Master Thesis Software Engineering

Monday, January 11, 2010

Theory and experimental evaluation of object-
relational mapping optimization techniques

How to ORM and how not to ORM

by

Jeroen Bach
Supervisors: Hans Dekkers & Jurgen Vinju
Company supervisors: Ingrid van Zaanen & Co Kooijman
Publication status: Openbaar

Version: 1.0

X

x|
. X
loolco UNIVERSITEIT VAN AMSTERDAM

O

1|Page

Contents

1
2
3

4

5

9

AB ST R A CT ...ciiiiiiiiiiititttecteeteetettecreessssessscasssssassassassassassassastassassassessassasssssesssssssssssssasssssassnnens 4
INTRODUCGTION......cciiiiiiiitititecteceteetescastestastascassassastassassassassassassassssssssesssssssssssssssssssassassassans 5
RELATED WORKceieiiiiiiieiiiiiiiecieieietecententestastastastastassassostassassassassasssssessssssssssssssssassassassansans 6
3.1 PATTERNS AND TECHNIQUES ...ettueiitueeettieeettieeeetueeeesueeesneesssnnaesstnaessnnnssssnnaesssnaasssnnsessnneeessnneessnnnees 6
3.2 PERFORMANCE MEASUREMENTS .. tttuueetttueeettueeettuneeessueessnneesesnaessunaessnnesssnnsesssneeessnnsessnneeessnneessnnsaes 6
3.3 THE OBJECT-RELATIONAL IMPEDANCE MISMATCH....uuuieitiieeeineeetteeeetieeetneeessneeestneeessnnaessnneeessnneesnnnnaes 7
INTRODUCTION TO HIBERNATE........cu e iieieiiiiciieiieiteiteiteteetasassestassassessessssssssessssssssssassassansans 8
4.1 RELATION QUERYING CONFIGURATION PRINCIPLES ...ceevuuieitueeeettieeeetuneesenneeestneessnneesssnneessnnassssnnesssnneeseen 9
4.2 MAPPING CONFIGURATION ...ettuuieitueeettieeettneesttnaeeesuaessnnesssnneesssnaaessnnssssnnassssnneessnnsesssnneessnnessnnnnaes 11
4.3 APPLYING THE TYPE OF MAPPING CONFIGURATIONcetuuieeitieeritneeeettneeessnneeesnnaeestnaeessnneesssnaeessnneesnnnnnes 12
4.4 APPLYING THE FETCHING STRATEGY ..uuiiiiuieitueeettneeeetieeetnnaesssneessnnaeessnnsessnnaesssnaaessnnsesssnaeessnneessnnnnes 14
THEORY OF HIBERNATES QUERY BEHAVIOUR......cciuitiiiiieinieieieietaiesostassansossassassassossassnns 15
5.1 A NOTATION FOR QUERY BEHAVIOURciituiieiiieeetiieeeetteeettaeesstneesstaaeessnneessnnesstnnaessnnsesssnnsessnneessnnns 15
5.2 BASICBEHAVIOUR ..evtuuieeeeeeetriiieeeeeeesttaeeesssessneeessssssunaeesssssssnaseessssssneeessssssunnsesssssssnnneesssssssnnnnesees 16
5.3 IIMPORTANT FACTORS etuuieittieeetteeetttaeeettaeetanneestaneessanaeessnnesasnnsasssaaeessnnaessnnnssssnnaessnnsesssnnsessnneesssnns 19
5.3.1 Bidirection@l relQtionSRipeuueeeeeeeeiieiiieiae e eeeeeeee ettt e e e e e e e st a e e e e e e e e s aaaaaes 19
5.3.2 LQZY CONFIQUIATION ..ottt e e e ettt e e e e e e e s e sttt aaaaaeeeeaasssssssnees 19
T2 BN 1o 1 I =2 ol 111 o [P U UURU R 20
5.3.4 Recursive relatioNSRipueeeeeieee ettt ettt e e e e e e ettt e e e e e e e e e e s snaaaees 21
5.3.5 Concatenating relatioNSRIDS.cceeeeeiieieieeee e e e ettt e e e e e e e se sttt e e e e e e e e e sssasaees 21
RESEARCH METHONDc.iuiiiiiiiiiiciiiiieiteieieetastastestessessessecssssssassassassassassassassassassassassassnssnnse 22
6.1 MEASURING THE PERFORMANCEcctuuietitieeeitieeetteeeetteeeanaeesssneesstaaeessnnaessnnesstnaessnnsesssnsessnneesssnns 22
6.1.1 ENVIFONIMENT SET UD ..ueeeeeeeiiiieeeeeeeeiiee e e etttee e e e e et ttee e e e e et tte e s s e e et tbae s s s e etasassesaaaassaaasssaanes 22
6.1.2 TEOSE SOL U cevuueeeieeiiiiee e e e eeeeee ettt e e e e ettt e e e e ettt eee s e e e e et ee s s e e ettbaeeeaaettbaaeeeaaatbtaaeaaaanes 23
6.1.3 MEASUIEMENT SO U ..oeeeeeiiieee ettt e et ettt e e e e et taiee s s e e ettt tae s s e aetasaasesaaasssaaeeaaaanes 24
6.2 PREVENTING BAD PERFORMANCE ONE TO MANY RELATIONSHIP IN ORACLE......ccvuueiiiieeeeeieeeeieeeerneeeenan. 24
6.3 FACTORS INFLUENCING THE PERFORMANCEc.uuttttueettteeeitieesetnaeesstnaeeesneessnnaesssnnaessnnaesssnasessnneesssnns 25
6.3.1 ODJECE GIAPRN ...ttt a e e e et e e e e e e e e e r e ———aaaaan 26
6.3.2 Mapping CONFIGUIALIONccceeeeeeiiiiieiie e e e e eeeeeccttt et a e e e e e e e ettt e e e e e e e e e sssetsasraaaaaaaeas 26
6.3.3 ACLIONS ON ODJECT GIAPHA c.coveeeeeeeeeeeee ettt e e e e ettt e e e e e e e e ss s ttasaaaaaaaaes 27
(R Y o] 4 [0 [OOSR 27
(SR S Y - 1 Y- 1 o | N 27
PERFORMANCE MEASUREMENTS. ... cuiiiiiiiiiitiiieiiectectectectecescessascassassassassassassassassassassassnssnnse 28
7.1 HYPOTHESES AND RESULTS . euutetuueeitueeettueeetsnneessnneessneeesnnesssneesssnaesssnneessnneesssnseessnneesssnneessnneesssnns 29
7.1.1 TeStinNg tNe tYPE@ Of QUEIIESuuveeeeeeaeeeeeeeecteeteee e e e e e e ettt e aa e e e e e s ssssstssasaaaaaeeeeaesians 29
7.1.2 Testing the AmMOUNT Of QUEIIEScceveeeeeeeeeeiiieeieeee e e eeeeseeettttaaaaaaaeeeesesssstasasaaaaaeeeeaesians 33
2 B T =X o 14 o [|1 e Lo o U UUURUP 34
7.2 THREATS TO VALIDITY tetuueeiitieeetteeeetiaeeetteeestteesttneessanaeesnnnasssnnaasssaaeessnnaeesnnnesesnnaessnnsesssnnsessnnnesssnns 48
T.2.1 ANTCINGL......cccooooeeeeeeeeeeeett ettt et et e e ettt —————————a1aaas 48
T.2.2 EXEEINGI c..c.ccccoooooeeeeeeeeeeeet ettt ettt e et e e ettt —————————11aaas 49
[0(0 1)\ [of I U 1Y [0 1| N 50
8.1 REJECTED HYPOTHESES .eiitiieitieeeiiiee e et e e ettt e e et e e e et eeeasa e saaneesstaaasasnnaassnnnasatnnaeesnnsassnnnsessnnnesssnns 50
8.2 RECOMMENDATIONS. ©euueetttneeettueeettueeetteeeeanneessnnaeeesanaeesnnesssnnsasssnaeessnnsessnnssssnneessnnsesssnnsessnneesssnns 50
FUTURE WORKcieiiiiiiiiiceitieteitetetaitastostastastassossassssssssssasssssassassassassassassassassassassassassnssnnse 52

10 ACKNOWLEDGEMENTScceuuiiiiiiniiiiieniiitienieitienieetimniieettmssistesesiestesssisstsssssssessssessessssessesnes 53

11 BIBLIOGRAPHY .. .ciiiitieieeiiiiiiiiiieeennsiiiisiiiisessssssssssssimeesssssssssssssssssssssssssssssssssssnsssssssssssssssnnnnnss 54
APPENDIX A: EXAMPLE MAPPINGS USED IN THIS RESEARCHcccuuviiiiiiiiiiiinnnnnsiinniinennnnsssssssnnneenns 57
APPENDIX B: RELATION QUERYING BEHAVIOURL......ccctvuuuiiiiiniinimmmnnnsiseeiiieemmsmssssssssssessssssssssssssessss 58
ONE TO ONE (NON-RECURSIVE) ...t tiecuutttteeeeeeeeeeeeeieeitusrsssesseeaaeessasansssssssssssaeesessassssssssssssasasssasansssssssssseens 58
ONE TO ONE (RECURSIVE) 11tttteeeeeeiieeeuuttsreeeeesaaseeeaiaaasusssssssseasssessasasssssssssssssaesssssaasssssssssssssssssssssssssssssssseees 63
ONE TO MANY (NON-RECURSIVE) ...uuuuuutirrireeeeeeeeeeeiiiisusssseeeeeeeaeessasasnssssssssessasssesssassssssssssssesessssssssssssssssseens 64
ONE TO MANY (RECURSIVE) 1etteeeeeeieeeuutttreeeeeeeeeeeeesaaitssssssssseesesessasassssssssssssasesssssassssssssssssessessssaasssssssssseens 68
MANY TO MANY (NON-RECURSIVE) ceeteeeeeiiiiiutttrreeeeeeaeeesesaiisssssssssseasesesssasisssssssssssssesssasssssssssssssesassesesnsnsnes 71
MANY TO MANY (RECURSIVE) ..uttvterereeeeeeseeiiutsteeeeeeeaeeesesaisssssssssssasesssasasssssssssssssssesssasssssssssssssesassssesnsnsnes 71

3|Page

1 Abstract

When an object oriented written application has to make use of a relational database an ORM tool
can be used to synchronize the object model with the tables in the database. An advantage of such
an ORM tool is the support for automatic querying of related objects. This option allows the
programmer to query one object and dereference their relationships to other objects without
qguerying each reference manually. The ORM tool will perform this relation querying automatically
for the programmer.

A popular ORM tool for Java is Hibernate. In this research we focus only on Hibernate and in
particular on the querying of related objects. Configuring the Hibernate configuration files can
control this querying of related objects.

As the mapping of Hibernate (or any ORM tool) can be configured in many ways, poor performance
can be a result of “wrong” configuration. Therefore we investigated the effect these configurations
will have on the performance.

4|Page

2 Introduction

Hibernate is one of the major ORM (Object Relation Mapping) tools written in and for Java. An ORM
tool handles the persistence of objects in memory to a relational database. One of the main tasks of
this is retrieving objects from the database. A key feature of this task is the automatic retrieving of
referenced objects (of the queried object) as well, making it possible to dereference the references
through an entire object graph without specifying the retrieval of each related object
programmatically.

Hibernate supports a lot of different mapping configurations for customizing this behaviour, blurring
the “best” performing choice in a specific situation. The mapping configurations describe the object
to table mapping and relation querying behaviour. Especially, relatively new users (to the Hibernate
library) can make unknowing choices that will drastically deteriorate the performance of the tool,
maybe causing the abandoning of its usage in total.

Therefore, the goal of this research is to help the programmer find the best performing mapping
configuration. To realize this goal we investigate the query behaviour of Hibernate for each type of
mapping configuration. Interpreting this behaviour into best performing choices can still be a difficult
task. We therefore benchmark certain configurations as well.

This research will be led by the following research question and sub-research questions.

Research question
What is the effect on the performance of Hibernate querying objects when using different mapping
configurations?

Sub-research question 1
What are the mapping configurations possibilities?

Sub-research question 2
What is their effect on the behaviour?

Sub-research question 3
What is the effect of the behaviour on the performance?

The structure of the rest of this thesis is as follows. First we will discuss related work in chapter 3.
After that we will give more detailed information about Hibernate and the mapping configurations in
chapter 4, answering sub-research question 1. Then we analyse the querying behaviour of the
mapping configurations in chapter 5, answering sub-research question 2. In the research method in
chapter 6 we describe how we will perform our performance measurements and will describe and
discuss the results in chapter 7, answering sub-research question 3. Finally we draw our conclusions
in chapter 8, and indicate future work in chapter 9.

