie et al. con�rmed that the quality of identi�ers e�ects the comprehen-
sibility of the program[11]. To avoid programmers naming the identi�ers in a

6

hard-to-comprehend way, we argue that there should be an automatic way to
assess whether the method name is accurately explaining its implementation.
This will assist the programmer to improve the quality of identi�ers.

1.2 Focusing on the nouns in method names

We focus on method names, since comprehensible identi�ers are needed and
methods are one kind of identi�ers. Furthermore, methods names are inter-
esting, since we assume they are a description of the method implementation.
The assumption is that method names represent the answer on the question:
"What does the method do?"
The relations that we think exist between method name and method imple-
mentation are shown in the table 1.1.

Action Direct or Indirect object

Method name Verb Noun

Method implementation Expressions & Statements Types & Objects

Table 1.1: Relation between the name and the implementation of a method.

The behavior is described by an action, which is re�ected by a verb in the
method name and statements and expressions in the implementation. The
object used(if it is used) by the action is re�ected as a direct or indirect
object in the method name. We suspect this object is also re�ected by a
noun in at least one identi�er in the method implementation.
The work[8, 16] of Høst and Østvold and Stoel suggests programmers con-
sistently use a speci�c verb in the method name if certain statements and
expressions are used in the method implementation. Since research has been
done on using an appropriate verb in the method name, we focus on the
use of an appropriate noun in the method name. We check if an appropri-
ate noun is used by researching the relation between the nouns used in the
method name and the nouns used in the implementation of the method.

1.3 De�ning co-occurrence of nouns

We focus on researching the relation between the nouns used in the method
name and the nouns used in the implementation of the method. We will refer
to this relation as the co-occurrence of nouns. A co-occurrence of nouns is

7

present if any of the nouns in the method name is equal to any of the nouns
used in the identi�er information in the implementation of the method. A
co-occurrence of nouns is present in the following methods in example 1.1:

• "getLicensePlateNumber", since the implementation contains the nouns:
"license", "plate" and "number" in a variable name.

• "createCar", since the base type of the created object contains the
noun "car".

1 public abstract class Car{
2 private St r ing l icensePlateNumber ;
3

4 public Car (St r ing l icensePlateNumber) {
5 this . l i censePlateNumber = l icensePlateNumber ;
6 }
7

8 public St r ing getLicensePlateNumber () {
9 return this . l i censePlateNumber ;

10 }
11 }
12

13 public class Fe r r a r i extends Car{
14 public Fe r r a r i (S t r ing l icensePlateNumber) {
15 super (l i censePlateNumber) ;
16 }
17 }
18

19 public class MainProgram{
20 public stat ic void main (St r ing args []) {
21 Car myFerrari = createCar ("NL−23−07") ;
22 System . out . p r i n t l n (myFerrari . getLicensePlateNumber ()) ;
23 }
24 public stat ic Car createCar (S t r ing l icensePlateNumber) {
25 return new Fe r r a r i (l i censePlateNumber) ;
26 }
27 }

Figure 1.1: Example to show the co-occurrence of nouns in methods

To indicate the usefulness of the co-occurrence of nouns, the strength of the
co-occurrence of nouns is used. The strength of a co-occurrence of nouns is
calculated with the following formula:

strength = allMethodsWithCoOccurringNoun
allMethodsWithNouns ∗ 100%

'allMethodsWithCoOccurringNoun' is the amount of methods with the pres-
ence of a co-occurrence of nouns. 'allMethodsWithNouns' is the amount of
methods with at least one noun in the method name and at least one noun
in the identi�er information in the implementation of the method.

8

1.4 Research question

Our hypothesis is that a co-occurrence of nouns is present in almost any
method, since method names represent their implementation. By assessing
the comprehensibility of the method and relating this comprehensibility to
the presence of a co-occurrence of nouns, we search for a relation in the
source code to �nd hard-to-comprehend methods. The main research ques-
tion discussed in this thesis is:

Can the co-occurrence of nouns be used to �nd hard-to-comprehend
methods?

To answer this question, the following subquestions are researched:

1. What is the strength of the co-occurrence of nouns?

2. What is the relation between the co-occurrence of nouns and the com-
prehensibility of the method?

3. What is the relation between the co-occurrence of nouns and the size
of a method?

4. Can the verb-noun relation in the method implementation be used to
�nd the noun occurring in the method name?

1.5 Scope

We focus on analyzing the nouns in both method name and in the identi�ers
in the implementation of the method. However, nouns can occur in di�erent
identi�ers in the source code. In this thesis we focus on any identi�er except
packages, since we think that the nouns available in a package name are
imprecise. We explain this using the example in �gure 1.2.

1 public interface Adult {}
2 public class HugeAdult implements Adult {}
3

4 public class MainProgram{
5 void Adult c reatePerson () {
6 return new persons . adu l t s . HugeAdult () ;
7 }
8 }

Figure 1.2: Example to show why we do not analyze package name

9

We argue this method is not totally comprehensible, since the noun 'person'
is too abstract in the scope of this method. The name of the method does
not explain the implementation of the method accurately, since an adult is
created instead of a person. Although there exists a co-occurrence of nouns
in the package name and the method name, we argue that the package names
are too general.

1.5.1 Identi�er Information

We have established an exhaustive list of properties of identi�ers. A co-
occurrence of nouns can only exist between a noun in the method name and
a noun in a property listed below.

• Type: Variables and methods have a type. The type of a method is
its return type. A type can be an interface, class or enumeration.

• Name: Variable and methods have a name. Types have a name as
well, but that name is equal to the Type itself. Names of types are
therefore ignored, since it is useless to process a word twice.

• Base Type: Types can be derived of other types: base types. Since all
classes used in Java are derived from java.util.Object, we ignore this
type as base type. The type java.util.Object is not ignore if it is used
as a normal type.

Since we compare nouns to �nd a co-occurrence of nouns, we will give a
de�nition of the equality of nouns. Our de�nition is:

Nouns are equal if and only if the stemmed form of both nouns is
equal.

1.6 Comprehensible method names

Assessing the comprehensibility of method names is hard, since comprehen-
sibility is something subjective[4]. Any person can have a di�erent opinion
about a method name. The Java Code Convention states that names should
be short and meaningful[1]. Names should be mnemonic- that is, designed
to indicate to the casual observer the intent of its use. However, assessing

10

this is impossible, since we cannot retrieve how the name was designed to
indicate this if it was not documented.
To reduce the subjective judgment of comprehensibility as much as possible,
we de�ned criteria. A comprehensible method should apply to these crite-
ria to be quali�ed as comprehensible. These criteria were found in earlier
work[4, 9]:
First of all, a method name should be appropriate. It is appropriate if the
method name faithfully describes the named entity and is not misleading[9].
Use of homonyms and synonyms can be misleading, therefore only one term
should be used in method name and body for a single concept[4].
Secondly, a method name should be meaningful. Meaningful was de�ned as
"a programmer can to some extent understand a program entity from its
name"[9]. This means an implementation of a method can be hidden to a
programmer causing the programmer to know the methods behavior by only
depending on its name.

1.7 Organization of the thesis

In chapter 2 the background information and related work is discussed. This
work is discussed since it is used as basement for our analysis to assess the
comprehensibility of methods. Chapter 3 explains the research approach.
Chapters 4, 5, 6 and 7 are used to discuss the subquestions of this research.
Each chapter is used for a single subquestion. A conclusion of the work
is given in chapter 8. Furthermore, an overview of future work is given in
chapter 9.
Results related to our research are found in the appendices. These results
have been found by us, but are not that important to be shown in the
previous chapters.

11

Chapter 2

Background and Related Work

In this chapter we identify main points in earlier research. We describe their
work so it can be used as basis for the assessment of good identi�er names.
We furthermore give some background information about the terms used in
this thesis.

2.1 Consistently named identi�ers

Deiÿenböck and Pizka found that identi�ers are a major part of the source
code[4]. Since identi�ers are adjustable, they can have an e�ect on the
comprehensibility of the source code. Deiÿenböck and Pizka mention three
possible causes of having not properly named identi�ers. These causes are
based on �ndings in a numerous amount of code bases:

1. Identi�ers can be arbitrarily chosen by developers.

2. Developers have only limited knowledge about the names already used
somewhere else in the system.

3. Identi�ers are subject to decay during system evolution. The concepts
they refer to are altered or abandoned without properly adapting the
names. One reason for this is the lack of tool support for globally
renaming sets of identi�ers referring to the same concept.

To point out the use of multiple words for the same concept, a the tool
called IDD(IDenti�er Dictionary) was developed. The tool is described as:

12

"The concept of the IDD is inspired and works similar to a Data Dictionary.
Basically, it is a database that stores information about all identi�ers such
as their name, the type of the object being identi�ed and a comprehensive
description."

Using only one word for a single concept allows the programmer to under-
stand a basic vocabulary of words, such that all concepts can be understood.
The consistent usage of words for concepts would improve the comprehen-
sibility of the identi�ers, although the usefulness in practice has not been
researched yet. We therefore assess the consistent usage of a nouns since our
assumption is that the consistency is relevant.

2.2 Assessment of the verb in the method name

Høst and Østvold related the action described in the method name to the
implementation of the method. They found that programmers consistently
use speci�c verbs in the method name if speci�c combinations of traceable
attributes were present in the implementation of a method[7]. Using this
consistent relation, a list of lexicon entries was constructed with the verbs
programmers use in the method name and traceable patterns present in the
method implementation with this verb[7]. Høst and Østvold used a total
of 10 traceable attributes in their initial work[7]. They extended the set of
traceable attributes in later work[8, 9].

Furthermore a tool, called Lancelot[9], was developed to aid programmers
in �nding and �xing naming bugs[9] in methods. Lancelot suggests method
names by using a set of traceable attributes and the phrase of the method
name mined from a corpus. This phrase includes the verb and the structure
of the method name. Although the value of Lancelot has not been research
yet in practice, it is good to point out inconsistencies in the source code.
These �ndings can be good for further (manual) analysis.

2.2.1 Extended set of traceable attributes called nano-patterns

Although Høst and Østvold introduced an initial set of 10 traceable at-
tributes, Singer et al. extended this catalogue of traceable attributes to a
total of 17. Singer et al. called them fundamental nano-patterns[14]. The
major di�erence with the traceable attributes of Høst and Østvold is that

13

Singer et al. detect writing to local variable and reading of local variable in-
stead of just using of local variable, like Høst and Østvold do. Furthermore,
Singer et al. uses extra patterns to discriminate the method implementations.

2.2.2 Verifying the usefulness of nano-patterns to assess the

verb

Stoel veri�ed the usefulness of the nano-patterns in a method implementa-
tion to check for naming anomalies in the method name[16]. The results of
this research suggest that using this assessment of method names is useful.
However, this approach was only used to assess the 'action-token'. If a verb
occurs as the �rst word in a method name, it is an action-token. The re-
sults suggest that methods found using his approach have a higher chance
to contain naming anomalies than randomly picked methods.

2.3 Keyword extraction from documents

Matsuo and Ishizuka researched how relevant keywords can be extracted
from a document using the information available in the document itself.
Comparable research topics like �automatic term recognition� in the context
of computational linguistics and �automatic indexing� or �automatic keyword
extraction� can be found in the research areas of information retrieval[12].
Matsuo and Ishizuka �rst extracted the frequent occurring terms. Next,
the "co-occurrences" of a term and frequent terms were counted. If a term
appears frequently with a particular subset of terms, the term is likely to
have important meaning.
Keyword extraction algorithms can be useful in the context of �nding the
most relevant noun in the method name. The keywords are represented
by the words in the method name. The terms appearing in the document
are comparable to the words used in the identi�er information in the method
implementation. Using a similar approach might help us in properly assessing
the relevance of the nouns in the method name.

