
Master Software Engineering

Master Thesis

PHP: Securing Against SQL Injection

:

Ioana Rucareanu

Supervisors: Dr. Jurgen Vinju and Dr. Mark Hills

Institute: Centrum voor Wiskunde en Informatica, Amsterdam

October 28, 2013

S
o
f
t
w
a
r
e
E
n
g
in
e
e
r
in
g
�

U
n
iv
e
r
s
it
y
o
f
A
m
s
t
e
r
d
a
m

Contents

1 Introduction 6
1.1 Our solution . 7
1.2 Paper outline . 7

2 SQL injection (SQLi) 8
2.1 Input sanitisation . 9
2.2 How e�ective is manual sanitisation? . 9
2.3 The prepared statements solution . 11

3 Related work 13
3.1 Preventing SQL injection attacks . 13

3.1.1 Defensive programming . 13
3.1.2 Static string analysis . 13
3.1.3 Taint checking . 14
3.1.4 Runtime techniques . 15
3.1.5 Testing . 15
3.1.6 Discussion . 16

3.2 Removing SQL injection vulnerabilities . 16

4 Implementation 18
4.1 Support . 18

4.1.1 PDO library . 18
4.1.2 Rascal . 19

4.2 Proposed refactoring algorithm . 20
4.2.1 Preconditions . 20
4.2.2 Parsing . 22
4.2.3 Extract meta-information . 23
4.2.4 Transformation . 26

5 Evaluation 30
5.1 Evaluation method . 30

5.1.1 Query patterns coverage . 30
5.1.2 Transformation limitations . 31
5.1.3 Evidence of correctness . 31

5.2 Results . 32
5.2.1 Query patterns coverage . 32
5.2.2 Transformation limitations . 33
5.2.3 Evidence of correctness . 33

5.3 Threats to validity . 35
5.4 Conclusion . 35

6 Improvements 36
6.1 Dynamic analysis . 36

2

Contents

6.2 Interprocedural analysis . 37
6.3 PHP dynamic features . 37
6.4 Prepared statements -extension . 37

7 Conclusion 39

8 Appendix 42
8.1 Vulnerabilities analysed . 42
8.2 Extraction . 42
8.3 Transformation . 48

3

Abstract

PHP web applications have always been a preferred target of SQL injection attacks. Inadequate
validation and sanitization of user inputs give rise to vulnerabilities even in widely-used websites
of IBM, Hewlett-Packard, Cisco, WordPress and Joomla [1]. Various techniques based on static
string analysis and taint-checking have been researched in order to detect the sensitive points
of interaction with the database, that could injection favorize attacks. However, static solutions
proved to produce false positives because of insu�cient runtime informaion, whereas runtime
techniques, although more precise, lead to a performance penalty and are disregarded because
they require the addition of instrumented code.

We propose a method to fully remove the risk of SQL injection attacks, by relying on the use
of prepared statements, which enforce SQL input to take only literal positions. Our prototype is
able to refactor the mysql constructs from the PHP code and tranform them into parametrized
queries supported by the PDO library. We based our implementation on the identi�cation of
certain patterns of query structures in the web applications, for which we provided and applied
corresponding refactoring methods. Our static algorithm proved to transform correctly the set
of programs we experimented with, but future work can extend its capabilities by relying on
slicing techniques as well as o�ering interprocedural support.

4

Acknowledgement

Foremost, I would like to thank my thesis advisors Dr Jurgen Vinju and Dr Mark Hills for their
continuous support and engagement through the research process of this thesis. I am highly
grateful for the patience and availability they have shown even when communication was across
multiple time zones. Without their feedback and reassurances, I would not have been able to
�nish this work in the short time I had reserved.

Besides my advisors, I would like to thank the entire SWAT team from CWI for introducing
me into a cheerful academic working environment, and especially for their immediate availability
whenever I requested their advice.

I am also grateful to Frank Tip, who o�ered several valueable suggestions for my research
domain. Furthermore, I am indepted to all the members of the Master of Software Engineering
at the University of Amsterdam for the education received and the opportunities o�ered in my
study year.

My family deserves special thanks for their constant support and encouragements. To my
friends, thank you for listening and keeping my spirits high during this whole process.

5

CHAPTER 1

Introduction

PHP is the most commonly preferred server-side programming language for generating dynamic
content for web pages, being used by 80,5% of the websites world-wide [2]. Like with any other
programming language, PHP code is as secure as the programmer writes it. PHP is preferred for
its mild initial learning curve, built-in libraries for many common Web tasks, low hosting price,
portability etc. A high usage rate by novices, not following best practice programming rules and
missing out on the value of security awareness comes as a natural consequence. About 29% of
all vulnerabilities listed on the National Vulnerability Database are linked to PHP [3], be it SQL
injection (SQLi), Cross-Site Scripting (XSS), File disclosure or others.

PHP has natural integration with the SQL language, providing nearly native support for
queries. Prior to the introduction of PHP 5.0, the interaction with the database system was
achievable only through the low-level mysql API, by dynamically constructing query strings via
string concatenation [4]. This also applies to general-purpose programming languages, such as
Java [4], where JDBC is sometimes preferred over modern, more cumbersome APIs like JPA and
Hibernate mainly because it requires no extra con�guration and is easier to master. However,
this low-level database interaction might lead to the problem of not properly sanitized inputs
�owing into a query execution point (called sensitive sink). This can cause the web application
to generate unintended output and is known as a command injection attack [4]. The main
consequences for such type of attacks are: loss of con�dentiality, stolen authentication, altering
authorizations, a�ected database integrity [5].

At �rst glance, �ltering the inputs and reject what it is unsafe, or altering the initial input
values in order to make them safe (sanitizing) [6] might be seen as solutions to this problem.
However, limiting the length of input strings, specifying patterns of what should be allowed/
avoided as it is considered to lead to SQLi attacks, escaping the user input by adding slashes,
proved to be error-prone processes [7]. This is because a developer has to assess multiple attack
scenarios in order to guarantee protection and then implement the strategies manually; proof
that defensive coding is ine�ective is provided in section 2.2.

Furthermore, a number of research studies have come up with both static and dynamic anal-
ysis tools in order to detect automatically the existing vulnerabilities in the code. However, none
of the static approaches -using string analysis, taint checking- can fully guarantee the absence of
SQLi vulnerabilities or avoid false-positives and this is mostly because some information is only
available during program execution. Runtime techniques had better results, by checking actual
runtime-generated queries, but they lead to a performance penalty [1]. This can be reduced
when used in combination with static analysis methods [8] that could minimize the instrumented
code's size.

6

Introduction: Our solution

1.1 Our solution

In this context, we identi�ed the utility of building a prototype tool that would be able to
refactor PHP code in order to completely remove the existing SQLi vulnerabilities. No security
assumptions made, but a safe solution -transforming the queries into prepared statements. The
di�culties of taint analysis, the task of performing correct escaping and type validation, the
tedious speci�cation of regular expression patterns that the unsafe input needs to conform to,
they all can be avoided by applying this strategy.

Prepared statements were made available in PHP with the 5.0 version, via the mysqli and
PDO libraries. They represent a database concept, based on precompiling: when you execute a
SQL query, the database server will �rst prepare and cache an execution plan before executing
the actual query. The SQL structure is therefore set in place and the input which is bound must
fall into the category of query literals. In the world of software, the use of prepared statements
is sometimes discarded because of this enforcement and also because of the extra time that
precompiling requires. Details will be provided in section 2.3 of our report.

We implemented our prototype using the meta-programming language Rascal [9], specialized
in code analysis and transformation. We replace the mysql_ deprecated functions [10] with the
new object-oriented functionality of PDO. We rely on the library's prepared statement support
and dismiss the use of string concatenation and interpolation operations to bind query input.
We promote this practice in order to remove the SQLi vulnerabilities from code. A syntactic
query validation step has been included in this process, for reporting broken query structures.

The prototype had very good refactoring capabilities for the 4 projects we analysed. Where
static information proves to be insu�cient because of the di�erent control �ow paths the program
could take at the execution time, an instrumentation-based solution is discussed. The query
would then be refactored and validated at runtime, via prior statically placed instrumentation
code. Moreover, we suggest an extension of the �only literals� constraint of prepared statements
with table and column names support.

Our solution performs with a series of limitations. The algorithm remains intraprocedural
and it assumes that all SQL structure is contained within string objects, built via assignment,
concatenation or interpolation operations. Moreover, we assume that the variables incorporated
into the query string expressions are placeholders for individual SQL input literals. As we
mentioned, extension possibilities are discussed. Furthermore, the continous improvement of
Rascal's PHP analysis capabilities could o�er support for dealing with the unique challenges
a language as dynamic as PHP presents: weak typing model (�duck typing�), operations that
change their semantics with their operators' type, dynamic includes, variable variables etc.

1.2 Paper outline

The rest of the paper is structured as follows. We continue by presenting background information
about SQL injection and study prevention methods. Chapter 3 discusses the related work done
for exposing existing vulnerabilities in the code, followed by a refactoring solution that intro-
duces prepared statements, via instrumented code. We present our algorithm in chapter 4, �rst
describing the PDO library and the Rascal programming language. The Evaluation chapter 5
discusses our experimental methods and results. A discussion follows in the next section about
possible improvement directions and we present our conclusions in chapter 7.

7

CHAPTER 2

SQL injection (SQLi)

An SQLi vulnerability results from allowing the data to enter an application from an untrusted
source and using it to dynamically construct a SQL statement which is then executed. This
permits the attacker to read sensitive stored data, alter the database information via INSERT/
UPDATE/ DELETE commands, corrupting its integrity, execute administration operations on
the database, such as shutdown the DBMS and even more [5].

The simplest injection attack occurs in the absence of any checks. Consider this fragment of
PHP:

mysql_query("select username, password from Student where id=’".$_POST["id"].’");

In this example, an attacker can provide as value for the request variable id a tautology in the
form of x' OR '1'='1 and retrieve all the existent usernames and passwords. By making use of
the string delimiter ', the attacker modi�es the intended syntactic structure of the query.

Figure 2.1: SQL Tree comparison after injection

Moreover, an attacker could even try to delete all the registrations by providing this value:
';DROP TABLE Student;�'. The � characters indicate that the next parts of the query
should be ignored. Fortunately, mysql_query does not allow the execution of multiple queries,
but its new extension mysqli does that through the mysqli_multi_query function.

In the following sections we are going to present sanitisation techniques and insu�cient ex-
amples of escaping. We will discuss reports showing the error-prone character of manual coding
techniques and move forward to parametrized queries and the way we chose to address the
problem of SQLi in our approach.

8

SQL injection (SQLi): Input sanitisation

2.1 Input sanitisation

Sanitisation refers to cleaning user input to make it safe to use by the application. A key part
in this process is escaping the values, for which PHP provides:

• general functionality like addslahes() and magic_quotes(), but their use has lead to some
confusion because when used in combination, the slashes get duplicated [6]

• the mysql-specialised mysql_escape_string() and mysql_real_escape_string() functions,
the latter providing escaping according to the current character set, thus being reccomended;
what they do is prepending backslashes to the unsafe characters [7]

• the new pdo::quote function, which does not only escape the string, but it also quotes it [11]

However, escaping by itself can be insu�cient for securing against SQLi. It has to be
backed up by prior type validations and extra attention has to be paid to the correct use
of string delimiters. Here are some examples of possible vulnerabilities, despite the use of
mysql_real_escape_string() [1]:

• The function does not escape % and _ characters, and when these wildcards are used
by an attacker and combined in a query structure with LIKE, GRANT or REVOKE, the
sanitisation has no e�ect and the set of results can be more extended than initially intended.

• If not accompanied by type validation, it might prove ine�ective. Consider the following
piece of code:

$id = mysql_real_escape_string($_GET["id"]);

$query = "SELECT username, password FROM Student WHERE id = $id";

And the value 1 OR 1=1 provided for the id variable. The escaping will have no value
by itself and the tautology will again have the desired e�ect of retrieving all the passwords
from the database. What is missing here is a type check for the input to be validated as
a number, before applying the escape function. The problem could be detected if strings
were not be seen as isolated lexical entities, but analysed with regard to the statement they
generate together with the constant query structure [6].

• Absence or misuse of delimiters in query strings: the absence or misuse of delimiters could
allow an injection attack and prove escaping and type checking useless [1].
For the same code as above, the attacker might provide the encoded HEX string
0x270x780x270x200x4f0x520x200x310x3d0x31. What would this mean? When the
database server has the automatic type conversion function enabled, by using an alternate
encoding method, the attacker would circumvent input sanitization routines. The above
string would be converted by the database parser into the varchar value, that is the tau-
tology string 'x' OR 1=1. Because the conversion occurs in the database, the server
program's escaping function would not detect any special characters encoded in the HEX
string [1].

2.2 How e�ective is manual sanitisation?

It is clear that a correct sanitisation requires a high level of security awareness in PHP and enough
time allocated in the process of software development. Fonseca and Vieira [7] provide a series of
results that show how error-prone applying manual defensive pratices can be, as observed in 2008
in six well-known web-applications: PHP-Nuke, Drupal, PHP-Fusion, WordPress, phpMyAdmin
and phpBB.

9

SQL injection (SQLi): How e�ective is manual sanitisation?

When security vulnerabilities are discovered in systems, version updates or patches are built
for correcting them. Because the web applications analyzed by Fonseca and Vieira [7] are open-
source and highly-used, a number of 655 patches had been disclosed to the public by 2008 and
became the object of research. The number of vulnerabilities per projects: PHP-Nuke, Dru-
pal, P|HP-Fusion, Wordpress, phpMyAdmin and phpBB, with the speci�cation of the versions
a�ected can be found in Table 8.1, in Appendix.

The 655 XSS and SQL injection security �xes were classi�ed into 12 fault types, whose
explanation (Table 2.1) and distribution (Figure 2.2) can be found below. Not surprisingly,
70,53% of the vulnerabilities favorized XSS attacks, mainly because with XSS, any input variable
can become an attack entry point, in contrast with SQLi, which only targets unsafe queries [7].

Fault Type Description

MFC Missing function call

MFC extended Missing function call extended

MVIV Missing variable initialization using a value

MIA Missing if construct around statements

MIFS Missing if construct plus statements

MLAC Missing �AND EXPR� in expression used as branch condition

MLOC Missing �OR EXPR� in expression used as branch condition

WVAV Wrong value assigned to variable

WPFV Wrong variable used in parameter of function call

WFCS Wrong function called with same parameters

ELOC Extraneous �OR EXPR� in expression used as branch condition

EFC Extraneous function call

Table 2.1: The fault types observed in the �eld, with their description [7]

Figure 2.2: Vulnerability fault types summary [7]

10

SQL injection (SQLi): How e�ective is manual sanitisation?

The results showed that MFC extended with 75,88% is the most widespread fault type. MFC
extended is based on MFC fault. It a�ects the validation and the cleaning process of both user
inputs and database records, �les, etc., thus leading to XSS or SQLi attacks. In many cases, also
type checking is done via external functions, therefore omitting to include the required function
calls will favorize string injection [7]. According to Fonseca and Vieira [7], WPFV, MIFS and
WVAV are the next most encountered fault types, commonly caused by:

1. An omitted ' around a PHP variable in SQL queries, allowing an attacker to inject a custom
query.

2. An omitted if around a statement, that would perform a required null check, before ap-
plying sanitization.

3. A poor regular expression (regex) string used to �lter the user input.

When the results were compared with other studies of common software faults, Fonseca and
Vieira found considerable di�erences in their distributions. One research even introduced a new
fault type with 16.10% coverage from the total number of faults- WLEC (Wrong logical expression
used as branch condition). This shows that not all the possible fault types that can generate
vulnerabilities are actually responsible for the security problem of web applications found in the
real world [7].

