Automatic Generation of C Library Bindings
Inferring Nullability through Structure Fields

Jaro S. Reinders, 1008847
Supervised by Jurgen J. Vinju and Tom Verhoeft

October 10, 2021

Abstract

Programming languages have been and are still evolving rapidly. Like natural languages,
it is not clear which language is better. However, over time, common patterns from old
languages have appeared as more specific abstractions in new languages.

A problem that many new languages face is a lack of existing libraries. To overcome
that problem, many new languages have a mechanism for calling functions from other
languages. However, this still means that we either lose the advantage of programming
in a higher-level language, or it requires manual labour to write a higher-level interface
to external functions.

In this work, we build upon earlier research which introduces a suite of program analysis
tools to reduce the labour required for making such a higher-level interface. The existing
suite infers information about error messages, pointer semantics, and memory manage-
ment mechanisms, from programs written in the popular C programming language.

A limitation of the existing suite is that it cannot infer information about pointers which
are stored in structures. We discuss the challenges of removing this limitation and propose
an improvement to the inference algorithm, such that it can make use of that information.
We evaluate our improvements and show that it can improve the inference results on a
real world library.

Contents

Preface

1 Introduction

1.1 Motivation and Context,
1.2 Related Work
1.3 Inferred Interface Glue
1.3.1 The Binding Generation Process.
1.3.2 The Packages Involved 0.
1.3.3 The Analysis Pipeline
1.4 Research Question
1.5 Research Method oo
1.6 Contributions and Roadmap
2 Background Knowledge and Problem Analysis
2.1 Nullability Inference 0.
2.1.1 Nullability in C o0 o
2.1.2 The Inference Algorithm
21.3 AnExampleo
2.2 Structures e
221 Structsin C
2.2.2 Structsin LLVM
2.3 Problem Analysis
3 Nullability Inference through Structure Fields
3.1 Identification of Structures
3.2 Control Flow
3.3 The Improved Inference Algorithm
3.4 Examples e
4 Evaluation
4.1 Case Study: GNU Libmicrohttpd
4.1.1 Roadblock: Inaccurate Error Returns
4.1.2 Roadblock: Bitcasts

o
[
(=2

N O R W W N =

4.2 Soundness

4.3 Suitability of LLVM L
5 Conclusion
5.1 Future Work s,
5.1.1 Better Error-Return Inference
5.1.2 Recovering Struct Information using LLVM Metadata
5.1.3 Quantitative evaluation
5.1.4 Local or Hybrid Identification of Structure Fields
5.1.5 Two-Sided Analysis
A Renovating the analysis suite
A.1 Glasgow Haskell Compiler
A2 LIVM . .
A.2.1 BBLLVM
A22 llvm-pretty
A.2.3 A referential data typeo oL
Glossary
Bibliography

11

46
46
47
47
48
48
48

50
50
ol
o1
51
52

54

56

Preface

In the fifth year of my studies at Eindhoven University of Technology and the second
year of my master programme, it is now finally time to conclude with this master thesis.
Since before starting my bachelor, even, I have been interested in functional programming.
During my master that interest has expanded to programming languages in general. With
this master thesis I hope to take one of my first steps in contributing to the literature.

While working on hobby projects written in the functional programming language Haskell,
I have run into issues with missing or unmaintained bindings for C libraries, especially
for graphical user interfaces. This has been a source of personal motivation to start
researching solutions to this problem.

This master project has been preceded by an exploratory project for the seminar of the
Software Engineering and Technology group. The most promising existing technology in
this area is the analysis suite developed by Tristan Ravitch in his PhD dissertation. It
was sad to see that his tools have not seen much use in practice and required extensive
maintenance.

From the reader I expect a basic knowledge of C or a C-like programming language,
especially experience with pointers is useful. For the technical details, it is also very useful
to have some experience with data-flow analysis. The main audience of the analysis suite
are software developers who create and maintain software in higher-level languages which
needs to interact with software written in C. The theoretical side of these analyses might
also be interesting to programming language researchers.

Finally, I would like to thank my mother, father, and brother, for accommodating me
while working on this project, their non-technical advice, and relaxation in my free time.
And I would like to thank my supervisors Jurgen Vinju and Tom Verhoeff for their
advice and guidance on the program analysis techniques, on the evaluation, on writing
this thesis, and on navigating the bureaucratic landscape of the university, even in the
face of troubling personal circumstances and busy schedules.

111

Chapter 1

Introduction

This is my master thesis about interface glue inference through structure fields. The
main purpose of this inference is to guide the automatic generation of library bindings
from low-level C libraries to high-level libraries in languages such as Python and Haskell.
During my master project we continue the work of Tristan Ravitch on Inferred Interface
Glue [8]. First, we will motivate this area of research.

1.1 Motivation and Context

Since the inception of the first higher-level programming languages in the 1950s there have
always been many different programming languages. There are plenty of valid reasons
for this: they were improvements of previous languages, simply have different purposes,
or are suited to preferences of certain groups of developers. There is no reason to believe
that this proliferation of languages will converge to a single “optimal” language.

However, there has already been an enormous amount of work spent on programs written
in current programming languages. As time progresses and even more work is spent on
programs written in these languages, it becomes harder and harder for new languages to
compete in terms of the amount of readily available libraries.

The most common solution to this problem is to allow programs in new languages to use
functionality from programs written in old languages. Instead of writing a new program
from scratch, we define a new function in our new language which outsources all its work
to functions from the old language. We call the connecting of functions from one language
to another binding and a set of functions that are connected bindings. For that purpose,
many programming languages include a way to indicate that a function outsources all
its work to another programming language, which is usually called a foreign function
interface.

However, only indicating that a function outsources all its work is often not enough, the
input and output types of these functions might also need to be converted. Especially if

you as an author bindings want to integrate them seemlessly into the new language, you
will need to translate concepts from the other language to your new language.

This process can require significant effort and it is error-prone, because these foreign
functions are often not checked by the compiler. Additionally, the functions to which you
create bindings might still change or new functions might be added in the future. So,
this can require a continuous maintenance effort.

In our personal experience we have encountered missing or poorly maintained bindings
while using the programming language Haskell. Haskell is not a mainstream programming
language and therefore does not have the privilege of being targeted as a first class
language for many cross-language library projects. Most notably are the GUI libraries
which often do target more mainstream languages such as C, C++ and Python.

As a solution to this problem, Ravitch [8] proposes to use program analysis techniques to
recover much of the necessary information to write seemless bindings to libraries written
in the popular C programming language. Binding authors can use Ravitch’s tools to hook
into the compilation process of a C library and automatically produce annotations, which
they can then use with another one of Ravitch’s tools automatically produce a Python
library containing bindings to the C library which convert concepts like error-handling,
pointer semantics, and memory management to their Python equivalents. The tools are
not perfect, so authors can inspect the inferred annotations in an interactive interface to
identify mistakes or omissions. If the problem has been found, the bindings author can
manually overwrite annotations and re-run the tools.

Our work builds upon these tools developed by Ravitch to improve the annotations they
produce. We focus on one of the future work suggestions from Ravitch’s dissertation:
inference through structure fields.

1.2 Related Work

In this section, we discuss work related to making it easier for people to write bindings
to libraries from other languages.

One of the oldest and most popular tools that aid in the generation of library bindings is
called SWIG [1]. SWIG allows users to write language-independent interface descriptions
of C and C++ libraries. These descriptions can be used to generate bindings for these
libraries for a wide range of languages. Language support can be added to SWIG through
an extensible module system.

An extension of SWIG is called AutoWIG [, which is a tool that can automatically gen-
erate bindings for Python from C++ code. They automate the process of writing bindings
with SWIG. The generation of wrappers and interfaces is automated even further by
parsing the C++ source code and mapping semantic elements from C++ to Python. This
results in relatively idiomatic bindings in many cases. This approach works better when
the C++ library uses high-level C++ features such as smart pointers and the standard

library. AutoWIG is also able to convert Doxygen documentation to Sphynx documenta-
tion. And another important feature is interactivity. AutoWIG itself is a Python module
which can be used interactively and it is also very customizable.

The GTK GUI project [11] has developed several C libraries for writing programs with
graphical interfaces. They make it easier to write bindings for their libraries by providing
additional information, called GI [5], about their API that can be used by library writers
in other languages to automate the generation of bindings to their libraries. The “haskell-

gi” [12]| project, for example, uses GI information to automatically generates bindings to
the GTK libraries in Haskell.

This approach still has three areas that can potentially be improved: it is specific to
the GTK project, the GI information itself still needs to be written by hand, and the
generated bindings are relatively low-level and not idiomatic. An example of the first
two limitations already comes up inside the GTK project itself. A sub-library of GTK,
called Cairo, does not have GI information that can be used to automatically generate
bindings. The third limitation is exemplified by the “gi-gtk-hs” and “gi-gtk-declarative”
libraries which both offer a higher-level and more idiomatic wrapper around the low-level
“gi-gtk” bindings that were generated with “haskell-gi”.

1.3 Inferred Interface Glue

This section introduces the main related work: the dissertation of Ravitch called “Inferred
Interface Glue” [3|. This thesis builds heavily on that work, so it is important to know
more about it.

Here, we explain the structure of the existing program analysis suite using three different
views. The first view, Section 1.3.1, shows the process of going from source code to
generated bindings. The second view, Section 1.3.2, considers the packages that comprise
the analysis suite and strongly related packages. The third view, Section 1.3.3, shows
which individual analyses exist in the suite and how they depend on each other.

1.3.1 The Binding Generation Process

We start by describing a high-level overview of the steps required to generate bindings
from C source code, as shown in Figure 1.1. The analysis suite starts from the source
code of a program. It hooks into a normal make workflow for compiling C libraries using
a wrapper around the LLVM-based C compiler clang called WLLVM. The WLLVM tool
generates a shared library file which contains LLLVM bitcode, which can be extracted using
the extract-bc tool. The extract-bc tool generates one big file containing all LLVM bitcode
of the entire library. The iiglue tool reads in this bitcode and runs program analyses on the
LLVM IR. When the analyses are finished, the iiglue tool produces a JSON file containing
inferred annotations for the functions and arguments in the library. Optionally, the iiglue
tool can also produce an HTML report as a more human-readable presentation of the

inferred annotations. It also includes and interactive source code viewer which can show
where the inferred information originated from. Finally, these JSON annotations can be
used by other tools to generate bindings in a higher-level language. The included iigen
tool generates bindings for the programming language Python.

Source Code (.c) LLVM Bitcode (.bc) Python Library (.py)
make, wllvm\and clang extract-bc iiglue iigen
Shared Library (.so) Inferred Annotations (.json)

Figure 1.1: The binding generation process.

1.3.2 The Packages Involved

We continue with a slightly more detailed view that shows the Haskell packages involved
in the analysis suite. There are three main packages, two packages for interacting with
the LLVM IR, and three utility packages.

The main executable can be found in the iiglue package, which wraps all the analyses up
into one convenient executable. The iiglue package also contains several other executables
including iigen for generating Python libraries from the inferred information, but we will
not go into detail about those executables. The iiglue package depends on the ‘foreign-
inference’ package which implements the main analyses. These analyses include the error
code analysis, pointer semantics analyses, and memory usage analyses which we will
discuss in more detail later. The ‘foreign-inference’ package, in turn, depends on the
‘llvm-analysis’ package which implements basic analysis on the LLVM IR. Examples of
these basic analyses are: constructing a control flow graph, constructing a call graph, a
framework for data flow analyses, a points-to analysis, and an access path analysis.

All of these packages depend on a way to interact with the LLVM IR. This capability is
split over two packages. The general interface is provided by the ‘llvm-base-types’ pack-
age, which defines Haskell data types that describe the LLVM IR. In these Haskell data
types, the indirect references present in the LLLVM IR are resolved into direct references,
so no further lookups are necessary when dealing with these types. The other package,
‘llvm-data-interop’, is a binding to the original LLVM C++ library. It is used to read out
the LLVM bitcode files and convert it into the types defined in ‘llvm-base-types’.