14

Chapter 3

Research method

In this chapter the global setup of the research is discussed. The research
can be divided in two parts.
First, the strength of the co-occurrence of nouns is mined from a corpus.
This step is done completely automatic using a custom made mining tool.
The second step is the manual assessment of the comprehensibility of two
samples taken from the corpus. Using the samples the usefulness of the
found relations and their strength can be validated. In this chapter we only
discuss the global setup. In each chapter for each subquestion we explain
the research method in more detail and how we use it speci�cally for that
research question.
In the sections below we discuss each global part of the research method in
detail.

3.1 Mining the strength of the co-occurrence of nouns

The �rst step of our approach is to extract information about the co-occurrence
of nouns. This is done to explore the co-occurrence of nouns in general
and should produce and motive the knowledge needed to start designing a
method for the detection of hard-to-comprehend methods. In the sections
below each step in the mining process of information about the co-occurrence
of the nouns is discussed.

15

3.1.1 Extracting data

The �rst step is extracting all the necessary data from the source code. We
use a corpus to extract data from, since we want to analyze the co-occurrence
of nouns in all kinds of applications. This corpus is explained in detail in
section 3.3. To collect the data from the corpus we use a domain speci�c
language for source code analysis and manipulation called Rascal [10]. We
extract all the method names and the identi�er information(See section 1.5.1)
from the implementation of the method using Rascal.

3.1.2 Filtering data

When the methods and the pro�les are extracted, they are �ltered to avoid
noise in the results. The �ltering process is done according to the guidelines
stated in the Java Code Convention. We have listed all of �ltering steps
below.
We �lter:

• Methods if the method or class of the method contains a $-sign. We
argue that identi�ers that contain $-signs are usually generated.

• Methods containing $-signs in the identi�ers in the implementation,
since these methods can be generated as well.

• Methods using an underscore. The Java Code Convention states that
methods should be composed in a camelCase style. We argue that
underscores should be avoided since programmers are recommended to
use a di�erent way to separate the words in a method name.

• Abstract methods or methods without implementation are useless for
analysis and are therefore �ltered. Methods having only parameters
do not count as methods with an implementation.

• Constructors. The names of constructors are always equal to their
class name. Since we do not focus on comprehensible class names, we
ignore constructors.

• Methods of anonymous classes. We argue that objects of anonymous
classes are practically always used to override a certain method and
they are also used only once. Since the class name cannot be created
by the programmer, the name is not relevant.

16

3.1.3 Preparing data

The third step is preparing the data for analysis. The collected data is
transformed so the detection algorithm of a co-occurrence of nouns only
needs to detect the noun relation. Each of the step executed in the preparing
data phase are discussed below.

Splitting/Decomposition

The splitting phase splits each of the identi�er names into an array of words.
The splitting algorithm is equal to the decomposition algorithm used by
Høst and Østvold[8]. It splits each name in di�erent words based on its
camelCase form. The Java Code Convention states Java programmers should
use camelCase to name identi�ers. Furthermore, we split names based on the
occurrences of underscores, since the Java Naming Conventions recommends
to name constants using an underscore separator.

Part Of Speech Tagging

Tagging is the identi�cation of the lexical form of a word. The tagging
algorithm of Høst and Østvold is used to tag words in a method name. This
algorithm is estimated to be 97% accurate[6] and is based on the words
available in WordNet 3.0[15]. The tagging process of words in identi�er
names other than method names is developed by us, but is also based on
the algorithm of Høst and Østvold. It was necessary to make a small change
to the original algorithm of Høst and Østvold, since the tagging process of
words in identi�ers other than method names should not get a preference
based on the grammatical structure of methods.

Part Of Speech Stemming

After the identi�cation of the lexical form of each word, the nouns need
to be transformed into their stemmed form. This is necessary to be able to
compare the nouns on equality. For example, 'alumni' would not be matched
to 'alumnus' using their normal form, but since we use the stemmed form,
both nouns are equal after stemming. The stemming algorithm is based on
WordNet 3.0.

17

3.1.4 Detecting the co-occurrence of nouns

When the data is prepared for analysis, the last step is to detect the co-
occurrence of nouns. This detection algorithm di�ers for each research ques-
tion and is therefore discuss in detail in each chapter speci�c for each research
question.

3.2 Manual veri�cation of the comprehensibility

The second step is verifying the usefulness of the strength found in the auto-
matic mining step. A co-occurrence of nouns can be measured to be strong,
but if the relation does not tell you something about the comprehensibil-
ity, the relation is useless to �nd less comprehensible methods. We therefore
manually assessed two randomly taken samples from the corpus. One sample
contained methods with a co-occurrence of nouns and one sample contained
methods without a co-occurrence of nouns. By comparing the comprehen-
sibility and the amount of meaningless and inappropriate names found in
both samples, we assessed whether one of the two samples was more com-
prehensible.
The comprehensibility of each method was analyzed by only looking at the
method name, class name of the method and the method implementation.
We have chosen to analyze the comprehensibility this way, since method
names should be abstractions of their implementation. Our opinion is that a
good method name hides it implementation and should only show its intent
in the name. A programmer that needs to use the methods should be able to
use the methods without having to read the implementation of the method.

3.2.1 Threat to validity

The comprehensibility of the methods was assessed by ourselves. If any
confusion was noticed assessing the comprehensibility of the method we have
ask for a second opinion from a fellow researcher. This was done to reduce
the in�uence of a bias, since we might have unconsciously graded a method
as comprehensible or hard-to-comprehend, since a presence or absence of a
co-occurrence of nouns can be easily spotted in some methods. We have
furthermore selected a number of criteria to assess the method names. Since
these criteria are more concrete than just the question "Does the method
name �t to the method implementation?", we tried to reduce the in�uence

18

of a bias. However, a bias can still have in�uence on our assessment and it
is therefore a threat to validity.

3.3 Corpus

Our research depends on what Java programmers do. A way to analyze what
they do, is by analyzing lots of source code and detect consistencies in the
source code. We analyzed Java source code from a total of 31 systems with a
total of over 130,000 methods, excluding �ltered methods. The source code
of all the systems is publicly available. Since Rascal can only analyze source
code from successfully compile projects and it was hard to compile all the
projects in a full corpus, we took a subset of the corpuses of both Høst and
Østvold and Singer et al. instead of a full corpus.
We have selected a number of 9 categories. Each category is represented
proportionally by acquire systems with a total of 15,000 methods, excluding
�ltered methods, per category. This was possible to do for all the categories
except 'Jakarta common utilities'. This category contains only about 8,000
methods, since we were not able to setup more projects from this category.
An overview of the corpus is shown in table 3.1.

19

Category Name Version

Benchmarking Jikes RVM 2.9.1

Desktop application JEdit 4.3
JHotDraw 709
ArgoUML 0.24

Jakarta common utilities Commons Collections 3.2
Commons IO 1.3.1
Commons Codec 1.3
Commons Lang 2.3
Commons Digester 1.8
Commons Net 1.4.1
Commons HttpClient 1.0.1

Language and language tools JRuby 0.9.2
Antlr 2.7.6
ASM 2.2.3
Bcel 5.2
BSF 2.4.0
Polyglot 2.1.0

Middleware, frameworks and toolkits Spring 2.0.2
TranQL 1.3
Tapestry 4.0.2

Programmer tools FitNesse 2011-01-04
JUnit 4.2
Ant 1.7.0
Velocity 1.4

Server and database JBoss 3.2.7

Utilities and libraries JarJar Links 0.7
Ognl 2.6.9
Hibernate 3.2.1
XML Batik 1.6

XML tools Xalan-J 2.7.0
Castor 1.1

Table 3.1: Overview of the total corpus.

20

Chapter 4

The strength of the

co-occurrence of nouns

4.1 Introduction

We expect the direct or indirect object used by the action in the method
to be re�ected as a noun in the method name and as noun in the types or
objects used in the method implementation(See section 1.2). We assume a
co-occurrence of nouns is present very often and thus the strength of the
co-occurrence of nouns to be high.

The research question discussed in this chapter is:
What is the strength of the co-occurrence of nouns?

4.2 Research method

The approach used in this research question is almost completely described
in section 3.1. The co-occurrence of nouns is detected by searching for a
noun in the method name equal to any of the nouns found in the identi�er
information in the method implementation. This is including the parameters
of the method.

21

4.2.1 Initial approach

In our �rst attempt to measure the strength of the relation we measured how
strong the nouns in the method name are related to the nouns used in the
identi�er information in the implementation of the method.
We measured the strength by counting the amount of times a noun occurred
in the implementation. The amount of times the noun was counted com-
pared to the amount of times other nouns were counted would suggest how
important the noun was. We expected the most important noun to occur in
the method name.
However, this way of measurement is tricky, since a programmer is allowed
to use temporary variables and use a certain noun, that does not occur in
the method name, in these variables as much as he likes. To determine if
co-occurrence is present, we have to set a threshold of a minimum amount
of occurrences. However, this can be relative to the amount of di�erent
nouns present in the method. Furthermore, we do not know whether the
co-occurrence of a noun is something that is valuable at all. Therefore we
decided to focus on only the co-occurrence without relating this to the times
the noun needs to be counted to be relevant. The decision not to count the
times of occurrences results in a more simple measurement, since this is a
binary decision and therefore no thresholds needed to be de�ned.
An example to motivate this decision is shown in appendix A.

4.2.2 Final approach

In the �nal approach we measured in how many methods the co-occurrence
of nouns was present. We �rst checked if a noun occurred in the method
name and occurred again in the identi�er information in the implementation.
Using this approach, we measured if the implementation is at least someway
related to the object that is found in the method name.

To measure the strength of the co-occurrence of nouns we have �rst analyzed
each noun on each position in the method name. We measure how strong
the co-occurrence between each noun in the method name and the nouns in
the identi�er information from the implementation is by taking a collection
of methods. This is done to explore if any of the nouns in the method name
has a more powerful role in the method name. We measure the strength
of a co-occurrence of nouns position based and per noun. Furthermore, the
strength of a co-occurrence of nouns is also measured for any noun in the

22

method name. Using both measurements we check if both approaches are
both as useful to �nd a co-occurrence of nouns.

4.3 Results

4.3.1 Position speci�c nouns in a method name

We �rst measure the strength of the co-occurrence of nouns based on the
position of the nouns. The results of the experiment are shown in table 4.1
and 4.2.

Position # Methods # Methods with co-occurrence Strength (in %)

1 98843 76735 77.63
2 44294 34590 78.09
3 10507 8250 78.52
4 2002 1464 73.13
5 433 306 70.67
6 134 78 58.21
7 59 25 42.37
8 36 13 36.11
9 22 13 59.09
10 9 2 22.22
11 2 1 50.00
12 1 0 0.00

Table 4.1: Strength of the co-occurrence of the noun found on a position
based on the beginning of the method

The �rst line tells us that there were 98843 methods with at least one noun
in the method name and at least one noun in the method implementation.
The �rst noun in these method names was used in 76735 methods in the
identi�er information in the implementation of the method. This means
that in 77.63% of the methods a co-occurrence of nouns was found.

In the second experiment the position of each noun was based on the last
noun in the method name. On position 'last' the last occurrence of a noun
is used to measure the strength of the co-occurrence of nouns. The results
of this experiment are shown in table 4.2

23

Position # Methods # Methods with co-occurrence Strength (in %)

11 before last 1 0 0.00
10 before last 2 0 0.00
9 before last 9 2 22.22
8 before last 22 15 68.18
7 before last 36 19 52.78
6 before last 59 23 38.98
5 before last 134 71 52.99
4 before last 433 249 57.51
3 before last 2002 1307 65.28
2 before last 10507 7690 73.19
1 before last 44294 33986 76.73

last 98843 78115 79.03

Table 4.2: Strength of the co-occurrence of the noun found on a posititon
based on the end of the method.

4.3.2 All the nouns in a method name

Another experiment not focusing on a noun on a �xed position, but on all
the nouns in the method name was done. The results of this experiment are
shown in table 4.3.