It is important to understand that every existing vulnerability in the software systems anal-
ysed by these studies weakened the security of thousands of websites developed using a given
version of the web application. Moreover, there are cases when web site administrators do not
even update their sites' software when new patches and releases become available, maintaining
the security �aws [7].

The reports presented in this section were meant to prove that relying on manual defensive
programming techniques as validation and escaping cannot guarantee the application's safety, as
developers can make omissions in their code. This consitutes a strong motivation to lean on the
prepared statement's support.

2.3 The prepared statements solution

Prepared statementes, also known as parametrized queries, are intended to separate the SQL
constant structure by the actual SQL input. At their creation time, the statements are prepared
by statically specifying their constant SQL part and including placeholders to indicate where
input should go. This is followed by binding statements, that map input variables to every
placeholder now in the query string. When executing a statement for the �rst time, it is sent to
the database, which compiles, optimizes its plan and saves the structure for future calls. Only
afterwards the statement is run with the speci�ed input variables. However, the next executions
of the same statement, called with di�erent parameters will skip the precompiling phase and
improve the speed [12].

This mechanism completely removes the risk of SQL injections. It will be impossible to
modi�y the syntactic structure of the query via a tautology. Looking back at the tautology
attacks presented above, by binding the id to the already prepared statement, the search would
have only resulted in a search with id having the string value ' OR '1'='1, thus returning 0
records. Moreover, with prepared statements no parameter quotation is necessary, as the driver
will automatically handle this.

However, this security bene�t might go away if prepared statements are used in conjunction
with string concatenation. Consider the next PHP example, implemented with the help of the
PDO mysql library:

$stmt = $con->prepare("SELECT username, password FROM Student WHERE

id=:id OR name=’".$name."’");

11

SQL injection (SQLi): The prepared statements solution

$stmt-> bindParam("id", $id);

$stmt-> execute();

Although the id parameter does not pose any danger, the fact that the name is concatenated
to the query string and not bound constitutes a vulnerability that might be exploited by an
attacker.

Some developers disregard the idea of prepared statements because of two reasons:

• user input is restricted to take literal positions

• there is an initial performance overhead, caused by the precompiling phase

In what concerns the �only literals� downside, we suggest in section 6.4 a strategy that permits
table and column names to be concatenated and white-listed for compensating the security gap.

As for the performance issue, the question is to what extent the application is a�ected by
the precompiling step. Moreover, it would be interesting to study whether programs actually
run the same prepared statement multiple times, with di�erent parameters, so that the speed
execution is improved and compensates for the precompiling time.

Our intuition is that the time overhead the precompiling phase adds is minor and should
not constitute a reason to give up the security bene�ts that come with the use of prepared
statements [13]. However, this should be further researched.

12

CHAPTER 3

Related work

Existing techniques targeting the identifying of SQL injection vulnerabilities and preventing
exploits include defensive coding, string analysis, taint checking, runtime monitoring and test
generation. Each of these approaches- falling into the category of either static, dynamic or mixed
methods- comes with advantages but also limitations, o�ering opportunities for improvement [14].
A thourough examination of this class of research work follows in the �rst part of the chapter.

However, our intention is to refactor the initial source of the web applications and remove
the risk of SQL injection attacks, not only mitigate the probability of accidents. In the second
part of this chapter we will discuss one attempt we encountered in this direction.

3.1 Preventing SQL injection attacks

3.1.1 Defensive programming

Defensive coding includes strategies like escaping user-supplied values, data type validation,
white-listing etc. We have already shown that sanitising input through exclusive manual work
is an error-prone process. Developers make omissions and attackers continue to �nd new attack
strings or variations on old attacks, circumventing their e�orts [15], [14].

3.1.2 Static string analysis

Christensen et al. take the �rst step in statically determining the possible values of string expres-
sions [16]. They have developed a string analysis for Java programs that approximates the set of
possible string values that might result after a multitude of string manipulations. Their analysis
constructs �ow graphs from source �les and generates a context-free grammar with a nonterminal
for each string expression. The result is then widened into a regular language using a variant
of an algorithm previously used for speech recognition. Next, a type of multi-level automaton is
built for speci�c string expressions of interest in the program, addressed as hotspots [16]. With
several other possible applications, their algorithm can also be used to perform static syntax
checking of SQL expressions, as they have provided a regular language covering most of the
common queries [16]. Hence, their work is used by a multitude of future researchers, starting
from the assumption that the generated automaton is syntactically correctâ�� query strings are
all of valid SQL syntax.

Gould et al. [17] might be considered the pioneers in the semantic checking of SQL queries [6].
They created an inter-procedural data-�ow analysis that uses Christensen et al. work [16] and
came up with a method to ensure that all generated queries are type-correct [17]. This is
accomplished by applying a variant of the CFL reachability algorithm, �rst to obtain the column-

13

Related work: Preventing SQL injection attacks

name to type mapping from the schema, and next by using a type grammar for expressions to
propagate type information [17]. This approach lead to some false positives due to the fact
that string-analysis may over-approximate the set of possible generated strings; �precision of
the string analysis could be improved, but �nite state automata lack the expressive power to
match precisely an arbitrary set of strings generated by a program� [18]. When this research
was later re-analysed together with Gary Wassermann [18], another source of imprecision -in
type checking-, was detected (rarely encountered in practice though) due to applying the CFL-
reachability algorithm.

Next, Minamide [19]used some of the elements from Christensen et al. work [16] and applied
it to PHP. However, instead of leveraging their analysis on regular languages, they used context-
free languages, obtaining more precise approximations [19]. Moreover, Minamide modelled string
operations with an automaton with output called a transducer [19] -technique from computational
linguistics-, improving the precision of his analysis [8]. What Minamide succeeds in doing is
however validating dynamically generated HTML pages as a whole, and this was achievable
because HTML has a �atter grammar than SQL [8].

The following step in this series of studies concerns performing semantic validation of the
queries to detect security vulnerabilities that would allow SQL injection attacks. Although we
have the type-checking system developed by Gould et al. [17], deeper semantic analysis like
tautologies' checking have not been performed, although they are the ones that constitute the
real danger. Wasserman and Su [6] address this issue and again build upon the string analysis
of Christensen et al. [16]. They next treat the SQL-language grammar and the generated FSA
as inputs of an altered CFL-reachability algorithm and discover access control errors against the
database and potential tautologies in the WHERE clauses [16].

3.1.3 Taint checking

Taint checking refers to the analysing the data �ow of a program with the intent of determining
whether input from an untrusted source -user input in the case of web applications- reaches a
hotspot in a program, or a so-called sensitive sink. In the current context, this would be the
execution of a query against the database.

The �rst relevant step in applying taint analysis to SQL injection vulnerabilities is done by
Huang et al. [20], who incorporated their solution into a tool named WEBSSARI, targeting
PHP. They �create a lattice-based static analysis algorithm derived from type systems and type-
state� [20]. Because static analysis may o�er unsatisfactory runtime program state, Huang et al.
use static techniques to instrument sections of code potentially vulnerable with runtime guards,
meant to perform sanitisation tasks [20]. Statistics show that by running the static analyzer and
placing the right annotations, the potential runtime overhead is reduced by 98.4% [20].

However, WebSSARI has several key limitations that �restrict the precision and analysis
power of the tool� [18]. The analysis requires three user-written �prelude� �les for specifying the
sensitive functions, postconditions for functions that perform sanitization and speci�cation of
all possible untrusted input providers (e.g., $_GET, $_POST, $_REQUEST). Moreover, since
Huang et al. base their algorithm on the premise that SQL injection attacks are often the results
of insecure information �ow [20], we agree with Wasserman and Su [8] that real SQL injection
vulnerabilities might not be detected due to missing the context of the user input, the structure
of the query and also by considering the sanitization techniques safe and sound. We encounter
this last assumption in another solution as well, where they use a precise points-to-analysis for
Java and the query language PQL to identify program paths that allow tainted input reach the
sensitive query sinks [4].

Xie and Aiken [21] expose a solution where the PHP source is parsed into abstract syntax trees
(ASTs), followed by the standard conversion of the function body into a control �ow graph (CFG).
Next, a three-tier analysis is done that captures information at decreasing levels of granularity
at the intrablock, intraprocedural and interprocedural levels, being capable to handle dynamic
features of scripting languages. With Huang et al. approach [20], this was not possible. Dynamic

14

Related work: Preventing SQL injection attacks

variables written like $$a were considered as tainted. When dynamic PHP functions like eval
were encountered, WebSSARI output a warning message indicating that it cannot guarantee
soundness [20].

Wassermann and Su [8] use and improve upon Minamide's string analyzer. They add infor-
mation �ow tracking and checks on the generated grammars. They extend the analyzer with
243 PHP functions, although it still proved to have some limitations that required manual mod-
i�cation of the source �les. Additionally, support for dynamic includes is enhanced, with the
precondition that the �le and directory layout are part of the speci�cation [8].

3.1.4 Runtime techniques

As it has been previously stated, �conservative static analysis� [15] is often combined with runtime
analysis, because only in this latter phase more information about data and the program state is
available. We are going to present techniques that �enforce more expressive policies than simply
tracking the �ow of tainted input, which Perl's taint mode already provides� [17].

Halfond and Orso [15] built a tool named AMNESIA based on an algorithm which incor-
porates the existing work in string analysis([16], [17]) to statically analyse the web-application
code and build a conservative model of the possible safe queries. Their intuition is that the
structure of a query is entirely available in the source code and consider any attempt to alter the
SQL statement to be an injection attack [15]. At runtime, following this policy, they validate all
dynamically generated queries against the statically computed model.

Starting from the same premise -that all SQL injection alter the structure of the query as
it was intended by the programmer- and not questioning the constant portions of the written
SQL code, Buehrer et al. [22] �rst compute statically a parse tree, replacing user input by empty
literals. Next, their algorithm compares this structure with the parse tree obtained during
execution and if di�erences are detected, an exception is thrown. A less rigurous approach is
later developed by Wassermann and Su [4], who track user's input by using meta-data -[and
] delimiters are used to mark the beginning and end of each input string, building augmented
queries and an augmented grammar. The only productions in which [and] occur have the form:
nonterm ::= [symbol], where symbol is either a terminal or a non-terminal, thus allowing input
to take syntactic forms other than literals. In the solution provided by Wassermann and Su, a
query is legitimate if both an input has a valid parse tree and the input's syntax is valid within
the context of the query's parse tree [4].

Other runtime approaches -both Nguyen-Tuong et al. and Pietraszek and Berghe- modi�y
the PHP interpreter to �track taint information at the character level, tokenize the completed
query, and check whether any tainted characters appear in any tainted characters� [8]. A similar
solution is provided for Java, but instead of modifying the JVM, they provide a byte code
instrumenter [8].

3.1.5 Testing

In our research we have encountered a series of black-box testing and white-box testing tools for
detecting SQL injection vulnerabilities. They perform by simulating real attacks and discover
the security �aws. From the category of black-box testing techniques, at least four assessment
frameworks for Web application security (WAVES, AppScan, WebInspect, and ScanDo) should be
mentioned [20]. However, testing approaches can never guarantee soundness [20] and moreover,
black-box testing is limited as it does not consider the internal representation of the application,
decreasing chances for succesfully simulating a high rate of injection attacks.

White-box testing techniques are based however on the categories of approaches previously
discussed, from string to static or dynamic taintedness analysis. We consider the implementation
of Kiezun et al. [14] should be mentioned, that materialized into a tool named Ardilla, designed
for PHP. This is a white-box testing tool, which creates real-attack vectors and handles dynamic
programming-language constructs and can be applied on unmodi�ed application code. It is based

15

Related work: Preventing SQL injection attacks

on dynamic taint analysis; Ardilla uses �input generation, taint propagation and input mutation
to �nd variants of an execution that exploit a vulnerability� [14].

3.1.6 Discussion

At the beginning of the chapter we presented a series of string analysis techniques. We agree to
Wassermann et al. [18] that �the string analysis is not precise and cannot be precise in general�;
it is a conservative process, as formal languages are used to overestimate all the possible values a
string expression can take at runtime. String analysis does not track the source of string values, so
it requires the speci�cation of regular expressions of the permitted SQL queries at each hotspot.
This task falls into the responsibility of the programmer, thus being an error-prone process [18]
with direct impact over the well-functioning of the defense technique.

Moreover, Christensen et al. work [16] only ensures that the generated queries are syntacti-
cally correct, without testing any of the semantics. When semantics is �rst adressed, in [17], it
concerns type checking, whereas type violations might only lead to a database crash [15], but not
a SQL injection attack. In [6] however, attacks are statically adressed, by testing for WHERE
clause tautologies or access control violations.

In taint checking techniques, in the process of securing user input, functions are classi�ed
and used as either being sanitizers, or as having no e�ect at all over the incoming values. But
as we previously argue, this evaluation is context-agnostic, though its soundness cannot be
proved [8]. Moreover, tools like WEBSSARI [20] require manually-written speci�cation �les,
which constitute again an error-prone technique.

As for runtime techniques, both AMNESIA [15] as also Buehrer et al. [22] base their work
on the presumption that any input intended to modify the SQL query structure is an injection
attack. This idea is restrictive though and completely removes the possibility of reading queries
or query fragments in from a �le or database [4], or simply selecting a table/ column name
dynamically, via users' actions in a web interface. This limitation is overcome in the research
lead by Wassermann and Su [4]. Lastly, the techniques which require the modi�cation of the
interpreter are not easily applicable to any language, because companies as Sun is unlikely to
modify its Java interpreter for the sake of web applications [4].

Because vulnerabilities are known to be possible even when the above measures are taken,
black-box and white-box testing tools have been built. An e�cient tool has been mentioned-
Ardilla-, that proved to discover unknown vulnerabilities in the projects analysed [14]. However,
�while testing can be useful in practice for �nding vulnerabilities, it cannot be used to make
guarantees either� [6].

3.2 Removing SQL injection vulnerabilities

The safest method to remove the risk of SQL injection attacks would be by using prepared
statements to separate the SQL structure from the SQL input. However, fully applying this
approach has the limitation of excluding dynamically constructed query structures, as all input
will take the syntactic position of literals [4], [12]. These limitations have also been encountered
in Halfond and Orso [15] and Buehrer et al. [22], as previously discussed, where models of the
legal queries were built and used for validation at runtime.

The work by Thomas et al. [12] proposes a prepared statement replacement algorithm (PSR-
Algorithm) that traverses the source code to gather information and inserts instrumentation
code in order to overcome the shortage of available information during the static analysis. Their
solution is able to infer dynamic tree structures holding the SQL inputs that need to be bound to
the prepared statement, maintaining the correct order in conformance with the runtime execution
path. Since the tree exists at runtime in the executing code, by also placing a recursive method
in the code to traverse the tree, the generation of valid prepared statements becomes possible
at that point. The refactoring is achieved via the Prepared Statement Replacement Generator

16

Related work: Removing SQL injection vulnerabilities

(PSR-Generator), which implements the PSR-Algorithm for Java and correctly replaces 94% of
the SQL injection vulnerabilities in the analysed projects [12].

