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Abstract

As the complexity of software systems increases their maintainability de-
creases. This is problematic since the majority of the total cost of a soft-
ware system is related to maintenance. Many metrics have been proposed in
order to measure the maintainability of a software system. However, there
is a lack of quantitative results providing insight in the benefits of targeting
specific metrics early in the development process.

Coupling is a concept specific to object-oriented languages that can be mea-
sured by various metrics. This thesis validates if lowering the coupling of an
existing application and executing predefined maintenance scenarios on the
original and altered system will ease maintenance. The level of increased
ease of maintenance can be used to determine how much up-front design is
justified.

This thesis focusses on the benefits when only coupling is lowered from the
viewpoint of maintenance.

The results show no indication that lowering coupling is beneficial to the
maintainability of a software system directly. Loosely coupled but highly
cohesive modules are extracted. This isolation is beneficial to both testabil-
ity as well as understandability, which influence maintainability indirectly.
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Chapter 1

Introduction

The maintenance part of the software life-cycle of a project is a major con-
tributor to the overall cost of the project. This thesis will check whether
reducing coupling lowers the maintenance effort needed to perform prede-
fined maintenance tasks.
Previous research has shown that most of the cost of developing a software
system is not related to the construction phase of the system but to the
maintenance phase thereof [2]. This justifies adjusting the construction in
order to improve the so-called ’Ease of maintenance’. Ease of maintenance
is something that is hard to measure however there are metrics that can be
used to get a rough sense of the maintainability of a system [5] [19]. Also,
during maintenance activities, it is very important for developers to get a
quick and accurate understanding of what the software system is supposed
to do in order to perform the maintenance correctly [21].

1.1 Definitions

Some definitions apply to maintenance and ease of maintenance as these
terms are widely used in various ways with different meanings. Coupling
and cohesion are explained below.
Maintenance is defined by IEEE1 as ”the process of modifying a software
system or component after delivery to correct faults, improve performance
or other attributes, or adapt to a changed environment”. Based on this

1Defined in ”IEEE Standard Glossary of Software Engineering Terminology”
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definition, a system is more easy to maintain when it is easier to make the
required adjustments. When maintenance is carried out, the software sys-
tem is adjusted to accommodate for the new needs.
Ease of maintenance describes the effort that is needed to perform a specific
maintenance task. Performing maintenance is about more than just adjust-
ing the code needed to reflect the change, pinpointing the correct place to
make the adjustments is sometimes more difficult than the actual modifica-
tion. Ease of maintenance covers the entire process starting from a request
to change the code to the result of a changed codebase that reflects the
desired change. A system that is easier to maintain has a higher ease of
maintenance.

1.2 Coupling

Coupling is a principle in programming that signals that a single element is
dependent (or coupled) upon another element. Coupling can be defined as:
the amount and level of dependency of a single element upon other elements.
These elements can be classes or other (sub)systems, for the remainder of
this chapter ’class’ will be used to make it more concrete.
The functionality of a class can be broken when the dependent class is
changed. This is undesirable as small changes can have far reaching effects
that are unforeseen and unrelated to the change. To measure coupling,
various metrics have been proposed[3]. These metrics calculate a value for
every class in the system which indicates how dependent a class is upon
other classes. A growing number of dependencies indicates an increasing
likelihood for the functionality of the class to be broken by changes made to
other classes.

1.2.1 Strength of coupling

Besides the number of dependencies, every dependency has a certain strength
associated with it. The strength of a dependency indicates how interrelated
these two classes are. A high value for strength means two classes use each
others methods and/or types very frequently. As a result, lowering coupling
between two classes that are strongly coupled is more complex. The strength
of coupling is influenced strongly by the way two classes are coupled:

God class in this case there is only a single class. Multiple classes are
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merged into one making a single class. This type of coupling is the
strongest as all fields/methods/properties of the class can be called. A
god class will typically have low cohesion (which is explained in 1.3)
as unrelated classes are merged into one.

Class - class bidirectional Two different classes which are dependent bidi-
rectionally. This coupling is still very strong as a change in a single
class might result in a change to the other class. This type of coupling
is less strong compared to the god class as the communication is re-
strained to the public api (application programming interface) of the
class.

Class - class unidirectional Two different classes with one class being
dependent upon the other. A change to the server class (see 2.1) might
lead to a change in the client class. The client class can be altered
without fear of breaking the server class. This type of coupling is less
strong compared to the bidirectional coupling because only changes to
the server class potentially alter functionality of a different class.

Class - class through interface The api of the server class is abstracted
by an interface. Changes to the server class only lead to changes in the
client class if the definition of the interface changes. The interface hides
the implementation details of the server class exposing only certain
methods and/or properties. This type of coupling is considered less
strong because of the added abstraction which hides the implementing
class and its implementation details.

The following aspects of a dependency also affect the strength of coupling:

Number of interactions Two classes that are coupled but the amount of
coupling is minimal (e.g. the client class calls only a single method on
the server class) have a less strong coupling compared to two classes
with a lot of interactions. Because the increased number of interactions
it becomes more complex to separate the two classes making them
coupled more strongly.

Scope of access The scope of the coupled member. A wider scope (e.g.
a global attribute versus a local variable within a single method) has
a longer life-cycle. This occurs as it goes out of scope later. The
coupling is made stronger because it is available longer and to more
methods.

3



Figure 1.1: Viewed from class A, an example of efferent or import coupling
at the top, afferent or export coupling at bottom.

Stability Defines the likelihood to change. This is apparent when one
claims that coupling to the implementation is worse than coupling to
the interface. Being coupled to lots of other classes and/or methods
that are considered stable is less harmful as they will not change.
Framework types like integer are considered stable; user-defined types
are considered unstable. Therefore, coupling to a user-defined type is
more harmful than coupling to a framework type.

1.2.2 Aspects of coupling

Two classes can be coupled to each other in various ways. An overview is
listed below, in increasing order of malignity[10]

Data Classes communicate through scalar parameters.

Stamp A class contains a method that has a parameter of a different type.

Control Parameters are used to control the behaviour of the coupled class.

Common Classes that use the same global data.

Content Classes depend upon each others implementation details (e.g.
reading a field of the other class after calling a method to read the
result).

Coupling always has a direction which can be import (or efferent) or export
(or afferent). Import and efferent coupling both mean the current type
(for which we are calculating coupling) is dependent upon a different type.
Export or afferent coupling is when a different type is dependent on the
current type. See also figure 1.1. The direction is important as a developer
can control the import coupling of a class.
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1.3 Cohesion

Closely related to coupling is the concept of cohesion. Cohesion is a measure
of how well various elements belong together. Cohesive classes can encap-
sulate [17] all behaviour related to a single problem hiding the details from
consuming classes. Cohesion is lowered when unrelated features are added
to a class. As with coupling, cohesion can be calculated both at the class
and module level. An example of a metric for cohesion is the lack of cohesion
in methods metric invented by Chidamber and Kemerer[5].
Cohesion is important as it is the antagonist of coupling. In the aforemen-
tioned case of a god class there is zero coupling (since there is only a single
class) but cohesion is sacrificed as unrelated functionality is merged into a
single class. On the opposite, separating every single method into its own
class will provide a high value for cohesion. However, this comes at the cost
of increased coupling as all these classes have to be connected in order to
create a meaningful application.

1.4 Structure

This thesis is structured as follows, chapter 2 how coupling is related to
maintenance. Chapter 3 describes the research method chosen followed by
chapter 4 detailing the execution of the research. In chapter 5 the results are
summarized which are analysed and discussed in chapter 6. Code samples
are contained in the appendixes.
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Chapter 2

Motivation

The level of coupling impacts the required maintenance effort both positively
and negatively in multiple ways.

2.1 Clustering or decomposition

During the design process of a software system the entire system is decom-
posed into small parts of functionality that have as few inter relations as
possible. This process is known as clustering, decomposition or modular-
ization, the resulting groups of elements are called clusters, subsystems or
modules. A single module provides a subset of the combined functionality
provided by the entire system.

2.1.1 Functional cohesion

Modules within a system should have strong functional cohesion. This means
all classes within the module are strongly related based on their function. A
high amount of functional cohesion indicates the module addresses a single
concern. This single concern is encapsulated within the module hiding the
implementation details from the rest of the system. Separation of concerns
and high functional cohesion have a positive impact on the maintenance of
a software system[20].
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Figure 2.1: Example of a client class being coupled to the server class by a
private field.

2.1.2 Reuse

By abstracting the functionality of a module to a level that is specific to the
specific application, modules can be reused in a different context outside
of the original system. As applications share some generic concerns (e.g.
logging to a file) a module with the proper abstractions can be reused in
different systems. Maintenance effort needed to maintain a module that is
reused in multiple applications is less costly as the costs can be shared over
all systems reusing the module.

2.1.3 Error-proneness

Selby and Basili have shown that modules that have a high coupling/strength
ratio are more error prone compared to modules that are decomposed better[19].
As a result decomposing a system will result in less errors in the long-term
making decomposition a form of preventive maintenance. Also, as the size
of the module increases it becomes more error-prone, potentially to a point
where further decomposition is needed.

2.2 Interfacing

Interfaces can be used to specify the contract for a module. By using inter-
faces the implementation can be separated from the functional definition.
Interfaces are used frequently when lowering coupling as coupling to an in-
terface is considered better compared to coupling to the implementation[10].