5|Page

3 Related work

In [1] van Zyl et al. performed research on the performance of Hibernate compared to several other
persistence techniques (like plain JDBC and object databases). They demonstrated the bad
performance of Hibernate compared to these other techniques. In later research [2] they reviewed
their implementation of Hibernate with a member of the Hibernate team, after several comments on
the implementation by the Hibernate community. In this research they concluded that the
performance gains when implementing the recommendations made by this member. They did not,
afterwards, draw any conclusions on the performance of the renewed Hibernate implementation
compared to the other persistence techniques. These recommendations are based on experience
and rules of thumb.

We tried to improve their research and other research performing benchmarks with Hibernate by
researching the effects on the performance of certain configurations available in Hibernate. With this
knowledge we also try to help a programmer or researcher to implement a good performing
Hibernate configuration for a specific situation.

Further research on the remaining configurations and possibilities of Hibernate and expanding it to
other tools can help create more honest benchmarks in total.

3.1 Patterns and techniques

There are a great variety of patterns and techniques to achieve a good performing ORM and
Hibernate implements several of these. W. Keller described a complete pattern language on this
subject in [3, 4, 5]. Several others also described best practices, patterns and techniques (often also
implemented by Hibernate) in [6, 7, 8, 9]. Applying these patterns and techniques can be achieved by
adjusting the mapping configuration of Hibernate.

As demonstrated in [2] and the remainder of this thesis, this configuration of Hibernate can have
great influence on the performance. Due to the great variety of possibilities and the needed in depth
database knowledge, this configuration remains a difficult and error-prone task that can easily
deteriorate the overall performance. Due to this fact several have tried to automate this task, by
analyzing the runtime behaviour [10, 11], static code analysis [12, 13] or by model driven generation
[14], but none supplies a fully functional solution yet.

We decided to clarify the behaviour of Hibernate and its effect on the performance using these
possible configurations for tackling this problem manually.

3.2 Performance measurements

Measuring the performance of these persistence tools can be done by specialized benchmarks like:
007 (java variant) [1], PolePosition and Torpedo [15]. The 007 benchmark was originally intended to
test OODBMS (Object Oriented Database Management Systems) [16]. In [1] this benchmark is
translated to Java and used to compare the performance of Hibernate (and PostgreSQL) with db4o®,
by van Zyl et al. indicated in the first part of this chapter. The same author(s) also wrote PolePosition,
to further investigate the findings of this (translated) OO7 benchmark. In our research we used
PolePosition as the basis for our benchmark.

! dbdo is an object database created by Versant corporation.

6|Page

Also it should be noted that [17, 18] wrote an ORM benchmark (“BenchORM”) with tests based on
two real-life scenarios (the JDBC wrapper and the objects of the object model of this research were
used in our tests).

3.3 The object-relational impedance mismatch

Benchmarking persistence tools fit in a greater research, finding the optimal solution of
solving/bridging the gap between the object oriented and relational paradigm. An ORM tool (like
Hibernate) tries to fill this gap. This gap is also often referred to as the object-relational impedance
mismatch [19].

As Robert Green stated in [20], the problem of “impedance mismatch” materializes itself strongly in
two fundamental ways. One way is regarding the development burden presented by the mismatch
and the other is regarding the slower performance and/or resource consumption imposed. As
standardization of these mapping has occurred over the last couple of years, the development
burden has been decreased and productivity has improved. Also the issues of performance and
resource utilization have been relieved. By solving the “impedance mismatch” with ORM tools the
developer is equipped to create a good performing solution easier.

The use of object databases can also be an alternative since they have proven to be a better solution
for certain kinds of applications [20]. However, this is out of scope of this research.

7|Page

4 Introduction to Hibernate

In this part we will give some general information about Hibernate and will discuss the automatic
retrieving of referenced objects (relation querying) in more detail.

Hibernate is an ORM (Object-Relational Mapping) library written in and for JAVA. An ORM is a
communication layer between the application and the database (making use of the database drivers
to send SQL statements), mapping an Object Oriented data model to a relational data model and
handling the synchronisation of the two. For an overview of Hibernates architecture see Figure 1.

As both relational and object oriented paradigms are used, the terminology will slightly overlap. We
speak of references when there is a relationship between objects and of relations when there is a
relationship between tables.

Translent Objects Application

Persistent
Oyl IS

Ceis
SessionFactory
Session | Transaction Hibernate
TransactionFactory| ConnectionProvider
JNDI ‘ JDBC ‘ JTA ‘ Java Database Drivers
Database

Figure 1: Context diagram of components and layers in the Hibernate Architecture (source [21]).

In this research we focus only on the part where objects are queried from the database and will
describe the other actions (like updating, deleting and inserting) in future work. Querying an object is
the basic action also needed to perform the other actions of an ORM.

The Querying of objects can be initiated in two ways, by using the methods of the Hibernate API
(Application Programming Interface) or dereferencing a reference. When dereferencing a reference
the programmer has used the pointer in an object (retrieved by a method of the API) to access
properties of the related object. When the API is used, the programmer has thus called a method
that retrieves an object (or collection of objects). Objects retrieved with the API can be seen as the
starting objects from which the dereferencing can begin.

The use of the APl and the way these references are configured can have a great impact on the
performance. From this APl we only use one method (the .get()), the remaining methods are
discussed in chapter 9 Future work. After using the method Hibernate will retrieve all referenced
objects automatically. The “when” and “how” of this action can be configured by setting the (so
called) fetching strategies and table representation. The object containing the reference will be
referred to as the owning object from now on.

8|Page

4.1 Relation querying configuration principles

Hibernate supports several configurations to determine the behaviour of querying related objects
from the database: the fetching strategy and the table representation.

In the Hibernate reference documentation [22] a distinction is made between four fetching strategies
and setting the laziness of it. When a reference to an object is set to lazy, Hibernate will wait with the
retrieval of this object until it is first accessed. For each strategy we quote the definition given by the
Hibernate reference documentation [22].

- Select Fetching: A second SELECT is used to retrieve the associated entity or collection.
Unless you explicitly disable lazy fetching by specifying lazy="false", this second select will
only be executed when you access the association.

- Join Fetching: Hibernate retrieves the associated instance or collection in the same SELECT,
using an OUTER JOIN.

- Subselect Fetching: A second SELECT is used to retrieve the associated collections for all
entities retrieved in a previous query or fetch. Unless you explicitly disable lazy fetching by
specifying lazy="false", this second select will only be executed when you access the
association.

- Batch Fetching: Hibernate retrieves a batch of entity instances or collections in a single
SELECT by specifying a list of primary or foreign keys.

The SubSelect and Batch Fetching strategy are performance optimizations of the Select Fetching
strategy. They can only be applied to one-to-many and many-to-many relationships and will have
effect only when the owning object is in a collection. We scoped our research to only the Join and
Select Fetching strategies.

The second influence on the behaviour is the table representation. There will be more queries or
joins when the amount of tables the objects are divided over increases. Hibernate supports 13 table
representations; we created an overview of the possibilities in Figure 2. This diagram contains at the
leftmost column the object relationships (that we investigated) and a number next to it that indicates
how this relationship can be mapped to tables indicated at the rightmost column. Also only primary
and foreign keys are shown in this diagram, the other (value) columns are left out.

9|Page

Object reference representation

1 - 1

OnO
000

O
O

Hibernate mapping possibilities

ORO
@
GORO

anto
a

oo o 00O
OR OO

@@(@@

Legend

Table representation

@ 1-1 one table
table AB

TP

1-1 foreign key is primairy key

table A table B

PK |P< EK |P

1-1 unique foreign key

table A table B

PK [P PK [P
FK u

1-1 unique foreign key

table A table B

Only the owning object
have the foreign key in its
table, if this is not desirable
the relation should be made
bi-directional.

PK P PK P
P\FK U

1-1 recursive with foreign key

table
PK P
FK U

1-1 recursive with junction table

table junction table

PK [P FK P
| ~Fx |U

1-1 with junction table

table A junction table

table B

PK [P e

FK U

PK P
A=

1-m foreign key

O O O, O O O

table A table B

PK [P PK [P
FK

1-m recursive with foreign key

1-m recursive with junction table

table junction table

PK [P FK P
| N Fx |P+U

1-m with junction table

b

PK
FK

@ Object
X—

Table representation

Uni-directional (for all relationships)
Association / aggregation (Bi-directional)
Composition

Table reference

Primairy Key

Foreign Key

Unique constraint

Primairy key
constraint

Figure 2: Mapping objects and relationships

G G G G A0

table A T - table B
PK = junction table BK 5
— % puiiy

FK P+U
n-m with junction table

table A j table table B

= ETT AL
FK P

n-m recursive with junction table

table junction table

= TrE

P
P

10| Page

4.2 Mapping configuration

In the next part we will describe how references to other objects can be configured in Hibernate.

The mapping configuration of Hibernate is done in XML files, for an example see Code fragment 1. A
good practise is to have a XML file for each Java class. With the introduction of annotations in Java 5,
Hibernate now also supports configuring the mappings with annotations. In our research we
performed the mapping configuration in XML files.

<?xml version="1.0"7>

<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="org.polepos.teams.hibernate.data">
<class name="Person" table="person">

<id name="id" column="1id" type="long">
<generator class="native"/>
</id>

<property name="firstName" column="firstname" length="40" />
<property name="lastName" column="lastName" length="40" />
<property name="age" column="age"/>

<many-to-one name="adress"
column="adressId"
unique="true"
not-null="false"
lazy="proxy" fetch="select"
cascade="all"/>

</class>

</hibernate-mapping>
Code fragment 1: Hibernate XML mapping file

When configuring the mappings we distinguish between two definitions, one describing the type of
relationship and one describing how this type is eventually configured in the mapping documents
(type of mapping configuration). Namely, there are four types of relationships that can be configured
by six types of mapping configurations.

The four types of relationships are: one to one, one to many, many to one and many to many. There
are six Hibernate mapping configuration types and a range of attributes to configure them. The types
of mapping configuration indicate either a reference to a single object or to a collection of objects.
Using these types in different combinations, for both objects, can create the four types of
relationships.

11| Page

Mapping configuration type for configuring a reference to a single object:

- component
- many-to-one
- one-to-one
- join

Mapping configuration type for configuring a reference to a collection of objects:

- one-to-many
- many-to-many

In the next part we first describe how to apply the type of mapping configurations and after that how
to apply the fetching strategies.

4.3 Applying the type of mapping configuration

In Table 1 we demonstrate how to create the table representations supported by Hibernate by listing
the type of mapping configurations and key attributes (we used the XML notations for clarity). Note
that the recursive table representations are equal to their non-recursive variant, but with a reference
to their own class (we leave them out of the table to create a compacter overview).

Each Java object knows only about its own relationships. Configuring one or both objects of the
relationship will therefore have different effects. Besides making the relationship bidirectional or
unidirectional, it is also possible that some table representations cannot be created when configuring
only one object. The optional sign will indicate that the relation can be unidirectional.

12| Page

Table

Representation (TR)

Configuration object A

Configuration object B

@ 1-1 one table

tableAB
PK P

<component> with the
properties of B within
the start and closing
tag.

No xml-mapping
document needed. For
a bidirectional
relationship, add the
<parent> element tag
within the
<component> tag of
object A.

1-1 foreign key is primairy key

<one-to-one>

<one-to-one
constrained="true”>

@ table A table B
PK P EK P
@ 1-1 unique foreign key (°pt'°na|)
table A table B
PK P PK P <many-to-one <one-to-one>
FK ub"] . .
unique="true”>
@ 4-1 unique foreign key <one-to-one> <many-to-one
table A table B unique="true”>
PK P PK P
=% u
@ 1-1 with junction table (°pt|0na|)
table A junction table table B L. L.
PK P eJFK = /4% P <join> <join>
FK U . ”
<key> <key unique="true”>
<many-to-one <many-to-one>
unique="true”>
1-m foreign key (°pt'°na|)
table A table B
PK P PK P <set> <many-to-one>
— =
<one-to-many>
@ 1-m with junction table (OPtlonaI)
table A junction table table B o
PR P K P A PR IP <set> <join>
FK P+U
<many-to-many <key>
unique="true”> <many-to-one>
@ n-m with junction table (OPtlonaI)
P;able AP junction table PIt(abIe BP
— I~ FK P / — <set> <set>
X P <many-to-many> <many-to-many>

Table 1: Type of mapping configurations

>The <component> element maps properties of a child object to columns of the table of a parent class.