The solution has a series of limitations and disadvantages however:

• the analysis of the source code is strictly based on pattern matching and does not take
into consideration advanced code analysis features like call graphs or abstract syntax trees
(ASTs)

• therefore, it is assumed that all non-compiled parts of the code such as comments or
documentation are removed before �le's conversion; moreover, what the PSR- Generator
�rst does is formatting the source code to a standard representation so it could be further
processed

• it processes one �le at a time, the algorithm considering only the local variables, methods,
or method calls

• the line numbers of the SQLi vulnerabilities should be �rst provided via an external static
analyzer and accompanied by a list of guaranteed secure identi�ers manually-computed

• the algorithm fully relies on code instrumentation; the study fails to analyse how many of
the web applications actually require the parameters' tree to be processed dynamically

17

CHAPTER 4

Implementation

4.1 Support

In this section we will describe the PHP PDO library which we adopted because of its pre-
pared statements' support and the analysis and tranformation capabilities of the Rascal meta-
programming language, which we used for implementing our solution for PHP.

4.1.1 PDO library

The mysql PHP library [10] has been recently deprecated because of security �aws discovered in
legacy code and two new improved extensions have been introduced with PHP 5.0. Mysqli [23] is
the new variant of mysql, providing both procedural and object-oriented support. It introduced
prepared statements, transactions and multiple statements execution.

The other library is PDO (PHP Data Objects) [11] and it is a actually a database abstraction
layer, providing drivers for many database engines (of course including MySQL). The PDO inter-
face puts at the programmer's disposal high-level objects for working with database connections,
queries and results sets and the reason why we chose it over mysqli is because we considered the
code obtained is more structured and cleaner. Moreover, mysqli functions di�er syntactically by
mysql only by adding an i in front of the now deprecated functions, therefore we cannot help
questioning its future in the PHP releases.

In what concerns the code transformations, below you can see how PDO structures are used
to replace some of the mysql_ functions we refactored:

mysql

$con = mysql_connect(host,user,pass);

if (!$con) {

die(’Could not connect:’.mysql_error());

}

mysql_select_db(dbname, $con);

$query = mysql_query(

"select * from T where id=".$id);

$row = mysql_fetch_row($query);

PDO

try{

$con = new PDO(’mysql:host=_;dbname=_’,

$user, $pass);

} catch (PDOException $e) {

print "Error!:".$e->getMessage().";

die();

}

$stmt=$con->prepare("select * from T

where id=?");

$stmt->bindParam(1, $id);

$stmt-> execute();

$row = $stmt->fetch();

18

Implementation: Support

As it can be seen, PDO introduced the try/catch statements, allowing for a more elegant
database error handling mechanism. Regarding the replacement of a query with a prepared
statement, the following should be noted:

• In the case of a mysql_query call, the connection object is not required (although it can
be speci�ed as a second argument of the call), as the last link opened by mysql_connect()
is assumed. Preparing the statement, on the other hand, requires the explicit use of the
connection object.

• The mysql_query call returns a query object, used afterwards for retrieving the data,
whereas in the case of prepared statements, the prepare call is the one that produces a
statement object. The statement is then used for binding parameters, query execution and
data interogation.

• When it comes to binding parameters, named parameters are more clear, but for of our
algorithm, unanamed placeholders �t better in the automatic process.

In case the query accepted no input, we did not use prepared statements but a PDO variant
of mysql_query, pdo::query. Besides mysql_fetch_row, we also replaced mysql_fetch_array,
mysql_result, mysql_num_rows and mysql_insert_id with their PDO equivalent forms.

4.1.2 Rascal

Rascal is a meta-programming language for code analysis and transformation, being focused
on the implementation of domain-speci�c languages and on the rapid construction of tools for
investigating and refactoring source code. Rascal provides functionality for de�ning grammars,
parsing programs, analyzing programs code, building variants of the programs, interacting with
external tools and reporting analysis results in a visual way [24].

Rascal is a statically typed language and its core contains basic data-types like booleans,
integers, reals, source locations, date-time, lists, sets, tuples, maps, relations, all placed in a tree
with subtype-of relations [25]. C and Java-like control structures are provided: if, while, for,
switch, together with exception handling mechanisms [24]. Rascal is a value-oriented language,
meaning that all data is immutable and new objects emerge from every applied transformation
operation.

For creating more complex programs, more advanced features that �enable the full range of
meta-programming capabilities� of Rascal are present [24] [25]:

• user-de�ned algebraic data types (ADTs) for describing abstract syntax, as is common in
functional programming languages

• a built-in grammar formalism that allows the de�nition of context-free grammars; the syn-
tax is then used to generate a scannerless generalized parser to be applied in the parsing of
real programming languages; via an implode function, the concrete syntax tree is translated
into an abstract syntax tree (AST)

• advanced patern matching functionality is provided over all Rascal data types, against num-
bers, strings, nodes etc.; Rascal provides regular expressions matching, abstract patterns
(set, list, deep match(/), negative match(!)etc.), and matching concrete syntax patterns
like looping structures, also binding the required variables

• patterns can be used in multiple situations, but we mostly used them in visit statements

• visit statements' syntax is similar to that of switch statements; visiting is commonly used
to traverse tree structures obtained from source code �les, allowing one to match only the
nodes which correspond to a certain expression or statement speci�cation; when matching
on a case has been done, arbitary code can be run, the node can be annotated with meta-
information useful to the programmer or even replaced with another node of the same
type

19

Implementation: Support

Regarding PHP programs analysis, CWI is continuously extending the functionality they
provide. PHP's duck-typing system and the semantical di�erences caused by running updated
PHP4 code on a PHP5 engine are some of the motivations for improving the static analytical
potential of the Rascal language in this domain [24].

4.2 Proposed refactoring algorithm

The solution we implemented is able to transform mysql query calls from PHP applications into
prepared statements. The algorithm performs correctly for the programs that respect a set of
preconditions we came up with in our analysis and which are presented in section 4.2.1, together
with a set of query patterns that derived from them.

Our prototype parses a PHP source translating it into an abstract syntax tree structure, fur-
ther used for extracting query-related meta-information required by the transformation phase.
This latter phase traverses the �le tree structure again and uses the provided data to compute
appropriate prepared statements. Before the actual replacement of the query structures is per-
formed, we �rst validate the query strings against previously de�ned SQL grammars. Failed
results are written in an error report. The strings that do validate are inserted together with
their corresponding binding statements into the internal tree, which is pretty-printed back into
a PHP source �le. These steps are shown in the �gure below:

Figure 4.1: Our refactoring algorithm's main steps

4.2.1 Preconditions

Our algorithm was designed to refactor any PHP program that respects the next preconditions:

1. The implemementation is done using the mysql_ functions.

2. Query string expressions only concatenate variables, function or method calls representing
one SQL input literal.

3. All SQL structure is contained within string objects. The query string expressions are
altered via assignment, concatenation or interpolation operations.

4. The statements computing the SQL query string prior to the query execution do not overlap
with another query's group of statements. See below the comparison:

Consecutive query structures

$query1 = "select * from Table1";

mysql_query($query1);

$query2 = "select * from Table2";

mysql_query($query2);

Overlapping query structures

$query1 = "select * from Table1";

$query2 = "select * from Table2";

mysql_query($query1);

mysql_query($query2);

20

Implementation: Proposed refactoring algorithm

5. The structure of the query string expression does not depend on the program's runtime
execution path

6. The query string is built and executed intraprocedural.

Based on these restrictions, we have constructed a set of representative query building pat-
terns for which we provide the transformation theory. Their presentation is required in order to
understand what we aim to achieve, before describing the prototype's method as it is re�ected
by 4.1.

The query execution points we used in the patterns below are wrapped in assignment state-
ments, but our algorithm is able to handle also individual query calls and calls with the database
connection speci�ed as a second argument.

1. mysql_query with literal argument

$res = mysql_query("SELECT COUNT(*) FROM students");

Transformation: The query is safe as it does not expect any input, therefore the query
execution is replaced with a simple PDO query execution.

2. mysql_query with literals, variables, unsafe inputs, function or method calls concatenated
or interpolated

$res = mysql_query("SELECT userid FROM students WHERE studentid = ". $id[0] .");

A variable may only take the place of a SQL literal (precondition 2). By unsafe input, we
mean a $_POST, $_GET or $_SESSION parameter.

Transformation: Any concatenated or interpolated parameter is replaced with a ? in
the query string, which is then fed to the prepare method of the PDO connection object.
The prepare, together with the binding statement(s) are inserted prior to the statement
shown above. Finally, the mysql_query call is replaced with the execution of the prepared
statement.

3. mysql_query with a variable as argument

$res = mysql_query($query);

For this form which we identi�ed three sub-cases:

(a) The variable gets its value from one previous assignment of either a literal or a con-
catenation of literals, variables or unsafe inputs.

$query = "SELECT userid FROM students WHERE studentid = $id[0]";

$res = mysql_query($query);

Transformation: The �rst assignment is replaced with a call to the prepare method
of the connection, with the altered query string as argument. Binding statements are
inserted before the query execution, which is transformed into a prepared statement
execution.

(b) Multiple such assignments exist, distributed over if/else or switch statements.

if ($_POST["id"] == "")

$query = "INSERT INTO students(fname, lname) VALUES(’$_POST[’fname’]’,

’$_POST[’lname’]’)";

else

$query = "UPDATE students SET fname = ’$_POST[’fname’]’,

lname = ’$_POST[’lname’]’ where studentid = $_POST["id"]";

$res = mysql_query($query);

21

Implementation: Proposed refactoring algorithm

Transformation: Here, both query string assignments are replaced as in (a) and two
sets of binding parameters statements are inserted under each if branch.

(c) The variable can modify its value across a series of assignments and append operations.

$query = "UPDATE students SET ";

$query .= "fname = ’$fname’, ";

$query .= "lname = ’$lname’, ";

$query .= "WHERE studentid = $id";

mysql_query($query);

Transformation: Because of the multiple append statements, the parameters concate-
nated or interpolated have to be retained in a list while traversing the set of statements,
until the query execution is reached. The prepared statement is inserted before the
execution call.
However, the set of append statements should not be distributed over control structures
(precondition 5). If this happens, the transformation will not be statically possible
because the structure of the query string and the parameters to be bound may vary
with the di�erent execution paths that the program may follow. See this re�ected in
the example below:

$query = "INSERT INTO students(";

if ($fname != "")

$query .= "fname, lname) VALUES(’$fname’, ’$lname’)";

else

$query .= "lname) VALUES(’$lname’)";

mysql_query($query);

4.2.2 Parsing

To parse PHP code, CWI is currently using a fork of an open-source PHP Parser [26], while
e�orts are made to convert an SDF parser for PHP and achieve this directly in Rascal [24]. With
the functionality provided, our prototype is able to parse a PHP project recursively (given its
disk location) and compute a system of �le locations and their corresponding abstract syntax
trees (ASTs).

The PHP AST is de�ned as a mutually recursive collection of Rascal datatype declarations,
with base types and collection types used to represent strings, integers, lists of parameters,
etc. [24]. Such a tree structure is represented in Rascal under a Script object, holding the list
of internal statements that resides in the code. Nodes at every level are annotated with location
information, from which indications like the start/end line can be extracted. The full speci�cation
of these nodes can be found in the AbstractSyntax module of CWI's PHP Analysis project. We
present below some of these structures for a general understanding, with incomplete de�nitions
(there are many more constructors as well as ADTs in the original module):

data Script = script(list [Stmt] body) | errscript(str err);

public data Stmt

= declare(list [Declaration] decls, list [Stmt] body)

| do(Expr cond, list [Stmt] body)

| echo(list [Expr] exprs)

| exprstmt(Expr expr)

| \for(list [Expr] inits, list [Expr] conds, list [Expr] exprs, list [Stmt] body)

| foreach(Expr arrayExpr, OptionExpr keyvar, bool byRef, Expr asVar, list [Stmt] body)

| function(str name, bool byRef, list [Param] params, list [Stmt] body)

| \if(Expr cond, list [Stmt] body, list [ElseIf] elseIfs, OptionElse elseClause)

| inlineHTML(str htmlText)

| \return(OptionExpr returnExpr)

| \while(Expr cond, list [Stmt] body)

| emptyStmt()

22

Implementation: Proposed refactoring algorithm

| block(list [Stmt] body)

;

public data Expr

= array(list [ArrayElement] items)

| fetchArrayDim(Expr var, OptionExpr dim)

| assign(Expr assignTo, Expr assignExpr)

| assignWOp(Expr assignTo, Expr assignExpr, Op operation)

| binaryOperation(Expr left, Expr right, Op operation)

| unaryOperation(Expr operand, Op operation)

| eval(Expr expr)

| exit(OptionExpr exitExpr)

| call(NameOrExpr funName, list [ActualParameter] parameters)

| methodCall(Expr target, NameOrExpr methodName, list [ActualParameter] parameters)

| scalar(Scalar scalarVal)

| var(NameOrExpr varName)

| scriptFragment(list [Stmt] body)

;

Once the ASTs system has been obtained, we need the connection details of the application, as
the connection variable will be used for preparing the future statements. The details are identi�ed
through a �rst visiting of the collection of scripts. The mysql_connect and mysql_select_db
calls are removed at this point and replaced with a PDO database initialisation object, as shown
in section 4.1.1. Further on, every script will be individually analysed for extracting meta-
information about the query structures, which will be later used in the transformation process.

4.2.3 Extract meta-information

With this step, the intention is to traverse the Script object in order to obtain enough data
to help the transformation process identify which refactoring method to apply for type 3 query
building structures, as theoretized in section 4.2.1. Types 1 and 2 are straightforward, as there
is no need to inspect the previous set of assignment and append statements.

The analysis performs on a modi�ed version of the PHP script. With respect to precondi-
tion 4, we have seen the possibility of processing the script's statements backwards, so that once
a query execution point is met, we can detect the statements that a�ected the query's variable
argument.

The algorithm �rst swaps the set of statements under if clauses with the statements under
their corresponding else clauses and also reverses the cases order in switch statements. This is
done for the entire �le. Secondly, it performs a recursive re-ordering of all control structures'
body statements, as well as both functions' and top-level script's statements. The refactoring
was easily performed due to Rascal's powerful visiting and matching functionality and this can
be seen in the code fragment below which swaps the clauses as mentioned, based on their internal
type de�nition. The re-ordering implementation can be found in the full code from the Appendix,
section 8.2.

public Script reverseStatementsInScript(Script scr) {

scr = inverseClauses(scr);

visit (scr) {

case script(_): {

scr.body = reverseStatements(scr.body);

}

};

return scr;

}

23

Implementation: Proposed refactoring algorithm

public Script inverseClauses(Script scr) {

scr = top-down visit (scr) {

case ifStmt : \if(_, _, _, someElse(_)) : {

aux = ifStmt.body;

ifStmt.body = ifStmt.elseClause.e.body;

ifStmt.elseClause.e.body = aux;

insert ifStmt;

}

case switchStmt : \switch(_, _) : {

switchStmt.cases = reverse(switchStmt.cases);

insert switchStmt;

}

};

return scr;

}

In Rascal, the patterns may bind variables in a conditional scope. A case statement is such
a scope, thus the variables are made available to the case's body. If instead, the character _ is
used, this does not happen. In this example, the intention was to alter the bodies of if or switch
statements, therefore we accessed the sub-elements by their internal path and did not bind them
to any local variable.

Once the swaping and reversing steps have been done for the whole script, we will traverse
the new structure with the intention of producing one map and ttwo lists with elements:

• For every assignment whose assignee is an argument of a run query statement, according
to the query patterns 3a and 3b, we create a map pair, having the line of the assignment
as a key. The tuple formed by the connection object of the corresponding query call and
the variable holding the query result, becomes the key's value. Both variables in the tuple
are replaced with null if they are not speci�ed. We will call the resulted map assigns.

• For every assignment and append statement whose assignees are query arguments, being
part of the 3c model, we retain their lines of code and build the appends list.