7



2.2.1 Functional description and program comprehension

An interface can provide a functional and abstract representation of a piece
of code (i.e. class or module). Doing so, it hides the implementation de-
tails providing only a limited and high level description of the capabilities
available. This high level functional description can be helpful to developers
who are new to the system. Using the interfaces they can get a high level
overview of the modules in the system; and which concern each module is
addressing[21]. When performing maintenance on a system it is important
that the system is fully understood to oversee the implications of a change.
This holds for all types of maintenance.

2.2.2 Impact analysis

If a change is proposed, before the maintenance is performed, the impact
of the change has to be determined. This impact analysis can be simpli-
fied when interfaces are used to abstract the various modules because the
interfaces define the interactions for each module. Looking at the interfaces
can tell, the developer, if the change will be contained in a single module or
spreads through the application. A change that is contained within a small
portion of the system is likely to be less costly to fix because less code is
altered reducing the risk of introducing new defects.

2.2.3 Polymorphism and extensibility

Coupling to the implementation instead of the interface is considered worse
as there can be multiple implementations of an interface. If there is a request
to change the logging module to send mails instead of logging to a file a new
implementation of the same interface can be created. Both implementations
can now be used to handle the logging concern.
This concept is called polymorphism and adds flexibility[6] for varying imple-
mentations of a module to the system. This can be very useful for perfective
or adaptive maintenance (e.g. the scenario above) as well as for extending
an existing system (by configuration or inversion of control). Especially
in application that provide only building blocks it is important to allow a
consuming application to replace certain behaviours with its own if needed.
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2.3 Testability

A large and complex system cannot be maintained properly without a set
of automated tests. Testability is important as having tests can compensate
for some deficiencies in for example the design of the application. A loosely
coupled application aids testing.

2.3.1 Isolated tests

A decomposed system consists of multiple modules each handling their own
concern. Because of this decomposition it is possible to write unit tests that
validate the behaviour of a single module. There is no guarantee that the
system as a whole will function correctly if all modules function correctly
but the concern of a single module can be tested in isolation. Regression
or integration tests can be written to verify the behaviour of the entire
application.
A unit test is supposed to test a single functional requirement making it
very focussed[1]. Using multiple tests for different kinds of input the output
can be verified. These automated tests can be used as a safety net when
performing any type of maintenance on a system. If one of the tests fail
the corrective maintenance is targeted at a very small part of the system
because of the small amount of code hit by the test. Finally, these tests can
function as a description of how the module can be used as they test the
same functionality that is exposed to other parts of the system. This way a
test provides examples of the different ways the module can be used.

2.3.2 Mocking

As unit tests validate the correctness of a single function or requirement,
they should only fail if this functionality is changed. However, decomposing
a software system does not remove their inter-module dependencies. De-
pending only on interfaces of other modules makes the system flexible so
polymorphism can be used.
Aside from a completely different implementation polymorphism can also
be used for mocking. Mocking is a concept that replaces a dependency with
a very simple implementation of the interface. This mocked implementation
is very useful in testing as it makes tests more reliable as the other modules
are replaced resulting in predictable outputs from these dependencies.
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By using mocked implementations a failing test can only be caused by
changes inside the tested module. Also, in some cases using mocked im-
plementations can speed up the execution time of the test (e.g. by removing
a dependency to a webservice). This makes them more likely to be run fre-
quently as a quick result is provided.
During the development of a system mocking can be used to replace an
unfinished module. This allows for parallel development which can reduce
development time. When all modules are finished the mocked implementa-
tions can be discarded (or reused for testing purposes) and replaced by the
now finished implementation.
Mocking does not lower the maintenance effort needed, it might even increase
as the mocks need to be kept up-to-date, but it can be a very useful tool in
supporting the testability of the system. This testability provides assurance
to developers executing maintenance that no defects are introduced.

2.4 Downsides

2.4.1 Added complexity

Adding abstractions comes at a cost, the indirection that is added by the in-
terfaces makes the control flow less obvious. By using interfaces the control
flow is only visible at runtime because of dynamic dispatch [18]. In the case
of the logging example, the developer will not know during compile time
which implementation will be used (either the file or mail implementation).
However, in theory the developer should not have to care about what im-
plementation is used. He should limit his knowledge of the module to its
interface, just making the call correctly, and not care about how his call is
handled. This is the promise of proper encapsulation [17] which is lost if
the developer is required to know the implementation details (which is also
called a leaky abstraction).
Frequently a concept called ’Inversion of Control’ or IoC is used to decom-
pose the system [14]. While this system allows modules to be very loosely
coupled, it adds complexity as well. Some developers might not be famil-
iar with the principle making it more difficult for them to understand the
system. Also, to use IoC a level of configuration is needed that should be
maintained as well. The amount of additional effort needed varies with the
tool used.
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2.4.2 Additional code

To lower coupling abstractions have to be created. These abstractions need
to be maintained just like other code. In extreme cases the amount of places
where maintenance needs to be performed is doubled by decomposing a
system. Lowering coupling by decomposing a system is a form of preventive
maintenance that is beneficial in the long term. For small systems that are
not likely to be reusable or maintained for long periods of time it might not
be worthwhile.

2.4.3 Additional cloning possible

Because modules of the system are separated and become restricted in their
interactions there is an increased risk of code cloning. Modules that are
unrelated might still have some similar needs, e.g. parsing an input in a
specific format, but this functionality has become unreachable because of
decomposition. To ’reuse’ the existing code a developer might copy the
routine to the other module making a code clone. This is undesirable as
code clones have proven to be a source of defects increasing the maintenance
effort needed [11]. The proper solution is to have a module that exposes only
these cross-cutting concerns, but this is not always possible.

2.5 Problem statement

Many metrics have been proposed in order to measure coupling effectively
[3] but there is a lack of quantitative results that validate these metrics. This
thesis aims at validating the impact of coupling on software maintainability.
Having such data can help practitioners in making a decision about how
much time and effort they are willing to invest in keeping their system
loosely coupled.

2.5.1 Research Question

Because of the important relationship between coupling and cohesion, the
research question of this thesis is defined as:

Does lowering coupling with unchanged cohesion ease mainte-
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nance?

Exact type of coupling

Using the definition from Briand et al.[3], this thesis will focus only on direct
import coupling. As a result indirect coupling and export coupling are not
within the scope of this thesis. Direct import coupling counts the number
of distinct classes a class is dependent upon.
Import coupling was chosen over export coupling as changing export cou-
pling would require changes to other classes (the ones dependent on the class
under maintenance). Import coupling however can be influenced within the
scope of the class under maintenance making it more easy to influence. Also,
classes that depend on the current class under maintenance might be in a
different part of the system making it hard for a developer to easily oversee
the consequences of removing the dependency. Finally, if import coupling
is lowered the export coupling will automatically decrease (e.g. if the client
class has an import coupling to the server class this server class has an ex-
port coupling to the client class). Direct coupling was chosen for the same
reasons, it can be influenced directly when maintaining/developing a class.

Inheritance

Although inheritance is a form of coupling, as it provides access to another
class’s methods, it is not always considered harmful. As long as Liskovs sub-
stitution principle is obeyed[12], inheritance can be a very powerful tool that
is important to good class design [13]. Determining if Liskovs substitution
principle is obeyed is difficult, which makes it hard to qualify the coupling
as being harmful or not. Therefore, inheritance is left outside of the scope
of this thesis.

Cohesion

This thesis focusses on the influence of coupling. Because coupling and
cohesion are not independent concepts the research will leave cohesion at its
original level. If cohesion were to be altered too, it would become difficult to
assess whether specific measurements are related to the lowering of coupling.
Also, the possibilities for refactoring would be endless potentially resulting
in very deep refactoring of the system under investigation. It is expected for
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a system to become more maintainable if deep refactoring is applied as that
is the goal of refactoring. Maintaining the same level of cohesion allows the
results of the research to be completely attributed to the effect of coupling.
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Chapter 3

Research method

This thesis uses a research method that is based on the scientific method but
the literature study was done first in order to come up with a proper research
question. To break down the research question, ”does lowering coupling with
unchanged cohesion ease maintenance?”, the following hypotheses are used:

• Maintenance becomes more localized because of reduced coupling.

• Reducing coupling can ease maintenance by making the system easier
to understand.

These hypotheses are chosen because these are the places where it is most
likely to find evidence of the influence of coupling. Cohesion levels will be
kept at their original level, the hypotheses focus on the part of coupling that
is related to the abstractions that have to be created to reduce coupling.

3.1 Approach

To answer the research question and (in)validate the hypotheses, a compar-
ison between a system with low coupling and a system with a large amount
of (strong) coupling is needed. Unfortunately it is unlikely there is a suitable
system that has two revisions that differ only by their amounts of coupling.
Because of this limitation, a system will have to be altered to lower the
coupling. This in order to create a situation in which both systems expose
the same functionality but do so using a different level of coupling in their
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code-bases.
The research consists of the following phases:

• System selection

• Refactoring the existing system

• Applying maintenance scenarios to resulting systems and collecting
data related to the maintenance.

• Analysis of the results

3.2 Phase 1: System selection

The first step is to select a proper system. Below is a list of the require-
ments needed for selecting a proper system and the rationale for these re-
quirements.

3.2.1 At least 30.000 lines of code

Systems that are small are easier to maintain than large systems. Oman et
al. [16] indicated that maintainability decreases when system size increases.
This can be measured in lines of code (LOC) or by using the metrics provided
by Halstead [9]. To prevent selection of a system that is too easy to maintain,
a minimum size of 30KLOC was used. The metric of LOC is chosen over
the Halstead metrics as LOC is easier to calculate and is often reported by
online repositories. This makes selection based on LOC more suitable.