Name with noun(s) Name without noun(s) Total

Implementation with noun(s) 98843 27604 126447

Implementation without noun(s) 2882 1238 4120

Total 101725 28842 130567

Table 4.3: Distribution of methods.

Focusing only on the methods with at least one noun in the name and at least
one noun in the identi�er information in the implementation, we searched
for methods with and without co-occurrences of nouns. The results of this
experiment are shown in table 4.4

Methods % of total

Methods with co-occurrence 82767 83.74

Methods without co-occurrence 16076 16.26

Total 98843 100.00

Table 4.4: Distribution of methods with a noun in the name and a noun in
the implementation.

24

4.4 Discussion

We have researched the relation between each noun on each position in the
method name. We think it is remarkable that programmers create methods
with 10 or more nouns. Although, this research is not about the assessment
of using the most concise method name as possible, we argue it is good to
investigate these methods in more detail in future work. Furthermore, the
results show that the last noun has the strongest co-occurrence. However, the
results suggest that the last noun is not always used in the implementation
and nouns on di�erent positions can occur in the implementation in those
methods.

In 2882 of the 101014 methods a noun was found in the name, but no noun
was found in the implementation. These methods might contain not mean-
ingful or inappropriate identi�ers, but this depends whether there were un-
detectable 'objects' used in the method body. We only �ltered methods with
a completely empty body. These methods can still return a primitive or a
string object for example. If this is done without using an identi�er, no
noun can be detected. Therefore the detection of the co-occurrence of nouns
should be extended to be su�cient to detect a co-occurrence of noun in more
methods. Another reason of �nding no noun in these methods is that these
methods use nouns that cannot be detected by the tagger, since the tagger
has an accuracy of 97%.

4.5 Conclusion

The results suggest that nouns are present in the majority of method names.
In 101014 of the 129583 methods a noun was found in the method name.
This suggests that the noun is present in a lot of names and can therefore
be important in the comprehension process of the method name.

If at least one noun occurs in both method name and in an identi�er in
the method implementation a co-occurrence of nouns is found in 83% of
the methods. The results suggest that the co-occurrence of nouns could be
useful, since a co-occurrence is present in a large amount of methods.

Our results suggest there is no speci�c noun based on the position in the
method name that has a very strong relation with the implementation com-
pared to the nouns on the other positions. This suggests that the assessment

25

of the co-occurrence based on single noun in the method name would not be
su�cient.

A co-occurrence of nouns is found to be present often, however this results
does not suggest methods without a co-occurrence of nouns are hard-to-
comprehend. In the next chapter the comprehensibility of the methods is
assessed. The results of the assessment might suggest if hard-to-comprehend
method can be found using the co-occurrence of nouns.

26

Chapter 5

Comprehensibility of methods

5.1 Introduction

In the previous chapter the strength of the co-occurrence of nouns was re-
search. Although there is a co-occurrence of nouns in 83% of the methods,
we do not know if the presence of the co-occurrence of nouns is related to
the comprehensibility of the method. Therefore the comprehensibility of
the methods with and without the co-occurrence of nouns is inspected to
verify the usefulness of the absence of the co-occurrence of nouns to �nd
hard-to-comprehend methods.

The research question discussed in this chapter is:
What is the relation between the co-occurrence of nouns and the
comprehensibility of the method?

5.2 Research method

Two samples are taken from the corpus to manually inspect the comprehen-
sibility of the methods. The two samples both contain 100 random methods.
One sample contains methods with a co-occurrence of nouns and the other
sample contains methods without the co-occurrence of nouns. The methods
from both samples have at least one noun in the method name and one noun
in the implementation of the method.
We assess each method from the samples by trying to comprehend the

27

method by looking at the package name(s), class name(s), method name
and implementation of the method. Both the method name and the identi-
�ers in the implementation are assessed on comprehensibility. We simulate
the maintenance task by only looking at the source code of the method itself
during the comprehension process. While doing maintenance you do not
want to access the source code of each other method that was invoked in
the method, therefore we do not check the implementation of the invoked
methods.
If we are not able to understand the method, we label the method as hard-to-
comprehend. During the assessment of the comprehensibility of the method,
we take two criteria into account. The method needs to be meaningful and
appropriate, as discussed in section 1.6.

Although a method might be comprehensible, a co-occurrence of nouns might
not be found. This can have various causes:

• The tagging algorithm is unable to detect the noun(s) and therefore
no relation was found.

• The method name contains concepts inconsistent with the concepts
used in the implementation.

• The method implementation contains meaningless identi�ers

• The method name is too abstract to represent the implementation.

Therefore we check for these causes and count the times they occur.

In some cases it can be too hard for us to comprehend the source code.
Therefore, we label methods with a cause if we cannot state a method is
comprehensible for us with certainty. These causes are listed below.

• Can not understand the implementation. It was too hard for us to com-
prehend the implementation of the method due to a lack of knowledge.
The method implementation was too large or we could not understand
what the implementation was supposed to do.

• Depends on the domain/context. Concepts can be used speci�cally in a
domain. Concepts can also mean something else in a di�erent context.
If the meaning of the concept was unclear, we labeled the method.

28

• Throwing only exception. Some methods only throw an exception.
Since we cannot judge the comprehensibility of these methods, we la-
beled them accordingly.

By comparing the amount of hard-to-comprehend methods and the amount
of occurred factors and properties with a negative impact on the compre-
hensibility found in both samples we discuss the relation between the co-
occurrence of nouns and the comprehensibility of a method.

5.3 Results

The manual inspection of 100 methods without a relation and 100 methods
with a relation given the results shown in table 5.1. The full list of inspected
methods is shown in appendix B.

Criteria Without co-occurrence With co-occurrence

Can not understand the implementation 6 1
Comprehensible method 53 82
Hard-to-comprehend method 31 16
PartOfSpeech Error 6 1
Throws only exception 4 0

Total 100 100

Table 5.1: Comprehensibility of methods.

Criteria Without co-occurrence With co-occurrence

Inconsistent due to abbreviations 8 4
Depends on the domain 19 3
Name is very abstract 12 0
Meaningless identi�ers 25 21
Missing verb 16 6
Inappropriate use of camelcase 5 0
Using vars starting with underscore 4 8

Table 5.2: List of counted factors and properties with a bad impact the
comprehensibility of methods.

Since the results above have been collected based on our opinion, we show
examples of the assessed methods to demonstrate the assessment. These
examples include our argumentation used in the assessment.

29

5.3.1 Methods without co-occurrence of a noun

Examples of methods without a co-occurrence of nouns are discussed in this
section. We discuss both comprehensible and hard-to-comprehend methods.

1 package org . j bo s s . ha . framework . s e r v e r ;
2

3 public class HAPartitionImpl {
4 public Vector getCurrentView ()
5 {
6 Vector r e s u l t = new Vector (this . members . s i z e ()) ;
7 for (int i = 0 ; i < members . s i z e () ; i++)
8 {
9 r e s u l t . add (((ClusterNode) members . elementAt (i)) . getName ()) ;

10 }
11 return r e s u l t ;
12 }
13 }

We labeled this method as hard-to-comprehend, since the method name
has absolutely nothing to do with the implementation. The implementation
loops over all the 'members' and gets the name of the members. At the end
the function returns a vector with the names of the members. When we
expect to get a current view, we expect to receive something like a screen
or an item on which something is displayed. We think a more appropriate
name is 'getMemberNames'.

1 package org . j ikes rvm . os r ;
2

3 public class OSR_BytecodeTraverser {
4 private byte getReturnCodeFromSignature (S t r ing s i g) {
5 byte [] va l = s i g . getBytes () ;
6

7 int i = 0 ;
8 while (va l [i++] != ') ') ;
9 return (va l [i]) ;

10 }
11 }

Although this method above is quite comprehensible, it uses abbreviations('sig'
and 'val') and therefore no relation can be detected. We argue 'sig' is a bad
abbreviation, since it is not a common used abbreviation, else it would be
used as abbreviation in the method name as well. Furthermore, a mean-
ingless identi�er 'val' is used. 'val' is probably used as the abbreviation for
value. However, any variable contains a value, so 'val' or 'value' is argued to
be meaningless.

30

1 package org . argouml . uml . diagram . sequence . u i ;
2

3 public class FigMessage{
4 public Object getMessage () {
5 return getOwner () ;
6 }
7 }

We have labeled the method above as hard-to-comprehend, since we expected
the method to return a message. This message is in this case of type object,
which we think is too abstract to classify as a message. Furthermore, the
name getOwner does not give us con�dence, it will return a message either.

1 package org . h ibe rnate . c o l l e c t i o n ;
2

3 public class PersistentMap {
4 public void i n i t i a l i z eFromCache (Co l l e c t i o nP e r s i s t e r p e r s i s t e r ,

S e r i a l i z a b l e disassembled , Object owner) throws
HibernateExcept ion {

5 S e r i a l i z a b l e [] array = (S e r i a l i z a b l e []) d i sassembled ;
6 int s i z e = array . l ength ;
7 b e f o r e I n i t i a l i z e (p e r s i s t e r , s i z e) ;
8 for (int i = 0 ; i < s i z e ; i+=2) {
9 map . put (

10 p e r s i s t e r . getIndexType () . assemble (array [i] , g e tS e s s i on ()
, owner) ,

11 p e r s i s t e r . getElementType () . assemble (array [i +1] ,
g e tS e s s i on () , owner)

12) ;
13 }
14 }
15 }

Cache is in this case no object in the software, but it is used as a term for
memory. The PersistentMap object will be initialized with the data used
from a CollectionPersister object. Since the name PersistentMap suggests
the data is persistent and thus retrieved from memory from earlier use, we
assess the name to be comprehensible.

5.3.2 Methods with co-occurrence of a noun

Examples of methods with a co-occurrence of nouns are discussed in this
section. We discuss both comprehensible and hard-to-comprehend methods.

31

1 package org . apache . xml . u t i l s ;
2

3 public class DOMBuilder {
4 public void en t i t yRe f e r enc e (S t r ing name) throws org . xml . sax .

SAXException
5 {
6 append (m_doc . c r ea t eEnt i tyRe f e r ence (name)) ;
7 }
8 }

The �rst example is a method that was labeled as hard-to-comprehend. Ap-
propriate nouns are present, however we expect a verb to explain what is
done with the nouns, since we still do not know what the method does by
understanding the method name.

1 package org . apache . t o o l s . ant . t a s kde f s . c ond i t i on ;
2

3 public abstract class ConditionBase {
4 protected f ina l Enumeration getCondi t ions () {
5 return cond i t i on s . e lements () ;
6 }
7 }

The example above is a method how we expected every method to be. The
method name explains the method implementation accurately.

1 package f i t n e s s e . http ;
2

3 public class MockRequest{
4 public void setRequestLine (S t r ing value) {
5 r eques tL ine = value ;
6 }
7 }

Although the method name is comprehensible and can be related to its im-
plementation, more e�ort can be put in naming the identi�ers. An identi�er
named 'value' is meaningless. Furthermore, renaming the identi�er 'value'
to newRequestLine would be appropriate. An appropriate parameter name
would help if you use an IDE supporting auto completion. The auto com-
pletion tool shows the complete method declaration if part of the method is
typed. Only if all the parameters of the method are named correctly, the
programmers knows what value to pass to the method.

32

1 package f i t n e s s e ;
2

3 public class Shutdown{
4 public RequestBui lder bui ldRequest () throws Exception {
5 RequestBui lder r eque s t = new RequestBui lder ("/? responder=

shutdown") ;
6 i f (username != null)
7 r eque s t . addCredent ia l s (username , password) ;
8 return r eque s t ;
9 }

10 }

If the implementation of the method above is right, it would be more appro-
priate to name the method 'buildRequestBuilder'. We argue that program-
mers can be confused by only 'Request' in the name and 'RequestBuilder' in
the return type, since both concepts have a di�erent meaning.