• The lines of code where mysql_query statements also falling into the 3c category were
found compose the third list -appendedQueries.

We have to mention that the tranformation phase that requires these three collections will
perform on the normal script. However, since we only change the statement's order and not insert
new ones or delete them, the location annotations attached remain unaltered on the nodes.

Our method consists of visiting the reversed script version, matching on concretemysql_query
syntax patterns, as well as assignment and append statements and running a certain set of
operations in order to gather the information required. There are eight Rascal patterns we used
for matching on the di�erent forms the mysql_query calls can take.

call(name(name("mysql_query")),[actualParameter(scalar(string(_)), _)]);

call(name(name("mysql_query")),[actualParameter(scalar(string(_)), _), _]);

call(name(name("mysql_query")),[actualParameter(scalar(encapsed(_)),_)]);

call(name(name("mysql_query")),[actualParameter(scalar(encapsed(_)), _),_]);

call(name(name("mysql_query")),[actualParameter(binaryOperation(

left,right,concat()),_)]);

call(name(name("mysql_query")),[actualParameter(binaryOperation(

left,right,concat()),_), _]);

call(name(name("mysql_query")),[actualParameter(var(name(name(_))), _)]);

call(name(name("mysql_query")),[actualParameter(var(name(name(_))), _), _]);

24

Implementation: Proposed refactoring algorithm

The second version of each pattern is required in order to address the calls which have the
connection object speci�ed as a second argument. The �rst two patterns are for type 1, the
next four for type 2 (query string built via interpolation (scalar(encapsed(_))), as well as using
concatenation(binaryoperation(left, right, concat()))) and the last two for type 3.

Before describing the prototype's behaviour once query executions, assignment and append
statements have been matched (for the last two, see assign and assignWOp expression construc-
tors in section 4.2.2), we need to introduce the notion of query trace. Because a query following
the third pattern can only be classi�ed into the (a), (b) or (c) sub-types after all of its state-
ments have been processed (remember that the script we are analysing is reversed), we created
a QueryTraceVar data structure:

• The trace is initialised with information describing the matched query call: the database
connection if speci�ed, the variable given as a parameter to the call, the line number and
the variable to which the query is assigned, if it is the case. Additionally, two boolean
�ags and two initially empty integer lists are held in the trace. The �ag foundStartAssign
indicates whether an initial assignment statement has been encountered for the query's
variable parameter. The �ag foundAppendIf marks the �nding of an append statement
that follows the counterexample to (c). The two lists are the query-level versions of the
lines of code in the assigns map, respectively the appends list we want to produce for the
whole �le.

• Because of precondition 4, one trace does never interfer with a second query's trace.

• The trace is processed at every query execution point and reinitialised, as well as at the
end of the script.

We now explain the visiting algorithm:

• Whenever a query execution (type 1, 2 or 3) is matched, the query trace structure is
processed in order to analyse the precedent query. If foundStartAssign is true (an initial
assignment statement has been found, which is required in conformance with precondi-
tion 6) and elements exist in trace's appends list, the precedent query is classi�ed as 3c.
Its line number, stored in the trace, is appended to the appendedQueries list we want to
produce for the �le. We form map pairs from every line number in the assigns trace list,
associated with the tuple containing the query connection variable and the variable-result
of mysql_query. These pairs and the appends local trace list are appended to the �nal
assigns map, respectively to the appends list.

• Additionally, after the trace is processed, for type 1 and 2 query executions the trace is
reset, whether for type 3 it is reinitialised with the current query's information.

• Whenever an append statement is encountered whose assignee matches the query trace's
variable identi�er, we look at the traversal context and check whether the append is nested
inside a control structure, while the query execution is not (counterexample 3c). If it is
not the case, the append statement's line number is added to the appends list of the trace.
Otherwise, we indicate such a structure has been encountered by setting the foundAppendIf
trace �ag to true.

• Whenever an assignment statement is encountered whose assignee matches to the trace,
we �rst check whether it is a simple assignment or it actually concatenates the initial's
assignee value with some new expression. If it is not the case, we mark in the trace that we
found an initial assignment statement and then look at the trace's appends list. If this one
is empty and �ag foundAppendIf false, the statement's line number goes into the assigns
list. Otherwise, we detected a 3c building pattern and the line number is added to the
appends list.

If however we discovered that the assignment actually composes the assignee with itself,
the same check for control structures is done as with the append statements and we proceed
accordingly.

25

Implementation: Proposed refactoring algorithm

At the end of the recursive traversal, the three collections: assigns map, together with the
appends and appendedQueries lists are �nal. As we have previously mentioned, although the
script was reversed, the line numbers correspond to the initial version and are ready to be
processed by the next phase.

4.2.4 Transformation

This phase does the refactoring of the mysql queries into PDO prepared statements. In order to
apply the transformations theoretized at the Query patterns section, it requires input from the
inspection step -the three collections as mentioned above-.

To ease the implementation, we created a Rascal module with parametrized methods ready
to build and return the AST nodes we need for the prepared statement's required structures.
For example, the list of bindParam clauses is provided by the following utility method:

public list [Stmt] bindParameters(Expr stmtExpr, list [Expr] inputs) {

list [Stmt] clauses = [];

int cnt = 1;

for (Expr inp <;- inputs) {

clauses += bindParam(cnt, inp, stmtExpr);

cnt = cnt + 1;

}

return clauses;

}

private Stmt bindParam(int offset, Expr param, Expr stmtExpr) {

return exprstmt(methodCall(stmtExpr, name(name("bindParam")),

[actualParameter(scalar(integer(offset)),false),

actualParameter(param, false)

]

));

}

What our algorithm does is visiting the initial �le script and matching query execution
statements, as well as assignments and append statements and proceed in the following way:

• If an assignment or append statement's line number does not occur into either the assigns
or the appends collections, the statement is ignored as its assignee is not the argument of
any query execution call.

• If an asignment statement matched and its line number can be found in the assigns map, the
case falls either into the 3a or 3b pattern. The statement is replaced by the corresponding
prepare and binding calls. If actual connection and result variables were previously attached
in the extraction phase to the assignment, they would be used to build the calls. Otherwise,
the application's global connection is used and a generic identi�er for the statement.

If however the assignment occurs into the appends list, it is not replaced, but a local prepared
statement is computed and retained as associated to the assignee, in a global map. The
PreparedStatement data type therefore holds the prepare and binding calls, for future use.

In both cases, every non-literal in the prepared statement's query string is replaced with
an unknown placeholder (?) and the surrounding string delimiters, now redundant, are
removed.

• If an append statement matched and its line number can be found in the appends list,
another local prepared statement structure is generated and combined with the already
existing prepared statement structure for the assignee. This is done by merging the query

26

Implementation: Proposed refactoring algorithm

strings and concatenating the binding lists. The resulting structure is attached to the
assignee, replacing the old value in the map.

• When a mysql_query call is encountered and falls into the �rst query pattern, only the re-
placement with the pdo::query() version takes place. In case of type 2, prepare and binding
statements are additionally prepended. As for the third building model, if the query's line
number is not included in the appendedQueries list, the execution call is replaced with a
prepared statement execution call. However, if the line number is found, that makes it a
type 3c query, with both the prepare method call and bind clauses missing. They can be
found and inserted from the gradually computed prepared statement structure, associated
to the query's argument.

• If database error handling is encountered via die functions, the structures are refactored
into try/catch blocks.

While the �le tree is being traversed, our algorithm also replaces the other mysql functions:
mysql_fetch_row, mysql_fetch_array, mysql_result, mysql_num_rows and mysql_insert_id
with their PDO equivalent.

Before the nodes with PDO structures are inserted in the AST, there is actually an extra step
which validates the new prepared statement's query string against prede�ned SQL grammars.
Except for Gould et al's approach [17] who performed type checking for the constant parts of
the query, the majority of approaches we encountered �took the code as the speci�cation� of the
application [4] and did not question its syntactically corectness.

We decided to act di�erently, especially that Rascal supports full context-free grammars
for syntax de�nition [25]. With the structures we implemented, we are able to parse SELEC-
T/UPDATE/INSERT/DELETE simple commands (no table joins, unions, subqueries etc.). A
successful validation would also be one of the indicators proving that our algorithm is correct
in generating the query strings. The following example provides the syntax de�nition of the
INSERT SQL statement, while the others can be found in the Appendix, section 8.3. The rep-
resentations are very much based on a SQL SELECT grammar we encountered in Wassermann
et al. [18].

module lang::php::query::\syntax::Delete

layout Standard = [\t \n \ \r \f]*;

start syntax Delete =

delete: "delete" "from" Table table

| delete: "delete" "from" Table table AdditionalClauses additionalClauses

| delete: "delete" "from" Table table WhereClause whereClause

| delete: "delete" "from" Table table WhereClause whereClause AdditionalClauses additionalClauses;

syntax WhereClause = where: "where" Condition condition;

syntax Condition = condition: LogicTerm logicTerm

| bracketCondition: "(" Condition condition ")"

| notCondition: "not" LogicTerm logicTerm

| orCondition: Condition condition "or" LogicTerm logicTerm

| andCondition: Condition condition "and" Condition condition;

syntax LogicTerm = logicTerm: LogicFactor logicFactor

| andTerm: LogicTerm logicTerm "and" LogicFactor logicFactor

| bracketLogicTerm: "(" LogicTerm logicTerm ")" ;

syntax LogicFactor = comparison: Comparison comparison;

syntax Comparison = simple: ExprSimple exprLeft CompareOp compareOp ExprSimple exprRight

27

Implementation: Proposed refactoring algorithm

| multiple: Comparison comparison CompareOp compareOp ExprSimple exprRight

| isNull: ExprSimple expr "is" "null" ;

syntax Factor = factorColumn : Column column

| factorInt: Int intVal

| factorFloat: Float floatVal

| factorString: String str

| factorDate: DateFunct dateFunct

| factorExpr: "(" ExprSimple exprSimple ")"

| funcFactor: Function function FuncParen funcParen;

syntax Term = factorTerm: Factor factor

| multTerm: Term term MultOp multOp Factor factor;

syntax ExprSimple = addExpr: ExprSimple exprSimple AddOp addOp Term term

| termExpr: Term term

| unaryExpr: AddOp addOp Term term;

syntax Function = upper: "upper"

| lower: "lower"

| abs: "abs"

| len: "length" ;

syntax FuncParen = funcParenExpr: "(" ExprSimple exprSimple ")"

| funcParenParenDbl: "(" FuncParenDbl funcParenDbl ")" ;

syntax FuncParenDbl = funcParenDbl: ExprSimple exprSimple1 "," ExprSimple exprSimple2;

syntax AdditionalClauses = limitClause: Limit limit

| orderClause: OrderBy orderBy

| orderAndLimit: OrderBy orderBy Limit limit;

syntax Limit = limit: "limit" Int offset;

syntax OrderBy = orderByCol: "order" "by" ExprSimple expr

| orderByColWithDirection: "order" "by" ExprSimple expr OrderDirection direction;

syntax OrderDirection = asc: "asc" | desc: "desc" ;

syntax Table = table: Ident name

| qtable: "‘" Ident name "‘" ;

syntax Column = column: Ident name

| qcolumn: "‘" Ident name "‘"

| tableColumn: Ident tableName "." Ident colName

| qtableColumn: "‘" Ident tableName "." Ident colName "‘" ;

syntax AddOp = add: "+" | sub: "-" ;

syntax MultOp = mult: "*" | div: "/" ;

syntax CompareOp = gt: "\>;" | lt: "\<;" | eq: "=" | ge: "\>;=" | le: "\<;=" |

ne: "\<;\>;" ;

lexical Int = [0 - 9]+ !>;>; [0 - 9];

28

Implementation: Proposed refactoring algorithm

lexical Ident = ([a - z A - Z 0 - 9 _] !<;<; [a - z A - Z][a - z A - Z 0 - 9 _

]* !>;>; [a - z A - Z 0 - 9 _]) | "?" ;

lexical Float = [0 - 9]* "." [0 - 9]+ !>;>; [0 - 9];

lexical String = "\"" StringChar* [\\] !<;<; "\""

| "\’" StringChar* [\\] !<;<; "\’" ;

lexical StringChar = ![\"] | [\\] <;<; [\"];

lexical DateFunct = currdate: "curdate()"

| now: "now()" ;

In case syntactic mistakes are found, parse errors are built indicating the �le name and
the line number where the broken query resides. An explanatory message is also added, but
unfortunately this functionality of Rascal still needs to be improved, the indications being very
vague at the moment. The �nal result is output into a report.

After the tree traversal is complete, the structure is pretty-printed back into a PHP �le, using
the PrettyPrinter module built by CWI's team.

29

CHAPTER 5

Evaluation

We have built a prototype tool able to transform PHP mysql queries into prepared statements,
in order to guarantee the web applications' protection against SQL injection. Our algorithm
was implemented starting from a set of preconditions detailed in section 4.2.1 that allowed us to
reduce the problem space and come up with a fully static refactoring method, within the time
limit we had. We then asked ourselves the following questions:

1. How many of the query building models that actually exist we managed to cover with the
patterns we derived from the initial preconditions?

2. To what extension do the modern trends in PHP programming, as well as the existing
dynamic features of the language a�ect the algorithm's transformation capabilities?

3. Is the output produced by our prototype correct?

Answers to these questions are provided throughout this chapter. We start by describing our
evaluation method for each of the three issues (section 5.1), followed by the results we obtained
and their discussion -section 5.2. Threats to validity are addressed in section 5.3 and in the end
of the chapter we conclude whether the questions have been answered or not and how.

5.1 Evaluation method

5.1.1 Query patterns coverage

In order to work out a report for question 1, two sets of programs have been analysed and the
classi�cation of the queries has been tried in conformance to the building patterns we provided
in section 4.2.1. Small modi�cations of the Extract meta-information step (section 4.2.3) were
done, allowing us to obtain the following data after the visiting procedure of a reversed �le script:

• the number of mysql_query calls with literal argument (building pattern 1)

• the number of mysql_query calls with literals, variables, unsafe inputs, function or method
calls concatenated or interpolated (building pattern 2)

• the number of mysql_query calls with a variable as argument, with a single preceding
assignment statement (building pattern 3a)

• the number of mysql_query calls with a variable as argument, with assignments distributed
over control structures (building pattern 3b)

30

Evaluation: Evaluation method

• the number of mysql_query calls with a variable as argument, with both assignments and
appends statements, NOT distributed over control structures (building pattern 3c)

• the total number of queries in the �le

We �rst analysed 4 open-source small projects previously inspected by Kiezun et al. [14].
The projects were downloaded from http://sourceforge.net : school-mate 1.5.4 (tool for school
administration, 8181 lines of code, or LOC), webchess 0.9.0 (online chess game, 4722 LOC),
faqforge 1.3.2 (tool for creating and managing documents, 1712 LOC) and geccbblite 0.1 (a
simple bulletin board, 326 LOC). No releases/ patches have been recorded on sourceforge since
2008, although Ardilla detected for 21 SQLI vulnerabilities [14], due to the sensibility of the
SQL WHERE clause. According to sourcefourge, schoolmate, released in 2004, stopped being
updated since that year, but still had 19 downloads in the �rst week of October 2013.

5.1.2 Transformation limitations

We inspected a second set of programs, consisting of the projects phpBB, WordPress and ph-
pMyAdmin which we downloaded from CWI's PHP corpus: http://homepages.cwi.nl/~hills/

experiments/corpus-icse13.tgz. The motivation behind choosing this second sample came from
the desire to strengthen our �rst reports by analysing larger projects, as well as searching for an
answer to question 2, on the grounds that these projects are more recent and updated.