3.2.2 High amount of strong coupling

A system that is decomposed into modules and has a low amount of cou-
pling is less suitable for this thesis. Results are expected to increase as
the difference between the refactored system and the original system grows.
Preferably the system will have no modules at all and contains a lot of inter-
nal dependencies. To assess whether a system matches these requirements,
metrics on coupling will have to be calculated for the system. Based on these
metrics a system can be selected that has the highest values for coupling.
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3.2.3 Solid body of unit tests

Each refactoring session has the potential of breaking some part(s) of the
system. Having a large set of unit tests makes it easy to test if there are
any unforeseen consequences of the changes that were made. Furthermore,
these unit tests provide a suite of integration tests that can be used to verify
whether the systems’ behaviour has not changed after refactoring.

3.2.4 Other considerations

There are some properties that the selected system preferably possesses.

The system is used actively.
A system with a large active userbase is preferred as this indicates that the
product is mature.

Multiple versions of the system have been released.
A system that is being maintained for several versions is more likely to be
more difficult to maintain than a new system. With each release, some
features are added and others are altered. Some functionality has to be
changed because of changed requirements. Some of these changes can be
added easily as the system was designed to be flexible toward those changes
[6]. Other changes are harder to implement and move the system away from
its initial design, making future maintenance more difficult.

Java or C# based.
This is merely because these are both mature object-oriented languages.
As a result, they have strong and integrated development environments in
which to program. This is important as functionality provided by the IDE
can ease maintenance, e.g. by making frequently occurring maintenance
scenarios automated.

Risks

When the system has been selected, the specific version that is selected is of
importance. Most open source systems also use pre-releases that are used
for testing and by early adopters. These versions often contain bugs as
development has not completed. Which version will be best will be hard to
decide a priori. Therefore, it is not a requirement for the system.
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3.3 Phase 2: Refactoring

After selecting the system, two separate versions of the system have to be
created. The first version, or original version, of the system is the state of
the system prior to any refactoring. In order to create the second version,
or the refactored version, refactorings need to be applied to the system. As
this thesis only focusses on the results of lowering coupling when cohesion is
kept at the same level, only a subset of refactorings can be applied. Below
are the refactorings, using the terminology from Fowler [8].

3.3.1 Extract interface

Extracting an interface is a refactoring that can be applied to a class. It
creates a new interface that contains some (or all) of the public methods
exposed by the class. Other classes can use the interface representation of
the class instead of coupling directly to its implementation, lowering their
coupling. Coupling to the implementation of the class is considered worse
[10] than coupling to an interface representation of the class as the interface
is likely to be more stable and it support polymorphism.
Using these newly created interfaces, modules can be isolated by provid-
ing only the abstraction (interface) to consuming classes. This means all
classes that were coupled to the implementation will have to be changed to
use the interface instead. Using interfaces makes it possible to make the
implementing class completely unreachable from the client class; it is then
accessible by its public interface only. This way it becomes impossible to
be coupled to the implementation. However, this depends on the features
of the programming language that is used.

3.3.2 Pull members up

Pulling members up moves a member to a more abstract level, which can
be both a base (or super) class and an interface. This refactoring is some-
times needed after extracting an interface. When the interface is extracted,
only public members are added to the interface. Languages like C# and
Java, however, also support internal methods which can be accessed only
from within the same project or package. When the consuming classes are
changed to use the interface instead of the implementation, these methods
are missing as these are not extracted into the interface at first as they are
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not public. By pulling members up, the members are added to the interface
and made public (as is required by the interface).

3.3.3 Change bidirectional association to unidirectional

Bidirectional dependencies are undesirable [7] because they make software
more complex. This is especially true for coupling because it is very hard to
decouple two elements when they are mutually dependent upon one another.
By making a dependency unidirectional decomposition is made possible.
This refactoring will not be applied frequently as it will involve deep refac-
toring of the code. This is undesirable as the level of cohesion needs to be
maintained while lowering coupling.

3.3.4 Risks

The choice to leave cohesion outside the scope of this thesis can be considered
a risk as it limits the level of refactoring. As stated before, coupling and
cohesion are two concepts that are closely related. This choice is made
because of the potential risk of altering the system too much, resulting in
a better maintainability that cannot be attributed to the lowered values for
coupling.

3.4 Phase 3: Applying maintenance scenarios to
resulting systems and collecting data

Having an original and refactored version of the software gives the opportu-
nity to do the same maintenance on both systems and collect information of
the effort needed to make these changes. Some of the efforts done to main-
tain a system are easily measured (for example, amount of LOC changed);
others are harder to measure as these are cognitive processes (how easy is
it to understand the system).
During this phase, a number of maintenance scenarios, from the issue tracker
of the selected system, and two custom scenarios will be executed. The is-
sues from the issue tracker are used because these are objective and real
maintenance scenarios. For an issue to qualify it has to, be an issue in the
selected release and have a failing test. A failing test is important to ensure
the fix was done properly, which should make the test pass. The custom
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scenarios are used to illustrate the benefits of lowered coupling, these are
not meant to be objective. The custom scenarios should be plausible main-
tenance scenarios meaning they are very likely to be executed in the future.
While executing the scenarios, the following data will be collected from both
systems:

• The number of lines changed.

• The number of files changed.

• What part of the system the changed files are in.

• How much time it takes to perform the maintenance from start to end.

3.4.1 Metrics

In order to get insight into how much the coupling has decreased, the refac-
tored system is analysed and compared to the original system. This is done
by calculating metrics (for direct import coupling and LOC) for both appli-
cations.

Response for Class

As a measure of control, values for Response For Class (RFC) will be col-
lected as well. RFC is a metric that was invented by Chidamber and
Kemerer[5] and is described as follows: ”The set of all methods that can
be invoked in response to a message of an instance of the class”. It was
proposed with the following viewpoints:

• If a large number of methods can be invoked in response to a message,
the testing and debugging of the class becomes more complicated since
it requires a greater level of understanding on the part of the tester.

• The larger the number of methods that can be invoked from a class,
the greater the complexity of the class.

• A worst case value for possible responses will assist in appropriate
allocation of testing time
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Based on the viewpoints this metric is well suited to be used as control values
within this thesis. It contains both a viewpoint for understanding as well as
for complexity. The validity of this metric was checked by Selby and Basili
and found to be a good indicator of complexity and error proneness[19].
This metric decreases as a result of decoupling, however the amount by
which it decreases is dependent upon the way of decoupling. Every public
member that is only used within the module is not needed in the interface
making classes coupled to the interface less coupled to the implementing
class. If lowering the coupling allows for more members to be excluded from
the interface this reduces the available methods to consuming classes, low-
ering the values for RFC.
Direct import coupling is a measure of the amount of types that are cou-
pled to a specific class. It does not tell something about the influence of
these classes on the complexity. RFC adds this value by saying something
about the importance and relevance of the reduced coupling. For example,
if import coupling was at 50 and it is lowered by 20% the decrease in RFC
could be both 2% (the removed classes had very few methods) as well as
90% (the removed classes had a relatively high amount of methods). Finally,
a decrease in RFC indicates lowered coupling is improving encapsulation of
the isolated systems as fewer methods are exposed to the rest of the system.
Therefore, it will be used as an objective check of how much the complexity
is lowered and understanding is improved.

3.5 Phase 4: Analysis of the results

At the end of the experiment, the data from the experiment will be analysed
to validate these hypotheses.

3.5.1 Maintenance become more localized

The results from the measurements specified in 3.4 indicate the location of
the change. In order to (in)validate this hypothesis, the data from the ex-
periment is analysed to see whether the necessary changes remain within a
small part of the application. By using scenarios that stem from the issue
tracker of the system, the relevancy of the used scenarios should be guaran-
teed and bias or influence on the scenarios minimized.
The issues are selected from the tracker after the refactorings had taken
place. This is a potential risk as knowledge from how the system is refac-
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tored is available. However, selecting the issues earlier (before refactoring)
would allow the refactorings to be applied differently, making both options
equally biased.
A system cannot be flexible for every change [6] making it unlikely every
single scenario will become more localized. This hypotheses can be consid-
ered validated if half of the scenarios provide data that changes are more
localized.

3.5.2 Reduced coupling can ease maintenance by making the
system easier to understand

At the end of the refactoring phase, it is expected that the refactored system
is decomposed into several smaller modules with clear boundaries described
by interfaces. The isolation and clear responsibilities for a module should
make it easier to understand.
This hypothesis can be validated by trying to write tests that run in isolation.
This is a sign the decomposition can be used to isolate a concern of the
system into a module that can be tested and maintained independently.
Also, this will be checked by analysing the values gathered from the RFC
metric. A decrease of this metric indicates the isolation is an indication
of increased encapsulation and decreased complexity maintaining a class as
fewer members are exposed and need to be understood.
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Chapter 4

Research

This chapter gives an overview of research described in chapter 3 and (un-
foreseen) challenges faced during the research.