Finally, there are three notable packages which provide more general utility functionality,

but were still developed in the context of this analysis suite. A package called ‘hbgl-
experimental’ is used to represent and interact with graphs. Graphs are used in the ‘llvm-
analysis’ package, for example for the call graph. The second utility package is ‘ifscs’,
which is a set inclusion constraint solver. This constraint solver is used in problems which
can be expressed as graph reachability. The third utility package is ‘archive-inspection’
which provides a uniform interface for interacting with compressed archives.

1.3.3 The Analysis Pipeline

We zoom further in to the ‘foreign-inference’ package and consider the analysis pipeline
that it contains, which is shown in Figure 1.2. The input is the LLVM IR defined in
the ‘llvm-base-types’ package and information derived from that using the ‘llvm-analysis’
package such as the control flow graph. The result of the analysis pipeline is a collection
of annotations that can be used to generate higher-level bindings. The first step in
the pipeline is a separate analysis to uncover returned error codes and error handling
information. After that there are two groups of analyses, in order they are: analyses which
infer information about the semantics of pointers, and analyses which infer information
about memory usage. The inferred information from all of these analyses is collected into
the output of the pipeline.

In the C language there is no built-in exception mechanism, so error codes have to be
managed manually. A common way to do this is by returning a dedicated error value
from functions that may fail. Usually, an integer is used where 0 indicates success and -1
indicates failure, other values can be used to indicate different types of failure. However,
this technique can only be used on functions that would otherwise not return anything.
Another common case are functions that normally return non-negative integers, they can
return negative integers to indicate failure. If this behaviour is not properly documented,
then it can only be recovered by looking at the implementation of the library.

Another powerful feature of C are its pointers. Pointers are references to memory locations
that you can read from and write to. They are very powerful and flexible, but it is also very
easy to misuse them. For this reason, many high-level languages abstract over common
use cases of pointers. Ravitch identifies three more nuanced semantic properties that
pointers can have: pointers can represent arrays, pointers can be used as output variables
and pointers can be nullable or non-nullable. The analysis suite contains analyses which
infer information about the semantic properties of pointers from how they are used in a
library.

The final set of analyses concern how memory is used. The C language has no built-in
automatic memory management system. The programmer has to allocate and deallocate
memory manually. If a function deallocates one of its arguments then it needs to be the
owner of that allocated value. An allocated value cannot be passed to an owning function
and, after that, to another function because that can cause use-after-free or double-free
bugs. It is also important that an allocated value always gets passed to at least one
owning function to ensure that it is deallocated eventually and does not cause a memory

leak. Most higher-level languages have automatic memory management, so care must be
take to make sure that the automatic memory management of the language in which the
bindings are written does not conflict with the manual management of the C functions.
The analysis suite includes analyses to recover this information.

C Library Source

Analysis

Error Codes

Pointers
Y

Nullable

Arrays

Output

Memory —¢

Finalizers Allocators

l

Transfer RefCounts

l

Inferred Annotations

Figure 1.2: Ravitch’s analysis pipeline. This is a slightly modified version of Figure 1.1
in Ravitch’s dissertation.

1.4 Research Question

In this thesis we will consider the following research question:

How can the analysis suite be improved to infer more annotations?

1.5 Research Method

In this section we will look at the methods that we use to find an answer to our research
questions. We consider the general approach to research in this thesis and the method
for evaluating the results.

Our research question is open-ended, we do not have a clear existing method for answering
this question. We must first consider the context and identify when the existing algorithm
fails to produce annotations. This calls for a bottom-up or inductive research approach
where we first observe patterns in practice, then connect them to the existing theory, and
finally use that theory to improve the analysis algorithm. In practice, this process is also
iterative, so after one such cycle it might turn out that the result is not yet as desired, so
we restart the cycle with our new information. Of course, in this thesis we will present a
cherry-picked version of events.

This inductive approach already involves observing patterns in real-world examples, so it
is straightforward to combine it with a qualitative analysis of the results of our improve-
ments on those same examples. So, we use qualitative analysis to evaluate our answer
to our research question. That means that we manually inspect the results and describe
their qualities subjectively. Such a subjective description has the disadvantage that it is
less precise and it often involves a larger amount of manual labour when compared with
a quantitative analysis, which means that our sample size is small.

This is as opposed to quantitative analysis which would mean to run many examples
through an often automated process which produces objective numbers in the end. We
believe it is important to perform a quantitative analysis to know exactly how useful our
work is, however, a fully automated approach still requires some more work and we first
want to focus on exploring the possible options and determining if this improvement is
feasible at all. So, we leave a full quantitative analysis as future work.

1.6 Contributions and Roadmap

In this section, we list our contributions and deliverables and we present a roadmap of
the structure of this thesis.

Our contributions are the following;:

e We have updated the Ravitch’s analysis suite to work with more recent versions of
GHC and LLVM.

e We have designed improvements to the nullability inference to account for pointers
in structure fields.

e We have implemented experimental support for nullability inference through struc-
ture fields.

e We have evaluated the new inference algorithm on GNU Libmicrohttpd 0.9.73.
We have produced the following deliverables:

e The updated software bundled up in ‘iiglue-bundle’ repository [9], including the
packages: ‘llvm-analysis’, ‘llvm-pretty-referential’ (new), ‘foreign-inference’, and
‘iiglue’.

e Upstream fixes and additions: a fix for a small critical issue in ‘ifscs’, changes for

visibility and linkage for ‘llvm-pretty’ and ‘llvm-pretty-be-parser’, and a fix for a
compilation error in ‘hgbl-experimental’.

e This thesis, where we describe the existing tools, present our improvements, and
evaluate them on a practical library.

e Our experimental input: ‘libmicrohttpd’ version 0.9.73, included in the ‘iiglue-
bundle’ repository.

This thesis is structured as follows:

e First, we have focused on inference through structure fields, specifically nullability
inference. On this subject, we explain what it means for a pointer to be nullable and
the existing nullability analysis of Ravitch in Chapter 2.1. Additionally, we describe
background knowledge on structure fields and their semantics in Chapter 2.2.

e Then, we propose an improvement of the inference algorithm to account for struc-
tures in Chapter 3.

e Afterwards, we evaluate this improvement by using them to infer properties of a
real C library and we discuss the improvements in Chapter 4.

e Finally, we conclude in Chapter 5

e In Appendix A, we discuss our experience renovating Ravitch’s tool suite.

Chapter 2

Background Knowledge and Problem
Analysis

In this chapter we present required background knowledge and we analyse the problem
that we address in this thesis. We explain the Ravitch’s existing nullability inference
algorithm in Section 2.1. We describe and show examples of structures in C and LLVM
in Section 2.2. Finally, we analyse the problem in Section 2.3.

2.1 Nullability Inference

In this section, we describe nullability analysis, which is an analysis that recovers higher-
level semantics from low-level pointers in C. We first specify what it means for a pointer
to be nullable in C. Then we describe the nullability inference algorithm developed by
Ravitch in his dissertation.

2.1.1 Nullability in C

In general pointers in C are just numbers with extra operations for accessing memory
at the location indicated by that number. However, not all numbers are valid memory
locations. The most well known and most used invalid memory location is called the null
pointer, which is a reserved constant, usually zero, that is guaranteed never to be valid.
The main use of null pointers is to indicate the absence of a value. For example a function
might accept a null pointer for optional arguments, which are checked and replaced by a
default value if the argument is the null pointer.

Unfortunately, every pointer type in C contains a null pointer constant, which means that
all pointer arguments are theoretically optional and should be checked before they are
used. Practically, it is really easy to omit the checks and it is common practice to implic-
itly or through documentation add the assumption that certain pointer arguments are
not nullable. Some more modern languages like Haskell, Rust and ML-derived languages

allow the programmer to specify whether a certain value is nullable or not explicitly, with
Many and Option respectively Even languages that do not have such a feature can still
benefit from run time checks to ensure that no null pointers are passed to functions that
expect arguments that are not nullable. So, to be able to produce high-quality bindings
we should recover the implicit nullability information from C functions.

2.1.2 The Inference Algorithm

The work of Ravitch, which we build upon in this thesis, includes a nullability inference
algorithm, which we will describe here.

Nullability, Specifically

In general, whether a pointer is nullable or not is decided by the intent of the author of
the library. If the nullability is not specified explicitly, such as in C, then we need a more
specific definition of nullability, such that we can consistently infer the nullability of a
pointer from the behaviour of the library. However, any more specific definition is likely
to be subjective and conflict with the intent of at least some library authors.

Therefore, Ravitch instead considers what users of the generated bindings want, which
is to be able to access all useful functionality of a library. He proposes that a pointer
argument is not nullable if an undesirable event occurs when that argument is a null
pointer. The undesirable events are:

e dereferencing a null pointer, which is usually the argument in question

e never returning, e.g. calling the abort or exit functions, which stops the execution
of the program

e returning an error code, which has been inferred during an earlier analysis

If one of these undesirable events occur, then the function does not do useful work and
therefore the argument can be inferred to be non-nullable.

An important restriction is that an argument is only considered non-nullable if the un-
desired event must happen. If there is even a tiny chance that other arguments or
side-effects cause the undesired event not to happen then the argument is still considered
nullable. The reason behind this is that we do not want to make this potentially useful
functionality inaccessible in the bindings that we eventually generate from our inference
results.

Input

As we have seen in Section 1.3.1, Ravitch’s actual algorithm does not run directly on
C source code. Instead, the source code is first compiled into LLVM IR. The algorithm
is written in Haskell, so this IR is converted to Haskell data types. Finally, these data
types are transformed to algebraic data types with cycles and sharing in which all explicit

10

references of the LLLVM representation are resolved and each instruction is labeled with
a unique number, we will call this the referential representation.

The algorithm also requires the call graph, which shows the dependencies between func-
tions, and the control-flow graph, which shows the dependencies between intstructions
within a function. These graphs are constructed using auxiliary analyses.

Data-Flow Analysis

To determine which pointer arguments cause undesirable events when they are null,
Ravitch uses a forward data-flow analysis [6], over the referential representation. This
analysis traverses strongly connected components of the call graph in topological order
and analyses all functions that they contain, remembering results of functions that have
been analysed. This analysis tracks data-flow facts before, pre, and after, post, each
instruction of a function. Over the course of this algorithm, these data-flow facts become
better and better (over-)approximations of the correct solution.

In general, the data-flow facts should be a lattice with a top element T and a meet
operation M. In this case, the lattice is the powerset of the set of all pointer arguments
of the function under analysis. The top element of that lattice is the complete set, and
the meet operator is set intersection.

The pre of the first instruction in the function is initialised to the empty set because,
at that point, no arguments are known to cause undesirable events. The rest of the
data-flow facts are initialised to the top element of the lattice, so they initially contain
all arguments to the function under analysis.

For each instruction, labeled ¢, in the function, this analysis applies the corresponding
transfer function to pre, and stores the result in its post,. Then, for each successor
instruction k according to the control-flow graph, we set pre, < post, I pre,. This
process is repeated until the (maximal) fixed point is reached.

When the fixed point is reached we will know that our solution satisfies the following
equations:

(V0 :: post, = fi(pre,))
(VU k : k is a control-flow successor of ¢ : pre;, C post,)

Where f; is the transfer function for instruction /.

For each function, the result of this analysis is the post of the last instruction in that
function. After the fixed point has been reached, that data-flow fact will be taken as the
set of all non-nullable arguments of that function.

The Transfer Functions

The most important part of this analysis are the transfer functions. A transfer function
specifies which information can be inferred for each instruction in the program.

11

For this nullability analysis, there are three relevant instructions: load, store, and call.
The transfer function, called simply f,, which is parameterised by the unique number of
each instruction, is shown in Figure 2.1. There are four groups of transfer functions, the
three that are associated with the load, store, and call instructions are shown in the
Figure and the transfer functions in the remaining group for all other instructions are
simply identity functions.

[load ptr], : fo(x) = x U deref(ptr)
[store val ptr], : fe(z) = o U deref (ptr)
[call calledFunc(xy,xa, ..., %)), :

folx) ==

U T, if noRet(calledFunc).
U{deref(z;) | i € {1,...,n}, notNullable(calledFunc,i)}, otherwise.

U {deref (calledFunc), if indirect(calledFunc).

0, otherwise.

Figure 2.1: Transfer function for nullability analysis.