5.4 Discussion

In this section the results are discussed. Since we measured the comprehen-
sibility of methods with and without relation, we discuss both methods.

We were unable to understand the method implementation of 7 of the 200
methods. This was due to the usage of mathematical calculations, bit-wise
operations or large hard-to-comprehend program constructions. We ignored
these methods in our analysis since it was impossible to properly assess the
comprehensibility of the method names.

The methods called toString were found to be relevant observations. These
methods return a string, but this string is not always stored in a temporary
identi�er. Furthermore, other identi�ers used in the method were added to
the string using the + operator, however no noun 'string' was used in the
identi�er information in these identi�ers and therefore no co-occurrence of
nouns could be detected. This shows that using only the identi�er informa-
tion from the method implementation in the analysis might be not su�cient.

Abbreviations in identi�ers are widely used and did sometimes keep us from
understanding the identi�er without looking to more source code. An ab-
breviation such as 'blk' was found. This abbreviation can be interpreted
in di�erent ways, therefore abbreviations could confuse programmers during
the maintenance task. The use of abbreviations was inconsistent between
the method name and the words used in the identi�ers in the implementa-

33

tion in a total of 12 methods. We found this to be a relevant �nding, since
Deiÿenböck and Pizka already suggested to use a single name for a single
concept. This suggestion appears not only to be ignored in global, but also
on method level.

Although, meaningless identi�ers were found in 46 methods, the total method
implementation was sometimes still comprehensible. The cause of this is that
these identi�ers did not always have an important role in the method imple-
mentation. An example of such an identi�er is value. Comprehending such
a name is easy. However, relating the name to its role in the implementation
is hard, since the name is too general. You can call any variable "value",
since a variable always represents a value.

In a total of 22 cases a verb was used inappropriate or it was totally missing in
the method name. This in�uenced the comprehension process in most cases
a lot, since we did not know what the method would do without inspecting
the method implementation. This �nding suggests that the work of Høst
and Østvold is valuable since they checked for the use of a verb in a method
name.

A remarkable note has to be made about following the Java Code Conven-
tions. 12 of the 200 picked methods contained at least 1 variable starting
with an underscore. The Java Code Conventions recommends to avoid this,
so programmers do not always follow the Java Code Conventions.

Furthermore, in 5 of the 100 methods without a co-occurrence of nouns we
found no noun was detected because camelCase was not used consistently in
both method name and identi�er names in the implementation. This caused
the co-occurrence of nouns to be undetectable, since the identi�ers could not
be decomposed properly.

We found methods using or returning a constant value. These values were
not always declared as constants and we did not know the meaning of the
value. If these constant values were declared in constant variable, we might
be able to understand the meaning of the value.

5.5 Conclusion

The results suggest that methods with a co-occurrence of nouns were com-
prehensible more often than methods without a co-occurrence of nouns. If
no appropriate name is given to the method, it is harder to relate the method

34

name to the implementation. However, if no co-occurrence of nouns is de-
tected, this does not strictly imply the method to be hard-to-comprehend.
The results suggest that methods with a co-occurrence of nouns can be hard-
to-comprehend as well.

The existence of a co-occurrence of nouns in a method is no guarantee the
method is comprehensible either. However, the co-occurrence of nouns can be
a good measurement to �nd methods that need further analysis. The manual
veri�cation is always necessary to ensure the method is comprehensible, since
not all methods without co-occurrence of nouns are hard-to-comprehend.

The results promise that the co-occurrence of nouns may be used to predict
hard-to-understand method names with a certain accuracy, but the actual
accuracy is still an open question.

35

Chapter 6

Relating the co-occurrence of

nouns to the size of a method

6.1 Introduction

In previous chapters we have analyzed the strength of the co-occurrence of
nouns. We expect that the strength of the co-occurrence of nouns di�ers for
methods based on their size. Our assumption is that the larger a method
implementation, the more chance a co-occurrence of nouns is found, since
more identi�ers can be used in the implementation.
If a co-occurrence of nouns occurs more often in large methods, it might
indicate that the co-occurrence of nouns is less useful for �nding hard-to-
comprehend methods. The results could also indicate we have to compensate
for the size factor. If the strength of the co-occurrence is not related to the
size or always the same, it might indicate the co-occurrence of nouns is useful
in any method independent of its size.

The research question discussed in this chapter is:
What is the relation between the co-occurrence of nouns and the
size of a method?

36

6.2 Research method

In section 3.1 the approach to measure the strength of the co-occurrence
of nouns is discussed. The size of a method is measured by counting the
SLOC(Source Lines Of Code) in the method implementation. The size of
a method is measured by excluding lines of comment and removing lines
containing only white spaces.
We only take a certain method size into account if at least 50 methods occur
with this size. This makes the results more accurate, since we have a strength
based on at least 50 methods.

6.3 Results

The results of our analysis are shown in graph 6.1.

0 10 20 30 40 50 60

75

80

85

90

95

100

Size of method (in SLOC)S
tr
en
gt
h
of

th
e
co
-o
cc
u
rr
en
ce

of
n
ou
n
s
(i
n
%
)

Figure 6.1: The relation between the strength of the co-occurrence of nouns
and the size of the method implementation.

37

6.4 Discussion

The results suggest there is no strong negative or positive relation between
the strength of the co-occurrence of nouns and the size of the method. The
coordinates showed in graph 6.1 occur between a strength of 70% and 95%.
Although we assumed the chance the co-occurrence of nouns is stronger if a
method is larger, we found no evidence to support this claim.

We have furthermore only results of methods with a maximum unit size
of 59. It would be interesting to research methods with a larger unit size.
However, this requires a larger corpus since our corpus does not contain
enough methods(>50 methods) with a really large unit size(unit size of 60
or more).

6.5 Conclusion

We searched for a relation between the size of the method and the strength
of the co-occurrence of nouns. However, no negative nor positive relation
was found. Our hypothesis turned out to be false. The results suggest that
hard-to-comprehend methods independent of their size can be found using
the co-occurrence of nouns.

38

Chapter 7

Using the verbs to �nd the

co-occurrences of nouns

7.1 Introduction

In chapter 4 a co-occurrence of nouns was found in over 83% of the methods
with at least one noun in the method name and at least one noun in the
identi�ers in the implementation of the method. In this chapter we focus
on more speci�c co-occurrences of nouns based on the verb in the method
name.

Høst and Østvold found that programmers consistently use a speci�c verb in
the method name if the method implementation contains certain statements
and expressions. The combinations of these statements and expressions were
called traceable attributes by Høst and Østvold. The set of attributes was ex-
tended by Singer et al.. Singer et al. called them fundamental nano-patterns.

We expect the verb in the method name to describe the action done using
an object. We assume this object is represented by the noun in the method
name(See section 1.2). We expect this verb-noun relation is present in the
method implementation as well. The noun in the method name is expected
to occur speci�cally in the identi�er information in the nano-patterns in the
method implementation. If this speci�c occurrence is present, it is useful to
predict a possible noun to use in the method name.

The research question discussed in this chapter is:

39

Can the verb-noun relation in the method implementation be used
to �nd the noun occurring in the method name?

7.2 Research method

The approach used is partially equal to the �rst step of our approach ex-
plained in chapter 3. The detection of the co-occurrence of nouns is based
on results of earlier research by Høst and Østvold. Høst and Østvold gener-
ated a list of lexicon entries. A lexicon entry is a pair containing a verb and
a set of nano-patterns occurring consistently in methods starting with this
verb.

We base our research on the results of Høst and Østvold. To be sure our
research produces valid results, we have to be sure to base our research on
the right results. The research of Høst and Østvold di�ers on some aspects
from ours:

• We analyze source code, while Høst and Østvold analyzed byte code.

• The corpus used by us is a subset of the corpus of Høst and Østvold.

Since we think these aspects can have an e�ect on our results, we replicate
their research using source code analysis and a di�erent corpus to generate
a list of lexicon entries. Stoel supported the claim that the aspects listed
above have an e�ect on the results found by relating the verb to the used
nano-patterns[16].

Furthermore, we think the set of traceable attributes of Høst and Østvold
is not su�cient to �nd all the identi�er information needed to �nd a co-
occurrence of nouns. Singer et al. extended the work of Høst and Østvold
and identi�ed a total of 17 nano-patterns. Because we value the set of nano-
patterns of Singer et al. more, the set of nano-patterns of Singer et al. is used.
The set of Singer et al. contains more nano-patterns, therefore it covers more
behaviour of a method, for example reading and writing to local variables
instead of detecting only reading local variables.

By measuring the strength of the co-occurrence of nouns for methods grouped
by their verb and based on the identi�er information found in the nano-
patterns, we check if a noun from any of the identi�er information found

40

in each nano-pattern is equal to the noun in the method name. Further-
more, do we manually assess one random method per verb from the set of
methods without a co-occurring noun in the identi�er information in the
nano-patterns. This is only to demonstrate the usefulness of a co-occurrence
based on the identi�er information in the nano-patterns.

In the sections below we discuss each step of the approach in detail.

7.2.1 Finding commonly used verbs

The �rst step is �nding the commonly used verbs in the methods. We search
for them by analyzing all the methods from the corpus and count the times
a verb occurs as the �rst word in the method name. This analysis is done
using the decomposition and tagging algorithm described in section 3.1.3.
We furthermore search for the commonly used verbs in methods containing
at least one noun in the method name. Finding these methods is necessary
since we want to measure the co-occurrence of nouns. Methods without a
noun in the name cannot have a co-occurrence either.

7.2.2 Replicate lexicon entries for commonly used verbs

The second step is to replicate earlier research[7] of Høst and Østvold. The
output of the replication is a generated list of lexicon entries[7] based on
the verb in a method name and the consistent usage of nano-patterns in the
method implementation. A list of nano-patterns occurring never(0%), sel-
dom(<5%), rarely(<25%), often(>75%), very often(>95%) or always(100%)
in methods with a speci�c verb is generated. These percentages were used
by Høst and Østvold and are therefore used in this experiment.

7.2.3 Filtering inconsistently named methods

The list of generated lexicon entries is used to determine if a method con-
tains an appropriate verb. Since we focus on comprehensible methods, we
state that methods contain an appropriate verb if the method implemen-
tation contains all the nano-patterns shown in the list that occur often or
more(>75%) in methods with this speci�c verb. The method should further-
more not contain nano-patterns from the list that occur rarely or less(<25%)
in methods with this speci�c verb. We realize not all the methods with an

41

appropriate verb do conform to these speci�cations. However, using this con-
sistency, there is a higher chance we use more properly named methods in
our analysis[16]. An example to motivate this decision is shown in example
7.1.

1 package com . ton i c sys tems . j a r j a r ;
2

3 public class JarJarTask extends AntJarProcessor
4 {
5 protected JarProce s so r ge tJa rProce s so r () {
6 return new MainProcessor (patterns , verbose) ;
7 }
8 }

Figure 7.1: Example to motivate the need to �lter the methods by the com-
bination of verb and nano-patterns.

Although this method looks ok, it can be improve. It does not only 'get' a
JarProcessor, but it also creates one. We therefore argue 'createJarProcessor'
would be a more appropriate name for this method. The generated lexicon
entries support our criticism. It states that methods starting with get rarely
create objects. Since the method is inconsistently named, it is �ltered.

7.2.4 Use lexicon entries to analyze identi�er information

The �nal step of the research is to check the co-occurrence of nouns based on
the identi�er information used in the nano-patterns. In some nano-patterns
identi�ers can occur, while in other nano-patterns identi�ers can not oc-
cur, since not only the use of certain statements and expressions can cause
a nano-pattern to occur, but also the avoidance of certain statements and
expressions. Depending on the nano-pattern, identi�er information is ex-
tracted from the method implementation if the nano-pattern occurs often
or more or rarely or less. One of the nano-patterns is NoReturn and is
found if a method returns void. If a method returns void, it can not con-
tain identi�ers in a return statement. In this case, we check for identi�ers
if the pattern is not present. Another nano-pattern is LocalReader and is
found if a method reads a local variable. If the nano-pattern LocalReader is
present in a method, we check for the presence of local variables. Identi�er
information can only be found about the local variable if the nano-pattern
is present.