4.1 Phase 1: System selection

From the start of the selection phase it was apparent that a candidate would
fit the criteria very well: NHibernate. This system is known to be a good
candidate because one of the developers explicitly stated that low coupling
was not a goal they were trying to achieve1. A quick assesment of the code of
NHibernate confirmed it matched all requirements. The metrics that were
collected can be found in appendix A.
A quick scan of Ohloh2 was performed to see whether other projects matched
the requirements better than NHibernate did, but none were found. Because
the developers of NHibernate are not aiming for low coupling, they made a
perfect candidate. As a result, the first ’General Availability’ release of the
3.0 version of NHibernate was selected3 4.

1Among others, see: http://ayende.com/blog/4072/

answering-to-nhibernate-codebase-quality-criticism
2http://www.ohloh.net
3Dashboard: https://nhibernate.jira.com/browse/NH/fixforversion/10350
4Download: https://github.com/nhibernate/nhibernate-core/zipball/3.0.0GA
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4.1.1 About NHibernate

NHibernate is an object relation mapper (OR/m). This is meant to bridge
the gap between the relation database model and the object model in the
application. It is used to translate queries on the object model into queries
for a specific database management system and return the result as instances
of one or more classes.
NHibernate originally is a C# port of Hibernate, which is an OR/m for Java.
NHibernate has seen a number of major releases starting from November
2007 and is used actively by numerous projects.
The 3.0.0GA version of NHibernate was selected for this thesis because it
is a so-called General Availability release. This is a final release after three
alpha and two beta releases. A final release was selected as this is a version
on which development has finished. An alpha or beta release would be less
suitable as some features might not be completely finished.
In the 3.0 release of NHibernate the project was switched to .Net framework
version 3.5 and along with it a Linq provider was implemented. Linq pro-
vides an abstract way to query over a collection of elements independent of
it being an in-memory list, a database or a web service. This linq provider
is built on top of the existing Domain Specific Language (DSL) for querying
with NHibernate. This DSL is called Hql and can be used to create queries
in string format that are interpreted at runtime to execute a query.
The codebase of NHibernate is made up of a single project of 67KLOC that
contains all the code. On top of this assembly a DomainModel project is
created which contains classes that are used for unit testing the project. The
unit tests are contained in yet another project that uses the objects from
the DomainModel project and tests the main project.
In NHibernate everything is contained in a single project but internally a
limited amount of interfaces are being used. These interfaces are used to
support polymorphism and extensibility for people using it as an OR/m
framework, but are not used with lowered coupling in mind. As a result
most of these interfaces are very large, describing many methods and prop-
erties making coupling through these interfaces strong even though it is
using an interface.

4.1.2 Preparation

Before the next phase could start, the system had to be prepared for refac-
toring. A few small adjustments were made to make the project compile
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and pass all the tests that were in the project. Below are the adjustments
that were made before the initial check-in on the public repository5.

• Mark NHibernate assembly as CLS compliant (a test checks this and
fails)

• Disable test NHibernate.Test.Linq.LinqQuerySamples.DLinqJoin5b as
it fails

• Disable test NHibernate.Test.NHSpecificTest.NH1689.SampleTest as
it fails

After these changes, the project compiles and all tests succeed. This version
of the software will be our ’original’ version.

4.2 Phase 2: Refactoring

Starting from the original version from phase 1, a new branch is created6.
This branch will contain all the refactorings that are applied to reduce the
level of coupling.

4.2.1 Creation of abstractions project

The first step in refactoring was to create a new namespace called NHiber-
nate.Abstractions. This namespace was extracted later to an isolated mod-
ule. But, in order to be able to take small steps at a time a separate
namespace was chosen first. All code elements that are used for communi-
cation between modules should be placed in this namespace/module. While
moving items to the new namespace, the tests were run frequently to assure
the changes did not break anything.
Extracting an interface from a class and using this instead should not break
anything (as long as there is a single class implementing the interface). How-
ever, unit tests failed multiple times during the extraction of the interfaces.
These failures were caused by the use of reflection to look up a specific class.
After altering the configuration files that contained the names of the classes,
tests succeeded again.

5https://github.com/thesis2012/thesis-nhibernate
6https://github.com/thesis2012/thesis-nhibernate/tree/refactor
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After extracting a number of core classes and interfaces to the abstractions
namespace, the module was isolated from the main project to a new project.
This module will contain the shared interfaces, some abstract base classes,
enumerations and other elements used for intermodule communication. Only
the interfaces that are used or exposed by other modules are moved from
the main project to this new module. This results in the module growing as
other modules are isolated from the main project.
When an interface is moved to the abstractions module, all types used in
the interface have to be in the abstractions project as well. This is needed
as the abstractions module is not allowed to reference the main project as
this would break the isolation. As a result, references to classes defined in
the main project will not compile. This means that for concrete classes used
in the public methods of a class, an interface has to be extracted as well.

4.2.2 Candidate module identification

With the abstractions modules in place, other modules that can be isolated
had to be identified. To do this, static analysis was used to see which parts
of the system belong together, this selection is based on cohesion[4]. A mod-
ule can be identified by a set of elements that are coupled very strongly but
have little references to other parts of the system. This can also be described
as having low coupling to other parts of the system and being very cohesive,
making it strongly coupled, internally. This internal coupling is not a prob-
lem if the classes are highly cohesive[15][7]. By extracting a module, these
cohesive classes encapsulate a single concern of the application, exposing
only a limited set of functionality to the rest of the application described in
the interface.
As an example, the Hql namespace has a lot of dependencies pointing to-
wards it but is using very little of the rest of the system. This is an indication
it can be isolated in its own module and be referenced from the main project.
This way this module is isolated and abstracted to interfaces describing its
functionality rather than coupling directly to the implementations within.

4.2.3 Extracting modules

Extracting modules out of the main project is an iterative process. It consists
roughly of the following phases:
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• Identification of module by static analysis focussed on finding cohesive
sets of classes

• Creation of abstractions for elements in main project, coupled to one
of the classes in the set, if needed and replacing the coupling to the
class with the interface

• Extraction of the set of classes to an isolated module (project or pack-
age)

• Ensure successful execution of all unit tests, fixing broken ones when
needed

This is an iterative process because, with each extracted module, new ab-
stractions are created for coupled elements of the new module. This in
turn might decrease the coupling of other modules that are still in the main
project.
The following modules were extracted in chronological order:

Types Types used both in Sql and in Code and mapping between those.

Util Utility classes with generic functions for arrays etc.

Sql Code for communicating with persistent storage.

Linq Linq provider.

Hql Hql Abstract Syntax Tree (AST) and logic.

Cache All kinds of caching.

Event Hooks to certain events a consumer can hook into (e.g. upon saving
of an object).

The new projects for Types and Util are more library-like projects and do
not have a function of their own. As a result, these projects are referenced
more frequently compared to the others. An overview of the references be-
tween the new projects is given in 5.1.2.
After isolation of the modules, the interfaces and abstract classes in the
abstractions modules were stripped from all unused methods, parameters
and properties. This was done to reduce the interface to the minimal set
of functionality that is needed. It is important for the interfaces to have as
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few members as possible. This is because an increased amount of elements
increases the public API that is supposed to remain stable and increases the
strength of coupling. Having a very rich interface constrains the develop-
ment of the abstracted module because changing the interface is undesirable
as the other modules depend on this interface. Unfortunately, the interfaces
remained quite big. Members of the interface could only be safely removed
if they were not used because consuming classes were not altered as this
might alter the level of cohesion.
Ultimately the main project was reduced to 40% of its original size. Prefer-
ably it had been shrunk even more by extracting more modules. However,
the remaining code is coupled so strongly (most of it bidirectional) making
it impossible to isolate additional modules unless more rigorous refactoring
is applied.

4.2.4 Difficulties

Because NHibernate is not built with low coupling in mind, some difficulties
were encountered while refactoring.

Constructors

The biggest challenge were the constructors of classes in the system. When
interfaces are extracted, all methods and properties can be added to the
interface except the constructors. As a result, the calls to a constructor of
a type for which a new interface was extracted had to be replaced by some-
thing else that returns a new instance of the interface without exposing the
concrete class underneath.
There are multiple ways to achieve such behaviour, but they vary in their im-
pact on the code. The most elegant solution would be to use a concept called
inversion of control (or IoC) or Dependency Inversion Principle [14]. These
concepts alleviate the requirement for calling the constructor by configuring
a new object called the container. This container is a factory containing
registrations of an interface and a concrete class to be used. From the code,
a new instance of a specific interface can be requested and the container
will construct a new instance of the configured class. As an extra benefit, it
can supply instances for the dependencies (arguments of the constructor) of
that class when constructing it, it is configured to return instances for those
interfaces as well.
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Although it is the most elegant solution, the introduction of an IoC con-
tainer would impact the code too much as dependencies would have to be
declared in the constructor. Instead of a full-fledged IoC container, a factory
class was implemented. This new class contains methods which are config-
ured to point to a specific constructor during application startup. This way
the constructor calls can be replaced by a call to one of the methods of the
static factory. This way the class becomes a factory for various types.

Bootstrapping

With the introduction of the factory, it became necessary to add code to
the application that is run at start-up to configure the static factory ap-
propriately. As the system now consists of multiple projects, this becomes
challenging. In order for all methods in the static factory to be initialized,
all projects have to be scanned. To make this more easy, an interface is
declared. All assemblies in the system are scanned for classes deriving of
this interface. If the class is found, the set up method (of the interface) is
called. This gives each project the opportunity to configure its own methods
on the static factory. For example, the Cache project initializes the method
for instantiating an instance of the ICacheKey interface.