In this transfer function, we are using a few functions that we have not yet defined.
The ‘noRet’ predicate determines whether the called function does not return based on
results from a previous analysis. Examples of functions that do not return are exit and
abort, which stop the current program from running, or functions like longjmp which
replace the normal program flow. Encountering such a function is considered undesirable
behaviour and therefore the transfer function returns the top element of the lattice, which
means that all arguments to the current function are considered to be non-nullable at
that instruction.

The ‘notNullable(f,7)” predicate determines if the ith argument of function f is nullable
based on earlier results from this nullability analysis. Usually, this analysis follows the
call-graph, so this information should be available, but in the case of mutual recursion it
might be necessary to iterate the analysis a few times to reach a fixed point.

The ‘indirect’ predicate determines if the called function is an indirect call. A call is
indirect if the callee is a function pointer and if the function that it points to cannot
be determined at compile-time. This function pointer could itself be an argument to the
function that we are analysing, so in this case we consider that pointer to be dereferenced.

Finally, we need to define what it means for a value to be dereferenced. The input of
‘deref’ is a value of type pointer, and the output is a possibly empty set of non-nullable
arguments. The ‘deref’ function inspect its argument following the resolved references in
our referential representation, if it reaches an argument of the current function then it

12

returns the singleton set of that argument, otherwise it returns an empty set. Along the
way there can be a few different obstacles.

When we have established that a value is dereferenced, the first thing we do is try to find
the base location that is accessed. We search backwards through the resolved references
and ignore bitcasts. At this point there are several possibilities:

e If we run into a global variables or local fresh allocation then we do nothing, because
both of these are always safe to dereference.

e If we run into a load instruction then that means we are dereferencing a pointer
which itself was stored in memory, so we have to give up and do nothing. It should
be noted, however, that we do run optimisations beforehand which try to avoid
memory accesses if they are statically known, so if these are still left in the program
then it must mean they are difficult or impossible to resolve statically.

e If we run into a getelementptr instruction then that means the program derefer-
ences a base pointer with a certain offset. We do not care about the specific offset
and continue searching for the base location of this base pointer.

e Otherwise we strip any remaining bitcasts off and continue with the resulting value.

The next step is to deal with possible control dependencies. The first possible control
dependency is introduced by the select instruction. This instruction represents an
inline choice between two values based on a predicate, similar to the ternary operator in
C: cond 7 iftrue : iffalse. If we encounter such a select instruction then we have
to give up and do nothing. Again, we assume that previous optimisation would eliminate
this instruction if it was possible to know statically which value is selected.

The other instruction which introduces a control dependency is the phi instruction. This
instruction chooses a value from multiple choices based which control flow is taken to
reach this instruction. In general it is also not possible to know which value will actually
be chosen at run-time, but there is one situation in which we can that one value will be
chosen at least once. That is, if all but one of the predecessors require the control flow to
first pass at least once through the phi node and if there is only one unconditional jump
into this loop. Then we know that the value that is associated with that unconditional
jump will be taken at least once.

int f(int *x) {
int n = 0;
do {
n += *x;
} while (n < 10);
return n;

}

Figure 2.2: Do-while loop example in C.

13

A common example of this is a do-while loop in C as shown in Figure 2.2. This loop gets
compiled to the LLVM IR shown in Figure 2.3.

define i32 @f(i32* %0) {
%2 = load 132, i32* %0, align 4
br label %3

; <label>:3: ; preds = /3, /1
%4 = phi 132 [0, %1 1, [%5, %3 1]
%5 = add 132 %2, %4
%6 = icmp slt 132 %5, 10
br i1 %6, label %3, label %7

; <label>:7: ; preds = }3
ret i32 %5

Figure 2.3: Do-while loop example in LLVM IR.

As you can see there is a phi node under label 3 with two predecessors, but one of the
predecessors is a branch from label 3 itself and the other predecessor is an unconditional
branch. So, in every execution of the function £ we know that the identifier %4 takes on
the value 0 at least once.

Witnesses

In Section 1.3.1 we mentioned that the iiglue tool, which contains this analysis, is able
to produce an interactive code viewer which shows where the annotations originate from.
This knowledge about the provenance of the annotations is tracked along with the data-
flow facts. When the ‘deref’ function identifies a new argument as non-nullable, then it
inserts the argument as key and a singleton set containing the current instruction, called
a witness, along with a string simply containing “deref” as value into a map to keep track
of the provenance of this information. The transfer functions could also add arguments in
the case of a call instruction which does not return, then it adds a witness with the text
“arg/noret”. The meet operation is an intersection of the keys in the maps, but if a key
occurs in both maps then the sets of witnesses are combined using a set union operation.

These witnesses are only used in the interactive code viewer. They are not stored in the
JSON file with annotation, which is used to generate bindings. Because of this and to
keep things simple, we also will not address witnesses in the rest of this thesis.

2.1.3 An Example

To make the steps described above more concrete, we now consider an artificial example.
The example that we will discuss is shown in Figure 2.4. This has been constructed to

14

include: a function call, control flow, and multiple nullable and non-nullable arguments.
We will now show how nullability information is inferred from this code.

long * f(long *x) {
return x + *X;

b

void g(long *x, long *y, long *z) {
if (x == NULL) {
x = £(y);
} else {
Xy = *X;
*z += 1;
}
}

Figure 2.4: The example that we will use to show how nullability inference works.

The first step of the analysis suite is to convert the C source code into LLVM IR. For this
example, the resulting IR is shown in Figure 2.5. This IR is modified slightly to make it
easier to read and to make it more suitable for showing the analysis process.

Before starting the nullability inference algorithm, the analysis suite will first perform
some other program analyses. At this point, the most important is the call graph analysis.
This analysis determines which functions depend on which other functions. In this case
it is clear that £ has no dependencies and g depends only on f. From this graph a linear
order is constructed using a topological sort, in this case the result is simply: f then g.

The nullability inference algorithm is run separately on all functions according to this
topological ordering, so we start by analysing the function f. The function f consists of
three instructions. We start with the first instruction and our data-flow fact is the empty
set, so at this instruction none of the arguments are inferred to be non-nullable.

The first instruction, load 164, i64x %0, immediately matches the first case of the
transfer function as shown in Figure 2.1. So, the resulting data-flow fact after the first
instruction is () U deref(%0). In this case, deref(%0) is equal to %0 because %0 is an
argument of the current function. So, our data-flow fact is now {%0} indicating that the
first argument of £ is inferred to be non-nullable at this instruction.

The remaining two instructions are not relevant to the nullability analysis and do not
have special control flow apart from that the control flow of £ ends at the last instruction.
This means that the data-flow fact is simply copied and the result of the analysis of f is
{%0}, which means that the first, and only, argument of f is non-nullable.

15

define 164x Of (i64* Of) {
%2 = load i64, i64x %0
%3 = getelementptr 164, i64x* %0, i64 %2
ret i64* %3

}

define void @g(i64x* %0, i64x %1, i64x* %2) {
W4 = icmp eq i64x %0, null
br i1 %4, label %5, label %7

; <label>:5: ; preds = 3
%6 = call i64x @f (i64x* %1)
br label %11

; <label>:7: ; preds = /3
%8 = load 164, i64x* %0
store i64 %8, i64x* %1
%9 = load i64, i64* 92
%10 = add i64 %9, 1
store i64 %10, i64x* %2
br label %11

; <label>:11: ; preds = 7, 15
ret void

Figure 2.5: The LLVM IR produced from the code in Figure 2.4.

We continue along the call-graph with the only remaining function: g. This function
is more complicated: it consists of three basic blocks which are blocks of contiguous
instructions that are not interrupted by control flow. The first block is a comparison and
a conditional branch based on that comparison. Then there are two possible blocks which
join up at the return instruction at the end. A graph representation of this is shown in
Figure 2.6.

Again the inference starts with an empty set. The comparison icmp and the branch br
intructions are not relevant, so in the first block nothing of interest happens. For the
branching, we propagate the information gathered up to now, in this case the empty set,
to both branches, however, now we need to decide in which order we traverse block 5
and block 7. An important property of data-flow analyses like this is that it does not
matter which order you choose to traverse the control-flow graph. As long as you keep
propagating information to all successor blocks when you infer new information about
a block, then you will usually reach the unique solution. We will choose a depth-first
traversal which starts with basic block 5, then continues with block 11, then returns to

16

©

Figure 2.6: Control-flow graph of the function g from Figure 2.5. The numbers are the
labels of the basic blocks.

block 7, and finally visits block 11 one more time.

The basic block with label 5 starts with a call instruction, calling the function £. This
instruction is relevant: we can see from our transfer function in Figure 2.1 that we union
our current set, in this case the empty set, with two other sets. The function f does
return and it has one argument which in this case has the value %1, so we take the set
{deref(%1) | notNullable(f,1)}. From our previous analysis of the function f we know
that the first argument is indeed non-nullable, so we can evaluate this set further to
{deref(%1)}. And in this case %1 is one of the arguments of g, so we end up with the set

{%1}.
We propagate this information to basic block 11. This block only contains an irrelevant

return instruction, so now the result of the inference for the function g is the set {%1},
but we still need to visit block 7.

In block 7 we start again from the empty set that we got from block 3. Here, there
are two load instructions and two store instructions which are relevant. The first load
instruction dereferences %0 which is added to the current set because it is an argument.
Next is a store instruction, which dereferences %1 and that is also an argument, so it
is added to the set. Then we encounter another load instruction, which dereferences
%2 and that is also an argument, so at this point in the program all the arguments of
g are in the set of non-nullable arguments. The next instruction is an irrelevant add
instruction, which we skip. Following is a relevant store instruction, which dereferences
the argument %2, but that is already in the set, so nothing changes. The last instruction
is an unconditional branch to block 11.

Finally, in block 11, we combine the previous result {%1} with this new result {0, %1, %2}
using the meet operator. In this case, the meet operator is just set intersection, so we
end up with the set {%1} as the final result of the inference for the function g. The fully
annotated LLVM IR is shown in Figure 2.7.

17

define void @g(i64x* %0, i64x %1, i64* %2) {
; 17
»4 = icmp eq i64x* 70, null
; 17
br i1 %4, label %5, label %7
; 14

; <label>:5: ; preds = /3
; {2}
%6 = call i64x @f (i64* %1)
; {71}
br label %11
; {71}

; <label>:7: ; preds = }3
; 1}
%8 = load i64, i64x* %0
; {70}
store i64 %8, i64x* %1
; {40, X1}
%9 = load i64, i64x* 92
;s 140, X1, %2}
%10 = add i64 %9, 1
; X0, %1, 2}
store i64 %10, i64x* %2
; {10, X1, J2}
br label %11
; {40, X1, 2}

; <label>:11: ; preds = 7, %5
; {71}
ret void
; {41}

}

Figure 2.7: The LLVM IR produced from the code in Figure 2.4.

It was to be expected that the first argument is nullable, because it is explicitly checked
for nullability in the code and only dereferenced in one of the branches. Similarly, the
second argument is dereferenced in all branches, so it should obviously be non-nullable.
Perhaps less obvious is that the third argument is not inferred as non-nullable. It is
only safe to pass a null pointer for this third argument if the first argument is also null,
because then the branch with block 5 is taken and the third argument is not dereferenced.
However, the current inference algorithm is pessimistic and only infers non-nullability for

18

an argument if an undesirable event must occur when a null pointer is passed for that
argument. Otherwise we may end up excluding a valid code-path in the bindings we
generate from this information.

2.2 Structures

In this thesis we extend the existing nullability inference algorithm to take pointers stored
in structure fields into account, so it is important to know more about structures. In this

section, we introduce structures as they appear in C source code and also show the
translation to LLVM IR.

2.2.1 Structs in C

Informally, structures are collections of data in a fixed form or shape. For example, we
can define a structure for persons as shown in Figure 2.8 which consists of two double
precision floating point numbers that indicate the cartesian coordinates x and y. In
general a structure can be defined by listing a number of named fields along with their

types.

#include <stdlib.h>
#include <stdzo.h>

struct person {
char *first_name;
char *last_name;

+;

struct person * new_person(char *first_name, char *last_name) {
struct person *p = malloc(sizeof (struct person));
p->first_name = first_name;
p->last_name = last_name;
return p;

void greet(struct person *p) {
printf ("Hello %s %s!'\n", p->first_name, p->last_name);

b

Figure 2.8: Basic structure syntax in C.