13| Page

In “Appendix A: Example mappings used in this research” we listed the relationship configuration we
used in our test setups.

For more detail explanation see the Hibernate reference documentation [22].

4.4 Applying the fetching strategy

Each type of mapping configuration can be set to a specific fetching strategy, by setting three
attributes (the possible values of the attributes are described below this list):

- the lazy attribute: specifying when the reference needs to be retrieved (default: true | proxy);

- the fetch attribute: specifies the query used to retrieve the reference (default: select);

- the batch-size attribute: specifying of how many objects (in a collection) the relationship
needs to be retrieved (default: 0).

The fetching strategy attributes will have no effect on the join and component mapping configuration
types, because the join type will always force a join and the component type will force the storage of
two objects into one table (making it not possible to join or perform separate select queries).

Not each one of the remaining configuration types can contain all these attributes. In the next list we
created an overview of the possibilities (taken from the hibernate reference documentation [22]).

- one-to-one

o fetch="join|select"

o lazy="proxy|no-proxy|false"
- many-to-one:

o fetch="join|select"

o lazy="proxy|no-proxy|false"
- set:

o fetch="join|select|subselect

o lazy="true|extra|false"

o batch-size="N"
- many-to-many:

o fetch="select|join"

o lazy="true|extra|false"

For more detail see the Hibernate reference documentation [22].

14| Page

5 Theory of Hibernates query behaviour

As hibernate communicates by sending SQL statements, the logical first step is to examine and create
an overview of the executed SQL statements. With this overview we will form our query behaviour
theory. Analyzing this theory will indicate the different factors that change when different mappings
are applied, but not their effect on the performance. Therefore we will form several hypotheses
based on this theory and execute performance measurements to test them in chapter 7.

We created this theory by examining the SQL queries executed by Hibernate when performing the
following tests. We created for each mapping possibility a test containing objects (that implement
the mapping configuration and fetching strategies). Then we retrieve the owning object and
dereference the reference(s), while registering the executed SQL using Hibernates logging feature.

The theory explained in this chapter is the need to know basis for creating the query behaviour for
every type of object model.

First we describe our notation and the basic behaviour of each mapping and after that we will
describe the influences of the following configurations on the basic behaviour:

- a bidirectional relationship;
lazy configuration;

- join fetching;

- recursive relationships; and
concatenating relationships

For a complete understanding we worked out the behaviour for all relationships (one-to-one, one-to-
many and many-to-many) in Appendix B: Relation querying behaviour. These examples also
demonstrate the behaviour of recursive and bidirectional relationships.

5.1 A notation for query behaviour

We present the SQL in the form described below. As SQL visualized in form of text will not contribute
to the clarity of the overview, we decided to use a more visual representation of the result sets
instead. In that representation we show the actual results in form of a table, leaving out the more
unimportant detailed information. Figure 3 explains our notation.

15| Page

The results of one query

ResultSet1

Table A

The columns included
of each table >

PKA I columnsA

Indicates the possibility to execute this query lazy.
Thus only executing it when the objects (in this query) are accessed.

Ajoin between two tables

O—0
ReSultSet2
Table A LF Table B
PKA | columnsA KA | PKB | PKB | columnsB
Duplicated columns from table A, —»| D D FKA | PKB | PKB | columnsB
due to the join D D FKA | PKB | PKB | columnsB

Table A

Overhead caused by
bidirectional relationships.

Figure 3: Notation hibernate querying behaviour

5.2 Basic behaviour

The dots indicate that there are more rows present.
This amount is equal to amount of objects.

|«——— The table(s) included in the results

Table Ahasa1toN
relationship to table B,

“ therefore table B returns multiple

related rows for one row in A

Legend

Join

Indicates the possibility to execute this query lazy.
Duplicated values

Continues N amount of times, this can be rows or queries.
(where N is the amount of objects in the relation)

Overhead when using a bidirectional relationship,
compared to a unidirectional relationship.

Columns from a Junctiontable.
Indicates the extra overhead when the

bidirectional relationship back to object A
is set to join fetching.

In the next examples there will be an object A with a reference to object(s) B. For both objects we
describe what type of mapping configuration is applied to it. The ResultSets indicate what queries
were executed when object A and related object B are retrieved. When predicting the behaviour of
the reference from object B back to A, it is possible to concatenate these isolated building blocks
together. In this case it should be noted that the rules described in the other subchapters of this

chapter must be applied as well.

To make the mapping configuration type more visible, we enclosed them in <...>.

With the <component> configuration type all properties of object B are included in the select query
of A. See Figure 4. In this table representation both objects are stored in one table.

@ 1-1 one table

table
PK P

Figure 4: Query <component>

0

ResultSet1

Table AB

PKA

columnsA | columnsB

With the <one-to-one> configuration type another query is executed to retrieve object B (by foreign
key). See Figure 5 and Figure 6. Both objects are stored in separate tables and the foreign key is
stored in the table of object B. When applying only the <one-to-one> configuration type the foreign

16| Page

key is set as primary key in object B by default. Adding the <many-to-one> configuration type to the
mapping of object B will make the foreign key a separate column in the table.

@ 1-1 foreign key is primairy key @ ResultSet1 ResultSet2
table A table B Table A Table B
PK P | FK P
— PKA | columnsA PKB | columnsB
T
Figure 5: Queries <one-to-one>
@ 1-1 unique foreign key @ ResultSet1 ResultSet2
table A table B Table A Table B
PK P ~— % E PKA | columnsA PKB | columnsB | FKA

Figure 6: Queries <one-to-one> on A and <many-to-one> on B

With the <many-to-one> configuration type also another query is executed to retrieve object B (by
primary key). See Figure 7. Both objects are stored in separate tables, but the foreign key is stored in
the table of object A. This introduces the possibility to execute the query for object B lazy. Meaning
that Hibernate can create a proxy object for B, because after the first query the ID of object B is
known. This proxy object will retrieve object B as soon as one of its properties is accessed.

o—0
@ 1-1 unique foreign key @ ResultSet1 ResultSet2
table A table B Table A Table B
BK P / BK P PKA | columnsA | FKB PKB | columnsB
FK U

Figure 7: Queries <many-to-one>

With the <join> and <many-to-one> configuration type the foreign key is joined in the first query and
for object B another query is executed (by primary key). See Figure 8. Both objects are stored in
separate tables and the foreign keys are stored in a separate table as well. Each object will therefore
always be retrieved by their primary key, instead of sometimes also by the foreign key. This situation
makes it possible to always execute the second query lazy, while the previous configurations did not
allow this.

Oo—Q
@ 1-1 with junction table @ ResultSet! ResultSet2
- It(able AP function table Plt(able BP TableA J JT Table B
— Y~ FK P = PKA | columnsA lFKB PKB | columnsB
FK U

Figure 8: Queries <join> and <many-to-one>

With the <set> and <one-to-many> configuration type another query will retrieve all B’s connected
to A (by foreign key). See Figure 9. For this relationship Hibernate requires two mapping
configuration types. The <set> indicates that the results belong to a collection were the <one-to-
many> will indicate the type of relationship.

17| Page

In this case it is possible to execute the second query lazy as well because the collection will function
as proxy object (waiting with the execution of the query until the collection is accessed).

1-m foreign key O Q
ResultSet1 ResultSet2

table A table B Select
Table A Table B

PK P \% P

FK PKA | columnsA FKA | PKB | PKB | columnsB
FKA | PKB | PKB | columnsB
FKA | PKB | PKB | columnsB

Figure 9: Queries <set> and <one-to-many>

With the <set> and <many-to-many> another query will be executed to retrieve the foreign keys
from the junction table and then for each related object a query is executed to retrieve it (by primary
key). See Figure 10. Not changing this basic behaviour can increase the amount of executed queries
drastically when the related objects increases. Note: When a unique constraint is added to the
<many-to-many> tag, the relation will be a one to many relationship.

o0 O a®)
@ 1-m with junction table ResultSet1 ResultSet2 ResultSet3
table A — able B Sele P olect Table A JT Table B
PK |p v pinetion lable A PK |p PKA | columnsA FKA | FKB PKB | columnsB
EK P+U FKA | FKB fo g}
AR || A " ResultSetd
Table B
PKB | columnsB
O e ®)
|

Figure 10: Queries <set> and <many-to-many> with unique constraint

With the <set> and <many-to-many> (without a unique constraint) the behaviour is similar to the
previous one to many relationship. See Figure 11. Note: When no unique constraint is added, the
relation will be a many to many relationship.

o0 O na®)
@ n-m with junction table @ ResultSet1 ResultSet2 ResultSet3
Table A JT Table B
table A junction table table B
PK | P ledric B PK | P PKA | columnsA FKA | FKB PKB | columnsB
FK P /" FKA [FKB o e
FKA | FKB ResultSet4
Table B
PKB | columnsB
o0

Figure 11: Queries <set> and <many-to-many>

18| Page

5.3 Important factors

To understand the query behaviour of a certain object model there are some important factors that
change the basic behaviour described in chapter 5.2. In the next part we describe these factors.

5.3.1 Bidirectional relationship

In a bidirectional relationship both objects have configured a reference to each other by using the
normal configuration types. When processing these configuration types, Hibernate will act as the
default behaviour described (in the previous chapter). What should be mentioned is that the default
behaviour is always preceded by a session cache lookup that can reduce the amount of queries when
the object is retrieved before. Theoretically this should mean that when the reference back is
processed no extra queries will be executed, but due to the working of the session cache this is not
always the case. When performing a cache lookup, the ID (primary key) of the object has to be
known. In chapter 5.2 we indicated that an object was queried by primary or by foreign key, in the
case the object is queried by the primary key Hibernate can retrieve the object from the session
cache. If this is not the case Hibernate will perform an extra query (retrieving the first object again).

In the following part we will demonstrate this behaviour by giving an example. Here we will retrieve
object A, dereference the reference to object B and dereference it back to object A. With the table
representation of Figure 12 an extra query for the reference from object B back to object A will be
executed (because the table of object B does not contain the ID of object A). In Figure 13 object A
can be retrieved from the session cache.

Oo—0
@ 1-1 unique foreign key @ ResultSet1 ResultSet2
table A table B Select Table A Table B Table A
PK P PK P
K | u b PKA | columnsA | FKB PKB | columnsB PKA | columnsA | FKB
Figure 12: Object B cannot find object A in the cache
@ 1-1 unique foreign key ResultSet1 ResultSet2
table A table B select Table A Table B
PK P PK P PKA | columnsA PKB | columnsB | FKA
| M~ U

Figure 13: Object B can find object A in the cache

5.3.2 Lazy configuration

In 5.2 Basic behaviour we indicate with a i if the query of a referenced object can be executed
lazy. This sign represents two objects and dereferencing the reference of the left object to the right
object. In lazily configured references this dereferencing is the trigger for the query of the right
object to be executed.

When configuring the laziness of a reference, Hibernate distinguishes between a reference to a single
object or to a collection of objects. When processing a lazy reference to a single object, a proxy
object is created (to handle the lazy behaviour). When processing a lazy reference to a collection of
objects, no proxy object is needed (due to the collection object that will handle the lazy behaviour).

In case of a reference to a collection of objects the query can always be executed lazy but when
relating to single objects this is not always the case. To create a proxy object, the ID (primary key) of
the proxied object is needed. In 5.2 Basic behaviour we indicated for each table representation

19| Page

whether they were queried by primary or by foreign key. For the relationships that are retrieved by
foreign key, the ID will not be present at creation of the proxy object. Hibernate will therefore not be
able to create a proxy object and the query is executed immediately.

5.3.3 Join fetching

When a reference is configured to join fetching, Hibernate will join the query of the reference (to B)
with the query of the owning object (A). See Figure 14.

Oo—0
@ 1-1 unique foreign key @ ResultSet1 ResultSet2
table A table B Select Table A Table B
= o= I PKA | columnsA | FKB | [PKB | columnsB
@ ResultSet1
Nt Table A | Table B
PKA | columnsA | FKB || PKB | columnsB

Figure 14: Effect of join fetching a relationship

When the reference is an one to many relationship, the “one” side will be duplicated to fill up the
amount of rows on the “many” side. See Figure 15.

1-m foreign key o0
ResultSet1 ResultSet2
Select

table A table B
PK P \% P Table A Table B

FK PKA | columnsA FKA | PKB | PKB | columnsB
FKA | PKB | PKB | columnsB
FKA | PKB | PKB | columnsB

ResultSet1

Join Table A Table B
PKA | columnsA J§ FKA | PKB | PKB | columnsB
D D FKA | PKB | PKB | columnsB
D D FKA | PKB | PKB | columnsB

Figure 15: Effect of join fetching a one to many relationship

There are several rules to keep in mind before this simple technique, to create the behaviour for
joined queries, can be applied.