42

7.3 Results

The �rst experiment is �nding the most commonly used verb in method
names. The results are shown in table 7.1. Only the 10 most commonly
used verbs are listed.

Position Verb # Methods % of total methods

1 get 34200 26.19
2 set 14408 11.03
3 is 5810 4.45
4 add 3858 2.95
5 create 3688 2.82
6 visit 1878 1.44
7 remove 1780 1.36
8 test 1462 1.12
9 has 1383 1.06
10 read 1040 0.80

Table 7.1: Most occurred verbs.

Since we research the co-occurrence of the nouns and therefore focus on meth-
ods with at least one noun, we have also researched method names starting
with a verb and containing at least one noun. The 10 most commonly used
verbs in these method names are shown in table 7.2.

Position Verb # Methods % of total methods

1 get 32590 24.96
2 set 12614 9.66
3 is 4209 3.22
4 create 3114 2.38
5 add 2990 2.29
6 test 1364 1.04
7 visit 1354 1.04
8 has 1136 0.87
9 remove 1091 0.84
10 read 713 0.55

Table 7.2: Most occurred verbs in methods containing at least one noun.

Since the results in table 7.2 show that methods with the verbs: get, set,
is, create or add are the most commonly used methods containing at least
one noun, we analyzed these methods in more detail. We furthermore based
the replication of the research of Høst and Østvold on this data. The results
of this replication are shown in appendix C. In appendix D a comparison,

43

between the Lexicon Entries found by Høst and Østvold and the Lexicon
Entries found by us, is shown.

In the sections below the results of measuring the strength of a co-occurrence
of nouns for each group of methods are shown.

7.3.1 Methods starting with get

Methods starting with the verb get are the most commonly used methods
found. The lexicon entries generated during the replication of earlier work
suggest that methods starting with get seldom return void. Since this implies
they often return something non-void, we check the identi�er information in
the return statement. The results of this experiment are shown in graph 7.2.

Return
0

20

40

60

80

100

%
w
it
h
co
-o
cc
u
rr
en
ce

of
n
ou
n

Base Type Type Method Name Variable Name

Figure 7.2: Co-occurrence of nouns in methods starting with get.

A total of 13618 methods starting with get conformed to the generated lex-
icon entries for a method starting with get. There was furthermore at least
one identi�er present in the return statement. No methods were found with-
out a noun in the identi�er information in the return statement.
In a total of 32 methods no co-occurrence of nouns was found between a
noun in the method name and a noun found in the identi�er information in

44

the return statement. An example of such a method is shown in example
7.3.

1 package com . ton i c sys tems . j a r j a r ;
2

3 f ina l class JikesRVMSocketImpl extends SocketImpl implements
VM_SizeConstants {

4 public int getLoca lPort () {
5 ge tLoca lPo r t In t e rna l () ;
6 return l o c a l p o r t ;
7 }
8 }

Figure 7.3: Example of a method starting with get without a co-occurrence
of nouns based on the nano-patterns.

We argue this method is comprehensible, however it can be improved by
using a camelCase style in the used variable. Improving this method in such
a way would cause the tool to �nd a co-occurrence of nouns speci�cally in
the return statement.

7.3.2 Methods starting with set

Methods starting with the verb set are the second most commonly methods
found. The lexicon entries generated during the replication of earlier work
suggest that methods starting with set often read the value of local variables
and seldom have no parameters. Since this implies they often read the value
of local variables and very often have parameters, we check the identi�er
information in the local variables that are read and the parameters of the
method. The results of this experiment are shown in graph 7.4.

A total of 6469 methods starting with set conformed to the generated lexicon
entries for a method starting with set. There was furthermore at least one
identi�er present as parameter and there was at least a local identi�er that
was used to read a value from.
There were 58 methods without a noun in the identi�er information in the
local reader pattern. There were also 58 methods without a noun in the
identi�er information from the parameters.
In a total of 910 methods no co-occurrence of nouns was found between a
noun in the method name and a noun found in the identi�er information in
the nano-patterns. An example of such a method is shown in example 7.5.

45

LocalReaderParameter
0

20

40

60

80

100
%

w
it
h
co
-o
cc
u
rr
en
ce

of
n
ou
n

Base Type Type Method Name Variable Name

Figure 7.4: Co-occurrence of nouns in methods starting with set.

1 package org . j ikes rvm . compi l e r s . opt . i r ;
2

3 public f ina l class OPT_MethodOperand extends OPT_Operand {
4 public void se t I sGuardedIn l ineOf fBranch (boolean f) {
5 i sGuardedIn l ineOf fBranch = f ;
6 }
7 }

Figure 7.5: Example of a method starting with set without a co-occurrence
of nouns based on the nano-patterns.

We argue this method is comprehensible, however it can be improved by not
using a meaningless variable as parameter. Improving this method could be
done in the same way we suggested in 5.3.2. The parameter can be named
'newIsGuardedInlineO�Branch' to become comprehensible. This would also
cause a co-occurrence of the nouns speci�cally in the local variable that is
read and the parameter of the method to be present.

7.3.3 Methods starting with is

Methods starting with the verb is are the third most commonly used methods
found. The lexicon entries generated during the replication of earlier work

46

suggest that methods starting with is seldom return void. Since this implies
they often return something non-void, we check the identi�er information in
the return statement. The results of this experiment are shown in graph 7.6.

Return
0

20

40

60

80

100

%
w
it
h
co
-o
cc
u
rr
en
ce

of
n
ou
n
s

Base Type Type Method Name Variable Name

Figure 7.6: Co-occurrence of nouns in methods starting with is.

A total of 1555 methods starting with is conformed to the generated lexicon
entries for a method starting with is. There was furthermore at least one
identi�er present the return statement.
There were no methods found without a noun in the identi�er information
in the return statement.
A single method was found without a co-occurrence of nouns between a noun
in the method name and a noun found in the identi�er information in the
nano-patterns. This method is shown in example 7.7.

47

1 package org . h ibe rnate . l oade r . e n t i t y ;
2

3 public class CascadeEntityJoinWalker extends
AbstractEntityJoinWalker {

4 protected boolean i sJo inedFetchEnabled (Assoc iat ionType type ,
FetchMode con f i g , CascadeStyle ca s cadeSty l e) {

5 return (type . i sEnt ityType () | | type . i sCo l l e c t i onType ()) &&
6 (ca s cadeSty l e==null | | c a s cadeSty l e . doCascade (

cascadeAct ion)) ;
7 }
8 }

Figure 7.7: Example of a method starting with is without a co-occurrence
of nouns based on the nano-patterns.

We argue this method is comprehensible and it possibly does what the
method name suggests. However, since we do not know what a JoinedFetch
is, the assessment completely depends on our domain knowledge.

7.3.4 Methods starting with add

Methods starting with the verb add are the fourth most commonly used
methods found. The lexicon entries generated during the replication of ear-
lier work suggest that methods starting with add very often read the value
of local variables, do rarely not invoke any methods and seldom have no
parameters. Since this implies they often invoke methods and very often
read the value of local variables and have parameters, we check the identi�er
information in the local variables that are read, invoked methods and the
parameters of the method. The results of this experiment are shown in graph
7.8.

A total of 1216 methods starting with add conformed to the generated lexicon
entries for a method starting with add. There was furthermore at least
one identi�er present as method, parameter and there was at least a local
identi�er that was used to read a value from.
There was one method without a noun in the identi�er information in the
local reader pattern. There were also 217 methods with methods that were
invoked, but without a noun. 3 methods were found and had no noun in the
identi�er information from the parameters.
In a total of 115 methods no co-occurrence of nouns was found between a
noun in the method name and a noun found in the identi�er information in
the nano-patterns. An example of such a method is shown in example 7.9.

48

LocalReaderParameterMethodInvocation
0

20

40

60

80

100
%

w
it
h
co
-o
cc
u
rr
en
ce

of
n
ou
n
s

Base Type Type Method Name Variable Name

Figure 7.8: Co-occurrence of nouns in methods starting with add.

1 package org . j ikes rvm . memorymanagers . mminterface ;
2

3 public f ina l class MM_Interface implements VM_HeapLayoutConstants ,
Constants {

4 /∗∗
5 ∗ Adds an o b j e c t to the l i s t o f o b j e c t s to have t h e i r
6 ∗ <code>f i n a l i z e </code> method c a l l e d when they are rec la imed .
7 ∗
8 ∗ @param ob j e c t the o b j e c t to be added to the f i n a l i z e r ' s l i s t
9 ∗/

10 @Inte r rupt ib l e
11 public stat ic void addF ina l i z e r (Object ob j e c t) {
12 F i n a l i z e r . addCandidate (ObjectReference . fromObject (ob j e c t)) ;
13 }
14 }

Figure 7.9: Example of a method starting with add without a co-occurrence
of nouns based on the nano-patterns.

Without looking at the comment, we argue this method is hard-to-comprehend.
We have no idea if 'object' is the �nalizer that is added in the method, since
the implementation suggests a candidate is added. The name of the param-
eter is 'object', which we think is a generic name. The implementation of
the method does not suggest a Finalizer is added, but the documentation
above the method does. We argue the method can be improved, since the
implementation itself only suggests a candidate is added.

49

7.3.5 Methods starting with create

Methods starting with the verb create are the �fth most commonly used
methods found. The lexicon entries generated during the replication of earlier
work suggest that methods starting with create very often read the value of
local variables, do rarely not invoke any methods and rarely return void.
Since this implies they often invoke methods and return something non-
void and very often read the value of local variables, we check the identi�er
information in the local variables that are read, invoked methods and the
return statement of the method. The results of this experiment are shown
in graph 7.10.

LocalReaderMethodInvocationReturn
0

20

40

60

80

100

%
w
it
h
co
-o
cc
u
rr
en
ce

of
n
ou
n
s

Base Type Type Method Name Variable Name

Figure 7.10: Co-occurrence of nouns in methods starting with create.

A total of 701 methods starting with create conformed to the generated lexi-
con entries for a method starting with create. There was furthermore at least
one identi�er present in the return statement, a local identi�er that was used
to read a value from and a invoked method in the method implementation.
There were 58 methods without a noun in the identi�er information in the
local reader pattern. There were also 58 methods without a noun in the
identi�er information from the parameters. Furthermore, 217 methods with
methods that were invoked, but without a noun were found.
In a total of 6 methods no co-occurrence of nouns was found between a noun

50

in the method name and a noun found in the identi�er information in any of
the nano-patterns. An example of such a method is shown in example 7.11

1 package org . t r anq l . ddl ;
2

3 public class DDLBuilder {
4 public DDL createDrop (St r ing en t i t y) {
5 Table t ab l e = schema . getTable (en t i t y) ;
6 i f (null == tab l e) {
7 throw new I l l ega lArgumentExcept ion ("Entity " + en t i t y +

" i s undef ined . ") ;
8 }
9

10 DDL ddl = new DDL() ;
11 ddl . addChild (new Drop (t ab l e)) ;
12 return ddl ;
13 }
14 }

Figure 7.11: Example of a method starting with create without a co-
occurrence of nouns based on the nano-patterns.

We argue this method name can be improved by naming the method 'creat-
eDLLWithDrop', since it creates a 'DDL' with a 'Drop' as child.

7.4 Discussion

The results suggest a lot of methods are �ltered by only taking the meth-
ods with the consistently used nano-patterns into account. Filtering these
methods enabled us to remove methods like the method in example 7.1.