5.1.3 Evidence of correctness

Regarding question 3, we identi�ed two possibilities. An automated, secure strategy would have
validated the refactored output by running a set of test suites designed for the initial �le versions.
Completed by code coverage analysis, it would have constituted a complete evaluation. However,
in the absence of such tests and because the limited time did not allow us to implement them
ourselves, we preferred a second solution. We chose to compare the html output of the obtained
php scripts with the output before the transformations. The di� command was used in this
purpose. We have analysed 16 pages from the Schoolmate project, looking to ensure a good
query coverage. Although this strategy is an incomplete evidence of our prototype's correctness,
it is still a valid proof that the application's functionality is preserved.

Additionally, the query string validation we performed before the actual transformation comes
in support of the correctness clause. We will present the query validation situation per the 4
small projects analysed.

31

http://homepages.cwi.nl/~hills/experiments/corpus-icse13.tgz
http://homepages.cwi.nl/~hills/experiments/corpus-icse13.tgz

Evaluation: Evaluation method

5.2 Results

5.2.1 Query patterns coverage

Our analysis on the �rst sample lead to the following report, which is showing for every project
the number of queries that fall into each building pattern we already mentioned. Comparing the
number of queries classi�ed with the total number present in the application, we discovered a
small number of queries that our prototype failed to identify.

Query Patterns Schoolmate Webchess Faqforge Geccbblite Nr of queries/pattern

Literal (1) 76 0 0 0 76

Concatenation, interpolation (2) 218 48 0 1 267

Variable-one assign (3a) 0 38 21 7 66

Variable-assigns in control �ow (3b) 0 3 0 1 4

Variable-appends (3c) 0 2 11 0 13

Others 0 2 1 1 4

Table 5.1: Query report for each pattern identi�ed in section 4.2

After manually inspecting the programs, we discovered that 3 out of the 4 queries our proto-
type was unable to classify were following the counterexample given for pattern 3c in section 4.2.1,
presented again below:

$query = "INSERT INTO students(";

if ($fname != "")

$query .= "fname, lname) VALUES(’$fname’, ’$lname’)";

else

$query .= "lname) VALUES(’$lname’)";

mysql_query($query);

As already discussed, our tool's impossibility of transforming such structures comes from the fact
that the query string can be altered in two di�erent ways depending on the runtime execution.
Therefore, the resulting sql structure cannot be statically computed.

About the fourth case, we could say it is an ambiguous structure, disregarding in one way
precondition 4:

$query_risposte="SELECT * FROM geccBB_forum WHERE rispostadel = ’$id_risposta’";

$result=mysql_query($query_risposte);

while($risp=mysql_fetch_assoc($result)) {

[...]

$rere=mysql_query($query_risposte);

}

The second query call is the one that could not be classi�ed. The reason why this happened
is because our algorithm was designed to analyse the assignment and append statements that
occur before a query execution point and make use of them in order to classify the query into
one of the speci�ed patterns. However, in the above case, no assignment or append statements
are found for variable $query_risposte after the �rst query execution and before the second one.
This is also the reason we stated that this example can be seen as disregarding the no overlap
precondition: the latter query call requires data de�ned before the previous one.

32

Evaluation: Results

5.2.2 Transformation limitations

Our tool applies di�erent transformation operations for the query patterns we came up with. We
have seen that in the set of programs from 2004 there were just a few queries left unclassi�ed and
therefore without a refactoring solution proposed. When we analysed the second set of programs
from CWI's PHP corpus, more recent and updated, with higher usage, we obtained the following
results:

Query Patterns phpBB WordPress phpMyAdmin Nr of queries/pattern

Literal (1) 9 1 0 10

Concatenation, interpolation (2) 2 13 0 15

Variable-one assign (3a) 1 1 0 2

Variable-assigns in control �ow (3b) 0 1 0 1

Variable-appends (3c) 1 0 0 1

Others 1 2 2 5

Table 5.2: Query report for each pattern identi�ed in section 4.2 -CWI's PHP corpus

Although these projects are larger than the �rst set of applications, we found less queries than
before. After performing a manual inspection, we understood that the �ve queries missed occur in
generic query execution functions. All three frameworks run queries by calling a generic function
and providing it with an already computed query string to be executed. If no assignment or
append statements were encountered in the respective functions, our prototype missed classifying
the query structures. In Wordpress, we actually found an asignment in this base query method,
but it was disregarded because the value assigned to the query string was produced by calling
an external function and altering the function's query parameter by applying some �lters.

The second query we missed in Wordpress was encountered in the same aforementioned type
of pattern -the counterexample to 3c-, impossible to be transformed by our static prototype.

Our intuition is that the use of one generic function to run the queries may be the �big�
approach, whereas in smaller systems, people might pre�er to put the query calls at the point
they need them, instead of building something more complex and generic. Question 2 concerning
the in�uence of modern trends in PHP programming over our prototype is addressed in this way.

5.2.3 Evidence of correctness

Except for the four missed queries in the analysis of the �rst set of programs, our prototype
checked the query strings against the grammars we speci�ed for SELECT/UPDATE/INSERT
and DELETE commands. All the strings, having placeholders replacing the actual query param-
eters, validated successfully, except for one query which violated precondition 2: Query string
expressions only concatenate variables, function or method calls representing one SQL input
literal. The case is presented below:

$clause = "";

[...]

for($i=0; $i<count($semester); $i++) {

if($i==0)

$clause.=" AND (semesterid = $semester[$i]";

else

$clause.=" OR semesterid = $semester[$i]";

33

Evaluation: Results

}

$clause.=")";

$sql = mysql_query("SELECT coursename, q1points, q2points, totalpoints,

aperc, bperc, cperc, dperc, fperc, secondcourseid, semesterid

FROM courses WHERE courseid = $cid[0] $clause");

Our prototype generated the following query string:

"SELECT coursename, q1points, q2points, totalpoints, aperc, bperc, cperc,

dperc, fperc, secondcourseid, semesterid FROM courses WHERE courseid = ? ?"

which produced an error because the second placeholder was meant to replace a part of the sql
structure.

For the scripts whose queries validated entirely we wanted to prove that pages maintained
the same behavior as before the refactoring. We installed the project Schoolmate in two versions:
before and after the transformation and chose 16 scripts for testing. We tried to cover as many
queries as possible in every script. For example, Schoolmate follows a certain pattern by providing
for each entity handled: users, students, semesters, teachers, classes etc. three scripts for:

1. displaying the necessary controls and information required to add a new entity instance

2. displaying the necessary controls and information required to edit an existing entity

3. displaying the existing records, with di�erent �ltering options and handling any insert/delete/edit
post request

The third category of scripts, Manage<entity>.php, has at least �ve queries. We covered 6
such scripts and made sure to perform the operations mentioned: select, select with �ltering,
insert, edit and delete.

In what concerns the application's behaviour at runtime, we experienced two problems. First
of all, the Schoolmate project has one �le with multiple delete functions for the entities, func-
tions that expect an id and delete the referred record. By switching to prepared statements,
which require the explicit use of the connection object (as explained in section 4.1.1), a series of
unidenti�ed connection variable errors were produced because the global scope of the connection
variable was not known to the functions scope. What we did to �x this was to add the database
connection as an extra parameter to the delete functions, then �nd and modify the calls in the
source code with Rascal's help.

The second problem we noticed was a �ltering issue. The ManageClasses.php script has an
All option for �ltering the semesters. However, because the list of semesters is computed on
some criteria, the All option's value is built in the same way:

$all = "";

while($semester = $query->fetch()) {

if($count == 0) {

$all = " ".$semester["0"];

}

else {

$all .= " OR semesterid = ".$semester["0"];

}

[...]

$count++;

}

When we selected the All option having the value of the $all variable, the queries executed, in
the form of:

34

Evaluation: Results

SELECT COUNT(*) FROM courses WHERE semesterid = ?

SELECT c.courseid, c.semesterid, c.coursename, c.teacherid,

c.substituteid FROM courses c WHERE c.semesterid=?

violated the �only literals� precondition 2, thus breaking the prepared statement.

When we compared the html output of the initial and �nal html sources for the 16 scripts,
the di� yielded almost the same results when used together with the xmllint tool and the �
noblanks option to drop ignorable blank spaces. Some spaces did not get eliminated however,
thus producing small di�erences for 6 scripts out of the 16 analysed.

5.3 Threats to validity

There are many di�erent ways that the internal validity of our study can be threatened. Although
manual analysis has been performed for all the PHP sources from the chosen projects to validate
our �ndings, there are still chances to have missed something. Additionally, the second set of
programs was only analysed but not refactored, from the consideration that we cannot provide
interprocedural support.

Moreover, the queries from both sets of projects might have been classi�ed into the wrong
patterns, therefore leading to an inappropriate transformation theory. Although the pages whose
html outputs we compared validated correctly, we did not analyse the majority of pages, with a
broader pattern distribution. However, we think that the successful syntactic validation of the
query strings increased the level of con�dence into our transformations.

Furthermore, the two sets of programs did not present any dynamic PHP functionality that
could have stopped our algorithm classify and perform correctly. We are wondering whether
either there are other projects out there which pose these challenges when it comes to build-
ing queries, or our analysis might have missed detecting such cases and again be wrong about
the transformation's correctness where this was performed, despite the query strings' successful
validation.

5.4 Conclusion

We repeat the three questions we have tried to provide an answer for throughout this chapter:

1. How many of the query building models that actually exist we managed to cover with the
patterns we derived from the initial preconditions?

2. To what extension do the modern trends in PHP programming, as well as the existing
dynamic features of the language a�ect the algorithm's transformation capabilities?

3. Is the output produced by our prototype correct?

Our algorithm was able to transform a previously established set of query building models,
as theorized in section 4.2.1. The coverage obtained with our prede�ned patterns for two sets
of projects proved to be high, except for the missing interprocedural support (question 1). For
Schoolmate, Webchess, Faqforge and Geccbblite all except one query string validated correctly
against our SQL grammars and the transformations performed successfully. When we made a
di� between the initial html outputs and the �nal ones for a small number of Schoolmate's pages,
the results were positive (by doing this we addressed question 3).

However, our experiment presents a series of threats to validity which we discussed above.
Moreover, by observing the queries our prototype missed to classify we see the need to extend
our preconditions and the types of building patterns, also in conformance with question 2. A
discussion follows in the next chapter.

35

CHAPTER 6

Improvements

In this chapter extension suggestions are discussed for our solution. We start by mentioning
an instrumentation-based solution in the places where static analysis is not su�cient and bring
slicing into discussion. Next, interprocedural �ow handling is considered. The handling of PHP
dynamic language functionalities is summarily adressed. Finally, in section 6.4, we propose a way
to extend the prepared statements' constraint of enforcing SQL input to take literals positions.

6.1 Dynamic analysis

When append statements or any other type of altering statements are distributed over control
structures, while the query execution point is left outside of the decisional branches, we could
not provide a static algorithm for computing the query string and its corresponding binding
statements. Flow sensitive static analysis would have only provided us with multiple variants of
the query string, but we did not know which one to choose and use for the prepared statement
until runtime. This is also why we came up with precondition 5 in section 4.2.1.

Thomas et al. [12] presented an instrumentation-based solution, their algorithm being able
to infer dynamic tree structures holding the SQL inputs that need to be bound, in the right
order. They insert some vector and string structures in the code, making it possible to follow
the program's execution and obtain the actual runtime tree of parameters. They also place a
recursive method in the PHP source to traverse the tree and generate a valid prepared statement
structure to be inserted in the code and immediately executed.

We tried to apply their method but we soon realised that without a slicing algorithm that
would give us the exact set of statements that �ow into a certain query execution point, the
amount of instrumented code becomes a problem. Since a slicing functionality for PHP was
outside our thesis's scope, we chose to use CWI's Control �ow graphs (CFGs) for PHP programs.
These structures are built for both individual functions and methods in PHP sources, as well as
for a top-level script. Besides a namepath, a CFG consists of a set of control �ow nodes, like
functionEntry, functionExit, scriptEntry,scriptExit, the wrapping stmtNode and exprNodes etc.
The CFG also holds the edges (FlowEdge) set. Labels are used to label individual expressions
and statements, with edges then going between labels.

The graph representation of a CFG consists of a set of 2-element tuples, de�ning a sequence
of from and to nodes. What we did was �nding a query execution point in the graph and then
by using transitive relations we were able to �nd the entire set of statements that laid before
that point. However, once we had this transitivity-algorithm in place, we realised that it was
still completely ine�cient comparing to an actual slicing algorithm, as what we had achieved
was only separating an if 's path by its corresponding else's statements.

We consider that a proper slicing algorithm, added to the static refactoring process we de-

36

Improvements: Dynamic analysis

signed would help produce a solution with a minimum amount of instrumented code where
runtime analysis is neccesary. Slicing would also help us dismiss the �no-interpolated� queries
precondition, labelled with number 4. However, because of PHP's duck-typing system, operations
whose dynamics change depending on the parameter's types, dynamic features like evaluation
functions, includes etc., a correct and complete slicing algorithm is a very big challenge to im-
plement.

6.2 Interprocedural analysis

Our algorithm as we designed is able to analyse and refactor query structures created and built
within the same function (idea expressed in precondition 6). However, as we observed when
analysing the PHP corpus assembled by CWI, large programs might use a generic function for
running an already computed query string provided as an argument.

There might also be cases where query parts might be produced or altered after calling other
auxiliary functions. Here too we end up knowing nothing about the actual internal representation
of the query at the function's level.

In both cases, a solution we thought about whould be inlining the generic code in the function
where the query is actually constructed. This would make all the information available locally
and would allow static analysis. However, this could lead to an increased code size, reduced
code readability and duplicated code. Performance overhead can also occur because of code
duplication, however inlining can also save internal memory by removing the extra function calls
from the stack.

A really straightforward solution would be �ring a warning after parsing the �le structure
and informing the developer that refactoring into prepared statements is not achievable until
interfunctional calls a�ecting the query are resolved.

6.3 PHP dynamic features

PHP is a highly dynamic programming language, which makes it �di�cult to apply traditional
static analysis techniques used in standard code analysis and transformation tools� [24]. The use
of features like dynamic includes, eval statements with unpredictable output, variable variables
etc., does not provide enough information before runtime for performing an analysis of the query
structures the way we intended. In this situation, we consider that informing the developer about
the code source limitations and the need for a refactoring might be the only solution for creating
the possibility of transforming the queries.

6.4 Prepared statements -extension

In this section we discuss how the �only literal parameters� constraint imposed by the use of
prepared statements can be extended. We consider that such an improvement might increase
the popularity of parametrized queries, enlarging their dynamic potential. We suggest a solution
where once a query string has been computed and parsed successfully, it could be imploded
into its coresponding user-de�ned ADT structure. The SQL command's representation can be
then visited and table and column names, for which the unknown placeholder ? has been used,
identi�ed. The algorithm would note their position and reverse their replacement, relying again
on concatenation or interpolation to attach the parameter. In order to compensate for the
security �aw created, white-listing could be used to validate the table or column identi�ers. We
represented below these steps:

37

Improvements: Prepared statements -extension

Figure 6.1: Parsing and imploding a query string into a Select ADT

Figure 6.2: Reversing table/column names replacing

For the implementation of this process, ADTs have to be de�ned that correspond to the SQL
grammars we have already built for Rascal. For the white-listing checks placed in the code,
Rascal provides a JDBC module for extracting database schema-related information.