When there is a chain of referenced objects with each reference configured to join fetching,
Hibernate will combine all these queries into one query by joining the tables of all the objects. This
process (of joining the tables of each related object) will continue down the reference line until one
of the following two causes is encountered: (1) when the maximum fetch depth is reached
(configured in the general Hibernate configuration) or (2) when the object type is already joined in
the query once. The latter reason can be the case when one type of object is related by two other

20| Page

types of objects (for example: an employee and a customer both reference instances of the address
object).

5.3.4 Recursive relationship

With a recursive relationship it should be noted that the referenced object will contain the same
reference relationship with another object (of the same type) as the owning object. This can
introduce extra queries.

This is best understood with a parent/child relationship. When the child has a reference to the
parent and the parent will have a reference back to the child, it should not be forgotten that they are
the same type of object. Therefore the parent is also a child and will have a reference to his parent as
well and the child is also a parent and will have a reference to his child as well, this can cause
Hibernate to execute extra queries.

5.3.5 Concatenating relationships

The behaviour of a specific object model can be created by concatenating the building blocks of “5.2
Basic behaviour” and obeying the “rules” of the previous subchapters.

21| Page

6 Research method

In chapter 5 we described the theory of the relation querying behaviour of Hibernate. To choose the
best performing mapping configuration using this theory requires still a decent amount of database
knowledge. Therefore we constructed several performance tests that will indicate the performance
differences between key behaviour differences in this theory.

Besides these behaviour differences there are also several other factors that can influence the
performance for which we need to choose a value/implementation. In this chapter we will therefore
first describe how we perform our tests and measurements, secondly what factors can cause
differences in the performance and what values/implementations we choose for these and finally
what we do to stabilize the environment.

6.1 Measuring the performance

When measuring the performance we had to set up an environment, a couple of tests and the
measuring instrumentation. Each one of these is described in the next part of this chapter.

6.1.1 Environment set up

To prevent that the benchmark and databases influence each other, we divided them over different
desktops. We constructed the following environment to perform our tests (see Figure 16).

Eclipse 3.5.0 executing the Benchmark (JDK 1.5)
Hibernate 3.3.2. GA

c3p0 (JDBC Datasource/Resource Pools) 0.9.1
@ MySQL connector java 5.1.7

Ojdbc5 (Oracle 11.2)
Pcl

1Gb/s MysQL5.1.34

Storage engine: innodb
Default installation: Dedicated MySQL Server machine

Pc2
Oracle Database 11g Release 2 (11.2.0.1.0)
Default installation

Pc3

All Pc's

CPU: Intel Pentium 4 3,00GHZ

RAM: 1,98 GB T5600

@") Network: Intel Pro/1000 PL (1Gbit/s)

0S: 32 bit Microsoft Windows Server 2003 R2 Enterprise Edition, Service Pack 2

Figure 16: Environment

We used three similar desktop computers that each performs a specific task: one executing the tests
(and Hibernate, c3p0 and JDBC libraries) and two each containing a database implementation.

22| Page

6.1.2 Testsetup

For our performance measurements we use the following test and measurement set up, see Figure
17. In this set up the “test run” will control the execution, calling methods of the Hibernate API.
Hibernate will then perform the object relation mapping and will use the JDBC driver to execute the
queries to the database.

Loop X amount of times
Measurment active

) Legend
Setup test run Test run Loop N amount of times Cleanup test run
L 1] CT”TD (1) Total time
— E—
Variable 2) JDBC query time
Open test actions @ auery
Bedin Corhmit Close (3) JDBC other time
A ; transaction session
transaftion 3 (4)Hibernate time
Hibernate \ 4 4 2 Contiunues

DB

Figure 17: Test and Measurement environment

The “variable test actions” represents retrieving the objects that have implemented the specific
mapping configuration we want to test. Executing the “variable test actions” only one time will be
immeasurable (with our equipment); we therefore repeat this action 30.000 times with a one to one
relationship, 3.000 times with a one to ten relationship and 300 times with a one to hundred
relationship. We reduce the amount of times due to the memory limitations (all retrieved objects
stay in the session cache and because we don’t want to flush this cache this amount had to be
reduced).

Executing this action in a smaller amount of times will also be measurable, but we choose for this
amount because the greater the amount of repetitions the closer the average will be to the average
of repeating it infinite (the entire population). Taking therefore into account as much fluctuations in
the results as possible, giving a more representative view of reality.

Ideally, when we execute this test multiple times the measurement results of each repetition should
be equal to each other. In our environment (and in most environments) this is not the case. We
therefore investigated our results and noticed that the first run always contains a high deviation
compared to the other runs and is therefore excluded (cold run). The other runs lie more closely
together. Repeating this test four times will give a clear indication of the performance (of a particular
setting) and we therefore choose 4 for the X in Figure 17. In our results we also indicate the standard
deviation of these four runs.

23| Page

6.1.3 Measurement set up

To prevent other processes to influence the measurements we measure only the time our test is
active, thus by measuring the “CPU time”. The “CPU time” of a thread is the sum of the “User time”
(time spent running the threads code) and the “System time” (time spent running operating system
code on behalf of the thread). When the java virtual machine does initiate the Garbage collector, or
any other process (as well as any other process initiated by the operating system) this will not effect
the “CPU time”.

As the environment (see Figure 17) exists of roughly three separate functioning parts (hibernate, the
JDBC and the database), we distinguish the time spent in each part separately. We measure the
“Total time”, “JDBC query time” and “JDBC other time” to calculate the times spent in the separate
parts. The “Hibernate time” is calculated by subtracting the “JDBC other time” and “JDBC query time”
from the “Total time”.

In the next list we explain these times:

- Total time: The time from the start of the test run until the end, including the time executing
in underlying layers.

- JDBC query time: The time executing the query; thus transfer over the network, gathering the
results in the database and processing them into a ResultSet.

- JDBC other time: All other time spend executing the JDBC code; like starting/committing the
transaction, creating the prepared statement (plus setting the parameters) and retrieving the
result from the ResultSet.

- Hibernate time: The time spent executing Hibernate code.

Time spent executing the code of the benchmark can be neglected as these are only hibernates calls,
a for loop and the assignments of some variables.

To perform the measurements in the JDBC driver, we use the JDBC wrapper created by André Calero
Valdez and Firat Alagoz [17, 18].

6.2 Preventing bad performance one to many relationship in Oracle

When configuring a one to many relationship, the Oracle dialect (used in Hibernate to communicate
with an Oracle database) does not create an index on the foreign key. This will deteriorate the
performance of these relationships drastically. In all other situations (and also in the MySQL
database) this index is created. In a forum threat [23] the Hibernate team indicated this should also
be the case for the oracle JDBC, but until present day this is not yet adjusted.

Therefore we created, as a work around found in [24], a database-object in the mapping
configuration of the object implementing the one to many relationship. In this database-object we
manually specified the creation of the index on the foreign key:

24| Page

<hibernate-mapping [...]>

L...]

<database-object>

<create>CREATE INDEX indexName ON objectName(columnName)</create>
<drop>DROP INDEX indexName ON objectName</drop>

<dialect-scope name="org.hibernate.dialect.OracleDialect"></dialect-scope>
</database-object>

</hibernate-mapping>
Code fragment 2: Creating an index for the foreign key in the Oracle database

6.3 Factors influencing the performance

There are several factors influencing the performance when querying relationships. In this part we
will discuss the factors and what standard values we choose for them. For an overview of the factors,
see Figure 18. In this overview we left out the influence of several environment aspects as hardware
(I0/network traffic), operating system and virtual machine.

Object graph Actions on object graph

Object composition Object size Querying technique

Direction relationship:

Size object graph - Unidirectional O)

- Bidirectional Q:/Nawgated
Type relationship: O O O O
-1-1

\/ -1-n

- n-m
<«—— Size object graph ——»
Mapping configuration Storage
) Amount of data
Object/Table already in table
mapping Tabi
able
O~ = T J
D >
—_— B |« DB
—> table Cc
e PK P
- FK
e
—_ table Vendor specific
» [PK P implementation
Fetching - P
Strategy

Figure 18: Performance influences of relation querying
25| Page

6.3.1 Object graph

The type of relationship influences the performance by forcing a specific table representation. This is
closely linked with the table representation and all types of relationships need to be tested in order
to test all table representations. It also does matter whether a relationship is unidirectional or
bidirectional because in some situations extra queries can be executed.

Depended on the size of the object graph (a set of related objects within an object model), size of the
objects and composition it will take more time to transfer and progress all the needed objects and
properties.

Each test has its own object graph. We choose an object graph existing of two type of objects (and
one for recursive relationships) that have a relationship with each other. For the object composition
we use the object model from [17, 18]. In their research they investigated two real-life scenarios and
created a benchmark depending on these scenarios. The scenarios also described an object model
that could be translated to objects of the following size and composition (we call base objects). The
base objects are flat (no relationships) objects containing only strings and integers (and a long as ID).
For each test the base objects can be extended with a relationship to another one of these base
objects.

The objects are composed of the following value types:

- Long: the identifier (called “ID”), every objects has an ID;
- String: a property

o Smallstring: with a maximum of 40 characters.

o Bigstring: with a maximum of 4000 characters.
- Integer: a property.

We distinguish 5 base objects with different compositions of the values described above (we will also
refer to the numbers in front of these objects instead of their names):

O1. FlatSmallObjectSmallString: Object with 1 property, a smallstring.

02. FlatSmallObjectInt: Object with 1 property, an integer.

03. FlatSmallObjectBigString: Object with 1 property, a bigstring.

OA4. FlatBigObjectSmallString: Object with 50 properties, all of type smallstring
O5. FlatBigObjectInt: Object with 50 properties, all of type int.

6.3.2 Mapping configuration

By configuring the relationship mappings Hibernate will differentiate in query behaviour. For our
performance tests we choose those mapping configurations that differentiate in these behaviour
differences. The key differences in this behaviour that we are trying to measure are:

- the amount of queries: by dividing the objects over one table or joining two queries
together;

- the costs of joining: for both objects table and junction tables;

- not retrieving an object;

- the amount of duplicated values: caused by joining;

- the overhead: caused by bidirectional relationships.

We translated these to hypotheses discussed in chapter 7 Performance measurements.

26| Page

6.3.3 Actions on object graph

How the first object is retrieved from the database and whether dereferencing a reference influences
the performance. Some querying techniques perform worse than others and when a reference is set
to lazy and not dereferenced, the query retrieving the referenced object will never be executed.

When retrieving an object we use the Hibernate get method. The other object query techniques are
described in chapter 9 Future work. Each reference is always dereferenced, unless it is described in
the hypothesis that it is not.

6.3.4 Storage

How a vendor implements their database (and corresponding JDBC driver) can have great influence
on the overall performance. As Hibernate depends on the database to function, we choose to use
two different databases for our tests. Also the amount of data that has to be searched will influence
the overall performance and is therefore kept equal in all compared tests.

We use the following databases: Oracle 11g and MySQL Community Server 5. For the amount of data
present in the tables, we choose to only store the objects needed for the test (before starting the
tests). This amount will never be greater than 30.000 for a table.

6.4 Stabilisation

To stabilize the environment we choose the configurations of the tests to be in tune with the
limitations of the memory of the environment, preventing unnecessary performance disturbance
when crossing this limitation (like early precautionary measures taken by the operating system). We
also turned of the windows page files, preventing the early use of the hard disk when memory starts
reaching its limits.

As anyone who performs a benchmark we disabled as many features/processes (of the operating
system) as possible that do not have any relevance for the measurements we want to take, trying to
prevent accidental high processor utilizations.

To prevent caching done in underlying layers and guarantee that no run can benefit from another
run, the object values (the data transmitted over these layers) are randomly generated. This will
make the probability of an object to be unique increasingly large. Also the caching of queries is
turned off in the database.

To prevent housekeeping tasks of the JVM (Java Virtual Machine) to be performed during the tests as
much as possible, we execute the garbage collector after each run. During this call the control of
execution is temporary given to the garbage collector that will make a best effort to reclaim space
from all discarded objects (it is possible that the garbage collector will not reclaim space, but with
this set-up it is given time explicitly and time outside the measurements). Only when control is
returned to the benchmark the next test will be run. Also the maximum to which the heap size of the
JVM can be increased is set to 1300 MB preventing unnecessary garbage collection during the
execution of the tests and the starting heap size is directly set to the maximum (preventing the heap
size to be increased during the test runs). To establish this, the JVM is configured to start by using
the “-Xms1300m -Xmx1300M” flags. We also run the benchmark with the server compiler, using the
“-server” flag as program argument.