4.3 Phase 3: Applying maintenance scenarios to
resulting systems and collecting data

During the third phase, the maintenance associated with the selected main-
tenance scenarios was carried out on both the original and refactored version
of the system. After finishing the maintenance, metrics were collected to
compare the two versions on their metric values.

4.3.1 Issues

A total of twelve issues were found matching the criteria for selection. These
issues were taken from the public issue tracker7 of the project. Selecting
issues was difficult because the issue tracker allows you to filter the issues
by the ’Affects version’ field but this has proven to be incorrect in a few

7https://nhibernate.jira.com
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Table 4.1: Issues from tracker
Issue # Type Priority Resolution Failing test First

2203 Bug Minor Fixed Yes After

2362 Bug Major Fixed Yes After

2400 Bug Minor Fixed Yes After

2433 Bug Major Fixed Yes Before

2452 Bug Critical Fixed No Before

2473 Patch Minor Fixed Yes Before

2490 Bug Minor Fixed Yes After

2507 Bug Major Fixed Yes Before

2549 Bug Trivial Fixed Yes Before

2559 Bug Critical Fixed Yes Before

2649 Bug Critical Unresolved Yes After

2913 Bug Critical Fixed Yes After

cases.
In the 3.0GA version of the software very little issues have been reported,
so selection was expanded to issues that are reported for the 3.1 version. To
qualify, the issues had to have a failing test to check the issue (and fix). This
allowed issues reported for version 3.1 to be used as well as long as they had a
test that also failed in the 3.0GA version. As a result, the selection was done
based on issues that were fixed in the 3.0GA or the 3.1 release. Also, because
the Linq provider was the major new feature for the 3.0 release, a lot of the
issues reported are directly related to the Linq provider. Unfortunately all
of the issues can be classified as corrective maintenance.
Of the total of twelve issues, three could not be fixed because they were
related to the parsing of Linq expression trees. The parsing was handled
in a separate, external assembly. Table 4.1 lists the issues covered in the
maintenance scenarios. The last three rows contain the issues related to the
external Linq parser.

In table 4.1, the column to the right describes the version of the system
the issue will be fixed in first. Determining which version was fixed first was
done based on the priority. Both versions should have the same amount of
high priority issues when possible. This was done because it is impossible to
not be biased when fixing the issue for the second time in a different version
of the same system.
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4.3.2 Custom scenarios

Two custom scenarios were selected to be added to the maintenance phase.
These scenarios were used to provide insight into what flexibility is acquired
by reducing coupling [6]. These scenarios were selected after the refactorings
had taken place. This was done to ensure the scenarios provided the desired
insight. The first scenario is to implement the ’having’ statement in Hql
while the second is about the opportunities for testing in isolation. Both
are explained below.

Implement proper handling of ’having’

The first scenario is adding proper support for the ’having’ statement in
Linq and Hql. Having is a predicate that can be applied when aggregating
results in SQL. In the original version of the software, the having construct
was handled by using a ’where’ statement which is incomplete because of
the different semantics. The lack of proper having support became apparent
when issue 2452 was fixed because this fix caused another test to fail. During
the maintenance on the issues, this test was temporarily disabled to have
passing tests, because this was to be fixed in a custom scenario.
This scenario was selected because it requires changes to the Abstract Syntax
Tree produced by both Linq and HQL. This AST is an intermediate model
describing the query that can be translated into another model (i.e. a sql
string for a specific dialect). Because other parts of the system are built on
these AST, there is potential for the ripple effect [15]. Finally, this scenario
is a useful addition to the system that is expected to occur in the future.

Use mocking for isolating tests

The second scenario focuses on the new capabilities that come with the
looser coupling by adding the abstractions. During this scenario, function-
ality that is outside the scope of the test should be isolated by using existing
mocking tools. This scenario was chosen as it should be a good example of
the flexibility that is gained when lowering coupling. Two cases were added
to illustrate the benefits of the decoupled system. The Moq8 library was
used for our mocking needs.

8http://code.google.com/p/moq/
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The first case was a problem that occurred when fixing issues. There was
one test (related to issue number 2400) that seemed troublesome; it failed
when all tests in the class were run but succeeded on its own. Investigating
the failure pointed to a cache for query plans. These query plans are used
to create query only once and caching it afterwards. This is beneficial for
performance of the running system. However, it is unwanted in this test be-
cause it adds side effects to our running tests which is undesirable. In order
to get this test to work properly, we mocked the behaviour of the cache to
always return a new QueryPlan, effectively disabling the cache, so it works
independently of the other tests.

The second case is an example of a module in complete isolation, in this case
the Linq project. Since a lot of the issues that needed to be fixed were in the
Linq project, a way to test these issues in isolation was needed. As most of
the issues related to the Linq project could be checked by testing the AST
that was produced, an attempt was made to isolate the construction of the
AST.
In order to get the AST, an instance of the ISessionFactoryImplementor
interface was needed while only one method and one property was needed.
After creating a mock implementation of the interface, the original method
for getting the AST was called supplying the mocked instance as a param-
eter.

4.3.3 Metrics

To make a good comparison of the two versions metrics need to be collected
for both versions of the system. The LOC metric can easily be obtained as
numerous external applications are capable of doing so, For this thesis the
code metrics viewer provided by Microsoft was used.
For coupling and RFC, no proper tool exists that does exactly the calcula-
tion the way it was specified in the research question (or it is not explicitly
stated how it is calculated). So, for calculating direct import coupling and
response for class, a simple program that calculates these metrics had to be
written.
Fortunately this can be done by using the new Roslyn project of Microsoft9.
Using this software, new metrics for coupling and RFC were built on top of
the C# parse tree that is generated by the compiler. Because the parse tree
is completely built by this tool, only the calculation based on this parse tree

9http://msdn.microsoft.com/en-us/vstudio/hh543936
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had to be built. The quality of the parse tree is guaranteed as this parse
tree is used internally by the C# compiler.
To analyse the generated parse tree Roslyn provides a rich set of assemblies
that wrap common scenarios. For analysing the parse tree Roslyn uses the
visitor pattern. A class can be derived from SyntaxWalker which has a vir-
tual method for every possible node in the parse tree. By overriding these
methods, code can be added that handles the found node. For calculat-
ing the RFC and coupling metric the methods for ClassDeclaration and
InterfaceDeclaration had to be overridden. As the name suggest these
methods are called for every class or interface that is encountered within
the parse tree. The metrics obtained were verified by comparing metrics
calculated by hand with the results from the tool for a random set of 10
classes. Below is the detailed specification of both metrics, code for both
classes can be found in appendix C.

Direct import coupling

A class deriving from SyntaxWalker was implemented with an overridden
VisitClassDeclaration and VisitInterfaceDeclaration method. In-
side these methods the types of the following elements, of the interface or
class, were selected: properties, fields, method parameters, constructor pa-
rameters and local variables of methods. From this list of types, the types
that have a name that starts with NHibernate and are not equal to the
visited class declaration were selected. External dependencies are not con-
sidered as these can be considered to be stable from the point of view of
NHibernate (the code is not part of NHibernate). These external dependen-
cies can only change if they are updated to a newer version. The resulting
types are put in two dictionaries: one for classes and one for interfaces. This
dictionary allows a value to be looked up by a key, in both cases the key is
the fully qualified name of the class or interface.

Response For Class

The response for class metric is implemented as class deriving from SyntaxWalker

with an overridden VisitClassDeclaration and VisitInterfaceDeclaration

method. This walker generates a dictionary which contains the number of
public methods and/or properties per type. This dictionary uses the fully
qualified name of the class or interface as key and the metric value as value.
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Using the coupled types from the coupling metric, the RFC metric can be
calculated by summing the numbers from the RFC metric for all classes to
which a class is coupled.

Results

The results of the metrics were written to a csv file so they can be analysed
using an external program.
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Chapter 5

Results

This chapter contains the results of the research, no code examples are
included these can be found in the public repository1.

5.1 Isolation

As a result of the refactorings the system which consisted of one big mod-
ule has been decomposed into 9 modules. Of these 9, 5 can be seen as
isolated modules with a specific responsibility being Caching, Events, Hql
Parser, Linq provider and Database communication. Three of the remain-
ing projects, Abstractions, Types and Util can be seen as isolated library
projects that contain no important logic. Functionality within these projects
describes various types supported by databases (Types), functions used for
merging arrays and concatenating strings etcetera (Util) and the interfaces
and enumerations used for intermodule communication (Abstractions). The
remaining project are the remnants of the original project.

5.1.1 Lines of Code

The extraction of proper modules resulted in a significant decrease in the
amount of LOC in the main project. This can be illustrated by the following
table listing the LOC metrics obtained on both the original and refactored

1https://github.com/thesis2012/thesis-nhibernate
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Before After

Project LOC Project LOC

Nhibernate 67453 Nhibernate 24661

Nhibernate.Abstractions 3271

Nhibernate.Cache 684

Nhibernate.Event 2621

Nhibernate.Hql 19449

Nhibernate.Linq 1921

Nhibernate.Sql 7937

Nhibernate.Types 5788

Nhibernate.Util 1233

Total 67453 Total 67562

Table 5.1: Lines of Code metric data

system. As we can see from table 5.1 the number of projects has increased
but this has a limited effect on amount of LOC. The metric used counts
only lines of code in the body of methods, as an interface does not specify
a body for its methods it is not counted. This explains the small difference
in lines of code while numerous interfaces have been added to the system.
However, the added interfaces have to be maintained as well. This will add
additional effort when maintaining the system but keeping this in sync is
a matter of updating the signature of a method in n+1 (where n is the
number of implementations of the interface) places. Also, failure to update
these interfaces will result in compiler errors making it impossible to forget
as the system will not compile.