38

CHAPTER 7

Conclusion

We have presented an approach to completely remove the risk of SQL injection attacks from
the PHP web applications. Where defensive coding proved insu�cient because of its error-prone
nature and automatic vulnerability detection solutions produced false positives, our prototype
eliminated any chance of injection by transforming the queries into prepared statements. Al-
though by adopting this solution the possibility of building a query with a dynamic structure is
removed, we consider that the advantage of security is undoubtedly more valuable.

A set of query building patterns were established and included in our algorithm for providing
a corresponding transformation strategy. On the �rst set of programs we analysed, the coverage
of these patterns proved very high and a satisfying refactoring was performed, whereas with
the second set of applications, the lack of interprocedural support showed to a�ect the possible
transformations. We consider our solution to be a good start in the refactoring direction, but
acknowledge its current limitations and suggest improvements. Extended with slicing techniques
for PHP, inlining mechanisms where interprocedural interactions are encountered, the tool we
have built could greatly help reducing the injection vulnerabilities encountered in most of the
PHP web applications.

39

Bibliography

[1] Lwin Khin Shar and Hee Beng Kuan Tan. Defeating sql injection, 2013.

[2] W3techs, usage of server-side programming languages for websites, May 2013.

[3] Php-related vulnerabilities on the national vulnerability database, May 2013.

[4] Zhendong Su and Gary Wassermann. The essence of command injection attacks in web
applications. POPL '06 Conference record of the 33rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, 2006.

[5] Owasp, sql-injection https://www.owasp.org/index.php/SQL_Injection.

[6] Gary Wassermann and Zhendong Su. An analysis framework for security in web applications.
Proceedings of the FSE Workshop on Speci�cation and Veri�cation of Component-Based
Systems (SAVCBS 2004), 2004.

[7] Jose Fonseca and Marco Vieira. Mapping software faults with web security vulnerabilities.
International Conference on Dependable Systems and Networks: Anchorage, Alaska, 2008.

[8] Zhendong Su and Gary Wassermann. Sound and precise analysis of web applications for
injection vulnerabilities. PLDI '07 Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, 2007.

[9] P. Klint, Tijs van der Storm, and Jurgen J. Vinju. Rascal: A domain speci�c language for
source code analysis and manipulation. Proceedings of SCAMâ��09. IEEE, 2009.

[10] Mysql api, http://php.net/manual/en/book.mysql.php.

[11] Php data objects, http://php.net/manual/en/book.pdo.php.

[12] Stephen Thomas, Laurie Williams, and Tao Xie. On automated prepared statement gener-
ation to remove sql injection vulnerabilities, 2009.

[13] Bill Karwin. Sql injection myths and fallacies presentation, 2010.

[14] Adam Kiezun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. Automatic
creation of sql injection and cross-site scripting attacks. Proceedings ICSE '09 of the 31st
International Conference on Software Engineering, 2009.

[15] William G. J. Halfond and Alessandro Orso. Combining static analysis and runtime mon-
itoring to counter sql-injection attacks. WODA '05 Proceedings of the third international
workshop on Dynamic analysis, 2005.

[16] Aske Simon Christensen, Anders MÃ¸ller, and Michael I. Schwartzbach. Precise analysis
of string expressions. In Proc. 10th International Static Analysis Symposium, SAS â��03,
2003.

40

https://www.owasp.org/index.php/SQL_Injection
http://php.net/manual/en/book.mysql.php
http://php.net/manual/en/book.pdo.php

Bibliography

[17] Carl Gould, Zhendong Su, and Premkumar Devanbu. Static checking of dynamically gen-
erated queries in database applications. ICSE '04 Proceedings of the 26th International
Conference on Software Engineering, 2004.

[18] Gary Wassermann, Carl Gould, Zhendong Su, and Premukumar Devanbu. Static checking
of dynamically generated queries in database applications, 2007.

[19] Yasuhiko Minamide. Static approximation of dynamically generated web. Proceedings of
WWW 2005, ACM, 2005.

[20] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen
Kuo. Securing web application code by static analysis and runtime protection. WWW '04
Proceedings of the 13th international conference on World Wide Web, 2004.

[21] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting languages.
USENIX-SS'06 Proceedings of the 15th conference on USENIX Security Symposium, 2006.

[22] Gregory Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti. Using parse tree validation
to prevent sql injection attacks. Proceedings of the International Workshop on Software
Engineering and Middleware (SEM) at Joint FSE and ESEC, 2005.

[23] Mysql improved extension, http://php.net/manual/en/book.mysqli.php.

[24] Mark Hills, Paul Klint, and Jurgen J. Vinju. Program analysis scenarios in rascal. WRLA'12
Proceedings of the 9th international conference on Rewriting Logic and Its Applications,
2012.

[25] Rascal tutor, http://tutor.rascal-mpl.org/.

[26] Phpparser, https://github.com/nikic/PHP-Parser.

41

http://php.net/manual/en/book.mysqli.php
http://tutor.rascal-mpl.org/
https://github.com/nikic/PHP-Parser

CHAPTER 8

Appendix

8.1 Vulnerabilities analysed

Web-application Versions analyzed #Vuln.

PHP-Nuke 6.0,6.5,6.9,7.0,7.2,7.6,7.7, 7.8, 7.9 295

Drupal
4.5.5, 4.5.6, 4.6.5, 4.6.6, 4.6.7,4.6.8, 59

4.6.9, 4.6.10, 4.6.11, 4.7.6, 5.1

PHP-Fusion

6.00.106, 6.00.108, 6.00.110, 6.00.204, 6.00.206, 54

6.00.207, 6.00.303,6.00.304, 6.01.4, 6.01.5,

6.01.6, 6.01.7, 6.01.8,6.01.9,6.01.10, 6.01.11,6.01.12

Wordpress
1.2.1, 1.2.2, 1.5.2-1, 2.0, 2.0.10-RC2, 2.0.4, 115

2.0.5, 2.0.6, 2.1.2, 2.1.3 2.1.3- RC2, 2.2, 2.2.1, 2.3

phpMyAdmin

2.1.10, 2.4.0, 2.5.2, 2.5.6, 2.5.7PLl, 2.6.3PLl, 2.6.4, 74

2.6.4PL4, 2.7.0PL2, 2.8.2.4, 2.9.0,2.9.1.1,2.10.0.2,

2.1 0.1, 2.11.1.1, 2.11.1.2 and SVN revisions

phpBB

2.0.3, 2.0.5, 2.0.6, 2.0.6c, 2.0.7, 2.0.8, 2.0.9, 58

2.0.10, 2.0.16, 2.0.17

Table 8.1: Versions of the web application used and number of vulnerabilities analyzed [7]

8.2 Extraction

ReverseStatements.rsc

module lang::php::query::refactor::util::ReverseStatements

import IO;

import String;

import lang::php::util::Utils;

import lang::php::ast::AbstractSyntax;

42

Appendix: Extraction

import lang::php::util::System;

import List;

import Map;

import Node;

anno bool Stmt @ visited;

anno bool Else @ visited;

anno bool Case @ visited;

anno bool ElseIf @ visited;

public Script reverseStatementsInScript(Script scr) {

scr = inverseClauses(scr);

visit (scr) {

case script(_): {

scr.body = reverseStatements(scr.body);

}

};

return scr;

}

public Script inverseClauses(Script scr) {

scr = top-down visit (scr) {

case ifStmt : \if(_, _, _, someElse(_)) : {

aux = ifStmt.body;

ifStmt.body = ifStmt.elseClause.e.body;

ifStmt.elseClause.e.body = aux;

insert ifStmt;

}

case switchStmt : \switch(_, _) : {

switchStmt.cases = reverse(switchStmt.cases);

insert switchStmt;

}

};

return scr;

}

public Stmt reversedStmt(Stmt stmt) {

stmt.body = reverseStatements(stmt.body);

stmt@visited = true ;

return stmt;

}

public Else reversedElse(Else stmt) {

stmt.body = reverseStatements(stmt.body);

stmt@visited = true ;

return stmt;

}

public ElseIf reversedElseIf(ElseIf stmt) {

stmt.body = reverseStatements(stmt.body);

stmt@visited = true ;

return stmt;

}

public Case reversedCase(Case stmt) {

stmt.body = reverseStatements(stmt.body);

43

Appendix: Extraction

stmt@visited = true ;

return stmt;

}

public list [Stmt] reverseStatements(list [Stmt] statements) {

statements = top-down visit (statements) {

case ifStmt : \if(_, _, _, _) : {

if ("visited" in getAnnotations(ifStmt)) {

fail statements;

}

insert reversedStmt(ifStmt);

}

case elseStmt : \else(_): {

if ("visited" in getAnnotations(elseStmt)) {

fail statements;

}

insert reversedElse(elseStmt);

}

case doStmt: do(_, _): {

if ("visited" in getAnnotations(doStmt)) {

fail statements;

}

insert reversedStmt(doStmt);

}

case forStmt: \for(_, _, _, _): {

if ("visited" in getAnnotations(forStmt)) {

fail statements;

}

insert reversedStmt(forStmt);

}

case foreachStmt: foreach(_, _, _, _, _): {

if ("visited" in getAnnotations(foreachStmt)) {

fail statements;

}

insert reversedStmt(foreachStmt);

}

case functionStmt: function(_, _, _, _): {

if ("visited" in getAnnotations(functionStmt)) {

fail statements;

}

insert reversedStmt(functionStmt);

}

case caseStmt : \case(_, _) : {

if ("visited" in getAnnotations(caseStmt)) {

fail statements;

}

insert reversedCase(caseStmt);

}

case elseIfStmt : elseIf(_, _): {

if ("visited" in getAnnotations(elseIfStmt)) {

fail statements;

}

insert reversedElseIf(elseIfStmt);

}

case whileStmt : \while(_, _) : {

if ("visited" in getAnnotations(whileStmt)) {

44

Appendix: Extraction

fail statements;

}

insert reversedStmt(whileStmt);

}

case blockStmt : block(body) : {

if ("visited" in getAnnotations(blockStmt)) {

fail statements;

}

insert reversedStmt(blockStmt);

}

};

return reverse(statements);

}

QueryInspect.rsc

module lang::php::query::refactor::QueryInspect

import IO;

import String;

import lang::php::util::Utils;

import lang::php::ast::AbstractSyntax;

import lang::php::util::System;

import List;

import Map;

import Node;

import Traversal;

import util::Maybe;

import lang::php::query::refactor::util::ReverseStatements;

import lang::php::query::refactor::util::AnalyzeExpr;

import lang::php::query::refactor::QueryReport;

import lang::php::query::refactor::QueryInfo;

data QueryVarTrace = qtrace(QueryInfo info, bool foundAssign, list [int] assigns,

list [int] appends, bool foundAppendIf);

QueryVarTrace resetTrace() {

list [int] intList = [];

return qtrace(queryDescr(), false , intList, intList, false);

}

QueryVarTrace resetTraceFlags(QueryVarTrace trace) {

list [int] intList = [];

return qtrace(trace.info, false , intList, intList, false);

}

map [int , tuple [Maybe[Expr] con, Maybe[Expr] result]] addToAssigns(

map [int , tuple [Maybe[Expr] con, Maybe[Expr] result]] globalAssigns,

QueryVarTrace trace) {

tuple [Maybe[Expr] con, Maybe[Expr] result] aTuple =

<trace.info.con, trace.info.result>;

for (int line <;- trace.assigns) {

globalAssigns[line] = aTuple;

}

return globalAssigns;

}

45

Appendix: Extraction

public QueryReport extractQueryInformation(Script scr, loc l) {

scr = reverseStatementsInScript(scr);

int cntqrun = 0 ;

list [int] varWOpLines = [];

map [int , tuple [Maybe[Expr] con, Maybe[Expr] result]] assigns = ();

list [int] appends = [];

QueryVarTrace trace = resetTrace();

top-down visit (scr) {

case qrun : call(name(name("mysql_query")), _) : {

cntqrun = cntqrun + 1;

}

};

if (cntqrun == 0){

return report();

}

scr = top-down visit (scr) {

case qrun : call(name(name("mysql_query")), params): {

if (![actualParameter(scalar(string(_)), _)] := params && ![actualParameter(scalar

(string(_)), _), _] := params && ![actualParameter(scalar(encapsed(_)),
)] := params && ![actualParameter(scalar(encapsed()), _), _] := params

&& ![actualParameter(binaryOperation(left, right, concat()), _)] := params

&& ![actualParameter(binaryOperation(left, right, concat()), _), _] := params)

{

fail scr;

}

if (trace.info == queryDescr()) {

fail scr;

}

if (trace.foundAssign && size(trace.appends) >; 0) {

varWOpLines += trace.info.line;

}

appends += trace.appends;

assigns = addToAssigns(assigns, trace);

trace = resetTrace();

}

case qrunVar: call(name(name("mysql_query")), [actualParameter(var(name(name

(varName))), _)]): {

if (trace.info == queryDescr()) {

trace.info = queryDescr(nothing(), qrunVar.parameters[0].expr, qrunVar@at.begin.line,

getQueryResultVariable(qrunVar));

trace = resetTraceFlags(trace);

fail scr;

}

if (trace.foundAssign && size(trace.appends) >; 0) {

varWOpLines += trace.info.line;

}

appends += trace.appends;

assigns = addToAssigns(assigns, trace);

trace.info = queryDescr(nothing(), qrunVar.parameters[0].expr, qrunVar@at.begin.line,

getQueryResultVariable(qrunVar));

trace = resetTraceFlags(trace);

}

//With connection argument

case qrunVar: call(name(name("mysql_query")), [actualParameter(var(name(name

(varName))), _), _]): {

46

Appendix: Extraction

if (trace.info == queryDescr()) {

trace.info = queryDescr(just(qrunVar.parameters[1].expr), qrunVar.parameters[

0].expr,qrunVar@at.begin.line,getQueryResultVariable(qrunVar));

trace = resetTraceFlags(trace);

fail scr;

}

if (trace.foundAssign && size(trace.appends) >; 0) {

varWOpLines += trace.info.line;

}

appends += trace.appends;

assigns = addToAssigns(assigns, trace);

trace.info = queryDescr(just(qrunVar.parameters[1].expr), qrunVar.parameters[

0].expr,qrunVar@at.begin.line,getQueryResultVariable(qrunVar));

trace = resetTraceFlags(trace);

}

case assignqVar : exprstmt(assign(var(name(name(varName))), rightAssign)): {

if (trace.info != queryDescr() && varName != trace.info.queryParam.varName.name.name)

{

fail scr;

}

bool isVarComposedWithItself = isVarComposedWithItself(rightAssign, varName);

if (!isVarComposedWithItself) {

if (size(trace.appends) >; 0) {

trace.appends += [assignqVar@at.begin.line];

}

else if (!trace.foundAppendIf) {

trace.assigns += [assignqVar@at.begin.line];

}

trace.foundAssign = true ;

fail scr;

}

if (!isAppendIfCase(trace.info.line)) {

trace.appends += [assignqVar@at.begin.line];

}

else {

trace.foundAppendIf = true ;

}

}

case appendqVar:exprstmt(assignWOp(var(name(name(varName))),_,concat())):

{

if (trace.info != queryDescr() && varName != trace.info.queryParam.varName.name.name)

{

fail scr;

}

if (!isAppendIfCase(trace.info.line)) {

trace.appends += [appendqVar@at.begin.line];

}

else {

trace.foundAppendIf = true ;

}

}

};

if (trace.foundAssign && size(trace.appends) >; 0) {

varWOpLines += trace.info.line;

}

if (trace.info != queryDescr()) {

47

Appendix: Extraction

appends += trace.appends;

assigns = addToAssigns(assigns, trace);

}

QueryReport report = report(varWOpLines, assigns, appends);

return report;