27 | Page

7 Performance measurements

In this chapter we describe the results of several executed performance measurements.

Analyzing the behaviour, described in chapter 5, we observed three changing factors: the amount of
gueries, the type of query and the size of the results. We created hypotheses based on these
changing factors. Each hypothesis contains a diagram explaining the query behaviour (of the
executed test), a diagram displaying the results and a summary table of the results.

In the next part we state the hypothesis and display the results of the performance measurement,
but first we briefly summarize all hypotheses in the following list:

1)
2)
3)
4)
5)
6)
7)
8)
9)

10)

11)

Hypothesis: Retrieving two objects from one table will perform faster than retrieving two
objects from two tables, using a join query.

Hypothesis: Storing the foreign key within the objects table will perform faster than storing it in
a junction table.

Hypothesis: Retrieving two objects from one table will perform faster than retrieving two
objects from two tables, using two select queries.

Hypothesis: Retrieving two objects from two tables with a join query will perform faster than
retrieving them using two select queries.

Hypothesis: Retrieving one object from one table will perform faster than retrieving two
objects using a join query.

Hypothesis: Retrieving an one to many relationship (with 10 objects on the many side) will
perform faster when the relationship is set to select fetching than to join fetching.

Hypothesis: Retrieving an one to many relationship (with 100 objects on the many side) will
perform faster when the relationship is set to select fetching than to join fetching.

Hypothesis: Join fetching the junction table with the many side will perform faster than select
fetching each object from the many side, with an amount of 10 objects at the many side.
Hypothesis: Join fetching the junction table with the many side will perform faster than select
fetching each object from the many side, with an amount of 100 objects at the many side.
Hypothesis: Storing the foreign key within the objects table will perform faster than storing it in
a junction table, with a one to many relationship and an amount of ten objects at the many
side.

Hypothesis: Using a mapping configuration that does not introduce overhead when configuring
a bidirectional relationship will perform faster than using a mapping configuration that does.

28| Page

7.1 Hypotheses and results

In this subchapter we will state the hypotheses again and display the results of the performance
measurement.

7.1.1 Testing the type of queries

1) Hypothesis: Retrieving two objects from one table will perform faster than retrieving two
objects from two tables, using a join query.

Accepted
@ 1-1 one table @ ResultSet1
table Table AB
PK [P
PKA | columnsA | columnsB

1-1 unique foreign key
ResultSet1
table A table B Join Table A I Table B
PK P PK P
FK u L —7] PKA | columnsA | FKB' PKB | columnsB

Figure 19: Query behaviour hypothesis 1

In this test we related two objects (of the same type) 30.000 times with each other, using the two
mapping configuration described above. See Figure 20 and corresponding summary Table 2.

We will refer to the first mapping configuration (in this case: storing two objects in one table) as
configuration one and to the second mapping configuration (in this case: storing two objects in two
tables, relating them with an unique FK and retrieving them with a join query) as configuration two.

When observing the results of the tests with the Oracle database, in all situations configuration one
performs better than configuration two. Comparing these results with those of the tests with the
MySQL database, we see that with the large objects there is hardly any difference between the two
methods.

It can also be noted that the time spent executing in the database and transferring the data (the
JDBCQuery time) stays relatively low when the object size increases, while the JDBC time drops in
performance drastically. Recall that O4 and O5 are 50 times larger than O1 and 02 (for an
explanation of the different type of objects, O1 till 05, see 6.3.1 Object graph).

29| Page

30.000 * 1tol: One Tabel VS Unique FK Join

80000
70000 I T

60000

50000

40000
Total
30000 W Hibernate
W dbe

20000 W JdbcQuery

10000

“
H
OneTable 04 e i
UniqueFK 04 et
OneTable 05
UnigueFK 05 e e e
|]
H
1
OneTable 04 e |
UniqueFK 04 %
OneTable 05 e e et
UniqueFK 05 i

OneTable 01 g% H
UniqueFk 01 '
OneTable 02 ' '
UniqueFk 02 % "
OneTable 03 JCL_,
UniqueFK 03 JiC.,
OneTable 01 ¥ "
UniqueFK 01 "

OneTable 02 " "
UniqueFK 02 ¥ H
OneTable 03 0

UniqueFK 03 [

Oracle MySQL

Figure 20: Performance measurements hypothesis 1

The results diagrams (like Figure 20) describe the three measured values and indicate the standard
deviation at the top. The objects (of the object model) are indicated with O1 to O5. To keep the

names (under the bars) as short as possible, we also choose to only describe the key differences in
this name.

In Table 2 we indicated how much slower the second configuration is compared to the first
configuration, by indicating the difference in percentages (were configuration one is the total). When
the percentage is negative, configuration two performed faster and when positive configuration one
did. We also display the highest standard deviation of the two compared configurations, in
percentage (calculated using the first configuration as total).

Oracle Total std Hibernate std Jdbc std JdbcQuery std
o1 11,8% 9,1% 13,2% 9,3% 24,8% 15,7% 1,3% | 11,3%
02 16,7% 10,8% 19,8% 11,4% 56,3% 17,7% -8,6% | 12,1%
03 12,7% 3,3% 26,1% 3,4% 41,0% 16,6% -0,2% 7,3%
04 22,4% 0,7% -5,8% 4,0% 41,1% 1,2% 0,2% 4,6%
o5 24,1% 0,6% -5,2% 1,7% 40,8% 1,7% 13,0% 6,9%
MySQL

o1 29,7% 3,4% 26,3% 3,5% 68,3% 16,6% 3,1% | 12,0%
02 38,9% 9,5% 41,5% 20,1% 59,0% 19,9% 14,2% | 12,7%
03 25,5% 5,7% 34,2% 11,9% 45,8% 10,7% -1,9% | 13,1%
04 -0,2% 0,9% -5,7% 1,8% 1,7% 2,0% 2,9% 6,1%
o5 -1,5% 0,3% -3,5% 2,0% -1,7% 0,8% 5,5% 3,2%

Table 2: Summary performance measurements hypothesis 1

30| Page

Conclusion

The performance between retrieving two objects from one table or retrieving them from two tables
with a join query is either better or neglectable when using one table. The performance is
neglectable with large objects and the MySQL database. Therefore using one table to store two
objects will (mostly) perform better than using two tables and retrieving the objects with a join

query.

2) Hypothesis: Storing the foreign key within the objects table will perform faster than storing it in
a junction table.

Rejected
. . o—0
@ 1-1 unique foreign key ResultSet1 ResultSet2
PIt(able AP l:’It(able BP Select Table A Table B
FK U e PKA | columnsA | FKB PKB | columnsB
o—0
@ 1-1 with junction table @ ResultSet1 ResultSet2
Plt(able AP junction table P}t(able BP Joi e et Table A | I Table B
= ~[FK P /4 = PKA | columnsA || FKB PKB | columnsB
FK U

Figure 21: Query behaviour hypothesis 2

In this test we related two objects (of the same type) 30.000 times with each other, using the two
mapping configurations described above. See Figure 22 and corresponding summary Table 3.

For both the results of the test with the Oracle as with the MySQL database the configurations
perform almost equally (with only minor differences). As the performance is almost equal, both
configurations can be chosen. Choosing configuration two however can prevent extra queries when
using bidirectional relationships (see the possible extra costs of bidirectional relationships in
hypothesis 11).

31| Page

30.000 * 1tol: Unique FK VS Junction table

80000
70000

60000

1 1 I
50000
40000
Total
30000 W Hibernate
¥ Jdbe
20000 W JdbcQuery
z T F |F
10000 5 5 I
ol L b Lk b
5 5 2 8 8 8 33 8 8 5 5 S 8 38 33 8 8
55 55 55 55 55 55 55 55 55 53
Oracle MySQL

Figure 22: Performance measurements hypothesis 2
Oracle Total std | Hibernate | std Jdbc std | JdbcQuery | std
o1 2,5% 7,5% 2,5% 8,9% 2,0% 8,6% 2,8% | 10,4%
02 -1,0% 3,0% 5,5% 5,0% -16,6% 6,9% -5,0% 8,2%
03 2,0% 3,0% 1,2% 53% 14,5% | 13,7% -0,5% 52%
04 1,1% 1,9% -1,4% 2,4% 2,2% 3,5% 3,7% | 3,0%
05 3,2% 3,6% 7,8% 6,9% 1,1% 2,4% -3,1% | 14,5%
MySQL
o1 -8,2% 5,8% -13,5% 5,7% -10,2% 8,3% 4,4% 6,1%
02 -1,7% 4,4% -4,3% 7,0% 3,4% 6,7% -0,6% | 10,0%
03 -1,4% 2,2% -5,6% 8,5% -2,8% | 12,7% 6,0% | 4,9%
04 -0,8% 1,0% 0,5% 2,4% -0,3% 2,4% -6,4% | 3,3%
05 1,5% 0,8% 0,4% 2,3% 3,3% 2,7% -5,9% 5,0%

Table 3: Summary performance measurements hypothesis 2

Conclusion

Storing a relationship in a separate table does not influence the performance noticeably. In most
cases the measured differences are neglectable but in two cases the results deviate a bit more (but
still minimal). The use of a junction table to store the foreign keys in a one to one relationship can
therefore be neglected. The use of this configuration can thus be considered when other
configurations cause extra overhead.

32| Page

7.1.2 Testing the amount of queries

3) Hypothesis: Retrieving two objects from one table

objects from two tables, using two select queries.

Accepted

@ 1-1 one table

table
PK [P

@ 1-1 unique foreign key

table A table B
PK P

PK [P
FK ub—

Figure 23: Query behaviour hypothesis 3

QO

Se;ect

will perform faster than retrieving two

ResultSet1

Table AB

PKA | columnsA | columnsB

o0
ResultSet1 ResultSet2
Table A Table B
PKA | columnsA | FKB PKB | columnsB

In this test we related two objects (of the same type) 30.000 times with each other, using the two
mapping configuration described above. See Figure 24 and corresponding summary Table 4.

For the smaller objects the difference between configuration one and two is significantly large, while
this difference becomes smaller when the object grows in size. The cause is (for the tests with both
databases) the JDBC driver that drops in performance drastically, when the amount of columns

increases.

. 30.000 * 1tol: One Tabel VS Unique FK

20000

70000

60000

50000

40000

30000

20000

10000

UniqueFK 04 [ey
OneTable 05
UniqueFK 05 i e

(=]
-
UniqueFK 01 JiE,, "
UniqueFK 02 BE," "
OneTable 03 JCL, 1
UniqueFK 03 it |~
OneTable 04 yq

OneTable 01 g% H
OneTable 02 ['

Oracle

Figure 24: Performance measurements hypothesis 3

OneTable 01 ¥ "

UniqueFK 01 J~*

H

OneTable 02 % "

UniqueFK 02 ™"

Total
W Hibernate
W dbc
¥)dbcQuery

H
UniqueFK 03 ™ !
OneTable 04 e |
UniqueFK 04 F
OneTable 05 e e et
UniqueFK 05 e s st

OneTable 03 0

MysaL

33| Page

Oracle Total std | Hibernate | std Jdbc std | JdbcQuery | std
o1 97,2% | 14,8% 91,9% | 17,0% 95,3% | 16,8% 109,4% | 21,7%
02 112,8% | 6,5% 114,9% | 10,6% 125,5% | 13,7% 102,7% | 13,4%
03 55,3% | 47% 105,8% | 44% 53,8% | 21,1% 28,8% | 7.3%
04 3,7% | 1,5% 11,6% | 3,0% -5,1% | 1,5% 34,7% | 41%
05 1,4% | 0,9% 7,4% | 1,4% -7,4% | 1,8% 79,8% | 13,7%
MySQL

o1 95,5% | 11,4% 101,2% | 11,4% 94,9% | 16,6% 85,4% | 11,3%
02 106,4% | 6,7% 122,5% | 15,7% 75,8% | 10,7% 105,8% | 18,0%
03 84,7% | 5.7% 135,2% | 20,0% 62,5% | 20,6% 57,4% | 58%
04 5,5% | 1,1% 8,7% | 26% 1,0% | 24% 26,3% | 6,1%
o5 1,8% | 0,8% 10,8% | 2,6% -5,6% | 0,8% 27,6% | 3,7%

Table 4: Summary performance measurements hypothesis 3

Conclusion

Retrieving two objects from one table performs faster than retrieving them from two tables with two
select queries, as expected. When the size of the objects grows this difference is decreasing.