5.1.2 References

These new modules are very limited in their references making them isolated
from the rest of the application. The references still needed are listed in table
5.2 and visualized in 5.1.
From table 5.2 it is clear that the isolated modules are referencing the library
projects but not each other. The modules that were isolated but have a
library function are used by virtually every other module. The abstractions
project is referenced by every single module which was to be expected given
that it contains all the interfaces that describe intermodule communication.
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Figure 5.1: An image of the dependencies between projects after refactoring,
before refactoring there was just a single project.

5.2 Issues

As stated in 4.3 of the 12 selected issues only 9 were caused by the system
itself meaning they could be fixed. The other 3 were related to the external
Linq parser. All 9 issues can be qualified as corrective maintenance which is
unfortunate as it would have been better if at least one adaptive or perfective
issue was included. The metrics gathered from the issues are reported in 4
tables, one for each measurement.

From table 5.3 and 5.4 we can conclude there is only a very small difference
between the original and the refactored system for both LOC and files hit.
This small difference can be explained by the added interfaces. If methods
need to be added to the interface or the signature of one of the methods on
the interface is changed there are two files to maintain instead of one. From
this data we can conclude that only a single issue had an impact that might
have consequences outside a module (as it changes the interface).

For the time taken we see very large differences in table 5.5. Seven out of
nine issues were easy to fix with a time to locate and fix of two hours or
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References

Project Referenced projects

Nhibernate All

Abstractions None

Cache Abstractions, Util

Event Abstractions, Util

Hql Abstractions, Types, Util

Linq Abstractions

Sql Abstractions, Types, Util

Types Abstractions, Util

Util Abstractions

Table 5.2: References between projects

lower. Some issues show very big differences between the before and after
system, this is caused by the knowledge about the issue when fixing it for
the second time.
Two issues, i.e. 2452 and 2400, took a long time to fix because of the nature
of the test. For example 2452 fires a very complex query and checks the
result. Eventually it was related to the way the groupby statement was
processed but this was not checked by the test. As a result everything, from
parsing the query to the execution of SQL and returning the results could
be the problem. A targeted test would have made fixing this issue much
easier.

The final measurement is about how localized a change is. Obviously, in the
before system with only a single module every change is contained within
this single module. From table 5.6 we can conclude that in the after system
2
3 of the issues are completely contained within an isolated module. This is
beneficial as this means the change is contained within boundaries of this
isolated module. This means a maintainer is not required to understand
other modules for fixing this issue.

5.3 Custom scenarios

After finishing the maintenance on the issues the custom scenarios were
executed. Below are the results of these scenarios.
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Issue # # Files before # Files after

2203 2 2

2362 4 6

2400 2 2

2433 1 1

2452 2 2

2473 1 1

2490 1 1

2507 1 1

2549 1 1

2559 no data no data

2649 no data no data

2913 no data no data

Table 5.3: Changed number of files in before and after system

Implement proper handling of having

The same data was gathered while implementing having as was gathered
when the issues were fixed. The refactored system was altered first resulting
in a very quick fix for the original system. The data collected from this
scenario is summarized in 5.7.
Based on table 5.7, no ripple effect can be seen. The amount of LOC and
files changed is too small. It does show that the addition of having is not
contained within a single module in the refactored system. In the refac-
tored version the changes are mostly within the Linq system. Changes to
the Hql module were abstracted by the IHqlTreeBuilder and IHqlTreeNode
interfaces. This explains the difference in files hit as these two additional
interfaces had to be adjusted (which were both in the abstractions project).
For this scenario, the lowered coupling does not influence the maintenance
in a positive manner. It even adds additional interfaces to maintain, how-
ever the amount of time needed for this additional maintenance was minimal
compared to the complete change needed.

Use mocking for isolating tests

The first case, mocking the query plan cache, was proven to be possible
by using mocked objects. Because this test is testing the entire system by
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Issue # # LOC before # LOC after

2203 7 7

2362 22 23

2400 20 20

2433 4 5

2452 29 29

2473 11 11

2490 4 4

2507 2 2

2549 1 1

2559 no data no data

2649 no data no data

2913 no data no data

Table 5.4: Changed number of LOC in before and after system

executing a Linq query and checking the result, a considerable amount of
mocking code had to be written. This was caused by the way the instance
was retrieved, the classes involved can be seen in 5.2. To query we need an
instance of the Northwind class, this is the code representation of a database
with all elements we can query. This class creates a session through the
OpenSession method and contains the QueryPlanCache property that needs
to be mocked.
To mock this the ISessionFactoryImplementor had to be mocked. For this
scenario only the OpenSession method and QueryPlanCache property had
to be mocked. The OpenSession method is mocked as this is used by the
Northwind class but this is not relevant for the behaviour we want to mock.
The QueryPlanCache property is mocked by injecting a mocked instance of
the IQueryPlanCache interface. This mocked instance is set up so it always
returns a new IQueryExpressionPlan, effectively disabling the cache.
This may seem like a lot of work to disable a single cache. However, mocking
the ISessionFactoryImplementor can be done once and reused over various
tests. This reduces the effort of using mocked implementations.

The second case needed far less mocking code in order to be able to test
the constructed Linq AST in isolation. A total of 4 lines were enough to
mock all the functions that were needed to successfully construct a Linq
AST. Because this test runs in isolation of the rest of the system only the
functionality constructing the AST is tested. As with the first case, this
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Issue # Time taken before Time taken after

2203 .25 hr 1.5hr

2362 .25 hr 2hr

2400 .25 hr 4hr

2433 .25 hr .5hr

2452 9hr .5hr

2473 2hr .5hr

2490 .25hr .75hr

2507 .5hr .25hr

2549 .25 hr .25hr

2559 no data no data

2649 no data no data

2913 no data no data

Table 5.5: Time taken for applying fix in before and after system

mocking code is written once and can be reused for all tests that need to
test the AST.

5.4 Metrics

The metric data from the original and refactored system can be found in A.
From this metric data we can see that class coupling has decreased while
interface coupling has increased. This was to be expected as the refactor-
ings used aim at introducing interfaces to separate implementation from
behaviour. Generally speaking we just see a shift from classes to interfaces
which should be beneficial [10] but the total amount of coupled classes and
interfaces has only decreased minimally. This might have occurred when
minimizing the interfaces to the minimum possible.

The RFC metric has decreased but not by significant amounts. The average
of RFC in the original system was just 67.7 compared to just over 55.8 in
the new system. This decrease was expected as the abstractions provide less
methods to the consuming classes compared to the implementing classes.
The original system had a small advantage in these metric calculations as
only public methods were counted as a method that could potentially be
called. In the original system some communication was done through inter-
nal methods that were made public in the after system so the effect is likely
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Issue # % of LOC in module % of LOC in module

2203 100% Nhibernate 100% in Linq

2362 100% Nhibernate 100% in Linq

2400 100% Nhibernate 100% in Nhibernate

2433 100% Nhibernate 100% in Linq

2452 100% Nhibernate 100% in Linq

2473 100% Nhibernate 100% Nhibernate

2490 100% Nhibernate 100% in Sql

2507 100% Nhibernate 100% in Linq

2549 100% Nhibernate 100% Nhibernate

2559 no data no data

2649 no data no data

2913 no data no data

Table 5.6: Location of changed LOC in before and after system

Table 5.7: Introduce having results
Revision # Files hit # LOC hit Time % of LOC in module

Before 6 55 0.5hr 100% Nhibernate

After 8 59 2hr 71% Linq, 7% Abstractions, 22% Hql

greater than the metric suggests.
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Figure 5.2: Classes and interfaces involved in mocking QueryPlanCache.
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Chapter 6

Analysis and Conclusions

Analysing all data gathered from our research leads to the following conclu-
sions regarding our hypotheses.

6.1 Hypotheses

6.1.1 Maintenance becomes more localized

The data collected from our experiment does not show that changes become
more localized based on the amount of lines and amount of files that need to
be changed. It does show that changes can be kept within a small module
when modules are isolated. This is supported by the values of RFC as well,
they show only a small decrease making the ’ripple effect’ only slightly less
likely.
The abstractions did not help in finding the place where the code needed
to be fixed because the tests were all written as queries and asserting the
result, which does not target the search as the entire system is hit by the
test. The results from mocking show that it is possible in the refactored
system to write targeted tests that test little code which will make it easier
to find the place where the issue can be fixed.

There are two factors that have a major influence on these results, the
selected version of the system and the selected maintenance scenarios. It
is possible that the selected issues would have had a different impact if the
selected system was not a final release. After several pre-releases chances are
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that the major issues, that need a lot of work, have been found and fixed.
All the issues that have come from the issue tracker involved corrective
maintenance and were very localized in both versions.
The fact that the major feature for this release of NHibernate was a new Linq
provider might have influenced the results as well. Because the Linq provider
is based upon abstractions supplied by the language (i.e. the IQueryable
interface) this was already a part of the system that was relatively loosely
coupled. As can be seen from the references in 5.1.2, this module could be
isolated from the other modules completely. Because this was the major
addition to the system it is likely for the issues to be in this particular area
(which is supported by the data collected).