However, the �lters might have removed methods with patterns that do not
occur that much anyway, independent of the verb. This might have caused
methods were �ltered that should have not been �ltered. However, since no
automatic assessment of names has been found yet, we assumed this was the
best way to �lter inconsistent named methods.

Furthermore, the method with a di�erent verb, for example get or is, can
both contain some equal nano-pattern(s). Methods starting with get or is
both contain the nano-pattern NoReturn rarely or less. Therefore it can be
hard to discriminate these methods from each other using only the NoReturn
nano-pattern. All nano-patterns that did occur rarely or less and often or
more were therefore useful to discriminate the methods starting with get and
is from each other.

51

The results furthermore suggest that nouns causing the co-occurrence of
nouns in methods can be found in speci�c nano-patterns and in speci�c
identi�er information. The methods starting with get, set, is or create are
good examples to support this hypothesis. However, �nding the occurred
noun in methods starting with add was less useful. Since we have not man-
ually analyzed a lot of these methods in detail, we do not know the cause of
this.

7.5 Conclusion

We analyzed the methods containing one of the �ve most commonly used
verbs. We searched for the co-occurrence of nouns in identi�er information
in the consistently used nano-patterns related to the verb in the method.

The results suggest that in methods starting with get, set, is or create any of
the nouns in the method name co-occurred in speci�c identi�er information
in one of the nano-patterns in the method implementation. The noun in the
method name co-occurred in one of the nano-patterns in the implementation
in at least 80% of the methods.

The results suggests that this consistency was not found in methods starting
with add. The co-occurrence of nouns in methods starting with add occurs
in a less consistently amount of times. More research is needed to �nd the
cause of this.

We have not veri�ed if methods without the co-occurred noun in the identi�er
information in the consistently used nano-patterns are hard-to-comprehend
or contain meaningless or inappropriate names in the large. However, we
have found a relation between the combination of verb and noun in the
method name and the nano-patterns and identi�ers in the implementation.
This relation might useful to suggest an appropriate noun to use in the
method name. However, since no co-occurrence of nouns was found in all
the results, more research needs to be done to verify this.

52

Chapter 8

Conclusion

We studied the relation between the co-occurrence of nouns and the compre-
hensibility of the method. We discussed a total of 4 sub research questions
to get an answer on the following research question:
Can the co-occurrence of nouns be used to �nd hard-to-comprehend
methods?

We measured the strength of the co-occurrence of nouns. The results suggest
a co-occurrence of nouns is found in 83% of the methods. This suggests that
a co-occurrence of nouns is present in a lot of methods and therefore the
absence of the co-occurrence of nouns might be useful to indicate hard-to-
comprehend methods.

Since the comprehensibility was unknown, we measured the comprehensibil-
ity of methods with a co-occurrence of nouns and without a co-occurrence
of nouns. The results of this experiment suggests methods without a co-
occurrence of nouns have a higher chance to be hard-to-comprehend. Fur-
thermore, do the results suggest that the methods without a co-occurrence
of nouns contain more properties and factors with a bad impact on the com-
prehensibility of methods than methods with a co-occurrence.

The size of a method implementation might be related to the amount of
identi�ers used in the methods. This might cause the size to have an e�ect
on the strength of the co-occurrence of nouns. The results however suggest
no negative nor positive relation is present and therefore the co-occurrence of
nouns is useful �nd hard-to-comprehend method independent of the method
size.

53

A more speci�c relation might exist between the nouns in the method name
and implementation. We therefore searched for nouns in identi�er informa-
tion present in the consistently used nano-patterns based on the verb in the
method name. In the methods with 4 of the 5 analyzed verbs a speci�c co-
occurrence between a noun in the method name and a noun in the identi�er
information in a used nano-pattern was found. The results suggests a more
precise co-occurrence of nouns can be found based on the verb in the method
name.

Although more work needs to be done on this subject, we argue that the
current results show that the co-occurrence of nouns can be used to �nd
hard-to-comprehend methods. However, if a method without a co-occurrence
of nouns is found, there is no guarantee this method is hard-to-comprehend.
Not all the methods with a co-occurrence of nouns are comprehensible either.
The manual veri�cation of the comprehensibility is always needed. The co-
occurrence of nouns is therefore only useful to �nd methods with a higher
chance to be hard-to-comprehend.

54

Chapter 9

Future work

We focused primarily on methods containing a noun in the method name
and a noun in the identi�er information in the implementation. However,
a noun does not occur in any method name. Future work can be done in
assessing the mandatory existence of a noun in the method implementation
if one is used in the method name.

In the last research question, we have focused on �nding a co-occurrence of
nouns based on the identi�er information in the nano-patterns. However,
no assessment has been done on the comprehensibility of methods if no
appropriate noun was found in the identi�er information.

Although we manually assessed the comprehensibility of the methods, this
comprehensibility might be highly subjective. Therefore more research could
be done on the global understanding of the assessed methods by all kinds of
programmers.

It would also be interesting to see how useful an automatic assessment of the
co-occurrence of nouns is for programmers. How many times do they really
rename a method if it was proposed to be hard-to-comprehend? Or were the
identi�ers in the method implementation meaningless and are they adjusted
by the programmer?

55

Bibliography

[1] Code conventions for the java programming language, April
1998. URL http://www.oracle.com/technetwork/java/codeconv\

-138413.html.

[2] Barry Boehm and Victor R. Basili. Software defect reduction top 10
list. Computer, 34(1):135�137, January 2001. ISSN 0018-9162.

[3] Emilio Collar and Ricardo Valerdi. Role of software readability on soft-
ware development cost. 2008.

[4] Florian Deiÿenböck and Markus Pizka. Concise and consistent naming.
In In IWPC 2005, pages 97�106. IEEE Computer Society, 2005.

[5] Xuefen Fang. Using a coding standard to improve program quality. In
Quality Software, 2001. Proceedings.Second Asia-Paci�c Conference on,
pages 73 �78, 2001.

[6] Einar Høst and Bjarte Østvold. The java programmer's phrase book.
In Dragan Ga²evic, Ralf Lämmel, and Eric Van Wyk, editors, Soft-
ware Language Engineering, volume 5452 of Lecture Notes in Computer

Science, pages 322�341. Springer Berlin / Heidelberg. ISBN 978-3-642-
00433-9.

[7] Einar W. Høst and Bjarte M. Østvold. The programmer's lexicon, vol-
ume i: The verbs. In Proceedings of the Seventh IEEE International

Working Conference on Source Code Analysis and Manipulation, SCAM
'07, pages 193�202, Washington, DC, USA, 2007. IEEE Computer So-
ciety. ISBN 0-7695-2880-5.

[8] Einar W. Høst and Bjarte M. Østvold. Debugging method names.
In Proceedings of the 23rd European Conference on ECOOP 2009 �

56

Object-Oriented Programming, Genoa, pages 294�317, Berlin, Heidel-
berg, 2009. Springer-Verlag. ISBN 978-3-642-03012-3.

[9] Edvard K. Karlsen, Einar W. Høst, and Bjarte M. Østvold. Finding
and �xing java naming bugs with the lancelot eclipse plugin. In Pro-

ceedings of the ACM SIGPLAN 2012 workshop on Partial evaluation

and program manipulation, PEPM '12, pages 35�38, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1118-2.

[10] P. Klint, T. van der Storm, and J. Vinju. Rascal: A domain speci�c
language for source code analysis and manipulation. In Source Code

Analysis and Manipulation, 2009. SCAM '09. Ninth IEEE International

Working Conference on, pages 168 �177, sept. 2009.

[11] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley.
What's in a name? a study of identi�ers. In In 14th International

Conference on Program Comprehension, pages 3�12. IEEE Computer
Society, 2006.

[12] Y. Matsuo and M. Ishizuka. Keyword extraction from a single document
using word co-occurrence statistical information. International Journal
on Arti�cial Intelligence Tools, 13:2004, 2004.

[13] J. Sametinger. A tool for the maintenance of c++ programs. In Software
Maintenance, 1990., Proceedings., Conference on, pages 54 �59, nov
1990.

[14] Jeremy Singer, Gavin Brown, Mikel Luján, Adam Pocock, and
Paraskevas Yiapanis. Fundamental nano-patterns to characterize and
classify java methods. Electron. Notes Theor. Comput. Sci., 253(7):
191�204, September 2010. ISSN 1571-0661.

[15] Michael M. Stark and Richard F. Riesenfeld. Wordnet: An electronic
lexical database. In Proceedings of 11th Eurographics Workshop on Ren-

dering. MIT Press, 1998.

[16] Jouke Stoel. Exploring the detection of method naming anomalies, 2012.

57

58

Appendix A

Example to demonstrate initial

approach

1 package CH. i f a . draw . u t i l ;
2

3 public class VersionManagement {
4 public stat ic St r ing readVers ionFromFile (S t r ing applicationName ,

S t r ing vers ionFi leName) {
5 try {
6 Fi leInputStream f i l e I n p u t = new Fi leInputStream (

vers ionFi leName) ;
7 Manifest mani f e s t = new Manifest () ;
8 mani fe s t . read (f i l e I n p u t) ;
9

10 Map en t r i e s = mani f e s t . g e tEnt r i e s () ;
11 // Now wr i t e out the pre−entry a t t r i b u t e s
12 I t e r a t o r e n t r y I t e r a t o r = e n t r i e s . entrySet () . i t e r a t o r () ;
13 while (e n t r y I t e r a t o r . hasNext ()) {
14 Map. Entry currentEntry = (Map. Entry) e n t r y I t e r a t o r . next () ;
15 St r ing packageName = currentEntry . getKey () . t oS t r i ng () ;
16 packageName = normalizePackageName (packageName) ;
17 Att r ibute s a t t r i b u t e s = (Att r ibute s) currentEntry . getValue ()

;
18 St r ing packageSpecVers ion = a t t r i b u t e s . getValue (At t r ibute s .

Name .SPECIFICATION_VERSION) ;
19 packageSpecVers ion = ex t r a c tVe r s i on In f o (packageSpecVersion)

;
20 return packageSpecVers ion ;
21 }
22 }
23 catch (IOException except ion) {
24 except ion . pr intStackTrace () ;
25 }
26

27 // no vers ion found
28 return null ;
29 }
30 }

Figure A.1: Example to motivate not to count the times of occurrences.

59

This method name in example A.1 explains its implementation well, however
none of the nouns used in the name is the most relevant noun in table A.1.

Noun Counted co-occurrences of nouns

string 15
entry 14
name 9
version 9
iterator 8
package 8
�le 7
manifest 7
attribute 6
input 5
spec 4
current 3
object 3
map 3
stream 3
exception 2
set 2
speci�cation 2
void 2
value 2
application 1
info 1
io 1
key 1
stack 1
trace 1

Table A.1: Counted noun occurrences from the method implementation.