Figure 2.8 also shows how you can write values into struct fields and how you can read
values out of the struct fields. The main syntax we use for this is the arrow, for example
in p->x. If this is used on the left hand side of an assignment then the value on the right

19

hand side is written into the structure ‘p’ at field ‘x’. When this syntax is used in an
expression then it means to read out the value from the strucuture ‘p’ at field ‘x’.

There are other ways to access struct fields. Note that the arrow syntax is used to access
struct fields of pointers to structs. A similar notation, but with a dot instead: p.x, can be
used if we have direct access to a struct. Figure 2.9 shows an alternative implementation
of the greet function which uses direct struct access. However, especially for larger
structs, it is uncommon to see that kind of access due to performance considerations
which we will not go further into.

void greet_direct(struct person *p) {
struct person q = *p;
printf ("Hello %s %s!\n", q.first_name, g.last_name);

}

Figure 2.9: Direct struct field access.

A third way to access struct fields is to copy over entire structs by assigning one struct to
another. Figure 2.10 shows an example where all the fields of an existing person struct
are copied into a newly allocated person struct. In the end, this has the same effect as
copying all the fields individually, but it is often implemented more efficiently.

struct person * copy_person(struct person *p) {
struct person *q = malloc(sizeof (struct person));
return q;

b

Figure 2.10: Struct copy.

Finally, no feature of C would be complete without a way to subvert it. In this case, the
memory that stores the struct fields can be accessed directly if you can guess the right
memory address or more realistically by pointer arithmetic on pointers to nearby data.
For example, as shown in Figure 2.11, you could convert a pointer to the struct into a
void pointer, add 8 to it, and finally we convert it back into a pointer to a string, which we
can dereference to get the ‘last_name’ field. Of course this behavior is implementation
defined.

char * subvert(struct person *p) {
return *(char **) ((void *)p + 8);

b

Figure 2.11: Subverting struct field access.

20

2.2.2 Structs in LLVM

In this section we look back on the forms of struct access and show what they look like
after they are compiled to the LLVM IR. The inference algorithm works on this LLVM
representation, so it is important to have a basic understanding of what it looks like.
Along the way we explain the most important aspects such that even people with little
to no knowledge about LLVM should be able to follow it, although a basic understanding
of programming in a C-like language is still assumed. For clarity and to make everything
fit on the page we have left out some irrelevant details such as metadata annotations and
modifiers.

hstruct.person = type { i8%, i8* }
@.str = private constant [14 x i8] c"Hello %s %s!\OA\00O", align 1

define Ystruct.person* @new_person(i8* %0, i8* 1) {
call void @llvm.dbg.value(metadata i8% %0, metadata !19)
call void @llvm.dbg.value(metadata i8% %1, metadata !20)
%3 = call i8% @malloc(i64 16)
»4 = bitcast i8% %3 to %struct.person*
call void @llvm.dbg.value(metadata %struct.person*x %4, metadata !21)
%5 = bitcast i8% %3 to i8xx
store 18 %0, i8%* 5, align 8
%6 = getelementptr i8, i8* %3, i64 8
%7 = bitcast i8% Y6 to i8*x*
store 18 %1, i8%x* 7, align 8
ret Ystruct.person* %4

define void @greet(Jstruct.personx* %0) {
call void @llvm.dbg.value(metadata %struct.person*x %0, metadata !41)
%2 = getelementptr %struct.person, %struct.person* %0, i64 0, i32 0

%3 = load i8%, i8x* 72, align 8
W4 = getelementptr Y%struct.person, %struct.person* %0, i64 0, i32 1
%5 = load i8%, i8x* %4, align 8
%6 = call i32 (i32, i8%*, ...) @__printf_chk(
i32 1,
i8x getelementptr ([14 x i8], [14 x i8]* @.str, i64 0, i64 0),
i8x %3,
i8* %5
)
ret void

Figure 2.12: Basic structure syntax in LLVM IR.

21

In Figure 2.12 we show what the basic struct example from Figure 2.8 looks like in the
LLVM representation. There are three top-level declarations: the person struct with
two fields (the field names are gone), a string constant containing the template for the
greeting, a new_person function, and a greet function.

Perhaps the first thing that attracts your attention is that LLVM is a typed language, so
you see types almost on every line. One of the most basic types are the integers; these have
names starting with an ‘i’ and then a number indicating how many bits wide that integer
is. In the struct fields we see two pointers, denoted by *, to eight-bit integers, which are
used to store the characters of the first name and last name. The string constant as a
fixed-length array type denoted by [14 x i8], meaning that the array contains fourteen
eight-bit integers. Furthermore, we see that the %struct.person can itself be used as a
type, we see different width integers: 132 and 164, and finally we see a special metadata
type for metadata.

In the body of the functions we see many straightforward instructions: call for calling
functions, load for loading values from memory, store for storing values in memory,
bitcast for changing the type of a value without changing the actual information, and
finally ret for returning a value from a function. You will also see special function calls
to the @11vm.dbg.value function. That function attaches some metadata information
from its second argument to the value given as its first argument.

The last instruction that we need to explain is getelementptr. The getelementptr
instruction is critical for accessing structure fields, but it does not do any memory access
by itself; that needs to be done separately with the load instruction. Rather, given a
pointer to a structure, or otherwise indexable value, it calculates an offset based on given
indices. Structures can be nested, so sometimes multiple indices are necessary.

define void @greet_direct(%struct.person* %0) {
call void @llvm.dbg.value(metadata %struct.person* %0, metadata !50)
%2 = getelementptr %struct.person, %struct.person* 70, i64 0, i32 0
%3 = load i8%, i8xx* 72, align 8
call void @llvm.dbg.value(metadata i8%* %3, metadata !51)
h4 = getelementptr %struct.person, %struct.personx %0, i64 0, i32 1
%5 = load i8%, i8x* %4, align 8
call void @llvm.dbg.value(metadata i8% %5, metadata !51)
%6 = call i32 (i32, i8%*, ...) @__printf_chk(
i32 1,
i8x getelementptr ([14 x i8], [14 x i8]* @.str, i64 0, i64 0),
i8x %3,
i8% %5
)

ret void

Figure 2.13: Direct struct field access in LLVM IR.

22

Figure 2.13 shows that the LLVM representation of the greet_direct function from
Figure 2.9. The function is almost identical except for two extra metadata calls. So, the
LLVM representation does not distinguish between these two ways to access structure

fields.

define Ystruct.person* Qcopy_person()struct.person*x %0) {
call void @llvm.dbg.value(metadata %struct.person* %0, metadata !61)
%2 = call i8* @malloc(if4 16)
%3 = bitcast i8% %2 to Jstruct.person*
call void @llvm.dbg.value(metadata %struct.person* %3, metadata !62)
»4 = bitcast %struct.personx %0 to i8%
call void @llvm.memcpy(i8* align 8 %2, i8%* align 8 %4, i64 16, il false)
ret Ystruct.person* %3

Figure 2.14: Struct copy in LLVM IR.

The LLVM representation of the copy_person struct from Figure 2.10 is shown in Fig-
ure 2.14. Here we see a call to the @11vm.memcpy function which copies an area of memory
from one location to another, in this case it copies all fields from the given person struct
to a newly allocated piece of memory.

In Figure 2.15 you can see what happens to the C source code from Figure 2.11 where
we cast a pointer struct and manually dereference an offset of that pointer. Notice that
LLVM has completely recovered normal struct field access. So, if we base our inference
on struct field access, then we can even get information in some situations where the C
source code directly manipulates memory.

define i8% @subvert(/struct.person* %0) {
call void @llvm.dbg.value(metadata %struct.person* %0, metadata !74)
%2 = getelementptr %struct.person, %struct.person* %0, i64 0, i32 1
%3 = load i8%, i8x* 72, align 8
ret i8x 93

Figure 2.15: Subverting struct field access in LLVM IR.

2.3 Problem Analysis

In the previous sections, we have discussed nullability inference and structure fields, so
now we have the required background knowledge to refine our research question and
discuss approaches answering it.

We have seen in Section 2.1.2 that the inference algorithm will trace back the origin of a
value that is dereferenced. If the origin is a function argument, then we can annotate that

23

argument as being non-nullable. However, we might instead run into a load instruction,
which means that the dereferenced pointer is stored in memory, so we cannot easily
determine the real source of that pointer. In some of these cases the memory that stores
the pointer is actually part of a struct. If we can identify those cases then we can remove
part of this blind spot of the nullability inference algorithm.

So, our refined research question is:

How can we improve the existing nullability inference algorithm to infer the
nullability of pointers stored in structure fields?

An example where such an extension would be useful is the greet function that we have
seen in Figure 2.8; this function extracts the first name and last name fields from the
person struct and prints them, so these pointers are dereferenced. If we would construct
a new person using the new_person function that contains null pointers for the first
name or last name fields, then we would encounter undesirable behaviour. Hence, our
analysis should enable us to annotate the first_name and last_name arguments of the
new_person structs as non-nullable.

If we can achieve that, then our analysis results will be more accurate for programs that
store pointers in structure fields, which is common in practice.

24

Chapter 3

Nullability Inference through Structure
Fields

In this chapter we look back on the existing nullability analysis discussed in Section 2.1.
The existing analysis can not infer any information about pointers which are stored in,
and extracted from, structs. We consider how we can apply the knowledge about structs
discussed in Section 2.2 to improve the nullability analysis, such that it can take structs
into account.

Informally, the existing nullability inference algorithm works as follows: if we have a
function that takes a pointer argument and dereferences it then we can infer that the
pointer argument is non-nullable, because a null pointer would cause an undesirable
event when dereferenced. We can adapt this to structure fields as follows: if we have a
struct field which stores a pointer, the pointer is retrieved from that field and finally the
pointer is dereferenced, then we can infer that the pointer field is non-nullable.

In this section we make this informal description more formal. First we consider two
important nuances: how we identify structures in Section 3.1 and the scope and control
flow considerations in Section 3.2. Afterwards, we propose changes to the transfer func-
tion to implement this new understanding in Section 3.3. Finally, we will go through
some artificial examples to show how this extension can improve the inference results in
Section 3.4, real-world examples will be discussed in Chapter 4.

3.1 Identification of Structures

The first important nuance in the semantics of structs is how we identify structs. In
Figure 2.8 we define a struct called ‘person’, we could use this name as identification.
That means that all structs with this name are seen as equal and inferred properties are
shared between all occurrences of structs with this name. We call this perspective the
global identification of structs.

25

For an example of how this can improve inference we can look at Figure 2.8 again. We
see that the greet function uses the first_name and last_name fields in the printf
function, which requires that its arguments are non-nullable. In the global perspective
we infer from this that the first_name and last_name fields of the person struct are
non-nullable. Furthermore, in the new_person function we write the first_name and
last_name arguments into their respective fields of the person struct, so these arguments
are non-nullable. In this way, the greet function is linked to the new_person function
even though they are not connected in the call graph.

Alternatively, we can view the identity of struct fields from a local perspective. In this
view, every struct gets a new identity whenever it is initialised or modified. In Figure 2.8,
the struct in the argument of the greet function is not necessarily the same struct as the
struct produced by the new_person function. So, we cannot infer that the arguments of
the new_person function are non-nullable.

For an example where this local view does infer nullability of function arguments we can
consider a function that combines new_person and greet as in Figure 3.1. Reasoning
backwards, the greet function requires that the fields of p are non-nullable and the
new_person function writes the first_name and last_name arguments into that struct,
therefore those arguments must also be non-nullable.

struct person * greet_new_person(char *first_name, char *last_name) {
struct person *p = new_person(first_name, last_name);
greet (p);
return p;

}

Figure 3.1: Example where local inference works.

3.2 Control Flow

In the previous section, we have shown how the global perspective on the identification of
structures combines information about the access of structure fields even across different
functions. Here, we consider how the inference algorithm should work inside functions
with more complex control flow.

An option is to consider any pointer structure field that is dereferenced anywhere in a
function to be non-nullable. However, this contradicts a very intuitive property, namely
that if there is a check that the pointer structure field is not null before dereferencing it,
then it should not be inferred to be non-nullable.