6.1.2 Lowering coupling can ease maintenance by making the
system easier to understand

The increase in isolation helps in maintaining the entire system. The newly
isolated modules have a single concern they are addressing, and clear bound-
aries for communicating with other parts of the system. As a result it be-
comes more easy to assess if a change is likely to be contained within an
isolated module.
Isolating the modules has split the system into smaller, more cohesive blocks
of code. Because these modules address a single concern, they are more easy
to understand as a developer is not required to understand all modules at
once. A new developer could start maintaining a small isolated (less critical)
module first and be introduced to the entire system gradually.

The interactions between a module and the rest of the system has become
more complete as internal methods had to be made public to be declared in
the interface. In the refactored system the interfaces were minimized based
on the refactorings available. The effect of this reduction can be seen in
the metrics gathered for RFC. Overall a decrease of 18% was measured.
Although this is not a very big decrease, the amount is considerable given
the refactorings performed were pretty safe (as methods were not changed
internally because of cohesion). Altering cohesion could have made the re-
sults better as the interfaces could have been reduced further. However,
this would also increase the risk of introducing defects considerably making
a good set of tests a requirement.

The created abstractions can be of help in testing as the modules can now be
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tested in isolation. This way, more specific tests can be written that focus
on the validation of a small part of one module compared to executing a
query and checking the results requiring the entire system to work correctly.
This can make the test code more explicit about what is being tested. This
makes the test an example of how a module can be used as well as targeting
the maintenance in case of a failure. The small decrease in RFC is not a
problem for testability, the introduction of interfaces allows for the use of
mocks that always provide expected results.
Also, because the mocks can replace slow dependencies, like webservices,
the execution time can be decreased. This makes the tests more likely to be
run frequently.
Finally, it is important to note that most lines of mocking code reported in
the results have only to be written once for multiple tests. This minimizes
the needed effort when more tests are written using this mocking technique.

6.2 Research question

The research question can only partially be answered. The results from this
thesis indicate lowering coupling is beneficial to the overall system but it
should be seen as a form of preventive maintenance. The results show no
influence of lowered coupling on corrective maintenance of existing issues.
Lowering coupling enables the isolation of small and cohesive modules that
can be maintained independently. This is easier because of the single con-
cern and the clear communication with other parts of the system described
by the interfaces. This effect was validated by the decrease measured in the
RFC metric. The added possibility of using mocked implementations during
testing and development (in case of an unfinished dependency) can be very
valuable.
The impact from maintenance scenarios was not big enough to see a ben-
efit of coupling as changes were very local in the original system as well.
Because we did not see the ripple effect in the original system the required
maintenance effort is even slightly increased with lowered coupling because
of additional interfaces. If (non corrective) issues with a larger impact would
have been available the effect might have been more visible but this is un-
sure.
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Chapter 7

Discussion

There are a few things that could have been done differently in order to make
this research more interesting. In hindsight the choice of the final version
and, more importantly, version 3.0 has limited the available issues from the
issue tracker. More care should have been taken when selecting this version,
especially looking at the issues that were reported for this version which are
small both in number and impact.
In version 3.0 the major addition was the implementation of the Linq provider
which is practically always loosely coupled as the interfaces needed to im-
plement this provider are supplied by the language itself.

Leaving cohesion out of the research is too limiting on the choice of refac-
torings. Because the internals of the code had to remain the same the
refactored system did not benefit of the full effects of low coupling. Leaving
out cohesion has proven to be a too safe choice. Because of this restraint
the software could not be modified to limit the interfaces to the absolute
minimum needed, which is supported by the values for RFC.

Finally, from the metrics gathered one can conclude that the current state
of affairs of NHibernate is a system that is very difficult to maintain. How-
ever, they do manage to deliver updates and add new functionalities while
keeping the old functionality intact. Which means there must be a way to
maintain such a system. An important part of this is handled by the unit
tests. Because there are so many tests checking all kinds of scenarios one
can be pretty sure they deliver a product that has a certain level of func-
tionality if all unit tests succeed. This is a radically different approach to
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maintainability but for this specific project it seems to work.

7.1 Future work

There are two research directions that extend this thesis. The research could
be repeated when taking cohesion into account. Or it could be repeated
using a different version of NHibernate which is more suited based on added
functionality and issues reported.
Taking cohesion into account would open up more possibilities to really
create the correct abstractions that are stripped to the minimal needed set.
This would pose a challenge as to what level refactoring will be allowed to
prevent from restructuring the entire application.
By selecting a different version, there is an opportunity to take a version that
not just adds new functionality but also contains some redesign internally.
It would be interesting to see if a redesign of existing functionality would be
better supported by a system with lowered coupling.
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Appendix A

Appendix A, Metrics

For data on the lines of code, see 5.1.
Because of the size and format of the metrics these are contained in a sepa-
rate spreadsheet.
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Appendix B

Appendix B, Bootstrapping
code

pub l i c s t a t i c c l a s s Appl i cat ionBoots t rapper
{

// Al l a s s emb l i e s o f the a p p l i c a t i o n
p r i v a t e s t a t i c readonly s t r i n g [ ] neededAssembl ies = new [ ]
{

”NHibernate” ,
”NHibernate . Abst rac t i ons ” ,
”NHibernate . Cache” ,
”NHibernate . DomainModel” ,
”NHibernate . Event” ,
”NHibernate . Hql” ,
”NHibernate . Linq” ,
”NHibernate . Sql ” ,
”NHibernate . Types” ,
”NHibernate . U t i l ”
} ;

/// <summary>
/// S t a t i c setup method f o r i n i t i a l i z i n g the a p p l i c a t i o n
/// </summary>
pub l i c s t a t i c void SetUp ( )
{

var assembliesInAppDomain = AppDomain . CurrentDomain
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. GetAssemblies ( ) ;

// Ensure a l l a s s emb l i e s are loaded , i f not load them
neededAssembl ies . Where ( x => ! assembliesInAppDomain
. Any( y => y . FullName == x ) )
. ToList ( )
. ForEach ( x => Assembly . Load ( x ) )
;

// I t e r a t e over a l l nh ibernate a s s emb l i e s
f o r each ( var nhAssembly in AppDomain . CurrentDomain

. GetAssemblies ( )

. Where ( e => e . FullName . StartsWith ( ”NHibernate” ) ) )
{

BootstrapAssembly ( nhAssembly ) ;
}
}

/// <summary>
/// Bootstrap a s i n g l e assembly
/// </summary>
/// <param name=”nhAssembly”>The assembly to bootstrap </param>
p r i v a t e s t a t i c void BootstrapAssembly ( Assembly nhAssembly )
{

//Find the f i r s t type implementing the IAssmeblyBootstrapper
// i n t e r f a c e
var bootstrapType = nhAssembly . GetTypes ( )

. F i r s tOrDefau l t (
typeo f ( IAssemblyBootstrapper ) . IsAssignableFrom

) ;

i f ( bootstrapType != n u l l &&
bootstrapType . GetConstructors ( ) . Any ( ) )
{
// use r e f l e c t i o n to i n s t a n t i a t e the type

var s e tupIns tance = bootstrapType . GetConstructors ( ) [ 0 ]
. Invoke (new ob j e c t [ 0 ] ) as IAssemblyBootstrapper ;

// c a l l the setup method
se tupIns tance . Setup ( ) ;
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}
}
}

/// <summary>
/// I n t e r f a c e f o r a c l a s s that conta in s setup code f o r an assembly
/// </summary>
pub l i c i n t e r f a c e IAssemblyBootstrapper
{

void Setup ( ) ;
}
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Appendix C

Appendix C, Metric
collection code

Below is the code for the RFC walker and the coupling walker. Concurrent
dictionaries are used as the calling code executes these walkers in parallel to
speed up the collection of metrics. Because these are concurrent the addition
of elements to these dictionaries might seem a bit awkward.

pub l i c c l a s s RfcWalker : SyntaxWalker
{

pub l i c readonly ConcurrentDict ionary<s t r i ng , int>
RfcByFullname =
new ConcurrentDict ionary<s t r i ng , int >() ;

p r i v a t e s t r i n g rootPath ;

pub l i c RfcWalker ( s t r i n g rootPath )
{

rootPath = rootPath ?? Environment . CurrentDirectory ;
}

/// <summary>
/// V i s i t the i n t e r f a c e d e c l a r a t i o n s
/// </summary>
pub l i c o v e r r i d e void V i s i t I n t e r f a c e D e c l a r a t i o n

( In t e r f a c eDec l a ra t i onSyntax node )
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{
base . V i s i t I n t e r f a c e D e c l a r a t i o n ( node ) ;
GetRfcValuesForType ( node ) ;
}

/// <summary>
/// V i s i t the c l a s s d e c l a r a t i o n s
/// </summary>
pub l i c o v e r r i d e void V i s i t C l a s s D e c l a r a t i o n

( ClassDec larat ionSyntax node )
{

base . V i s i t C l a s s D e c l a r a t i o n ( node ) ;
GetRfcValuesForType ( node ) ;
}

/// <summary>
/// Ca lu la te the va lue s f o r RFC f o r a type
/// </summary>
p r i v a t e void GetRfcValuesForType ( TypeDeclarationSyntax node )
{

// Create a compi lat ion , we need t h i s to determine the typenames o f v a r i a b l e s .
var compi la t ion =
Compilation . Create ( ” TestCompilat ion ” )