}

public bool isAppendIfCase(int queryLine) {

context = getTraversalContext()[2];

top-down visit (context) {

case ifStmt: \if(_, _, _, _): {

if (context != ifStmt) {

return false ;

}

if ((ifStmt@at.begin.line <;= queryLine) &&

(ifStmt@at.end.line >;= queryLine)) {

return false ;

}

return true ;

}

case elseClause: \else(_): {

if (context != elseClause) {

return false ;

}

if ((elseClause@at.begin.line <;= queryLine) &&

(elseClause@at.end.line >;= queryLine)) {

return false ;

}

return true ;

}

};

return false ;

}

public Maybe[Expr] getQueryResultVariable(Expr queryCall) {

context = getTraversalContext()[1];

top-down visit (context) {

case anAssign: assign(var(name(name(_))), call(name(name("mysql_query")), _)):

{

if (context == anAssign) {

return just(anAssign.assignTo);

}

}

};

return nothing();

}

8.3 Transformation

PreparedStatement.rsc

module lang::php::query::refactor::PreparedStatement

48

Appendix: Transformation

import lang::php::ast::AbstractSyntax;

import lang::php::query::refactor::util::AnalyzeExpr;

import IO;

import Traversal;

import List;

public data PreparedStatement =

prepStat(str queryString, list [Expr] inputs);

public PreparedStatement concatenatePreparedStructure(PreparedStatement prep1,

PreparedStatement prep2) {

return prepStat(prep1.queryString + prep2.queryString, prep1.inputs + prep2.inputs);

}

public PreparedStatement extractFromExpr(Expr queryExpr) {

list [Expr] inputs = [];

queryStr = top-down-break visit (queryExpr) {

case functionCall : call(_, _): {

inputs += functionCall;

insert scalar(string("?"));

}

case ternaryExpr: ternary(_, _, _): {

inputs += ternaryExpr;

insert scalar(string("?"));

}

case arrayVar : fetchArrayDim(var(name(name(arrayName))),

someExpr(requestParam)): {

inputs += arrayVar;

insert scalar(string("?"));

}

case aVar : var(name(name(varName))) : {

if (varName == "_POST" || varName == "_GET" || varName == "_SESSION") {

fail queryStr;

}

bool isArrayVar = false ;

if (size(getTraversalContext())>= 2 && fetchArrayDim(_,_) :=getTraversalContext()[1]){

isArrayVar = true ;

}

if (size(getTraversalContext())>= 3 && fetchArrayDim(_,_) :=getTraversalContext()[2]){

isArrayVar = true ;

}

if (isArrayVar) {

fail queryStr;

}

inputs += aVar;

insert scalar(string("?"));

}

};

return prepStat(getExprStringValue(queryStr), inputs);

}

ASTQueryUtil.rsc

module lang::php::query::refactor::util::ASTQueryUtil

import lang::php::ast::AbstractSyntax;

49

Appendix: Transformation

import lang::php::query::refactor::Connection;

import util::Maybe;

public Stmt prepare(Expr con, Expr queryString, Expr stmtExpr) {

return exprstmt(assign(stmtExpr,

methodCall(con, name(name("prepare")),

[actualParameter(queryString, false)]

)));

}

public list [Stmt] bindParameters(Expr stmtExpr, list [Expr] inputs) {

list [Stmt] clauses = [];

int cnt = 1;

for (Expr inp <;- inputs) {

clauses += bindParam(cnt, inp, stmtExpr);

cnt = cnt + 1;

}

return clauses;

}

private Stmt bindParam(int offset, Expr param, Expr stmtExpr) {

return exprstmt(methodCall(stmtExpr, name(name("bindParam")),

[actualParameter(scalar(integer(offset)),false),

actualParameter(param, false)

]

));

}

public Expr executePrepExpr(Expr stmtExpr) {

return methodCall(stmtExpr, name(name("execute")), []);

}

public Stmt executePrep(Expr stmtExpr) {

return exprstmt(executePrepExpr(stmtExpr));

}

public Stmt query(Expr con, Expr queryString, Expr stmtExpr) {

return exprstmt(queryExpr(con, queryString, stmtExpr));

}

public Expr queryExpr(Expr con, Expr queryString, Expr stmtExpr) {

return assign(stmtExpr, methodCall(con, name(name("query")),

[actualParameter(queryString, false)]

));

}

public Stmt fetchAll(Expr stmtExpr) {

return exprstmt(methodCall(stmtExpr, name(name("fetchAll")), []));

}

public Stmt fetchAllAndReturn(str resultId, Expr stmtExpr) {

return exprstmt(assign(var(name(name(resultId))),

methodCall(stmtExpr, name(name("fetchAll")), [])));

}

public Stmt dieWithError(Maybe[Expr] errorMessage) {

50

Appendix: Transformation

if (errorMessage == nothing()) {

return exprstmt(exit(someExpr(

methodCall(var(name(name("e"))),name(name("getMessage")),[])

)));

}

return exprstmt(exit(someExpr(binaryOperation(

errorMessage.val,

methodCall(var(name(name("e"))),name(name("getMessage"

)),[]),concat()))));

}

QueryTransformation.rsc

module lang::php::query::refactor::QueryTransform

import lang::php::query::util::Parse;

import IO;

import String;

import lang::php::util::Utils;

import lang::php::ast::AbstractSyntax;

import lang::php::util::System;

import lang::php::pp::PrettyPrinter;

import List;

import Map;

import Node;

import Traversal;

import lang::php::query::refactor::PreparedStatement;

import lang::php::query::refactor::util::ASTQueryUtil;

import lang::php::query::refactor::ProcessConnection;

import lang::php::query::refactor::QueryInspect;

import lang::php::query::refactor::QueryReport;

import lang::php::query::refactor::util::AnalyzeExpr;

import lang::php::query::refactor::QueryInfo;

import util::Maybe;

public list [Stmt] getStatements(QueryInfo queryInfo,

map [Expr, PreparedStatement] prepareInfo) {

Expr stmtExpr = (queryInfo.result == nothing() ? var(name(name("stmt"))) : queryInfo.result.val);

list [Stmt] statements = [];

if (var(name(name(/\w/))) := queryInfo.queryParam) {

PreparedStatement prep = prepareInfo[queryInfo.queryParam];

return writePrepareStatementWithParams(prep, queryInfo.con.val, stmtExpr);

}

if (binaryOperation(_, _, concat()) := queryInfo.queryParam ||

scalar(encapsed(_)) := queryInfo.queryParam) {

return extractAndWritePrepareStatementWithParams(

queryInfo.queryParam, queryInfo.con.val, stmtExpr);

}

return statements;

}

public Maybe[Expr] newQueryExecuteCall(QueryInfo query,

list [int] queryrunappendLines) {

Expr stmtExpr = (query.result == nothing() ? var(name(name("stmt"))) : query.result.val);

51

Appendix: Transformation

bool isInAppendLines = query.line in queryrunappendLines;

if (var(name(name(/\w/))) := query.queryParam && !isInAppendLines) {

return just(executePrepExpr(stmtExpr));

}

if (scalar(string(/\w/)) := query.queryParam) {

try {

parse(query.queryParam.scalarVal.strVal);

}

catch ParseError(loc l): {

println("Failed parse <; l>;");

}

return just(queryExpr(query.con.val, query.queryParam, stmtExpr));

}

return nothing();

}

public Script transform(Script scr, Expr con, QueryReport qreport) {

Expr stmtExpr = var(name(name("stmt")));

list [int] queryrunappendLines = getqappendLines(qreport);

map [Expr, PreparedStatement] prepareInfo = ();

scr = top-down visit (scr) {

case fetchRow: assign(rowVar, call(name(name("mysql_fetch_array")), [actualParameter

(param, false)])): {

list [ActualParameter] params = [];

insert assign(rowVar, methodCall(param, name(name("fetch")), params));

}

case fetchRow: assign(rowVar, call(name(name("mysql_fetch_row")), [actualParameter

(param, false)])): {

list [ActualParameter] params = [];

insert assign(rowVar, methodCall(param, name(name("fetch")), params));

}

case fetchFirstRowColumn: call(name(name("mysql_result")), [actualParameter(param,

false), actualParameter(offset, false)]): {

list [ActualParameter] params = [];

insert methodCall(param, name(name("fetch")), [actualParameter(fetchConst(name(

"PDO::FETCH_COLUMN")), false)]);

}

case countResults: call(name(name("mysql_num_rows")), [actualParameter(param,

false)]): {

list [ActualParameter] params = [];

insert methodCall(param, name(name("rowCount")), params);

}

case lastId: call(name(name("mysql_insert_id")), _): {

list [ActualParameter] params = [];

insert methodCall(con, name(name("lastInsertId")), params);

}

//assign

case queryRun : exprstmt(assign(result,

call(name(name("mysql_query")), actualParameters))): {

Expr localCon = (size(actualParameters)==2)?actualParameters[1].expr:con;

QueryInfo query = queryDescr(just(localCon), actualParameters[0].expr,

queryRun@at.begin.line, just(result));

Maybe[Expr] execute = newQueryExecuteCall(query, queryrunappendLines);

if (execute != nothing()) {

insert exprstmt(execute.val);

}

52

Appendix: Transformation

list [Stmt] statements =

getStatements(query, prepareInfo);

if (var(name(name(/\w/))) := actualParameters[0].expr &&

actualParameters[0].expr in prepareInfo) {

delete(prepareInfo, actualParameters[0].expr);

}

insert block(statements + executePrep(result));

}

//no assign

case queryRun : exprstmt(call(name(name("mysql_query")),

actualParameters)): {

Expr localCon = (size(actualParameters)==2)?actualParameters[1].expr:con;

QueryInfo query = queryDescr(just(localCon), actualParameters[0].expr,

queryRun@at.begin.line, nothing());

Maybe[Expr] execute = newQueryExecuteCall(query, queryrunappendLines);

if (execute != nothing()) {

insert exprstmt(execute.val);

}

list [Stmt] statements =

getStatements(query, prepareInfo);

if (var(name(name(/\w/))) := actualParameters[0].expr &&

actualParameters[0].expr in prepareInfo) {

delete(prepareInfo, actualParameters[0].expr);

}

insert block(statements + executePrep(stmtExpr));

}

//run or die with assign

case queryRun : exprstmt(binaryOperation(assign(result,

call(name(name("mysql_query")), actualParameters)),

exit(someExpr(exitInfo)), logicalOr())): {

list [Stmt] elseStatements = [];

if (binaryOperation(_,call(name(name("mysql_error")),[]), concat()) := exitInfo)

{

elseStatements = [dieWithError(just(exitInfo.left))];

}

if (call(name(name("mysql_error")),[]) := exitInfo) {

elseStatements = [dieWithError(nothing())];

}

Expr localCon =(size(actualParameters) == 2)?actualParameters[1].expr:con;

QueryInfo query = queryDescr(just(localCon), actualParameters[0].expr,

queryRun@at.begin.line, just(result));

Maybe[Expr] execute = newQueryExecuteCall(query, queryrunappendLines);

if (execute != nothing()) {

insert \tryCatch([exprstmt(execute.val)], [\catch(name(

"PDOException"), "$e" , elseStatements)]);

}

list [Stmt] statements = getStatements(query, prepareInfo);

if (var(name(name(/\w/))) := actualParameters[0].expr &&

actualParameters[0].expr in prepareInfo) {

delete(prepareInfo, actualParameters[0].expr);

}

insert \tryCatch(statements + executePrep(result), [\catch(name(

"PDOException"), "$e" , elseStatements)]);

}

//run or die no assign

case queryRun : exprstmt(binaryOperation(

53

Appendix: Transformation

call(name(name("mysql_query")), actualParameters),

exit(someExpr(exitInfo)), logicalOr())): {

list [Stmt] elseStatements = [];

if (binaryOperation(_,call(name(name("mysql_error")),[]), concat()) := exitInfo)

{

elseStatements = [dieWithError(just(exitInfo.left))];

}

if (call(name(name("mysql_error")),[]) := exitInfo) {

elseStatements = [dieWithError(nothing())];

}

Expr localCon =(size(actualParameters)==2)?actualParameters[1].expr:con;

QueryInfo query = queryDescr(just(localCon), actualParameters[0].expr,

queryRun@at.begin.line, nothing());

Maybe[Expr] execute = newQueryExecuteCall(query, queryrunappendLines);

if (execute != nothing()) {

insert \tryCatch([exprstmt(execute.val)], [\catch(name(

"PDOException"), "$e" , elseStatements)]);

}

list [Stmt] statements = getStatements(query, prepareInfo);

if (var(name(name(/\w/))) := actualParameters[0].expr &&

actualParameters[0].expr in prepareInfo) {

delete(prepareInfo, actualParameters[0].expr);

}

insert \tryCatch(statements + executePrep(stmtExpr),

[\catch(name("PDOException"), "$e" , elseStatements)]);

}

case assign : exprstmt(assign(assignee, assignedExpr)): {

if ("at" notin getAnnotations(assign) || qreport == report()) {

fail scr;

}

int line = assign@at.begin.line;

if (line notin qreport.assigns && line notin qreport.appends) {

fail scr;

}

if (line in qreport.assigns) {

Expr queryCon =

(qreport.assigns[line].con == nothing()) ? con : qreport.assigns[line].con.val;

Expr queryStmtExpr =

(qreport.assigns[line].result == nothing()) ? stmtExpr : qreport.assigns[line].result.val;

insert block(extractAndWritePrepareStatementWithParams(assignedExpr, queryCon,

queryStmtExpr));

}

if (line in qreport.appends) {

prepareInfo[assignee] = extractFromExpr(assignedExpr);

}

}

case appendq : exprstmt(assignWOp(assignee, assignedExpr, concat())) : {

if ("at" notin getAnnotations(appendq) || qreport == report() ||

appendq@at.begin.line notin qreport.appends) {

fail scr;

}

prepareInfo[assignee] = concatenatePreparedStructure(prepareInfo[assignee],

extractFromExpr(assignedExpr));

}

};

return scr;

54

Appendix: Transformation

}

public list [Stmt] extractAndWritePrepareStatementWithParams(

Expr queryStringExpr, Expr con, Expr stmtExpr) throws ParseError {

PreparedStatement stmt = extractFromExpr(queryStringExpr);

return writePrepareStatementWithParams(stmt, con, stmtExpr);

}

public list [Stmt] writePrepareStatementWithParams(PreparedStatement prep, Expr con,

Expr stmtExpr) throws ParseError {

list [Stmt] toInsert = [];

try {

parse(prep.queryString);

}

catch ParseError(loc l): {

println("Failed parse <; l>;");

}

toInsert += prepare(con, scalar(string(prep.queryString)), stmtExpr);

toInsert += bindParameters(stmtExpr, prep.inputs);

return toInsert;

}

Select.rsc

module lang::php::query::\syntax::Select

layout Standard = [\t \n \ \r \f]*;

start syntax Select =

select: "select" ColumnList columnList "from" TableList tableList

| selectDistinct: "select" "distinct" ColumnList columnList "from" TableList tableList

| selectAll: "select" "all" ColumnList columnList "from" TableList tableList

| select: "select" ColumnList columnList "from" TableList tableList WhereClause whereClause

| selectDistinct: "select" "distinct" ColumnList columnList "from" TableList tableList

WhereClause whereClause

| selectAll: "select" "all" ColumnList columnList "from" TableList tableList WhereClause

whereClause

| select: "select" ColumnList columnList "from" TableList tableList AdditionalClauses

additionalClauses

| selectDistinct: "select" "distinct" ColumnList columnList "from" TableList tableList