60

Appendix B

Analyzed methods on

comprehensibility

B.1 Methods with co-occurrence of nouns

�tnesse.wikitext.widgets.TableRowWidgetTest.testPlainTextRow()
org.exolab.castor.xml.Marshaller.setSuppressXSIType(boolean)
org.apache.batik.css.engine.sac.CSSConditionalSelector.getSpeci�city()
org.gjt.sp.jedit.syntax.ParserRule.createRegexpSequenceRule(char, int, java.lang.String,
org.gjt.sp.jedit.syntax.ParserRuleSet, byte, boolean)
org.apache.xalan.lib.sql.DTMDocument.�ndGTE(int[], int, int, int)
�tnesse.http.MockRequest.setRequestLine(java.lang.String)
org.apache.xalan.extensions.ExtensionHandlerExsltFunction.getFunction(java.lang.String)
polyglot.ast.Import_c.name()
�tnesse.wikitext.Utils.replaceStrings(java.lang.String, java.lang.String[], java.lang.String[])
org.apache.commons.collections.ProxyMap.containsKey(java.lang.Object)
org.gjt.sp.jedit.bsh.NameSpace.unsetVariable(java.lang.String)
org.apache.tools.ant.taskdefs.optional.jlink.jlink.calcChecksum(java.io.File)
org.apache.xalan.lib.sql.DTMDocument.getNodeType(int)
org.argouml.model.AbstractCommonBehaviorHelperDecorator.setRecurrence(java.lang.Object,
java.lang.Object)
org.apache.tools.ant.taskdefs.condition.ConditionBase.getConditions()
org.apache.xalan.xsltc.compiler.UseAttributeSets.addAttributeSets(java.lang.String)
org.jnp.interfaces.NamingContext.listBindings(java.lang.String)
org.exolab.castor.types.RecurringDurationBase.getDuration()

61

org.apache.tools.ant.types.selectors.BaseExtendSelector.getParameters()
org.apache.tools.ant.taskdefs.optional.jsp.JspC.createClasspath()
org.apache.tools.ant.types.DataType.isReference()
antlr.PythonCodeGenerator.genNextToken()
org.jikesrvm.compilers.opt.OPT_LocalCSE.getClassConstructor()
org.apache.batik.svggen.font.table.CmapFormat4.toString()
org.exolab.castor.persist.OID.getName()
org.jboss.resource.security.SecureIdentityLoginModule.login()
ognl.Ognl.isSimpleNavigationChain(java.lang.String)
org.apache.tools.ant.taskdefs.optional.perforce.P4Change.getEmptyChangeList()
org.jboss.proxy.generic.ProxyFactoryHA.getLoadBalancePolicy()
org.jboss.util.state.DefaultStateMachineModel.removeState(org.jboss.util.state.State)
�t.Parse.addToBody(java.lang.String)
org.argouml.uml.diagram.static_structure.layout.ClassdiagramNode.getFigure()
org.apache.tools.ant.taskdefs.optional.sos.SOSCheckin.buildCmdLine()
org.apache.tools.ant.Task.isInvalid()
polyglot.ast.AbstractNodeFactory_c.ClassDecl(polyglot.util.Position, poly-
glot.types.Flags, java.lang.String, polyglot.ast.TypeNode, java.util.List, poly-
glot.ast.ClassBody)
org.argouml.uml.diagram.UMLMutableGraphSupport.getSourcePort(java.lang.Object)
org.jikesrvm.classloader.VM_BytecodeStream.getFloatConstant(int)
org.gjt.sp.jedit.textarea.Gutter.isSelectionAreaEnabled()
org.jboss.resource.adapter.jms.JmsSession.createDurableSubscriber(javax.jms.Topic,
java.lang.String, java.lang.String, boolean)
org.hibernate.cfg.Con�guration.getEntityNotFoundDelegate()
org.apache.batik.bridge.SVGGVTFont.createGlyphVector(java.awt.font.FontRenderContext,
java.text.CharacterIterator)
polyglot.ast.AbstractDelFactory_c.delCallImpl()
org.apache.xpath.axes.FilterExprIterator.�lterExprOwner.setExpression(
org.apache.xpath.Expression)
org.jikesrvm.compilers.opt.ir.GuardedSet.setVal(org.jikesrvm.compilers.opt.ir.OPT_Instruction,
org.jikesrvm.compilers.opt.ir.OPT_Operand)
org.apache.xalan.xsltc.dom.NodeSortRecord.getNode()
org.springframework.remoting.jaxrpc.JaxRpcPortProxyFactoryBean.afterPropertiesSet()
polyglot.ext.param.types.MuPClass_c.addFormal(polyglot.ext.param.types.Param)
antlr.MakeGrammar.addElementToCurrentAlt(antlr.AlternativeElement)
org.argouml.uml.diagram.static_structure.ui.FigClass.updateNameText()
�tnesse.responders.refactoring.RenamePageResponderTest.testDontRenameToExistingPage()
org.apache.tapestry.form.validator.ValidatorsBindingFactory.createBinding(
org.apache.tapestry.IComponent, java.lang.String, java.lang.String,

62

org.apache.hivemind.Location)
polyglot.ast.AbstractExtFactory_c.extCast()
org.argouml.uml.reveng.ui.RESequenceDiagramDialog.buildAction(java.lang.String)
org.argouml.ui.LookAndFeelMgr.getSmallFont()
org.exolab.castor.persist.ClassMolder.setIdentity(org.castor.persist.TransactionContext,
java.lang.Object, org.exolab.castor.persist.spi.Identity)
org.hibernate.persister.entity.SingleTableEntityPersister.addDiscriminatorToSelect(
org.hibernate.sql.SelectFragment, java.lang.String, java.lang.String)
org.apache.batik.util.PreferenceManager.getFiles(java.lang.String)
org.gjt.sp.jedit.gui.CompletionPopup.CandidateListModel.getSize()
polyglot.ast.AbstractDelFactory_c.delAmbQuali�erNode()
org.jikesrvm.compilers.opt.ir.OPT_BC2IR.BasicBlockLE.isLocalKnown()
org.apache.commons.collections.map.MultiKeyMap.isEqualKey(
org.apache.commons.collections.map.AbstractHashedMap.HashEntry, java.lang.Object,
java.lang.Object)
java.lang.Class<T>.getEnumConstants()
�t.CannotLoadFixtureTest.testFixtureClassNotEndingInFixtureDoesNotExtendFixture()
CH.ifa.draw.contrib.Helper.getDrawingView(java.awt.Component)
�tnesse.Shutdown.buildRequest()
org.gjt.sp.jedit.MiscUtilities.objectsEqual(java.lang.Object, java.lang.Object)
org.jboss.varia.stats.CacheListener.ContentionStats.getMaxContentionTime()
org.exolab.castor.xml.schema.Wildcard.getProcessContent()
org.apache.bcel.generic.FieldGenOrMethodGen.removeAttribute(
org.apache.bcel.class�le.Attribute)
org.gjt.sp.jedit.gui.DockableWindowManagerImpl.handleMessage(org.gjt.sp.jedit.EBMessage)
org.apache.commons.net.nntp.Article.getArticleNumber()
org.jikesrvm.compilers.opt.ir.MIR_Nullary.getClearResult(org.jikesrvm.compilers.opt.ir.
OPT_Instruction)
org.springframework.ui.freemarker.FreeMarkerCon�gurationFactory.
setPreferFileSystemAccess(boolean)
org.apache.tools.ant.Diagnostics.printParserInfo(java.io.PrintStream, java.lang.String,
java.lang.String, java.lang.String)
org.jboss.hibernate.jmx.Hibernate.setCacheProviderClass(java.lang.String)
org.hibernate.dialect.InformixDialect.getSelectSequenceNextValString(java.lang.String)
org.gjt.sp.jedit.textarea.Bu�erHandler.getReadyToBreakFold(int)
org.objectweb.asm.util.CheckMethodAdapter.checkDesc(java.lang.String, boolean)
polyglot.qq.QQ.parseDecl(java.lang.String, java.lang.Object, java.lang.Object,
java.lang.Object, java.lang.Object, java.lang.Object, java.lang.Object, java.lang.Object,
java.lang.Object)
org.apache.bcel.veri�er.structurals.ExecutionVisitor.visitCASTORE(org.apache.bcel.generic.

63

CASTORE)
org.apache.tapestry.util.ComponentAddress.�ndComponent(org.apache.tapestry.IRequestCycle)
org.hibernate.hql.ast.tree.FromElementType.extractTableName()
org.apache.commons.httpclient.params.HttpConnectionParams.setSendBu�erSize(int)
org.apache.xml.utils.DOMBuilder.entityReference(java.lang.String)
javax.management.StringValueExp.toString()
org.apache.commons.digester.Digester.error(org.xml.sax.SAXParseException)
polyglot.ast.ConstructorDecl_c.throwTypes(java.util.List)
org.argouml.model.mdr.CoreHelperMDRImpl.removeDeploymentLocation(java.lang.Object,
java.lang.Object)
org.gjt.sp.jedit.bu�er.JEditBu�er.getContextSensitiveProperty(int, java.lang.String)
org.jboss.remoting.loading.ClassByteClassLoader.addClass(org.jboss.remoting.loading.
ClassBytes)
�tnesse.responders.WikiImportingResponderTest.testImportPropertiesGetAdded()
org.apache.batik.bridge.svg12.SVGMultiImageElementBridge.createGraphicsNode(
org.apache.batik.bridge.BridgeContext, org.w3c.dom.Element)
org.jboss.web.tomcat.security.CustomPrincipalValve.UserPrinicpalRequest
.setUserPrincipal(java.security.Principal)
org.exolab.castor.xml.util.XMLClassDescriptorResolverImpl.DescriptorCache.
loadMapping(java.lang.String, java.lang.ClassLoader)
org.jboss.web.tomcat.security.CustomPrincipalValve.UserPrinicpalRequest.getMethod()
org.apache.xml.serializer.AttributesImplSerializer.getIndex(java.lang.String)
org.jboss.resource.adapter.jms.JmsMessage.setJMSCorrelationID(java.lang.String)
org.jboss.ejb.plugins.cmp.jdbc.bridge.JDBCAbstractCMPFieldBridge.getFieldType()
�tnesse.responders.editing.MergeResponder.makeInputTagWithAccessKey()
org.jboss.net.axis.transport.mailto.AbstractMailTransportService.closeStore(javax.mail.Store)

B.2 Methods without co-occurrence of nouns

org.jboss.mq.il.uil2.SocketManager.internalSendMessage(org.jboss.mq.il.uil2.msgs.BaseMsg,
boolean)
org.springframework.orm.hibernate3.FilterDe�nitionFactoryBean.getObjectType()
org.jikesrvm.classloader.VM_NormalMethod.genCode()
org.apache.velocity.runtime.parser.node.ASTAndNode.value(org.apache.velocity.context.
InternalContextAdapter)
org.objectweb.asm.optimizer.MethodOptimizer.visitAnnotationDefault()
org.jikesrvm.compilers.baseline.ia32.VM_Compiler.genMonitorEnter()

64

org.mmtk.plan.Plan.harnessBegin()
org.jikesrvm.compilers.opt.ir.TrapIf.indexOfTCode(org.jikesrvm.compilers.
opt.ir.OPT_Instruction)
org.jruby.runtime.builtin.meta.AbstractMetaClass.Meta.getUnde�neMethods()
org.apache.xalan.lib.ExsltSets.intersection(org.w3c.dom.NodeList, org.w3c.dom.NodeList)
org.apache.xalan.xsltc.compiler.StepPattern.analyzeCases()
org.jikesrvm.osr.OSR_BytecodeTraverser.getReturnCodeFromSignature(java.lang.String)
org.apache.tapestry.valid.DateValidator.toObject(org.apache.tapestry.form.
IFormComponent, java.lang.String)
org.exolab.castor.gui.QueryAnalyser.MainFrame.openDB()
polyglot.ast.ArrayAccess_c.prettyPrint(polyglot.util.CodeWriter, polyglot.visit.PrettyPrinter)
polyglot.ast.Assert_c.typeCheck(polyglot.visit.TypeChecker)
org.springframework.aop.framework.Re�ectiveMethodInvocation.getStaticPart()
org.jikesrvm.VM.sysWriteln(java.lang.String, int, java.lang.String, int)
org.argouml.language.java.generator.JavaRecognizer.classTypeSpec()
org.argouml.uml.ui.behavior.common_behavior.ActionNewCreateAction.getInstance()
org.argouml.model.UUIDManager.getNewUUID()
org.apache.xalan.lib.sql.DTMDocument.getNamespaceURI(int)
org.argouml.uml.diagram.use_case.UseCaseDiagramGraphModel.getOwner(java.lang.Object)
�tnesse.slim.SlimClient.sendBye()
org.apache.tapestry.parse.ParseMessages.rangeError(org.apache.tapestry.parse.TemplateToken,
int)
org.jboss.ha.framework.server.HAPartitionImpl.getCurrentView()
org.springframework.core.io.UrlResource.getFilename()
org.argouml.uml.ui.TabTaggedValuesModel.addRow(java.lang.Object[])
org.argouml.persistence.ArgoParser.handleAuthorEmail(org.argouml.persistence.XMLElement)
org.jikesrvm.compilers.opt.ir.Nullary.indexOfResult(org.jikesrvm.compilers.opt.ir.
OPT_Instruction)
org.jikesrvm.compilers.opt.ir.IfCmp2.hasTarget1(org.jikesrvm.compilers.opt.ir.
OPT_Instruction)
org.springframework.util.comparator.BooleanComparator.toString()
org.apache.batik.ext.awt.image.rendered.GaussianBlurRed8Bit.surroundPixels(double,
java.awt.RenderingHints)
org.hibernate.collection.PersistentMap.initializeFromCache
(org.hibernate.persister.collection.CollectionPersister, java.io.Serializable, java.lang.Object)
�tnesse.�xtures.ResponseExaminerTest.setup()
org.hibernate.sql.QueryJoinFragment.addCrossJoin(java.lang.String, java.lang.String)
org.jboss.jmx.connector.rmi.RMIConnectorImpl.getClassLoaderFor(
javax.management.ObjectName)
antlr.LLkParser.traceOut(java.lang.String)