. AddReferences (
new AssemblyNameReference ( ” mscor l ib ” ) ,
new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug\ nhibernate . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug\ nhibernate . s q l . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug\ nhibernate . hql . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug\ nhibernate . u t i l . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug\ nhibernate . l i n q . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug\ nhibernate . event . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug\ nhibernate . a b s t r a c t i o n s . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
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@”\Nhibernate \bin \debug\ nhibernate . types . d l l ” ) )
. AddSyntaxTrees ( node . SyntaxTree ) ;

//Get the semantic model t e l l i n g something about the types
// o f the c l a s s
var model = compi la t ion . GetSemanticModel ( node . SyntaxTree ) ;

// get the symbol o f the cur rent c l a s s
var c lassSymbol = model . GetDeclaredSymbol ( node ) ;

//Get a l l the pub l i c methods and p r o p e r t i e s o f the c l a s s
var methods = node . Members

. OfType<MethodDeclarationSyntax >()

. Count ( x =>
x . Mod i f i e r s . Any(mod =>
mod . Kind == SyntaxKind . PublicKeyword

) | | node i s In t e r f a c eDec l a ra t i onSyntax ) ;
var p r o p e r t i e s = node . Members

. OfType<PropertyDeclarat ionSyntax >()

. Count ( x =>
x . Mod i f i e r s . Any(mod =>
mod . Kind == SyntaxKind . PublicKeyword

) | | node i s In t e r f a c eDec l a ra t i onSyntax ) ;

//Add them to the d i c t i o n a r y
RfcByFullname . AddOrUpdate (

c lassSymbol . ToDisplayStr ing ( ) ,
methods + prope r t i e s ,
( key , va lue ) => methods + p r o p e r t i e s ) ;
}

}

pub l i c c l a s s ImportCouplingWalker : SyntaxWalker
{

p r i v a t e s t r i n g rootPath ;

pub l i c ImportCouplingWalker ( s t r i n g rootPath )
{

t h i s . rootPath = rootPath ?? Environment . CurrentDirectory ;
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}

pub l i c readonly ConcurrentDict ionary<s t r i ng , int>
ImportClassCouplingByFullname =
new ConcurrentDict ionary<s t r i ng , int >() ;

pub l i c readonly ConcurrentDict ionary<s t r i ng , int>
ImportInterfaceCoupl ingByFul lname =
new ConcurrentDict ionary<s t r i ng , int >() ;

pub l i c readonly ConcurrentDict ionary<s t r i ng , IEnumerable<s t r i ng>>
CoupledTypesByFullname =
new ConcurrentDict ionary<s t r i ng , IEnumerable<s t r i ng >>();

pub l i c o v e r r i d e void V i s i t C l a s s D e c l a r a t i o n
( ClassDec larat ionSyntax node )
{

GetCouplingValuesForType ( node ) ;
}

pub l i c o v e r r i d e void V i s i t I n t e r f a c e D e c l a r a t i o n
( In t e r f a c eDec l a ra t i onSyntax node )
{

GetCouplingValuesForType ( node ) ;
}

pub l i c void GetCouplingValuesForType
( TypeDeclarationSyntax node )
{

// Create a compi lat ion , we need t h i s to determine the
// typenames o f v a r i a b l e s .
var compi la t ion = Compilation . Create ( ” TestCompilat ion ” )

. AddReferences (
new AssemblyNameReference ( ” mscor l ib ” ) ,
new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug−2.0\ nhibernate . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug−2.0\ nhibernate . s q l . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug−2.0\ nhibernate . hql . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug−2.0\ nhibernate . u t i l . d l l ” ) ,
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new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug−2.0\ nhibernate . l i n q . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug−2.0\ nhibernate . event . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug−2.0\ nhibernate . a b s t r a c t i o n s . d l l ” ) ,

new AssemblyFi leReference ( rootPath +
@”\Nhibernate \bin \debug−2.0\ nhibernate . types . d l l ” ) )

. AddSyntaxTrees ( node . SyntaxTree ) ;

//Get the semantic model t e l l i n g something about the types
// o f the c l a s s
var model = compi la t ion . GetSemanticModel ( node . SyntaxTree ) ;

//Find the types o f p r o p e r t i e s in the c l a s s
var propertyTypes = node . Members

. OfType<PropertyDeclarat ionSyntax >() . S e l e c t ( x => x . Type ) ;
//Find the types o f f i e l d s in the c l a s s
var f i e l dType s = node . Members

. OfType<Fie ldDec larat ionSyntax >()

. S e l e c t ( x => x . Dec la ra t i on . Type ) ;
//Find the types o f a l l paramters o f methods
var parameterTypes = node . Members

. OfType<MethodDeclarationSyntax >()

. SelectMany ( x => x . ParameterList . Parameters )

. S e l e c t ( param => param . Type ) ;
//Find a l l types o f parameters in the con s t ruc to r
var constructorTypes = node . Members

. OfType<ConstructorDec larat ionSyntax >()

. SelectMany ( x => x . ParameterList . Parameters )

. S e l e c t ( param => param . Type ) ;
//Find the types o f a l l l o c a l v a r i a b l e s
var l oca lVar iab l eTypes = node . Members

. OfType<MethodDeclarationSyntax >()

. Where ( x => x . Body != n u l l )

. SelectMany ( x =>
x . Body . DescendantNodes ( )

. OfType<LocalDeclarat ionStatementSyntax >()
) . S e l e c t ( var => var . Dec la ra t i on . Type ) ;
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// Concatenate the 5 l i s t s
var a l lTypes = propertyTypes

. Union ( f i e l dType s )

. Union ( parameterTypes )

. Union ( constructorTypes )

. Union ( loca lVar iab l eTypes ) ;

//Get the types o f a r rays the se are handled d i f f e r e n t l y
a l lTypes = al lTypes

. Union ( a l lTypes . OfType<ArrayTypeSyntax >()
. S e l e c t ( x => x . ElementType )

) ;
//Get the types that use a q u a l i f i e d name ( e . g . D i a l e c t . D i a l e c t )
a l lTypes = al lTypes

. Union ( a l lTypes . OfType<QualifiedNameSyntax >()
. S e l e c t ( x => x . Right )

) ;

// Exclude the prede f i ned types ( the se are types l i k e i n t e t c . )
var stableTypes = al lTypes . Where ( x => x i s PredefinedTypeSyntax ) ;

// get a l l the non s t a b l e types
var nonStableTypes = al lTypes . Except ( stableTypes ) ;

//Get a l i s t o f a l l symbols in the c l a s s
var symbols = GetAllSymbolsRecursive (

nonStableTypes . S e l e c t ( x => model . GetTypeInfo ( x ) . Type ) , model
) ;

// get the symbol o f the cur rent c l a s s
var c lassSymbol = model . GetDeclaredSymbol ( node ) ;

//Count a l l e lements , that s t a r t with NHibernate , not being the
// cur rent c l a s s and an p r e d i c a t e f o r c l a s s e s o f i n t e r f a c e s
var importedClasses = symbols

. Where ( x => x . ToDisplayStr ing ( ) . StartsWith ( ”NHibernate” ) &&
x . ToDisplayStr ing ( ) != classSymbol . ToDisplayStr ing ( ) &&
x . TypeKind == TypeKind . Class ) . ToArray ( ) ;

var countImportedClasses = importedClasses . Count ( ) ;
var impor t e d I n t e r f a c e s = symbols
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. Where ( x => x . ToDisplayStr ing ( ) . StartsWith ( ”NHibernate” ) &&
x . ToDisplayStr ing ( ) != classSymbol . ToDisplayStr ing ( ) &&
x . TypeKind == TypeKind . I n t e r f a c e ) . ToArray ( ) ;

var count Impor tedInte r face s = impor t ed In t e r f a c e s . Count ( ) ;

//Make sure we get d i s t i n c t types
var re fe rencedTypes = importedClasses . Union ( impor t ed In t e r f a c e s )

. S e l e c t ( x => x . ToDisplayStr ing ( ) ) . D i s t i n c t ( ) . ToArray ( ) ;

// get the fu l lname o f the cur rent c l a s s
var typeFullName = classSymbol . ToDisplayStr ing ( ) ;

//Add the r e s u l t s to the proper d i c t i o n a r y
CoupledTypesByFullname . AddOrUpdate ( typeFullName ,

re ferencedTypes ,
( key , va lue ) => re f e rencedTypes ) ;

ImportClassCouplingByFullname . AddOrUpdate ( typeFullName ,
countImportedClasses ,
( key , va lue ) => count Impor ted Inte r face s ) ;

ImportInterfaceCoupl ingByFul lname . AddOrUpdate ( typeFullName ,
count ImportedInter faces ,
( key , va lue ) => countImportedClasses ) ;

}

/// <summary>
/// Find a l l symbols r e c u r s i v e l y
/// </summary>
/// <param name=”symbols”>Ex i s t ing l i s t o f symbols</param>
/// <param name=”model”>Model to get the symbols from</param>
/// <returns></returns>
p r i v a t e IEnumerable<TypeSymbol> GetAllSymbolsRecursive

( IEnumerable<TypeSymbol> symbols , SemanticModel model )
{

var namedTypeSymbols = symbols . OfType<NamedTypeSymbol>() ;

var gener icSymbols = namedTypeSymbols . Where ( x => x . IsGenericType )
. SelectMany ( x => GetAllSymbolsRecursive (
x . TypeArguments . ToList ( ) , model )

) ;
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// concatenate the newly found l i s t with the o ld one
symbols = symbols . Union ( gener icSymbols ) ;

r e turn symbols ;
}
}
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