7.1.3 Testing all factors

4) Hypothesis: Retrieving two objects from two tables with a join query will perform faster than
retrieving them using two select queries.

Accepted
. . O
@ 1-1 unique foreign key ResultSet1 ResultSet2
table A table B Select Table A Table B
% E B P PKA | columnsA | FKB PKB | columnsB
1-1 unique foreign ke
@ q 9 y @ ResultSet1
able A eableB Join Table A [Teves
FK ub—"1" PKA | columnsA | FKB | PKB | columnsB

Figure 25: Query behaviour hypothesis 4

In this test we related two objects (of the same type) 30.000 times with each other, using the two
mapping configuration described above. See Figure 26 and corresponding summary Table 5.

The first things you notice are the problems the oracle JDBC driver has with processing the results of
a joined query with a lot of columns. In all situations the joined query performs faster than two select
gueries, except with large objects. With the results of the tests with MySQL the performance gain is
reduced (but it stays faster) and with the results of the tests with the oracle database the
performance order even reverses.

Both databases (JdbcQuery time) as well as Hibernate do perform one join query faster than two
select queries.

34| Page

80000

70000

60000

50000

30.000 * 1tol: Unique FK Select VS Join

40000
Total
30000 W Hibernate
¥ Jdbe
20000 W JdbcQuery
10000 F ¥ z } - I . T
- T
bk Lk U be ki b
5 5 2 8 8 8 33 8 8 5 5 S 8 38 3 3 8 8
¥ ¥I§ £s5 ¥3 ¥3 ¥3 ¥§ fs ¥ i3
Oracle MySQL
Figure 26: Performance measurements hypothesis 4
Oracle Total std | Hibernate | std Jdbc std | JdbcQuery | std
o1 -43,3% | 7,5% -41,0% | 89% -36,1% 8,6% -51,6% | 10,4%
02 -45,1% | 51% -44,2% | 53% -30,7% 7,9% -54,9% 6,6%
03 -27,4% | 3,0% -38,7% | 2,1% -8,3% | 13,7% -22,5% | 44%
04 18,0% | 1,5% -15,5% | 3,6% 48,7% 1,6% -25,7% | 3,4%
05 22,3% | 0,9% -11,7% | 1,6% 52,0% 1,9% -37,1% 7,6%
MySQL
o1 -33,7% | 58% -37,2% | 57% -13,7% 8,3% -44,4% 6,5%
02 -32,7% | 46% -36,4% | 9,0% -9,6% | 11,3% -44,5% 8,7%
03 -32,0% | 1,4% -43,0% | 85% -10,3% | 12,7% -37,7% 8,3%
04 -5,5% | 1,0% -13,2% | 2,4% 0,7% | 2,4% -18,6% | 3,3%
05 -3,2% | 0,8% -12,8% | 2,3% 4,2% 0,9% -17,3% | 2,9%

Table 5: Summary performance measurements hypothesis 4

Conclusion

In the large amount of the cases retrieving two objects from two tables with a joined query is faster
than retrieving them by two separate select queries. When this is not true the oracle JDBC driver has
to process the results of retrieving large objects with a join query. We assume that this is due to an

error in the implementation of the Oracle JDBC driver and will take this into account in analyzing the
rest of the results.

35|Page

5) Hypothesis: Retrieving one

object from one table will perform faster than retrieving two
objects using a join query.

Accepted
Not navigated
. . QX
@ 1-1 unique foreign key ResultSet1 | ResultSet2 :
table A table B Slect Table A | Table B
b o e — - 4
% E /% P PKA | columnsA | FKB | PKB | columnsB
— O
1-1 unique foreign ke
@ q 9 Y ResultSet1
Plt(able AP Plt(able BP Join Table A I Table B
EK U 7= PKA [columnsA | FKB' PKB | columnsB
S — S —

Figure 27: Query behaviour hypothesis 5

In this test we related two objects (of the same type) 30.000 times with each other, using the two
mapping configuration described above. See Figure 28 and corresponding summary Table 6.

In the previous hypotheses we observed that the performance is bad whilst retrieving larger objects
(especially with a joined query). Therefore, it is logical to see the great performance gains of
configuration one with large objects, while with smaller objects this gain is much less.

o 30.000 * 1tol: Unique FK Select (no navigation) VS Join
80000

70000 . . T

60000

50000

40000

Total
30000 W Hibernate

W Jdbe
20000 W JdbcQuery

10000 ¥

[=]
NoMNav01l & ¥
Joinol g™)
No Nav 02 ¥ H
Join02 ¥
NoMNavO3 fCf
Join 03 B,
No Nav 04 [y "
Join 04 e
i
NoMNav 05 [y
Join 05 [p——
H
NoMNav 01 "
Joino1l '
No Nav 02 " *
Join 02 ¥ H
NoNavO3 B '
Join 03 [gh !
"
No Nav 04 M
Join 04 %
H
No Nav 05 il
Join 05 ﬁ

Oracle MySaL

Figure 28: Performance measurements hypothesis 5

36|Page

Oracle Total std | Hibernate | std Jdbc std | JdbcQuery | std
o1 2,4% | 3,6% 0,2% | 52% 13,7% | 16,1% 0,5% | 6,3%
02 -1,4% | 91% -7,6% | 88% 21,8% | 13,8% -1,5% | 13,1%
03 38,4% | 4.1% 9,5% | 6,9% 63,6% | 19,2% 59,4% | 7,1%
04 114,5% | 2,2% 58,1% | 6,7% 165,1% | 3,5% 35,5% | 6,2%
05 121,1% | 1,0% 58,6% | 3,9% 171,3% | 3,2% 28,8% | 85%
MySQL

o1 23,1% | 6,7% 16,2% | 82% 61,0% | 13,3% 3,3% | 12,0%
02 20,7% | 82% 17,5% | 16,7% 45,5% | 18,2% 3,1% | 11,5%
03 30,0% | 1,7% 12,0% | 55% 54,2% | 11,4% 28,5% | 17,1%
04 79,1% | 1,4% 61,2% | 3,1% 87,7% | 3,5% 78,3% | 53%
05 88,3% | 0,6% 76,7% | 3,6% 96,2% | 1,1% 73,4% | 6,3%

Table 6: Summary performance measurements hypothesis 5

Conclusion

In most cases not retrieving the data performs better than retrieving it in a join query with the
original query, in two of the ten cases this difference is neglectable. The difference increases rapidly
when the objects grow in size. When using the oracle database, the difference between both
configurations on small objects is not noticeable at all.

Retrieving an object either always by using a join query or only when needed can make a huge
difference when working with large objects. The performance difference is especially noticeable in
the JDBC driver, but as this is very small with small objects the total performance does not
differentiate that much. As the objects get larger the difference on the other aspects also increases.

6) Hypothesis: Retrieving an one to many relationship (with 10 objects on the many side) will
perform faster when the relationship is set to select fetching than to join fetching.
Rejected

1-m foreign key O
ResultSet1 ResultSet2

table A table B o
PK P PK P elect Table A Table B
D FK PKA | columnsA FKA | PKB | PKB | columnsB
FKA | PKB | PKB | columnsB
FKA | PKB [PKB | columnsB

1-m foreign key ResultSet1

table A table B Join Table A Table B
PK | P % | P PKA | columnsA J| FKA [PKB [PKB | columnsB
D D FKA | PKB | PKB | columnsB
D D FKA [PKB [PKB | columnsB

Figure 29: Query behaviour hypothesis 6

In this test we related one object with ten objects (of the same type) 3.000 times, using the two
mapping configuration described above. See Figure 30 and corresponding summary Table 7.

The performance gain of configuration one compared to configuration two is minimal. Only the
known performance drop of the join query is causing the oracle JDBC to perform badly. In the next

37| Page

hypothesis we will compare this same situation but with a one to hundred relationship, looking what
happens when more values are duplicated.

3.000 * 1to10: Unique FK Select Vs Join

50000
45000 T I
40000
35000

30000

-
—

25000

Total
20000

W Hibernate
15000 ¥ dbe
¥ JdbcQuery
10000
5000 | . G IL — — T—F
Rk Rk W e EE RS
§ 8 SRS "c:_1 S § 3 @ S § 8 S 3 § 3 3 3 § o
Oracle MySQL
Figure 30: Performance measurements hypothesis 6
Oracle Total std | Hibernate | std Jdbc std | JdbcQuery | std
o1 -9,2% | 10,2% -8,1% | 10,6% 1,9% | 12,1% -43,5% | 32,6%
02 -0,7% 4,5% 7,0% | 11,9% 13,6% | 28,5% -51,1% | 34,4%
03 -1,5% 5,9% -2,2% 6,1% -10,2% | 14,9% 2,6% | 11,6%
04 53,9% 2,8% -7,6% 5,1% 98,4% 2,1% 8,4% 8,6%
05 50,8% 3,3% -6,5% 5,0% 86,3% 5,8% 30,3% | 42,2%
MySQL
o1 -8,9% 4,7% -9,3% 8,4% -3,5% 7,0% -24,1% | 17,4%
02 -3,4% | 6,6% -3,4% | 6,2% 4,4% | 22,3% -27,0% | 29,7%
03 5,4% 7,9% -0,5% | 10,5% 4,4% | 19,0% 18,3% | 17,8%
04 -0,3% 0,5% -3,7% 3,0% 0,6% 2,4% 16,7% 8,3%
05 0,5% 1,5% 4,3% 4,6% -4,7% 1,8% 20,7% 8,7%

Table 7: Summary performance measurements hypothesis 6

Conclusion

In hypothesis 4 we noticed the bad performance of the oracle JDBC driver when processing large
objects that are retrieved with a join. Ignoring this behaviour we observe that in a one to ten
relationship the performance of a join or two separate select queries can be neglected.

38| Page

7) Hypothesis: Retrieving an one to many relationship (with 100 objects on the many side) will

perform faster when the relationship is set to select fetching than to join fetching.
Rejected

1-m foreign key &
Select

table A table B ResultSet1 ResultSet2
PK P PK P Table A Table B
N FK PKA | columnsA FKA | PKB | PKB | columnsB

FKA | PKB [PKB | columnsB
FKA | PKB [PKB | columnsB

1-m foreign key ResultSet1

table A table B Join Table A Table B
PK | P % | P PKA | columnsA J| FKA [PKB [PKB | columnsB
D D FKA | PKB | PKB | columnsB
D D FKA [PKB [PKB | columnsB

Figure 31: Query behaviour hypothesis 7

In this test we related one object with hundred objects (of the same type) 300 times, using the two
mapping configuration described above. See Figure 32 and corresponding summary Table 8.

In none of the situations the joined query is significantly faster than two select queries, in two cases
it is slower but these are ignored (see hypothesis 4). Therefore, duplicating values does not influence

the performance with these amount of objects. This can possibly be the cause of optimization
techniques in the JDBC and database.

300 * 1t0100: Unique FK Select Vs Join
ms
50000
45000 1 _
40000
35000
30000
F I
25000
Total
20000 n W Hibernate
il } " Jdb
15000 ¢
¥)dbcQuery
10000
o il (N { I 3 N A
— - ™~ m m = = woun - ™~ o~ o oM = = o
o o o o o O s s = o] o O o o o O o o o O
T £ T £ T £ T £ o £ t £ b £ T £ L £ T £
& 5 i 5 @ ‘g i o -] 4 B -] G a5 & 5
[T [T [T T [T T @ T [T v
v wi v wy v wy w wy w wy

Oracle MySaL

Figure 32: Performance measurements hypothesis 7

39| Page

Oracle Total std | Hibernate | std Jdbc std | JdbcQuery | std
o1 0,3% | 46% -6,6% | 81% 12,9% | 84% -40,6% | 83,7%
02 -1,7% | 4,0% -5,5% | 88% 6,1% | 89% -33,6% | 59,9%
03 -2,2% | 6,5% -4,6% | 18,9% -0,9% | 56% -4,2% | 22,3%
04 65,5% | 1,8% 2,4% | 7,6% 98,4% | 50% -1,7% | 29,1%
o5 63,6% | 2,4% -0,8% | 3/5% 98,6% | 24% 6,4% | 39,6%
MySQL

o1 0,6% | 50% -7,8% | 7,0% 11,4% | 20,7% 71,5% | 80,9%
02 -2,0% | 47% 0,0% | 54% -5,0% | 7.7% -9,3% | 48,3%
03 15,3% | 3,5% -6,2% | 5,6% 2,8% | 88% 88,5% | 19,6%
04 2,7% | 1,3% 0,9% | 3,9% 1,8% | 3,6% 41,2% | 18,9%
o5 7,2% | 3,6% 7,1% | 56% 2,9% | 3,3% 69,7% | 11,6%

Table 8: Summary performance measurements hypothesis 7

Conclusion

In hypothesis 6 we compared the join query with two select queries to a one to ten relationship. In
this hypothesis the same test was performed but with a one to hundred relationship. The results stay
neglectable between the two methods, except when the MySQL database is used for retrieving small
objects with a large string. As this is the only time we observe this behaviour of object 3 and only in
one of the ten tests the performance differences is not neglectable, we consider the performance
differences between the techniques to be neglectable.