An example where the pointer is checked before dereferencing, is shown in Figure 3.2. We
have a function £ which takes as input a person struct, which we defined in Figure 2.8.
The function simply reads the first_name field from the record, checks if it is not null,
and returns the first character if that is true and the

26

0 byte otherwise. If the person struct x contains a null pointer for the first_name field
then nothing goes wrong: it just returns a default value. So, here we should not infer
that the first_name field is non-nullable.

char f(struct person *x) {
char ¢ = '\0';
char *y = x->first_name;
if (y !'= NULL) {
c = *y;
}

return c;

Figure 3.2: Example of structure access with nullability check.

On the other end of the spectrum, we could stay closer to the approach from Section 2.1.2
where we only infer non-nullability if running a function must cause the structure field
to be dereferenced. This might seem like an appropriate conservative solution, but it is
perhaps too conservative.

Consider an example where there is control flow but it is not related to the nullability of
a structure field, such an example is shown in Figure 3.3. The function g takes as input
a pointer to a person struct x and an integer b. The integer b is used to decide whether
the first_name field should be dereferenced, if it is 0 then the field is not dereferenced
otherwise it is dereferenced. If we stick to the conservative approach, then we cannot
infer that the first_name is dereferenced.

char g(int b, struct person *x) {
char ¢ = '\0"';
if (b) {
c = *x->first_name;
}
return c;

b

Figure 3.3: Example of structure access with unrelated check.

Now, let us consider a slight alteration to this example. We move the dereferencing of
the first_name field into its own function. The result of this simple transformation is
shown in Figure 3.4. Because of the global identification of structure fields, running the
inference on this new function h will let us infer that the first_name field is non-nullable.
This suggests that a more lenient approach might be feasible.

27

char h(struct person *x) {
return *x->first_name;

b

char g(int b, struct person *x) {
char ¢ = '\0';
if (o) {
c = h(x);
}
return c;

}

Figure 3.4: The same as Figure 3.3, but now with dereferencing in separate function.

Let us also quickly revisit the first example where we do check for nullability from Fig-
ure 3.2. There, the first_name field is accessed in two steps: first the char pointer is
extracted from the first_name field of the person struct, that pointer is only derefer-
enced later in the if-statement. If we would want to extract that usage into a separate
function we would have to include the whole if-statement, so the inference results would
not change. This provides more evidence that there is perhaps a suitable middle ground.

3.3 The Improved Inference Algorithm

In this section we describe how to integrate inference through structure fields with the
observations from Section 3.1 and Section 3.2 into the existing inference algorithm from
Section 2.1.2.

The core of the data-flow analysis algorithm stays the same: our input is the referential
representation, we apply transfer functions to data-flow facts before each instruction,
and propage information along the control flow graph until a fixed point is reached. We
describe how to extend the lattice and transfer functions for nullability inference through
structure fields.

Remember from Section 2.1.2 that the lattice, the information that we are inferring at
each instruction in the program, for the normal nullability analysis is the set of non-
nullable arguments of the current function. To track information about the nullability of
structure fields we need to have some additional container which stores the struct and
field names of non-nullable fields.

Simply storing the struct and field names in a set with set intersection as meet would give
us the conservative behaviour and with set union as meet would give us the behaviour
that is too lenient. Instead, we store the non-nullable fields in a map or dictionary, so our
data-flow facts are now tuples of sets of non-nullable arguments and maps of struct names
and sets of their non-nullable fields. In our formulas we will show maps as sets of tuples,

28

where the struct names are the first element of the tuple and the sets of non-nullable
fields are the second element of the tuple.

First, we discuss when new elements are inserted. In Section 2.2.2, we have seen that
dereferencing a pointer that is stored in a struct happens in three steps. Given a pointer
to a struct, the first step is to get a pointer to the field that we want to access using the
getelementptr LLVM instruction, this yields a pointer to the pointer that we want to
access. The second step is to load the field from the pointer to the field using the load
instruction, which results in the pointer which was stored in the structure. Finally, the
third step is to access this pointer, which could mean directly dereferencing it, passing it
to another function, or perhaps first checking for nullability and then doing other things.
It is only after the second step that there could be a nullability check, so at the second
step we insert an entry into the map with the struct name as field and an empty set as
value. If the pointer that was stored at the field is finally dereferenced in the third step,
then we insert that field in the set which is stored in the map at the key of the struct
that the field belongs to.

By inserting the field and struct separately we allow for the possibility of control flow
in between. If the pointer stored in the struct is checked for nullability before it is
dereferenced, then the control flow will split into two parts. In one branch the struct will
be associated with an empty set and in the other branch the struct will be associated with
a singleton set containing the field that was dereferenced. If we merge these two maps
by taking the intersection of sets at the same key, then we end up with a map where the
struct is associated with an empty set as we would expect because the pointer is checked
for nullability before it is dereferenced.

It remains to describe what happens when a key is present in one list but not the other.
This can happen when there is a condition where in one branch it will dereference a field
f1 from one struct s; and in the other branch it dereferences a field f5 from another struct
sg. When these two control flow paths join up, one map will contain s; associated with
{f1} and another map contains sy associated with {f»}. In this case, we choose to be
lenient and assume both accesses are independent, so we combine both into a map which
now has two keys.

(argsy, fieldsy) M (args,y, fields,) =
(args, N argsg
At =z Nag | t— a1 € fields), t — xq € fieldsy}
U{t— 21 |t— 21 € fields,,Vay : t — xo & fields,}
U{t— x| Vo1 1t — a1 & fields,,t — x5 € fields,}

Figure 3.5: The meet of our improved algorithm.

29

To recap: our lattice is a map where the keys are structs and the values are sets of non-
nullable fields. The meet operation, shown in Figure 3.5, takes the union of the keys in
both maps, but the intersection of the associated sets if a key is present in both maps.

Changing the transfer functions is relatively simple, the improved transfer functions are
shown in Figure 3.6; again, all the tranfer functions for other instructions are identity
functions. All the previous behaviour on the set of non-nullable arguments is retained,
but now there are some extra cases for the map of non-nullable structure fields.

[load ptr], : fo(x) = x @ deref(ptr)
[store val ptr], : fo(x) = x @ deref(ptr) & store(wval, ptr)
[call calledFunc(xy, zs, ..., T,)], :

fo(x) =z

o T, if noRet(calledFunc).
@P{deref(z;) | i € {1,...,n}, notNullable(calledFunc,i)}, otherwise.

o {deref (calledFunc), if indirect(calledFunc).

0, otherwise.

Where & performs a union of the sets of non-nullable arguments and a union of the keys
in the map and a union of the sets of non-nullable fields in the map if a key occurs in
both maps, or as a formula:

(argsy, fields,) @ (args,, fieldsy) =
(args, U argsy
Atz Uxs |t a1 € fields), t — xo € fieldsy}
U{t— x|t 21 € fields,,Vag : t — xo & fields,}
U{t— x|V, it — 21 & fields,, t — x5 € fields,}

Figure 3.6: The improved transfer function for nullability analysis through structure
fields.

In the ‘deref’ function, where previously we stopped if we ran into a load instruction, we
can now continue and check if the load instruction is actually loading a structure field.
Specifically, loading a structure field means that after the load instruction we encounter
a getelementptr instruction for which the base type is a pointer to a struct type and for
which there are two indices: the first one dereferencing the base pointer and the second
one is the index of the structure field. In that case we add the index of the dereferenced
field to the set of non-nullable fields for the struct in the map.

30

For the store instruction, in addition to dereferencing the base pointer we now also need
to check if a pointer is stored in a structure. For that, we introduce a ‘store’ function,
whose first argument is a value val and the second argument is a pointer ptr to the
location where the value should be stored. If the wval itself is also a pointer and the
ptr is a pointer to a non-nullable structure field, then the first pointer should be non-
nullable too. To detect if ptr points to a structure field, we, again, check if we encounter
a getelementptr instruction where the base is a pointer to a struct, and there are two
indices, of which the second is the field that val is stored into. If that field number of
that struct is a non-nullable field, then we apply the ‘deref’ function to val. Otherwise,
‘store’ simply returns an empty set and empty map.

For each function, the output of this improved algorithm is now the set of non-nullable
arguments, as before, and also a map of structs along with their non-nullable fields.

3.4 Examples

In this Section we present a few artificial examples to make it clearer how the inference
algorithm works and to show that it produces the expected results. We revisit the exam-
ples we have used to justify our design, namely the example with a check for nullability
before dereferencing from Figure 3.2 and the example with unrelated control flow from
Figure 3.3.

As before the first step is to convert the C code to the optimised LLVM representation.
A simplified version of this LLVM representation is shown in Figure 3.7.

define i8 @f (Ystruct.personx %0) {

%2 = getelementptr %struct.person, %struct.person* 70, i64 0, i32 0
%3 = load i8%, i8xx* 72, align 8
#4 = icmp eq i8% %3, null

br i1 %4, label %7, label %5
; <label>:5: ; preds = /1
%6 = load i8, i8* %3, align 1
br label %7
; <label>:7: ; preds = /1, 5

%8 = phi i8 [%6, %5 1, [0, %1]
ret i8 %8

Figure 3.7: Example of structure access with nullability check in LLVM.

As usual, the inference starts with an empty state, but in this case that means an empty
set of non-nullable arguments and an empty map of structs with their non-nullable fields.

31

The first instruction we encounter is getelementptr which is not relevant for now, so
we skip it. The second instruction loads the pointer generated by that getelementptr
instruction, so we consider the base pointer to be dereferenced, which is the first argument
%0 in this case. With the new rules for dereferencing structure fields, and because the
getelementptr instruction is applied to the “person” structure, we add a new entry into
the map for the person struct with an empty set as value. Then, there is a comparison
and a branch, which are both irrelevant.

We continue at label 5 which starts with a 1oad instruction which actually loads the field,
so we add the field number, in this case 0, into the map at the “person” key. Then, there
is an irrelevant branch again.

define i8 @f (%struct.personx %0) {
; 14, 1
h2 = getelementptr Y%struct.person, %struct.person* %0, i64 0, i32 0
; (4
%3 = load i8%, i8xx* 2, align 8
; {40}, [person: {}]
#4 = icmp eq i8% %3, null
; {40}, [person: {}]
br i1 %4, label %7, label %5
; {40}, [person: {}]

; <label>:5: ; preds = J/1
; {40}, [person: {}]
%6 = load i8, i8% %3, align 1
; {40}, [person: {0}]
br label %7
; {/0}, [person: {0}]

; <label>:7: ; preds
; {40}, [person: {}]
%8 = phi i8 [%6, %5 1, [0, %1 1]
; {/0}, [person: {}]
ret i8 %8
; {40}, [person: {}]
}

Al, 45

Figure 3.8: Inference results of structure access example with nullability check.

Finally, two branches merge at label 7, so we apply the meet operation to the sets in both
branches. In both branches the set of non-nullable arguments contains the only argument
%0, since these are the same the result of applying the meet operation is also this same
set. The maps of structure names and non-nullable fields are different. Both branches

32

have the “person” key, but only one branch has an element in the associated set. So, we
take the union of the keys, which is just “person” in this case, and the intersection of the
associated sets, which is the empty set in this case. All in all, we end up with the set
{%0} and the map [person — @]. The actual instructions in this last block, a phi and
a ret instruction, are both irrelevant, except for their influence on the control flow. So,
the result of the analysis for this function f is {%0}, [person — (]. That means that the
first and only argument of f is non-nullable, but for the rest no information is inferred
about any structure fields, which is exactly what we expected because of the check for
nullability.

The final result at each instruction is shown in Figure 3.8. There we use the notation
[key: value] to denote a map.

The second example for which we will show the new inference algorithm in detail is the
example of structure access with unrelated control flow from Figure 3.3. The optimised
and simplified LLVM representation of this example is shown in Figure 3.9.

define i8 Qg(i32 %0, Y%struct.person* %1) {
%3 = icmp eq 132 %0, O
br i1 %3, label %8, label %4

; <label>:4: ; preds = 2
%5 = getelementptr %struct.person, %struct.person* %1, i64 0, 132 0
%6 = load i8%, i8x* 5, align 8
YA load i8, i8% %6, align 1
br label %3

; <label>:8: ; preds = }2, 14
%9 = phi i8 [%7, %4 1, [0, %21
ret i8 %9

Figure 3.9: Example of structure access with unrelated control flow in LLVM.