AdditionalClauses additionalClauses

| selectAll: "select" "all" ColumnList columnList "from" TableList tableList AdditionalClauses

additionalClauses

| select: "select" ColumnList columnList "from" TableList tableList WhereClause whereClause

AdditionalClauses additionalClauses

| selectDistinct: "select" "distinct" ColumnList columnList "from" TableList tableList

WhereClause whereClause AdditionalClauses additionalClauses

| selectAll: "select" "all" ColumnList columnList "from" TableList tableList WhereClause

whereClause AdditionalClauses additionalClauses;

syntax Subquery = subquery: "(" Select select ")" ;

syntax ColumnList = columns: {Column "," }+ columns

| star: "*" ;

syntax TableList = tables: {Table "," }+ tables

55

Appendix: Transformation

| joinedTables: Join join;

syntax Join =

innerJoin: Table table1 "inner join" Table table2 "on" ExprSimple expr1 "="

ExprSimple expr2

| leftJoin: Table table1 "left join" Table table2 "on" ExprSimple expr1 "="

ExprSimple expr2

| rightJoin: Table table1 "right join" Table table2 "on" ExprSimple expr1 "="

ExprSimple expr2;

syntax Column = column: ExprSimple exprSimple

| columnAs: ExprSimple exprSimple "as" Ident name;

syntax Table = table: Ident name

| tableAlias: Ident tableName Ident tableAlias

| tableAs: Ident tableName "as" Ident tableAlias;

syntax ExprSimple = addExpr: ExprSimple exprSimple AddOp addOp Term term

| termExpr: Term term

| unaryExpr: AddOp addOp Term term;

syntax Term = factorTerm: Factor factor

| multTerm: Term term MultOp multOp Factor factor;

syntax Factor = factor: Ident name

| factorInt: Int intVal

| factorFloat: Float floatVal

| factorColumn : Ident name "." Ident name

| factorString: String str

| factorDate: DateFunct dateFunct

| factorExpr: "(" ExprSimple exprSimple ")"

| funcFactor: Function function FuncParen funcParen

| groupFactor: GroupFunc groupFunction GroupFuncParen groupFuncParen;

syntax Function = upper: "upper"

| lower: "lower"

| abs: "abs"

| len: "length" ;

syntax FuncParen = funcParenExpr: "(" ExprSimple exprSimple ")"

| funcParenParenDbl: "(" FuncParenDbl funcParenDbl ")" ;

syntax FuncParenDbl = funcParenDbl: ExprSimple exprSimple1 "," ExprSimple exprSimple2;

syntax GroupFunc = avg: "avg"

| count: "count"

| max: "max"

| min: "min"

| sum: "sum" ;

syntax GroupFuncParen = groupExprSimple: "(" ExprSimple exprSimple ")"

| groupStar: "(" "*" ")" ;

syntax WhereClause = where: "where" Condition condition;

syntax Condition = condition: LogicTerm logicTerm

56

Appendix: Transformation

| bracketCondition: "(" Condition condition ")"

| notCondition: "not" LogicTerm logicTerm

| orCondition: Condition condition "or" LogicTerm logicTerm

| andCondition: Condition condition "and" Condition condition;

syntax LogicTerm = logicTerm: LogicFactor logicFactor

| andTerm: LogicTerm logicTerm "and" LogicFactor logicFactor

| bracketLogicTerm: "(" LogicTerm logicTerm ")" ;

syntax LogicFactor = comparison: Comparison comparison

| inclusion: ExprSimple exprSimple "in" Subquery subquery;

syntax Comparison = simple: ExprSimple exprLeft CompareOp compareOp ExprSimple exprRight

| multiple: Comparison comparison CompareOp compareOp ExprSimple exprRight

| isNull: ExprSimple expr "is" "null" ;

syntax AdditionalClauses = limitClause: Limit limit

| orderClause: OrderBy orderBy

| orderAndLimit: OrderBy orderBy Limit limit;

syntax Limit = limit: "limit" Int offset

| limitWithRange: "limit" Int from "," Int to;

syntax OrderBy = orderByCol: "order" "by" ExprSimple exprSimple

| orderByColWithDirection: "order" "by" ExprSimple exprSimple OrderDirection direction;

syntax OrderDirection = asc: "asc" | desc: "desc" ;

syntax AddOp = add: "+" | sub: "-" ;

syntax MultOp = mult: "*" | div: "/" ;

syntax CompareOp = gt: "\>;" | lt: "\<;" | eq: "=" | ge: "\>;=" | le: "\<;=" |

ne: "\<;\>;" ;

lexical Ident = ([a - z 0 - 9 _] !<;<; [a - z][a - z 0 - 9 _]* !>;>; [a - z 0 -

9 _]) | "?" ;

lexical Int = [0 - 9]+ !>;>; [0 - 9];

lexical Float = [0 - 9]* "." [0 - 9]+ !>;>; [0 - 9];

lexical String = "\"" StringChar* [\\] !<;<; "\""

| "\’" StringChar* [\\] !<;<; "\’" ;

lexical StringChar = ![\"] | [\\] <;<; [\"];

lexical DateFunct = currdate: "curdate()"

| now: "now()" ;

Insert.rsc

module lang::php::query::\syntax::Insert

layout Standard = [\t \n \ \r \f]*;

57

Appendix: Transformation

start syntax Insert =

\insert: "insert" "into" Table table "values" "(" FactorList values ")"

| insertCols: "insert" "into" Table table "(" ColumnList colList ")" "values" "("

FactorList values ")" ;

syntax ColumnList = columns: {Column "," }+ columns;

syntax FactorList = values: {Factor "," }+ values;

syntax WhereClause = where: "where" Condition condition;

syntax Condition = condition: LogicTerm logicTerm

| bracketCondition: "(" Condition condition ")"

| notCondition: "not" LogicTerm logicTerm

| orCondition: Condition condition "or" LogicTerm logicTerm

| andCondition: Condition condition "and" Condition condition;

syntax LogicTerm = logicTerm: LogicFactor logicFactor

| andTerm: LogicTerm logicTerm "and" LogicFactor logicFactor

| bracketLogicTerm: "(" LogicTerm logicTerm ")" ;

syntax LogicFactor = comparison: Comparison comparison;

syntax Comparison = simple: ExprSimple exprLeft CompareOp compareOp ExprSimple exprRight

| multiple: Comparison comparison CompareOp compareOp ExprSimple exprRight

| isNull: ExprSimple expr "is" "null" ;

syntax Factor = factorColumn : Column column

| factorInt: Int intVal

| factorFloat: Float floatVal

| factorString: String str

| factorDate: DateFunct dateFunct;

syntax Term = factorTerm: Factor factor

| multTerm: Term term MultOp multOp Factor factor;

syntax ExprSimple = addExpr: ExprSimple exprSimple AddOp addOp Term term

| termExpr: Term term

| unaryExpr: AddOp addOp Term term;

syntax Function = upper: "upper"

| lower: "lower"

| abs: "abs"

| len: "length" ;

syntax FuncParen = funcParenExpr: "(" ExprSimple exprSimple ")"

| funcParenParenDbl: "(" FuncParenDbl funcParenDbl ")" ;

syntax FuncParenDbl = funcParenDbl: ExprSimple exprSimple1 "," ExprSimple exprSimple2;

syntax AdditionalClauses = limitClause: Limit limit

| orderClause: OrderBy orderBy

| orderAndLimit: OrderBy orderBy Limit limit;

syntax Limit = limit: "limit" Int offset;

syntax OrderBy = orderByCol: "order" "by" ExprSimple expr

58

Appendix: Transformation

| orderByColWithDirection: "order" "by" ExprSimple expr OrderDirection direction;

syntax OrderDirection = asc: "asc" | desc: "desc" ;

syntax Table = table: Ident name

| qtable: "‘" Ident name "‘" ;

syntax Column = column: Ident name

| qcolumn: "‘" Ident name "‘" ;

syntax AddOp = add: "+" | sub: "-" ;

syntax MultOp = mult: "*" | div: "/" ;

syntax CompareOp = gt: "\>;" | lt: "\<;" | eq: "=" | ge: "\>;=" | le: "\<;=" |

ne: "\<;\>;" ;

lexical Int = [0 - 9]+ !>;>; [0 - 9];

lexical Ident = ([a - z A - Z 0 - 9 _] !<;<; [a - z A - Z][a - z A - Z 0 - 9 _

]* !>;>; [a - z A - Z 0 - 9 _]) | "?" ;

lexical Float = [0 - 9]* "." [0 - 9]+ !>;>; [0 - 9];

lexical String = "\"" StringChar* [\\] !<;<; "\""

| "\’" StringChar* [\\] !<;<; "\’" ;

lexical StringChar = ![\"] | [\\] <;<; [\"];

lexical DateFunct = currdate: "curdate()"

| now: "now()" ;

Update.rsc

module lang::php::query::\syntax::Update

layout Standard = [\t \n \ \r \f]*;

start syntax Update = SingleTableUpdate;

syntax SingleTableUpdate =

update: "update" Table table "set" UpdateList updateList

| update: "update" Table table "set" UpdateList updateList WhereClause whereClause

| update: "update" Table table "set" UpdateList updateList AdditionalClauses additionalClauses

| update: "update" Table table "set" UpdateList updateList WhereClause whereClause

AdditionalClauses additionalClauses;

syntax UpdateList = updateList: {Assign "," }+ assigns;

syntax Assign = assign: Column column "=" Factor factor

| assignDefault: Column column "=" "default" ;

syntax WhereClause = where: "where" Condition condition;

syntax Condition = condition: LogicTerm logicTerm

| bracketCondition: "(" Condition condition ")"

59

Appendix: Transformation

| notCondition: "not" LogicTerm logicTerm

| orCondition: Condition condition "or" LogicTerm logicTerm

| andCondition: Condition condition "and" Condition condition;

syntax LogicTerm = logicTerm: LogicFactor logicFactor

| andTerm: LogicTerm logicTerm "and" LogicFactor logicFactor

| bracketLogicTerm: "(" LogicTerm logicTerm ")" ;

syntax LogicFactor = comparison: Comparison comparison;

syntax Comparison = simple: ExprSimple exprLeft CompareOp compareOp ExprSimple exprRight

| multiple: Comparison comparison CompareOp compareOp ExprSimple exprRight

| isNull: ExprSimple expr "is" "null" ;

syntax Factor = factorColumn : Column column

| factorInt: Int intVal

| factorFloat: Float floatVal

| factorString: String str

| factorDate: DateFunct dateFunct

| factorExpr: "(" ExprSimple exprSimple ")"

| funcFactor: Function function FuncParen funcParen;

syntax Term = factorTerm: Factor factor

| multTerm: Term term MultOp multOp Factor factor;

syntax ExprSimple = addExpr: ExprSimple exprSimple AddOp addOp Term term

| termExpr: Term term

| unaryExpr: AddOp addOp Term term;

syntax Function = upper: "upper"

| lower: "lower"

| abs: "abs"

| len: "length" ;

syntax FuncParen = funcParenExpr: "(" ExprSimple exprSimple ")"

| funcParenParenDbl: "(" FuncParenDbl funcParenDbl ")" ;

syntax FuncParenDbl = funcParenDbl: ExprSimple exprSimple1 "," ExprSimple exprSimple2;

syntax AdditionalClauses = limitClause: Limit limit

| orderClause: OrderBy orderBy

| orderAndLimit: OrderBy orderBy Limit limit;

syntax Limit = limit: "limit" Int offset;

syntax OrderBy = orderByCol: "order" "by" ExprSimple expr

| orderByColWithDirection: "order" "by" ExprSimple expr OrderDirection direction;

syntax OrderDirection = asc: "asc" | desc: "desc" ;

syntax Table = table: Ident name

| qtable: "‘" Ident name "‘" ;

syntax Column = column: Ident name

| qcolumn: "‘" Ident name "‘"

| tableColumn: Ident tableName "." Ident colName

60

Appendix: Transformation

| qtableColumn: "‘" Ident tableName "." Ident colName "‘" ;

syntax AddOp = add: "+" | sub: "-" ;

syntax MultOp = mult: "*" | div: "/" ;

syntax CompareOp = gt: "\>;" | lt: "\<;" | eq: "=" | ge: "\>;=" | le: "\<;=" |

ne: "\<;\>;" ;

lexical Int = [0 - 9]+ !>;>; [0 - 9];

lexical Ident = ([a - z A - Z 0 - 9 _] !<;<; [a - z A - Z][a - z A - Z 0 - 9 _

]* !>;>; [a - z A - Z 0 - 9 _]) | "?" ;

lexical Float = [0 - 9]* "." [0 - 9]+ !>;>; [0 - 9];

lexical String = "\"" StringChar* [\\] !<;<; "\""

| "\’" StringChar* [\\] !<;<; "\’" ;

lexical StringChar = ![\"] | [\\] <;<; [\"];

lexical DateFunct = currdate: "curdate()"

| now: "now()" ;

ParseSelect.rsc

module lang::php::query::util::ParseSelect

import ParseTree;

import lang::php::query::\syntax::Select;

public start [Select] parseSelect(str src) = parse(#start [Select],

src);

ParseInsert.rsc

module lang::php::query::util::ParseInsert

import ParseTree;

import lang::php::query::\syntax::Insert;

public start [Insert] parseInsert(str src) = parse(#start [Insert],

src);

ParseUpdate.rsc

module lang::php::query::util::ParseUpdate

import ParseTree;

import lang::php::query::\syntax::Update;

public start [Update] parseUpdate(str src) = parse(#start [Update],

src);

61

Appendix: Transformation

ParseDelete.rsc

module lang::php::query::util::ParseDelete

import ParseTree;

import lang::php::query::\syntax::Delete;

public start [Delete] parseDelete(str src) = parse(#start [Delete],

src);

Parse.rsc

module lang::php::query::util::Parse

import lang::php::query::util::ParseSelect;

import lang::php::query::util::ParseUpdate;

import lang::php::query::util::ParseDelete;

import lang::php::query::util::ParseInsert;

import String;

import IO;

public void parse(str queryString) throws ParseError {

str lowerCaseQueryString = toLowerCase(queryString);

if (startsWith(lowerCaseQueryString, "select")) {

println("parsing select: <; queryString>;");

parseSelect(lowerCaseQueryString);

}

if (startsWith(lowerCaseQueryString, "update")) {

println("parsing update: <; queryString>;");

parseUpdate(lowerCaseQueryString);

}

if (startsWith(lowerCaseQueryString, "delete")) {

println("parsing delete: <; queryString>;");

parseDelete(lowerCaseQueryString);

}

if (startsWith(lowerCaseQueryString, "insert")) {

println("parsing insert: <; queryString>;");

parseInsert(lowerCaseQueryString);

}

}

62

	Introduction
	Our solution
	Paper outline

	SQL injection (SQLi)
	Input sanitisation
	How effective is manual sanitisation?
	The prepared statements solution

	Related work
	Preventing SQL injection attacks
	Defensive programming
	Static string analysis
	Taint checking
	Runtime techniques
	Testing
	Discussion

	Removing SQL injection vulnerabilities

	Implementation
	Support
	PDO library
	Rascal

	Proposed refactoring algorithm
	Preconditions
	Parsing
	Extract meta-information
	Transformation

	Evaluation
	Evaluation method
	Query patterns coverage
	Transformation limitations
	Evidence of correctness

	Results
	Query patterns coverage
	Transformation limitations
	Evidence of correctness

	Threats to validity
	Conclusion

	Improvements
	Dynamic analysis
	Interprocedural analysis
	PHP dynamic features
	Prepared statements -extension

	Conclusion
	Appendix
	Vulnerabilities analysed
	Extraction
	Transformation