40 |Page

8) Hypothesis: Join fetching the junction table with the many side will perform faster than select

fetching each object from the many side, with an amount of 10 objects at the many side.
Accepted

o—0 o—+0
@ 1-m with junction table @ ResultSet1 ResultSet2 ResultSet3
table A Tunction table table B Select Select LEBA u LEEDIS
PK | P e FII(= PK | P PKA | columnsA FKA | FKB PKB | columnsB
F__K P+U / FKA | FKB O_>Q
FKA | FKB ResultSet4
Table B
PKB | columnsB
Oo—0
o—0
@ 1-m with junction table ResultSet1 ResultSet2
table A funciion Table table B Selogt Join Table A JT Table B
PK | P legEK | P /4 PK | P PKA | columnsA FKA [FKB)| PKB | columnsB
FK P+U FKA | FKB f PKB | columnsB

FKA | FKB § PKB | columnsB

Figure 33: Query behaviour hypothesis 8

In this test we related one object with ten objects (of the same type) 3.000 times, using the two
mapping configuration described above. See Figure 34 and corresponding summary Table 9.

In all situations “configuration two” performs significantly faster than “configuration one”, even with
the bad performance of the oracle JDBC driver (when joining large objects).

41 |Page

3.000 * 1to10: Junction Table Select VS Join

ms
50000
45000 I I
40000
35000
I I
30000 1 I
25000 .
i Total
20000 W Hibernate
15000 F ldbe
¥ JdbcQuery
10000 1 T [l
I I i z
5000 it =
i 1 i 1
kb D b ki s
55 88 88 33 88 58 88 88 23 88
Oracle MysaL
Figure 34: Performance measurements hypothesis 8
Oracle Total std | Hibernate | std Jdbc std | JdbcQuery | std
o1 -51,7% | 7,6% -46,0% | 11,9% -28,4% | 282% -78,8% | 11,3%
02 -53,7% | 6,9% -50,4% | 10,2% -26,1% | 6,5% -77,8% | 7,5%
03 -40,4% | 3,4% -49,0% | 51% -26,8% | 9,9% -35,8% | 5,5%
04 -7,7% | 1,8% -19,1% | 3,3% 8,3% | 45% -38,5% | 59%
05 -11,1% | 22% -16,7% | 58% 0,3% | 1,6% -59,6% | 3,9%
MySQL
o1 -53,8% | 41% -48,0% | 51% -38,2% | 7,1% -82,9% | 6,7%
02 -56,5% | 7,1% -53,7% | 6,6% -41,9% | 21,0% -76,0% | 6,2%
03 -42,0% | 52% -40,9% | 6,6% -15,1% | 11,5% -64,4% | 85%
04 -48,6% | 1,1% -23,3% 1,6% -56,4% | 1,4% -77,4% | 11,8%
05 -49,5% | 2,0% -21,3% | 28% -58,9% | 1,9% -75,5% | 51%

Table 9: Summary performance measurements hypothesis 8

Conclusion

Using a join at the right places within a one to many relationship that uses a junction table to store
the relationship can spare a lot of SQL queries. Preventing queries will perform faster in all situations.
Joining the many side with the junction table prevents a single query for each ID stored in the
junction table.

42 |Page

9) Hypothesis: Join fetching the junction table with the many side will perform faster than select
fetching each object from the many side, with an amount of 100 objects at the many side.

Accepted

@ 1-m with junction table

P}t(able AP junction table P}t(able BP
PK | NTEK P EK |
FK P+U
@ 1-m with junction table
table A junction table table B

PK |P K

FK |P+U

BKP

Figure 35: Query behaviour hypothesis 9

Select Select

Select Join

o0 o—0
ResultSet1 ResultSet2 ResultSet3
Table A JT Table B
PKA [columnsA FKA | FKB PKB| columnsB
FKA | FKB O—0O
FKA | FKB ResultSet4
Table B
PKB | columnsB
Oo—0
|
o—0
ResultSet1 ResultSet2
Table A JT Table B
PKA [columnsA FKA | FKB | PKB | columnsB
FKA | FKB j§ PKB | columnsB
FKA | FKB § PKB | columnsB

In this test we related one object with hundred objects (of the same type) 300 times, using the two
mapping configuration described above. See Figure 36 and corresponding summary Table 10. This
test is to demonstrate the performance loss when increasing the amount of related objects by ten.
When this amount is further increased, this performance drop will even be more drastically.

Increasing the amount of related objects makes configuration two perform even faster compared to

configuration

one.

43 |Page

300 * 1t0100: Junction Table Select VS Join

ms
50000

45000
40000 i

35000

30000 e 1
25000 I i
Total
20000 I W Hibernate
15000 ¥ Jdbe
¥)dbcQuery
10000 I T
I ¥ x I [[
5000 = =
F I - -
ULR Lil i b ke bk
53 88 88 33 88 8% 83 88 33 BB
Oracle MySQL
Figure 36: Performance measurements hypothesis 9
Oracle Total std | Hibernate | std Jdbc std | JdbcQuery | std
o1 -62,5% | 6,7% -58,0% | 13,4% -31,8% | 12,1% -98,2% | 4,0%
02 -61,6% | 4,9% -57,8% 6,3% -28,7% | 14,3% -98,9% 8,8%
03 -45,3% | 3,6% -57,9% 4,2% 103,5% | 22,1% -90,7% | 2,4%
04 -13,3% | 2,5% -19,4% 2,6% 8,2% 5,4% -93,5% | 10,5%
05 -10,1% | 4,0% -11,3% 4,8% 1,8% | 48% -93,1% | 10,0%
MySQL
o1 -65,9% | 3,7% -58,6% 5,9% -52,1% 6,7% -95,6% | 2,5%
02 -65,4% | 7,5% -58,4% 8,9% -53,1% 8,5% -94,9% 6,2%
03 -56,7% | 4,4% -60,2% 3,8% -34,4% 6,5% -71,8% | 10,3%
04 -54,3% | 1,0% -23,6% 3,3% -64,5% 1,2% -87,0% | 44%
05 -55,5% | 1,5% -22,9% 52% -66,6% 1,8% -89,0% 5,1%

Table 10: Summary performance measurements hypothesis 9
Conclusion

Increasing the amount of related objects of the test in hypothesis 8 will confirm that with more
relationship the performance differences drastically grow even more.

44 |Page

10) Hypothesis: Storing the foreign key within the objects table will perform faster than storing it in
a junction table, with a one to many relationship and an amount of ten objects at the many

side.
Rejected

1-m foreign key

table A table B
PK P PK P
T~

@

1-m with junction table

table A

P

junction table

‘Tﬂ B
FK P+U

table B

BT

Se|ect

Select Join

o0
ResultSet1 ResultSet2
Table A Table B
PKA | columnsA FKA | PKB [PKB | columnsB
FKA | PKB [PKB | columnsB
FKA | PKB | PKB [columnsB
o0
ResultSet1 ResultSet2
Table A JT Table B
PKA | columnsA FKA | FKB j§ PKB | columnsB
FKA | FKB | PKB | columnsB
FKA | FKB j§ PKB | columnsB

Figure 37: Query behaviour hypothesis 10

In this test we related one object with ten objects (of the same type) 3.000 times, using the two
mapping configuration described above. See Figure 38 and corresponding summary Table 11.

For both databases the configurations perform almost equally. Joining a junction table with an
ordinary object table does not cause great performance drops in the oracle JDBC driver.

3.000 * 1t010: Unique FK VS Junction Table

ms
50000

45000
40000
35000
30000 T 1 1=
25000
= e
T T Total
20000 W Hibernate
15000 ®Jdbe
H JdbcQuery
10000
5000 §0 T4
T |F x T = = F oIz
ekl Kk bW e bk ki
— — o~ [x] o m = = u wn — — o~ ™~ [12] m) =4 w uy
o o o o o o [o N o] o o o o o o o o o o [s =}
4 a = @ 4 a o @ 4 @ 4 U a2 @ = L a2 @ = U
- T2 &3 - &3 - i3 - i3 -
g8 & 38 £ 3B 8 38 z8 38 38
S S S S S S S S S S
Es £5 £5 E£5 £33 Es £5 £5 E£5 £33
= - = =2 - = =2 - =2 - =] - =2 - =2 - =2 -
Oracle MysSaL

Figure 38: Performance measurements hypothesis 10

45 |Page

Oracle Total std | Hibernate | std Jdbc std | JdbcQuery | std
o1 7,0% | 10,2% 11,7% | 10,6% -4,4% | 16,1% 11,1% | 32,6%
02 9,5% | 44% 17,5% | 11,9% 7,0% | 28,5% -13,3% | 34,4%
03 0,5% | 59% 13,0% | 49% -9,5% | 13,1% -4,4% | 84%
04 2,5% | 2,8% 0,6% | 51% 4,7% | 44% -5,0% | 84%
o5 -3,3% | 23% 0,9% | 50% -5,7% | 22% -5,4% | 89%
MySQL

o1 -0,2% | 47% 1,5% | 84% -1,8% | 7,0% -6,9% | 30,4%
02 -15,6% | 13,7% -21,8% | 82% -13,7% | 31,2% 19,1% | 30,8%
03 -0,2% | 2,6% 4,9% | 11,7% -1,4% | 11,0% -7,7% | 11,5%
04 2,6% | 0,7% 10,2% | 2,4% -2,5% | 2,4% -8,4% | 16,2%
o5 3,6% | 1,3% 11,5% | 2,6% -2,1% | 1,8% -3,8% | 87%

Table 11: Summary performance measurements hypothesis 10

Conclusion

In hypothesis 2 we tested if a join with the junction table could be neglected for a one to one
relationship and this proved to be the case. In hypothesis 10 we confirmed that this is also the case
when joining a one to ten relationship. In some situations the one will perform slightly faster than
the other, but in most cases the measurements overlap each other.

11) Hypothesis: Using a mapping configuration that does not introduce overhead when configuring
a bidirectional relationship will perform faster than using a mapping configuration that does.
Accepted

o0

@ 1-1 unique foreign key ResultSet1 ResultSet2

F’}t(able AP Plt(able BP Select Table A Table B

FK IU | —v— PKA | columnsA | FKB PKB I columnsB

o0
@ 1-1 unique foreign key ResultSet1 ResultSet2
table A table B Select Table A Table B Table A
PK [P BK [P
K | u b | PKA | columnsA | FKB PKB [columnsB | [PKA | columnsA [FKB |

Figure 39: Query behaviour hypothesis 11

In this test we related two objects (of the same type) 30.000 times with each other, using the two
mapping configuration described above. See Figure 40 and corresponding summary Table 12.

In none of the situations the performance difference reaches 50%, meaning that the extra query
(that retrieves an already retrieved object again) is performed in less time and possibly optimized.
With larger objects the difference drops even further.

Although it runs a bit optimized, the overhead still deteriorates the performance. Choosing another
mapping configuration in this case can perform better (like the configuration were the relationship is
stored in a junction table).

46 |Page

30.000 * 1tol: Unidirectional VS Bidirectional
ms

100000 =

-

50000

80000

H

70000

60000
I x
50000
Total
40000 W Hibernate
30000 F Jdbe
T N ¥ JdbcQuery
20000 - -
I I = =
10000 ¥ i i i
ol ke il Lk Lk
55 838 388 &3 88 55 33 38 33 &858
Oracle MySaL

Figure 40: Performance measurements hypothesis 11
Oracle Total std | Hibernate | std Jdbc std | JdbcQuery | std
o1 36,4% | 7.5% 34,8% | 14,1% 31,5% | 20,1% 42,4% | 24,5%
02 35,4% | 8,8% 34,6% 7,6% 44,2% | 6,7% 32,1% | 19,0%
03 46,4% | 3,9% 41,8% | 80% 58,2% | 13,7% 47,4% | 6,3%
04 15,6% | 1,5% 13,3% | 2,6% 9,3% | 24% 52,8% | 7,4%
05 16,0% | 1,0% 16,9% | 2.7% 10,7% | 1,9% 50,5% | 87%
MySQL
o1 44,3% | 58% 35,8% | 57% 46,3% | 83% 59,9% | 6,1%
02 45,5% | 2,8% 33,3% 7,0% 51,4% | 7,5% 66,2% | 87%
03 39,9% | 1,7% 36,1% | 85% 28,6% | 12,7% 56,3% | 3,7%
04 32,0% | 1,0% 16,8% | 2,4% 36,6% | 24% 44,7% | 34%
o5 27,2% | 0,8% 8,1% | 23% 32,4% | 0,9% 50,7% | 2,9%

Table 12: Summary performance measurements hypothesis 11

Conclusion

Choosing certain configurations for bidirectional relationships can cause an overhead that will
drastically deteriorate the performance. This overhead is retrieving previously retrieved data again,
slightly optimized but still takes a lot of time to execute. Choosing a mapping configuration that will
not cause this overhead can be recommended in these cases.