We start, again, with an empty initial state. This time the first block contains no relevant
instructions, so we continue to the second block with this empty initial state.

Now, the getelementptr and the two load instructions are in the same block. We first
skip the getelementptr. Then we add argument %1 to the set of non-nullable arguments
and we add the key “person” to the map with an empty set as value for the first load
instruction. For the second 1oad instruction, we add the field 0 to the set that is associated
to the “person” key in the map. With the last branch we go to the final block.

In the final block we have again that two branches merge. In this case, however, we see
that there are two different sets of non-nullable arguments, in one branch the set is empty
and in the other branch the set has one element. We take the intersection, so we end

33

up with an empty set of non-nullable arguments. Similarly, in one branch there is an
empty map and in the other branch there is a map with a “person” key and its first field
is marked as non-nullable. The key is missing in one map and present in the other so,
taking the union, in the result the key will be present with its set from the branch that it
came from. We skip the two irrelevant instructions in this final block, so the end result is
an empty set of non-nullable arguments and the map [person — {0}] which means that
the first field of the “person” struct is marked as non-nullable.

The final result at each instruction are shown in Figure 3.10.

define i8 0g(i32 70, Y%struct.person* %1) {
; 14 [
%3 = icmp eq i32 %0, O
; 1F [
br i1 %3, label %8, label %4
; 14, [

; <label>:4: ; preds = /2
; 1, 1
%5 = getelementptr %struct.person, %struct.personx %1, i64 0, i32 0
; 4 [
%6 = load i8%, i8xx* %5, align 8
; {41}, [person: {}]
%7 = load i8, i8* %6, align 1
; {41}, [person: {0}]
br label %8
; {41}, [person: {0}]

; <label>:8: ; preds = %2, I
; {}, [person: {0}]
%9 = phi i8 [%7, %4 1, [0, %2]
; {}, [person: {0}]
ret i8 %9
; 1}, [person: {0}]
}

Figure 3.10: Inference results of structure access example with unrelated control flow.

These two examples have shown that this algorithm works and how it works for single
functions. It should be noted that this analysis no longer simply follows the call-graph.
The information we infer about the nullability of structure fields can influence the results
of any function that uses these structure fields. To work around this we have chosen the
simple solution of considering every function dependent on every other function. This can
cause performance problems with larger applications, so ideally steps should be taken to

34

determine more fine-grained dependencies between functions or even between individual

basic blocks.

35

Chapter 4

Evaluation

In this chapter we substantiate our claim that our work improves the nullability inference
by showing the impact on libraries in practice. We pick the GNU Libmicrohttpd library
for a qualitative analysis in Section 4.1. To provide more conclusive evidence we wanted
to do an extensive quantitative study, but practical roadblocks prevented large scale
automated application of our inference algorithm. We discuss these practical challenges,
but defer a proper quantitative study to future work. Furthermore, we mentioned that
locally identifying structures is more conservative than globally identifying structures. We
make this formal by considering the soundness of our approach in Section 4.2. Finally,
we reflect briefly on the use of LLVM rather than C source code for inference algorithms
like ours in Section 4.3.

4.1 Case Study: GNU Libmicrohttpd

The first library we use for testing is GNU Libmicrohttpd. It is a small C library which
makes it easy to embed a simple HT'TP server into another application. We chose it as
a first test subject, because it is small and easy to understand.

Inspecting the library, we quickly found a situation where our improved analysis indeed
gives better results.

In this case, the struct that contains the pointers is called MHD_HTTP_Header, which is
shown in Figure 4.1. This struct is chained in a linked list with the next field. It stores
the name of the header as a string in the field header and its length in header_size. The
value of the header is stored as a string in the field value with its length in value_size.
Finally, it stores the kind of header in the field kind.

36

VAL
* Header or cookie in HTTP request or response.
*/
struct MHD_HTTP_Header
{
J**
* Headers are kept in a linked list.
*/
struct MHD_HTTP_Header *next;

VAL
* The name of the header (key), without the colon.
*/

char *header;

VAL
* Number of bytes in @a header.
*/

size_t header_size;

VAL
* The wvalue of the header.
*/

char *value;

VAL
* Number of bytes in @a wvalue.
*/

size_t value_size;

VAL
* Type of the header (where in the HTTP protocol is this header
* from) .
*/

enum MHD_ValueKind kind;

Figure 4.1: The MHD_HTTP_Header struct in GNU Libmicrohttpd

Usually, linked lists are terminated by null pointers, so the next field is probably nullable.
The two remaining pointers are the header and value strings. You could say that storing
null pointers in these fields would be redundant, because you can always also store an
empty string. Additionally, you would expect a header to have a name and probably

37

a value too. However, this struct definition and documentation do not give conclusive
evidence whether these are nullable or not.

There are many clues about the nullability of the header and value fields scattered
throughout the code. For instance, the MHD_lookup_header_token_ci function, shown
in Figure 4.2, traverses the linked list of received headers and checks if a certain header
name and value pair is present. For every header it checks the header kind, the length
of the header name, and if the header name pointer is equal to the pointer we are
searching for, but the important checks are at the end, namely the checks that use
the MHD_str_equal_caseless_bin_n_ and MHD_str_has_token_caseless_ functions.
Both of these functions exhibit dubious behaviour when applied to null pointers.

static bool
MHD_lookup_header_token_ci (const struct MHD_Connection *connection,
const char *header,
size_t header_len,
const char *token,
size_t token_len)

{
struct MHD_HTTP_Header *pos;
if ((NULL == connection) || (NULL == header) || (0 == header[0])
|| (NULL == token) || (0 == token[0]))
return false;
for (pos = connection->headers_received; NULL != pos; pos = pos->next)
{
if ((0 !'= (pos->kind & MHD_HEADER_KIND)) &&
(header_len == pos->header_size) &&
((header == pos->header) ||
(MHD_str_equal_caseless_bin_n_ (header,
pos->header,
header_len))) &&
(MHD_str_has_token_caseless_ (pos->value, token, token_len)))
return true;
}
return false;
}

Figure 4.2: The MHD_lookup_header_token_ci function.

The MHD_str_equal_caseless_bin_n_ function takes two strings and a length and
checks if the strings are equal up to the given length ignoring upper-case and lower-
case differences. The source code of this function is shown in Figure 4.3. You can see
that the strings are unconditionally dereferenced inside the loop, so if they are null point-

38

ers, then the loop body must never be executed. The body of the loop is executed until
the variable i is smaller than the len argument and i is initialised to zero, so the loop
body is always executed unless len is zero too. Is this enough reason to conclude that
the string arguments should really be non-nullable? According to our algorithm it is not
enough, because the loop body might not be executed. However, Ravitch writes in a
comment in the source code of his inference algorithm shown in Figure 4.5 that, in cases
like this, the strings could be inferred non-nullable, because the function cannot do any
useful work if the arguments are null.

bool

MHD_str_equal_caseless_bin_n_ (const char *const stri,
const char *const str2,
size_t len)

{
size_t 1i;
for (1 = 0; i < len; ++i)
{
const char cl = stril[i];
const char c2 = str2[i];
if ((el '= c2) &&
(toasciilower (cl1) != toasciilower (c2)))
return O;
+
return ! 0;
}

Figure 4.3: Source code of the MHD_str_equal_caseless_bin_n_ function.

The MHD_str_has_token_caseless_ shown in Figure 4.4 behaves similarly: when the
token_len argument is zero then the function immediately returns false, so technically
the string arguments are nullable, but it is never useful.

We can relate our observations back to how these functions are used in the
MHD_lookup_header_token_ci function. For the value field it is straightforward that a
null pointer can be dereferenced if it is stored in the header that is looked up and if the
token that is looked up has a non-zero length.

On the other hand, the situation with the header field is more complicated. The
header_len argument is assumed to be equal to the length of the header argument and
the pos->header_size field is assumed to be equal to the length of the pos->header
string. Before the pos->header field is checked for equality with the header, the code
will first check that their length is equal. If a header field is null, then the only reasonable
length is zero, which means that the equality will only be checked if the header_len ar-
gument is also zero, but then the equality check function is harmless. So, for the header
field, this situation is not conclusive about nullability.

39

bool
MHD_str_has_token_caseless_ (const char *str,
const char *const token,
size_t token_len)
{
if (0 == token_len)
return false;

while (0 != *str)
{

Figure 4.4: Excerpt of the MHD_str_has_token_caseless_ function.

-- TODO: If a function can return without having *any* side effects
-- while a parameter is NULL, that parameter is not nullable.

-- > votd bzero(char* p, int n) {

-- > for(int 4 = 0; © < n; ++3) {
> pli] = 0;

N }
>

}

-- In fact, passing NULL for p and 0 for n allows this function to be
-- called safely. However, doing so has no wvalue and it would be fair
-- to at least warn about seeing NULL passed for p here.

Figure 4.5: Comment by Ravitch about nullability when functions perform no side-effects.

And remember that Ravitch’s suggestion, about inferring arguments to be non-nullable if
functions cannot perform side-effects if those arguments are null, is not yet implemented,
so this particular usage pattern does not cause the header and value fields to be inferred
to be non-nullable.

Our algorithm does infer that these fields are non-nullable, because, in the
MHD_del_response_header function, the header and value fields are passed as a argu-
ments to the memcmp function which is a standard function that requires its arguments
to be non-null. Additionally, value is used in other circumstances that require it to be
non-nullable.

Having established that these fields are non-nullable we continue by searching for places
where these fields are written to. That happens in the MHD_set_connection_value_n_nocheck_
function shown in Figure 4.6. We can see that the function takes a key and a value string
as input and writes them into the pos->header and pos->value fields respectively. One
obstacle is already visible: before these arguments are written into the fields it first checks

40

if the allocated memory is not a null pointer. This branch of the control flow should be
ruled out because the MHD_NO constant is used as an error code in this case, but, as it
turns out, the current error-return inference is not good enough to recognise this.

static enum MHD_Result
MHD_set_connection_value_n_nocheck_ (struct MHD_Connection *connection,
enum MHD_ValueKind kind,
const char x*key,
size_t key_size,
const char *value,
size_t value_size)

struct MHD_HTTP_Header *pos;

pos = MHD_pool_allocate (connection->pool,
sizeof (struct MHD_HTTP_Header),
true);

if (NULL == pos)
return MHD_NO;

pos->header = (char *) key;

pos->header_size = key_size;

pos->value = (char *) value;

pos->value_size = value_size;

pos->kind = kind;

pos->next = NULL;

/* append 'pos' to the linked list of headers */

if (NULL == connection->headers_received_tail)

{
connection->headers_received = pos;
connection->headers_received_tail = pos;

}

else

{
connection->headers_received_tail->next = pos;
connection->headers_received_tail = pos;

}

return MHD_YES;

b

Figure 4.6: The source code of the MHD_set_connection_value_n_nocheck_ function.

41

4.1.1 Roadblock: Inaccurate Error Returns

One major roadblock on the way to using inference through structure fields on the GNU
Libmicrohttpd library is the inaccurate inference of error returns. An earlier stage of
the inference-suite infers the error codes that some functions return. These error returns
are important for the nullability inference, because returning an error is considered an
undesirable event. Therefore if the presence of a null pointer in an argument or struct
field would force a function to return an error code then that argument or struct field can
be considered to be non-nullable. In practice, this means that we can ignore branches in
the control flow that lead to returning an error.

define 132 @OMHD_set_connection_value(%struct.MHD_Connection* %0,

i32 %1,
i8* %2,
i8% %3) {
; [,]
%15 = getelementptr %struct.MHD_Connection,
Y%struct .MHD_Connection* %0,
i64 0,
i32 10
%16 = load Y%struct.MemoryPool*, Jstruct.MemoryPool** %15, align 8
%17 = call i8% @MHD_pool_allocate(%struct.MemoryPoolx* %16, i64 48, il true)

call void @llvm.dbg.value(metadata i8% %17, metadata !758)
%18 = icmp eq i8% %17, null
br i1 %18, label %39, label %19

; <label>:19: ; preds = J/13
%20 = getelementptr i8, i8x %17, i64 8
%21 = bitcast i8% %20 to 18
store 18 %2, i8xx* 721, align 8
; [,]
%24 = getelementptr i8, i8% %17, i64 24
%25 = bitcast i8% %24 to 1i8**
store 18 %3, i8xx* 725, align 8
; []
br label %39

; <label>:39: ; preds = /19, [13
%40 = phi i32 [0, %13 1, [1, %191
ret i32 %40

}

Figure 4.7: The LLVM representation of the MHD_set_connection_value function from
Figure 4.6.