65

org.apache.tools.ant.types.XMLCatalog.InternalResolver.resolveEntity(java.lang.String,
java.lang.String)
org.jikesrvm.compilers.opt.OPT_BURS_Common_Helpers.PLLRL(
org.jikesrvm.ArchitectureSpeci�c.OPT_BURS_TreeNode)
org.apache.batik.swing.gvt.JGVTComponent.releaseRenderingReferences()
org.springframework.jmx.export.assembler.SimpleRe�ectiveMBeanInfoAssembler.
includeReadAttribute(java.lang.re�ect.Method, java.lang.String)
org.springframework.jdbc.object.SqlFunction.runGeneric()
org.apache.xalan.templates.Stylesheet.getXSLToken()
�tnesse.components.Base64Test.testDecodeNothing()
org.apache.bcel.veri�er.structurals.Frame.getClone()
org.jboss.logging.appender.FileAppender.Helper.makePath(java.lang.String)
org.apache.batik.ext.awt.image.codec.PNGImageEncoder.writeIEND()
�tnesse.updates.FileUpdate.shouldBeApplied()
org.gjt.sp.jedit.gui.VariableGridLayout.getLayoutAlignmentX(java.awt.Container)
org.jikesrvm.memorymanagers.mminterface.SynchronizationBarrier.resetRendezvous()
org.hibernate.collection.PersistentElementHolder.needsUpdating(
java.lang.Object, int, org.hibernate.type.Type)
org.gjt.sp.jedit.gui.statusbar.MemoryStatusWidgetFactory.MemoryStatus.getToolTipText()
org.argouml.uml.diagram.ui.ModeCreateGraphEdge.isConnectionValid(
org.tigris.gef.presentation.Fig, org.tigris.gef.presentation.Fig)
org.jikesrvm.compilers.opt.ir.MIR_CondMove.getValue(org.jikesrvm.compilers.opt.ir.
OPT_Instruction)
org.hibernate.criterion.SimpleProjection.getColumnAliases(int)
org.apache.batik.css.parser.CSSLexicalUnit.getIntegerValue()
org.jikesrvm.compilers.opt.OPT_SpaceE�GraphNode.InEdgeEnumeration.hasMoreElements()
org.tranql.�eld.IdentityExtractorAccessor.getFieldClass()
�tnesse.responders.run.ExecutionLogTest.testPageLink()
org.apache.tapestry.web.WebContextResource.getLocalization(java.util.Locale)
org.apache.tools.ant.taskdefs.optional.ccm.Continuus.getCcmCommand()
org.jikesrvm.compilers.opt.ir.Attempt.indexOfO�set(org.jikesrvm.compilers.opt.ir.
OPT_Instruction)
org.argouml.ui.explorer.rules.GoStateMachineToState.getRuleName()
org.jruby.RubyObject.isKindOf(org.jruby.RubyModule)
org.apache.batik.svggen.XmlWriter.writeChildrenXml(org.w3c.dom.Attr,
org.apache.batik.svggen.XmlWriter.IndentWriter)
org.argouml.uml.diagram.ui.FigSingleLineText.removeFromDiagram()
org.exolab.castor.types.GDay.getValues()
org.jikesrvm.compilers.opt.OPT_SpaceE�GraphNodeList.nextElement()
org.objectweb.asm.tree.LookupSwitchInsnNode.getType()

66

com.microstar.xml.XmlParser.tryRead(java.lang.String)
org.apache.commons.lang.mutable.MutableInt.hashCode()
org.apache.xpath.NodeSetDTM.getLength()
org.apache.batik.util.RunnableQueue.getIteratorLock()
polyglot.ast.CharLit_c.typeCheck(polyglot.visit.TypeChecker)
org.apache.commons.codec.language.Metaphone.regionMatch(java.lang.StringBu�er,
int, java.lang.String)
org.gjt.sp.util.StandardUtilities.getLeadingWhiteSpaceWidth(java.lang.CharSequence,
int)
org.apache.batik.ext.awt.MultipleGradientPaintContext.getAntiAlias(�oat, boolean,
�oat, boolean, �oat, �oat)
org.gjt.sp.jedit.pluginmgr.MirrorListHandler.peekElement()
org.jikesrvm.compilers.common.assembler.ia32.VM_Assembler.emitPatchPoint()
org.jikesrvm.compilers.opt.ir.Prepare.indexOfO�set(org.jikesrvm.compilers.opt.ir.
OPT_Instruction)
org.apache.bcel.generic.ObjectType.referencesInterfaceExact()
org.jboss.console.plugins.monitor.ManageStringThresholdMonitorServlet.
doGet(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
org.apache.commons.httpclient.params.HttpConnectionParams.getReceiveBu�erSize()
javax.management.openmbean.CompositeType.isValue(java.lang.Object)
�t.FitServerTest.testFitParseExceptionDontCrashSuite()
org.argouml.uml.diagram.sequence.ui.FigMessage.getMessage()
org.springframework.orm.hibernate3.AbstractSessionFactoryBean.getObject()
org.jikesrvm.compilers.opt.ir.Multianewarray.getDimension(org.jikesrvm.compilers.opt.ir.
OPT_Instruction, int)
org.apache.commons.collections.map.LRUMap.moveToMRU(org.apache.
commons.collections.map.AbstractLinkedMap.LinkEntry)
�tnesse.responders.editing.SaveResponderTest.testKnowsWhenToMerge()
org.argouml.uml.ui.foundation.core.EnumerationListModel.targetSet(
org.argouml.ui.targetmanager.TargetEvent)
org.springframework.web.servlet.view.tiles.TilesCon�gurer.afterPropertiesSet()
org.gjt.sp.jedit.syntax.XModeHandler.�ndParent(java.lang.String)
org.gjt.sp.jedit.textarea.FirstLine.toString()
org.apache.xalan.lib.sql.DTMDocument.getDeclHandler()
org.jboss.ejb.plugins.cmp.jdbc2.bridge.JDBCCMRFieldBridge2.isSingleValued()
�tnesse.responders.run.TestExecutionReportTest.tablesShouldBeDeserialized()
org.apache.commons.lang.text.StrSubstitutor.checkCyclicSubstitution(java.lang.String,
java.util.List)

67

Appendix C

Found lexicon entries

Below a list of the lexicon entries found by replicating the work of Høst and
Østvold is shown.

C.1 Methods starting with get

They rarely use one or more control �ow loops, writes values to local vari-
ables, creates new objects, uses type casts or instanceof operations, throws
exceptions, calls another method with the same name. They seldom writes
values to (static or instance) �eld of an object, reads values from an array,
writes values to an array, creates a new array, calls itself recursively, return
void.

C.2 Methods starting with set

They very often read values of local variables, return void. They often have
no branches in method body. They rarely write values to local variables,
create new objects, read (static or instance) �eld values from an object, use
type casts or instanceof operations, throw exceptions, call another method
with the same name. They seldom use one or more control �ow loops, have
no parameters, read values from an array, write values to an array, create a
new array, call itself recursively.

68

C.3 Methods starting with is

They often have no branches in method body. They rarely use one or more
control �ow loops, write values to local variables, use type casts or instanceof
operations, call another method with the same name. They seldom create
new objects, write values to (static or instance) �eld of an object, read values
from an array, write values to an array, throw exceptions, create a new array,
call itself recursively, return void.

C.4 Methods starting with create

They often read values of local variables. They rarely do not issue any
method calls, use one or more control �ow loops, write values to (static
or instance) �eld of an object, write values to an array, use type casts or
instanceof operations, create a new array, return void, call another method
with the same name. They seldom read values from an array, call itself
recursively.

C.5 Methods starting with add

They very often read values of local variables. They often return void. They
rarely do not issue any method calls, use one or more control �ow loops,
write values to (static or instance) �eld of an object, read values from an
array, write values to an array, use type casts or instanceof operations, throw
exceptions. They seldom have no parameters, create a new array, call itself
recursively.

69

Appendix D

Comparison of lexicon entries

D.1 Methods starting with get

get. The most common method name. Methods named get often read state
and have no parameters, and rarely return void, call methods of the same
name, manipulate state, use local variables or contain loops. A similar name
is has. Specializations of get are is and size. A somewhat related name is
hash.

Although Høst and Østvold found that get methods often read state we have
found otherwise. But we found that get methods do return void rarely, like
Høst and Østvold and we therefore only focus on the return statement.

D.2 Methods starting with set

set. The second most common method name. Methods named set very
often manipulate state, and very seldom use local variables or read state.
Furthermore, they often return void, and rarely call methods of the same
name, create objects, have no parameters, perform type-checking or contain
loops. The name set has a precise use. Generalizations of set are handle and
initialize. Somewhat related names are accept, visit, end and insert.

Since Høst and Østvold probably did not measure parameters as the use of
local variable, they have measured that set methods rarely use local variable.
However, we do not agree with this, since we interpret parameters as local

70

variable and therefore found that local variable are read often. We have not
found that set methods do manipulate state often.

D.3 Methods starting with is

is. The third most common method name. Methods named is often have
no parameters, and rarely return void, throw exceptions, call methods of the
same name, create objects, manipulate state, use local variables, perform
type checking or contain loops. The name is has a precise use. Generaliza-
tions of is are has and get. Somewhat related names are accept, visit, hash
and size.

We have found that is methods seldom return void. Høst and Østvold found
is methods rarely return void, but this suggests that we have to measure the
return statement of the is method.

D.4 Methods starting with create

create. Among the most common method names. Methods named create
very often create objects. Furthermore, they rarely call methods of the same
name,

A quite remarkable result was found when we analyzed the create methods.
Høst and Østvold found that create methods very often create objects. How-
ever, we found that create methods do not create object in more than 66% of
the times. However, we found that create methods do often call methods and
return a value other than void and write to local variables very often. We
think this di�erence can be explained because Høst and Østvold analyzed
Java bytecode and we analyze Java source code. When source code is trans-
formed to bytecode certain optimization are done, such as method inlining.
Using method inlining the implementation of a method is transformed such
that invoked method calls are replaced by the implementation of the method
itself. Therefore our analysis might detect method calls and the analysis of
Høst and Østvold detected the creation of an object.

71

D.5 Methods starting with add

add. Among the most common method names. Methods named add often
read state. Similar names are remove and action.

We found that add methods very often have parameters and read local vari-
able. They furthermore often call other methods. Høst and Østvold did not
�nd add methods do have parameters very often. Since we assume they did
not detect the reading of values of parameters, they probably did not detect
local variable were read. However, they found add methods do read state
often, but we did not.

72