42

However, these error returns are not always accurately inferred by the existing anal-
ysis. This causes the nullability analysis to overlook certain struct fields which can
actually be considered non-nullable. In the previous section, we have seen that the
MHD_set_connection_value_n_nocheck_ function from Figure 4.6 stores a header name
and value into a MHD_HTTP_Header struct. We suggested that the if statement at the
beginning of this function obstructs the inference. To see why that happens, we need to
inspect the LLVM representation shown in Figure 4.7.

We have elided and simplified some irrelevant parts. It is important to notice that there
are three basic blocks: first allocation and a comparison with null, then a block that writes
the arguments %2 and %3 into the allocated memory, and finally a block that returns 0
or 1 depending on which branch was taken.

The problem with the existing error-return inference is that it only works on the level of
blocks. It determines for each block whether it must result in returning an error code. In
this case the first block ends in a choice between two branches, of which one is successful,
so it is not guaranteed to return an error. The second block is guaranteed to result in a
successful return. The final block combines the result of the two branches. As you can
see, there is no block that forces an error code to be returned.

To be able to continue with our qualitative analysis, we circumvent this roadblock by
manually removing the error returning code paths by commenting out conditional checks.
Such drastic measures should not be required during the normal binding generation work-
flow. To address this situation, we discuss a better long-term solutions in Section 5.1.1
of the Future Work.

4.1.2 Roadblock: Bitcasts

The second roadblock we ran into has only become visible now we are inspecting the
LLVM representation in Figure 4.7. In the first block, the MHD_pool_allocate function
returns a pointer to raw bytes. This pointer is used as a pointer to a MHD_HTTP_Header
struct in the rest of the code, but that is not immediately visible. Indeed, in the second
block, this pointer to raw bytes is cast into a pointer to pointers to bytes, before the
arguments can be written into it. This casting obfuscates the true meaning of this code
and hinders our inference algorithm.

For now, we have circumvented this by making a concrete allocation function for
MHD_HTTP_Header structs as shown in Figure 4.8. Along with the special “noinline”
annotation, this forces the compiler to use a proper struct type as our inference algorithm
expects. And, indeed, if we replace original MHD_pool_allocate function with this new
concrete allocation function, then our algorithm infers the key and value arguments of
the MHD_set_connection_value function to be non-nullable.

Again, we do not expect authors of library bindings to perform such manual modifications.
In Section 5.1.2 of the Future Work we discuss an automatic solution to this problem.

43

__attribute__((noinline))

struct MHD_HTTP_Header *

MHD_pool_allocate_header (struct MHD_Connection *connection)

{

return (struct MHD_HTTP_Header *)
MHD_pool_allocate(connection->pool,

sizeof (struct MHD_HTTP_Header),
true);

Figure 4.8: A concrete allocation function for MHD_HTTP_Header structs.

4.2 Soundness

Ravitch’s error-return analysis is already unsound, so some control-flow paths may be
erroneously annotated as returning an error. The original nullability analysis ignores
control-flow paths that result in errors, so it is also unsound. Our work introduces yet
more sources of unsoundness, which we will discuss in this section.

By using the global perspective of identifying structure fields we have abandoned the
interpretation of non-nullability to be that a null value must cause an undesirable event.
Now, a null value may cause an undesirable event, but only with respect to pointers
stored in structs.

An example situation where our improved inference algorithm is unsound is when there
is a check for nullability of a structure field at the beginning of a function which is
stored, then there might be some other activities, but in the end the stored result of the
nullability check is used to determine whether to access that same structure field or not.
Our algorithm will view this second check as unrelated control flow and infer that the
structure field is non-nullable.

Another example is a function for which there are preconditions which imply that it
may not be used when a certain structure field is null. All other functions could check
for nullability of that field, but this one function could be an unsafe exception, where
this behaviour is documented in comments. Our inference algorithm does not take this
possibility into account and simply labels the field as non-nullable.

A similar situation may occur when there are no unsafe functions, but instead a certain
protocol which requires functions to be used in a particular order. If that is the case,
then there may be a phase in which a certain structure field can be null, and a second
phase in which the field is non-nullable. However, our inference algorithm will infer that
field to be non-nullable globally throughout the program.

Generally, if a struct is used in a particular way in one part of a library and if it is used
differently in another part of the library, then our current inference algorithm combines
the information from both parts. In particular, for nullability inference this might mean

44

that if a struct field is used in a non-nullable way in a certain function, but it is nullable
in another function, then our algorithm infers the field to be non-nullable everywhere,
which may prevent users of bindings that are generated based on this information to use
certain functionality.

It must be noted that we have not encountered excessive non-nullable annotations during
our evaluation. In fact, in the GNU Libmicrohttpd library we have only found two argu-
ments of a single function to have additional non-nullable annotations using our improved
algorithm. Possibly, this could be due to the roadblocks we discussed in Section 4.1.1 and
Section 4.1.2 that hinder our inference algorithm, or simply due to our small sample-size
of just a single library. However, perhaps soundness needs to be sacrificed, to a certain
extent, to achieve usable results.

While on this topic, we must also mention the soundiness manifesto |[7]. To paraphrase,
they claim soundness is not always necessary for extremely disruptive language features,
which would require a much more complicated program analysis if it is possible to take
them into account at all. However, this soundiness principle does not fit with our work.
In our inference algorithm the unsoundness is not (only) due to a select number of dis-
ruptive language features. The unsoundness can occur even in benign subsets of the C
programming language.

Instead, our justification of the lack of soundness is that the information inferred by our
algorithm is intended to assist the writers of library bindings. Our algorithm should not
be used for checking safety critical code. In the end, authors of library bindings should
decide which arguments should be non-nullable.

4.3 Suitability of LLVM

In this section, we discuss the suitability of LLVM IR as the representation used in our
inference algorithm.

We have seen in Section 4.1.2 that the LLLVM representation can hide structure access in
certain situations, so should we avoid LLLVM and run our inference algorithm on plain C
source code?

We believe that the optimised LLVM representation solves much more problems than
it raises. In Section 2.2.2 we have seen that the LLLVM representation unifies structure
access, and that it can even recover structure access from C source code that uses direct
memory access with offsets into the location where a struct is stored. Additionally,
optimisations can simplify the code which makes it easier to analyse, for example by
removing redundant control flow. Furthermore, essential information about the original
source code, like identifiers and types can be recovered from LLVM metadata that is
generated when compiling with debug info enabled.

45

Chapter 5

Conclusion

In this chapter we conclude this thesis and discuss opportunities for future work.

In this thesis, we have introduced an improvement to Ravitch’s nullability inference algo-
rithm, such that it can infer nullability of pointers that are stored in structs. We achieve
this by identifying each structure globally: if a structure field is accessed in a non-nullable
manner in one part of the code, and a pointer stored in that field in another part of the
code, then that pointer can be considered non-nullable too. We have renovated Ravitch’s
inference-suite and extended it with this improvement. We have shown that this improve-
ment, aside from two practical roadblocks, is able to infer more nullability annotations in
a practical C library called GNU Libmicrohttpd. Our inference algorithm is not sound: if
it infers that a pointer is non-nullable then that does not mean that an undesirable event
must happen. However, we expect our inference results to be useful in practice. Rather
than proving properties of programs we assist writers of bindings in making informed
choices.

We believe that the approach of generating library bindings with the help of automatically
inferred program properties holds great potential.

5.1 Future Work

There are many avenues for future work. Three avenues are immediately important
to make our work viable: the error-return inference needs to be improved to give the
nullability inference more information to work with, source code information needs to be
recovered when LLLVM optimises struct access away into flat memory access. Afterwards
our improvement can be automatically run and quantitatively evaluated on a larger set of
C libraries to confirm that it improves inference results and does not produce too many
incorrect results due to the unsoundness.

To reduce the amount of situations in which our inference algorithm is unsound, future
work could investigate the local identification of structure fields or a hybrid approach

46

where structs are grouped into a few larger classes.

Furthermore, we envision future work towards an interactive application for authors of
library bindings. It could infer information automatically when there is no, or very little,
doubt. When the evidence is not conclusive, it could present evidence for both sides of a
certain choice, then the author can make the final decision. This would allow authors to
focus on the complicated parts, and reduce the time spent on the obvious parts of writing
library bindings.

5.1.1 Better Error-Return Inference

In Section 4.1.1, we have seen how an inaccurate error-return analysis causes the nulla-
bility analysis to miss inference opportunities as well. We believe a promising approach
to recovering information about error-codes is the one developed by Bruntink et al. [2].
We suggest investigating if that can be combined with the existing error-code inference to
improve the results. Alternatively, the existing approach could be adapted to the specific
roadblock that we encountered.

5.1.2 Recovering Struct Information using LLVM Metadata

The second roadblock, from Section 4.1.2, concerns struct access operations which are ob-
fuscated in the LLVM representation, because raw memory is converted into a struct too
late and the struct access is converted into unstructured memory access. An approach to
deal with this is to use LLVM metadata. Immediately after the memory is allocated, you
can see in Figure 4.7 that a special @11vm.dbg.value function is called, which associates
the allocated memory with useful metadata.

1237 = !'DIDerivedType(tag: O@DW_TAG_pointer_type, baseTlype: 1238, size: 64)
1238 = distinct !DICompositeType(tag: @DW_TAG_structure_type,
name: "MHD_HTTP_Header",
file: 156,
line: 313,
size: 384,
elements: !239)
|
1758 = !DILocalVariable(name: "pos",
scope: !751,
file: 13,
line: 345,
type: 1237)

Figure 5.1: Relevant LLVM metadata.

The linked metadata !758 is shown in Figure 5.1, it is metadata for the local variable
“pos” in the original C source code. The metadata links to the metadata !758, which is

47

the C type of the variable, in this case a pointer to the base type described in metadata
1238. Now, we have reached the MHD_HTTP_Header struct, which we were looking for.

If we depend on this metadata, then that does also mean that we depend on the C source
code being available. Ravitch suggests that the necessary LLVM representation could
perhaps be extracted from compiled binaries using techniques proposed by ElWazeer
et al. [3]. Such an approach would require extra care if combined with our inference
algorithm.

5.1.3 Quantitative evaluation

When the above roadblocks are cleared up, it should be possible to perform a larger-scale
quantitative analysis of inference results. Such an analysis is essential for showing how
useful our inference algorithm is in practice.

The quantitative analysis should have two goals: showing that there are packages for
which our improved inference algorithm produces significantly better results, but also
that the unsoundness of our technique does not produce too many false positives in
general.

We suggest to evaluate our algorithm on two groups of libraries: one group where each
library is selected because they show exceptional results, which means that either our
algorithm is very effective or that it produces too many false positives, and one group
where the libraries are a representative random sample, which can show how useful our
algorithm is in general.

5.1.4 Local or Hybrid Identification of Structure Fields

In this thesis, we have only considered the global perspective on struct semantics. It
might be useful to explore local or at least hybrid semantics, where the same structure
type can be used for different purposes. We believe that an inference algorithm based on
the local perspective can be made completely sound, but we expect that it would only
improve inference in very rare circumstances.

Between the two extremes of the global and local approaches to identifying structs, there
is a possibility of grouping the usages of structs and identifying structs in the same
group. These groupings could be based on an inferred protocol of the functions in which
the structs occur. Another hybrid approach would be to use a more local identification
of structure fields for private functions, because there is a good chance that those have
more preconditions.

5.1.5 Two-Sided Analysis

Another extension of nullability inference would be to infer both the nullability and the
non-nullability of function arguments. For example, if a pointer is assigned null then
it must be nullable. In this way, we can show library authors for which arguments we

48

are certain that they are nullable, and for which arguments we are certain that they are
non-nullable, and leave choice for the rest of the arguments up to them.

This idea can be further extended by considering individual pieces of evidence with vary-
ing levels of confidence. A pointer being assigned null is very strong evidence that it is
nullable and a value being dereferenced is very strong evidence that it is non-nullable.
However, there are some signs in between: if a pointer is compared to null then it is
probably nullable, but not necessarily. Similarly, if our inference through structure fields
with the global identification of structure fields infers that a pointer is non-nullable, then
it is probably non-nullable, but not certainly.

All of this information could be summarised and presented to authors of library bindings
in an interactive tool with defaults. That enables the authors to make informed decisions
on which cases they should manually inspect.

49

Appendix A

Renovating the analysis suite

A significant part of our work had to be spent on renovating the analysis suite. Since
the last major developments by Ravitch in 2013, there have been many LLVM and GHC
releases. When starting our work it was no longer possible to compile the code in current
development environments, let alone that it could be used by authors of library bindings.
This renovation is an essential if this work is ever to be used in practice.

A.1 Glasgow Haskell Compiler

Ravitch wrote his Haskell packages for GHC 7.6. Since then, there have been many new
developments in GHC which is now at version 8.10. Here, we give a brief overview of the
changes to the analysis suite that were required to update to this new version of GHC.

One change that led to many conflicts is the Semigroup superclass of Monoid in GHC
8.4. A monoid is any data type that has at least one element, called mempty, and a func-
tion that combines values of that type, called mappend, which must satisfy the laws that
mempty is the left and right identity of the mappend function and that mappend is associa-
tive. There are some data types that do not have an empty element, but we would still
like to provide a general interface for combining values of that type. For those data types
you can implement a Semigroup instance instead. The Semigroup type class existed in a
library, which is less widespread than the standard library and having a completely unre-
lated class leads to code duplication and a higher possibility of inconsistencies. It is clear
that this change has advantages, but the main drawback is backwards incompatibility.
Since GHC 8.4, every Monoid instance now needs an accompanying Semigroup instance.
Luckily, GHC will quickly point out places where this needs to be done and adding such
a Semigroup instance is always very easy.

To be able to compile the ‘hbgl-experimental’ package it was required to enable the
ConstrainedClassMethods language extension. This extension lifts a restriction that
has always been present in Haskell, but GHC only started enforcing it strictly since

20

version 8.0.1 .

The ‘sbv’ package that can solve satisfiability modulo theories problems has seen many
updates, but it only required fixing renamed functions to make the analysis suite com-
patible with the latest version.

A.2 LLVM

Updating to GHC 8.10 makes it possible to compile the project, but one big problem
still remains: the analysis suite depends on a binding to the libLLVM library which only
supports LLVM version 3. LLVM version 3 is now also quite outdated and not available
in most package managers of common Linux distributions any more. So, to be able to use
the project on a modern system, we also needed to make the analysis suite compatible
with newer versions of LLVM. We have chosen to target LLVM 7 because it worked the
best in our testing, however, as we will see in this section, the underlying is now much
more flexible and it is easy to update it to newer versions of LLVM if that is required.

A.2.1 libLLVM

First, we review how LLVM was used in the libraries that Ravitch developed in his
dissertation. We have seen in Section 1.3.2 that Ravitch uses two packages for this
purpose: ‘llvm-base-types’ and ‘llvm-data-interop’. The ‘llvim-base-types’ package is a
mostly Haskell-only implementation of the LLVM data types and the ‘llvm-data-interop’
package is a binding to the libLLVM C++ library provided by the LLVM project.

Linking to the LLVM C++ library in this way has certain advantages. It is relatively simple
because most code is maintained by the LLVM project, and its performance should be
good for the same reason. However, combining C++ and Haskell in a single project is very
difficult, it requires users to have the correct version of LLVM installed on their system
and the bindings themselves require a significant amount of maintenance.

There is a well-maintained package called ‘llvi-hs’ which provides LLLVM support, but
it still requires linking to C++ libraries to be able to read in the bitcode files that are
produced by WLLVM and extract-bc.

A.2.2 llvm-pretty

Instead, we opted to use the ‘llvm-pretty’ package, which is a implementation of the
LLVM data types, combined with the ‘llvm-pretty-bc-parser’ package, which can parse
LLVM bitcode into the llvm-pretty data types. These packages are written in Haskell
without using the C++ library underneath, so it integrates well with the rest of the analysis
suite.

https://gitlab.haskell.org/ghc/ghc/-/issues/7854

o1

https://gitlab.haskell.org/ghc/ghc/-/issues/7854

One thing that these libraries were lacking was support for visibility information about
defined functions. We have implemented this support and provided our patches to the
upstream GitHub repositories.

This change obviates the ‘llvm-base-types’ and ‘llvm-data-interop’ packages and intro-
duces the new libraries: ‘llvm-pretty’, which contains data types for representing LILLVM
IR and pretty-printing them, and ‘llvm-pretty-be-parser’, which is a pure Haskell imple-
mentation of a parser for LLVM bitcode files.

A.2.3 A referential data type

Instead of working with the basic LLVM IR which contains unresolved references, we
want to work on a graph-like representation where all those references are resolved and
replaced with direct references.

Luckily, due to Haskell’s laziness it is pretty easy to represent this graph-like structure
as a lazy tree structure. Using this approach we do need to be careful not to get stuck in
an infinite loop traversing this tree.

To resolve the dependencies we have used the attribute grammar compiler that was
developed at the Utrecht University called UUAGC [10]. Attribute grammars make it
easy to move information from one place in the tree to another, which is exactly what
you want to resolve references. Most of the effort was in describing the tree structure.

An important advantage of using UUAGC is that attribute grammars also make it very
easy to keep track of additional information during the traversal of a data structure. In
our case, we needed to generate unique numbers for each value.

52

(Glossary

API An Application Programming Interface (API) allows programs to interact with each
other. 1, 2

GHC The Glasgow Haskell Compiler (GHC) is a state-of-the-art, open source, compiler
and interactive environment for the functional language Haskell. 7, 50, 51

GI GObject introspection (GI) is system of metadata information for C libraries (using
object-oriented functionality provided by the GObject library), which facilitates the
automatic generation of bindings. 2, 3

GUI A graphical user interface (GUI) is a system of interactive visual components for
computer software. A GUI displays objects that convey information, and represent
actions that can be taken by the user. 2

HTML HyperText Markup Language (HTML) is declarative data format for describing
the content of document, mainly used for the world wide web. 4

IR An Intermediate Representation (IR) is the data structure or code used internally
by a compiler or virtual machine to represent source code. An IR is designed to
be conducive for further processing, such as optimization and translation. 3, 4, 10,
14-16, 18, 19, 21-24, 45, 52

JSON JavaScript Object Notation (JSON) is a lightweight data-interchange format. It
is easy for humans to read and write. It is easy for machines to parse and generate.
3,4, 15

LLVM LLVM is a collection of modular compiler technologies. 3, 4, 7, 9-11, 14-16, 18,
19, 21-24, 30-34, 36, 42, 43, 45-48, 50-52

ML Meta Language (ML) is a general-purpose functional programming language. It
is known for its use of the polymorphic Hindley—Milner type system, which au-
tomatically assigns the types of most expressions without requiring explicit type
annotations, and ensures type safety — there is a formal proof that a well-typed ML
program does not cause runtime type errors. 9

93

SWIG The Simplified Wrapper and Interface Generator (SWIG) is a tool that aids in
the development of bindings from higher-level languages to programs written in C
and C++. 2

UUAGC The University of Utrecht Attribute Grammar Compiler (UUAGC) is a com-
piler from a custom attribute grammar specificaion language to executable Haskell
code. In the attribute grammar specification you can define attributes for nodes in
an abstract syntax tree and rules for how to compute them. The primary use-case
is defining the semantics of programming languages. 52

WLLVM Whole-program LLVM (WLLVM) provides tools for building whole-program
(or whole-library) LLVM bitcode files from an unmodified C or C++ source package.
3, 51

o4

Bibliography

[1]
2]

3]

4]

[5]
[6]

17l
18]
19]

[10]

[11]

David M Beazley et al. “SWIG: An Easy to Use Tool for Integrating Scripting
Languages with C and C++.” In: Tel/Tk Workshop. Vol. 43. 1996, p. 74.

Magiel Bruntink, Arie van Deursen, and Tom Tourwé. “Discovering Faults in Idiom-
Based Exception Handling”. In: Proceedings of the 28th International Conference
on Software Engineering. ICSE ’06. Shanghai, China: Association for Computing
Machinery, 2006, pp. 242-251. 1SBN: 1595933751. DOI: 10.1145/1134285.1134320.

Khaled ElWazeer et al. “Scalable Variable and Data Type Detection in a Binary
Rewriter”. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’13. Seattle, Washington, USA: As-
sociation for Computing Machinery, 2013, pp. 51-60. ISBN: 9781450320146. DOTI:
10.1145/2491956.2462165.

Pierre Fernique and Christophe Pradal. “ AutoWIG: automatic generation of python
bindings for C++ libraries”. In: PeerJ Computer Science 4 (2018), e149.

GObject Introspection. URL: https://gi.readthedocs.io/en/latest/.

Gary A. Kildall. “A Unified Approach to Global Program Optimization”. In: Pro-
ceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. POPL ’73. Boston, Massachusetts: Association for Com-
puting Machinery, 1973, pp. 194-206. 1ISBN: 9781450373494. DOI: 10.1145/512927 .
512945.

Benjamin Livshits et al. “In Defense of Soundiness: A Manifesto”. In: Commun.
ACM 58.2 (Jan. 2015), pp. 44-46. 1SSN: 0001-0782. DOI: 10.1145/2644805.

Tristan Ravitch. “Inferred Interface Glue: Supporting Language Interoperability
with Static Analysis”. PhD thesis. University of Wisconsin—-Madison, 2013.

Jaro S. Reinders. iiglue-bundle. https : //github . com/noughtmare /iiglue -
bundle. 2021.

S Doaitse Swierstra, Pablo R Azero Alcocer, and Joao Saraiva. “Designing and im-
plementing combinator languages”. In: International School on Advanced Functional
Programming. Springer. 1998, pp. 150-206.

The GTK Team. The GTK Project - A free and open-source cross-platform widget
toolkit. URL: https://www.gtk.org/.

95

https://doi.org/10.1145/1134285.1134320
https://doi.org/10.1145/2491956.2462165
https://gi.readthedocs.io/en/latest/
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/2644805
https://github.com/noughtmare/iiglue-bundle
https://github.com/noughtmare/iiglue-bundle
https://www.gtk.org/

[12] Will Thompson, Inaki Garcia Etxebarria, and Jonas Platte. haskell-gi: Gener-
ate Haskell bindings for GObject Introspection capable libraries. URL: https://
hackage.haskell.org/package/haskell-gi.

26

https://hackage.haskell.org/package/haskell-gi
https://hackage.haskell.org/package/haskell-gi

	Preface
	Introduction
	Motivation and Context
	Related Work
	Inferred Interface Glue
	The Binding Generation Process
	The Packages Involved
	The Analysis Pipeline

	Research Question
	Research Method
	Contributions and Roadmap

	Background Knowledge and Problem Analysis
	Nullability Inference
	Nullability in C
	The Inference Algorithm
	An Example

	Structures
	Structs in C
	Structs in LLVM

	Problem Analysis

	Nullability Inference through Structure Fields
	Identification of Structures
	Control Flow
	The Improved Inference Algorithm
	Examples

	Evaluation
	Case Study: GNU Libmicrohttpd
	Roadblock: Inaccurate Error Returns
	Roadblock: Bitcasts

	Soundness
	Suitability of LLVM

	Conclusion
	Future Work
	Better Error-Return Inference
	Recovering Struct Information using LLVM Metadata
	Quantitative evaluation
	Local or Hybrid Identification of Structure Fields
	Two-Sided Analysis

	Renovating the analysis suite
	Glasgow Haskell Compiler
	LLVM
	libLLVM
	llvm-pretty
	A referential data type

	Glossary
	Bibliography