47 |Page

7.2 Threats to validity

Every experimental research setup has certain threats to validity. In this chapter we discuss several of
them, categorising them under internal and external threats.

7.2.1 Internal

Using the Get method of the API

Before relationships can be retrieved, a starting object is needed. In order to retrieve this starting
object Hibernates supports several methods (in its API). In our research we only used the Get
method, which queries an object by its primary key but Hibernate also supports several other
guerying methods. As we measure both the querying of the first object as querying the relationships
together, the total performance and the differences expressed in percentages (of this total) will
change when using these different methods. The relation querying will however not change and the
position (faster or slower) compared to each other will not change as well and will therefore not
endanger the results or conclusions of this research.

Possible bug in JDBC driver

We also discovered strange behaviour when joining large objects when using the oracle JDBC driver.
It is therefore not entirely sure if there are more effects on the performance that went unnoticed.
We also noticed strange behaviour when iterating through a large ResultSet; it takes a lot of time for
both JDBC drivers to perform this action (compared to the time spent in Hibernate and the
database). It might be possible that this will be solved in future releases but as these were the latest
drivers available at the time and are also used in production environments, using these drivers makes
the results more realistic.

Experimental setup

Besides the type of mapping configurations and fetching strategies, there are several other factors
that influence the performance. In our research we choose a fixed value for these remaining factors.
This means that we execute the tests with only five types of objects, two database implementations,
a fixed amount of data in the database (max 30.000 objects in a table), the foreign keys are fixed
(one data type stored in one column) and composite keys or different types are not taken into
account (as the relation highly depends on these foreign keys we can imagine that the relation
qguerying performance will also depend on this factor). What influences different choices on these
factors will have is unknown. Nevertheless, this research will give a clear indication on how Hibernate
behaves in this particular setting. Changing this setting will change the measured values, but the
chance it will change the fastest configuration (of a particular comparison) is minimal.

The object model of our tests consists of only one relationship and it is uncertain whether the
measured performance remains the same when increasing the amount of relationships in this object
model. Looking at the query behaviour of Hibernate it is likely that it will, as each relationship is
treated as a separate chunk and one chunk will not influence the other. The chance that a mapping
configuration will therefore perform in a different way in an object model with one relationship (than
with more relationships) will be very small. We also do not try to calculate the total performance;
we just try to find the fastest mapping configuration, if the performance of a single query increases
when the object model is increased, it does not matter as long as they all increase equally.

There is one exception on this threat, joining several queries into one query cannot be separated in
different chunks. It is unclear what will happen with the performance when applying this method, we
therefore recommended researching this in future work.

48 |Page

7.2.2 External

Scoping the mapping configurations

One of the largest threats is the incompleteness of our research due to scoping: we left out some
type of mapping configurations (like inheritance relationships and the lazy attribute fetching) and
fetching strategies (Subselect and Batch fetching). Certain situations or exceptions are therefore not
treated and information is missing to create the fastest configuration for ever situation, but with the
information available a decent start can be made and poor performance can be prevented.

Simple non-realistic environment

Our measurements indicate the behaviour of a very simple non-realistic environment. There is no
concurrency, no caching, no production machines, a private network (without other machines
attached to it) and no database optimization. This will make the results less realistic, but will help
executing different tests under the same circumstances. The results will therefore be more constant
and will give a clear indication how the configurations perform in an idealistic situation. The results
will however suffice to determine what configuration will prevent poor performance.

49 |Page

8 Conclusion

We have created a theory about the relation querying behaviour of Hibernate and compared some
key differences between the executed SQL statements (in this behaviour) by executing several
performance measurements, answering the research question: What is the effect on the
performance of Hibernate querying objects when using different mapping configurations?

We can conclude that changing the mapping configuration of a persistence tool as Hibernate can
have great influence on the performance. There are several ways an object relationship can be
mapped to tables and several ways how Hibernate can collect it (the fetching strategy), configurable
in this mapping configuration. By choosing the right table representation and fetching strategy easy
performance gains can be achieved.

We also like to notice that before benchmarking several of these persistence tools (like in [1, 15]) this
should be realised. Executing these kinds of benchmarks without experience or prior research to
these configurations will have no added value.

In the rest of this chapter we will discuss the rejected hypotheses and give a recommendation for
configuring a good performing object model.

8.1 Rejected Hypotheses

For the performance measurements we constructed eleven hypotheses, of which four were rejected.
This indicates possible falsehoods in the rules of thumb widely available. We like to summarize the
hypotheses that were rejected (some hypotheses reinforce each other and are therefore written
together).

- Storing a foreign key within the object table will perform faster than storing it in a junction
table: this is not true. We also notice that joining smaller objects will have less negative
effect on the performance than joining larger objects. This is also confirmed when using a
one to many relationship;

- Retrieving an one to many relationship (with 10 objects on the many side) will perform faster
when the relationship is set to select fetching than to join fetching: this is also not true,
duplicating values will have no noticeable effect on the performance. This is also confirmed
with 100 objects on the many side.

8.2 Recommendations.

In the next part we will give our recommendations on setting up a good performing mapping
configuration for Hibernate.

The Hibernate reference documentation advises to start with setting each relationship to select
fetching (with lazy collection enabled) and when bad performance is encountered several changes
can be made. We advice to use the results of this research to set up a good performing starting
configuration.

With the described behaviour in chapter 5, the executed SQL statements of different mapping
configurations for a particular object relationship can be understood. In Appendix B: Relation
guerying behaviour we worked out the query behaviour of the different object relationships with this
described behaviour. These can then be compared to understand the behavioural differences.
Supplemented with the performance measurements in chapter 7, a good performing configuration
for a particular relationship can be chosen.

50| Page

We do also advice (as advised in the Hibernate reference documentation) to set each select fetched
relationship to lazy collection, as this will prevent unnecessary queries. To achieve even greater
performance the description of the optimization techniques in [22] will help.

51| Page

9 Future work

In this research we set up a theory for a good performing relation querying configuration in
Hibernate. This configuration can be further improved by investigating the Subselect and Batch
fetching strategies, inheritance relationships, joining multiple relationships, other ORM actions
(insert, update and delete), the caching optimization techniques and by how the configurations will
behave in more sophisticated situations. For more information see chapter 7.2 Threats to validity.

Also the causes of certain differences in the results of this research are not investigated. To further
improve Hibernate (or the JDBC drivers) a study can be performed on this subject.

Besides the relation querying, also the object querying methods of the APl can be further
investigated. Hibernate supports four ways to query object(s): the get method, load method, Criteria
objects (by restrictions and by example) and HQL (Hibernate Query Language). Before setting up our
benchmark we tested these different querying methods and we found that the HQL and criteria
objects performed equally, as well did the load and the get method. What we did find is that the
criteria objects performed 75 times slower than the load method did. This was while using the
.uniqueResult() method to perform the actual querying.

Both HQL and Criteria objects support several of these methods to execute the query: .iterate(),
list(), .uniqueResult(), .scroll() that each perform differently and will have a different effect on the
performance. To create the optimal querying configuration and usage, these methods and the
difference between the load and criteria objects can be further investigated and maybe improved.

There are also several specialized optimization techniques that are well described in the reference
documentation, but of which the effect on the performance is not tested: batch insert and update,
flushing objects (due to the session cache), bypassing the session cache in total, executing direct SQL
and using HQL to execute delete or update statements.

We also encountered some irregularities in the JDBC driver of both Oracle and of MySQL. Further
research on these drivers can improve performance.

Finally, using the knowledge gained with this research benchmarks comparing Hibernate with other
persistence tools can be improved as well.

52| Page

10 Acknowledgements

| would like to thank all supervisors guiding this research at Logica and the UvA. At Logica | would like
to thank Huub van Thienen, Co Kooijman, Ruud Rietveld, Henk Laman, Charles Liefting and in special
Ingrid van Zaanen (for her time spent in process management). At the UvA | would like to thank Hans
Dekkers for guiding the research at start and middle phases and Jurgen Vinju for the full on guidance
at the end of this research.

Also | would like to thank everybody that contributed to this research in consults, interviews and
reviews. In special Jan Willem Bunt and Marcel Cullens for their knowledge on Hibernate database
access layers and databases.

Further | would like to thank my Family for putting up with me this whole year.

And last but not least | would like to thank my project group with whom | fulfilled the rest of the
Master Software Engineering for the knowledge exchange and the awesome time together: Michel
de Graaf, Alex Hartog and Lars de Ridder.

53| Page

11 Bibliography

[1] Zyl, P. V., Kourie, D. G., and Boake, A. (2006). Comparing the performance of object databases
and ORM tools. ACM International Conference Proceeding Series, 204.

[2] van Zyl, P., Kourie, D. G., Coetzee, L., and Boake, A. (2009). The influence of optimizations on the
performance of an object relational mapping tool. In SAICSIT '09: Proceedings of the 2009 Annual
Research Conference of the South African Institute of Computer Scientists and Information
Technologists, New York, NY, USA, 2009 (pp. 150--159). ACM.

[3] Keller, W. (1998). Object/Relational Access Layers: A Roadmap, Missing Links and More Patterns.
Proceedings of the 3rd European Conference on Pattern Languages of Programming and Computing.
http://www.objectarchitects.de/

[4] Keller, W. (1997). Mapping Objects to Tables, A Pattern Language.
http://www.objectarchitects.de

[5] Keller, W. and Coldewey, J. (1996). Relational Database Access Layers: A Pattern Language.
http://www.objectarchitects.de/

[6] Senior, R., Klotz, T., and Majure, J. (22 Apr 2008). Patterns of persistence, Part 1: Strategies and
best practices for modern ORM tools. Retrieved 15 Dec 2009 from
http://www.ibm.com/developerworks/java/library/j-pop1/.

[7] Miller, J. (April 2009). Patterns in Practice: Persistence Patterns. Retrieved 15 Dec 2009 from
http://msdn.microsoft.com/en-us/magazine/dd569757.aspx.

[8] Lodhi, Fakhar; Ghazali, M. A. (2007). Design of a simple and effective object-to-relational
mapping technique. In SAC '07: Proceedings of the 2007 ACM symposium on Applied computing,
New York, NY, USA, 2007 (pp. 1445--1449). ACM.

[9] Ambler, S. W. (). Mapping Objects to Relational Databases: O/R Mapping In Detail. Retrieved 15
Dec 2009 from http://www.agiledata.org/essays/mappingObjects.html.

[10] lbrahim, A. and Cook, W. R. (2006). Automatic Prefetching by Traversal Profiling in Object
Persistence Architectures. ECOOP 2006 fi Object-Oriented Programming, 4067/2006, 50-73.

[11] Han, W.-S., Moon, Y.-S., and Whang, K.-Y. (2003). PrefetchGuide: capturing navigational access
patterns for prefetching in client/server object-oriented/object-relational DBMSs. Information
Sciences, 152, 47 - 61. http://www.sciencedirect.com/science/article/B6V0C-475JVGT-
2/2/2dc415be8050dc3f457218cad3ff9ee9

[12] Wiedermann, B. and Cook, W. R. (2006). Extracting Queries by Static Analysis of Transparent
Persistence. .

[13] Pohjalainen, P. and Taina, J. (2008). Self-configuring object-to-relational mapping queries.
ACM International Conference Proceeding Series, 347, 7.

[14] Philippi, S. (2005). Model driven generation and testing of object-relational mappings. Journal
of Systems and Software, 77(2), 193--207. http://dx.doi.org/10.1016/j.jss.2004.07.252

[15] Bruce, M. E. (2005). Uncovering Database Access Optimizations in the Middle Tier with
TORPEDO. .

54| Page

[16] Carey, M. J., DeWitt, D. J., and Naughton, J. F. (1993). The 007 Benchmark. In SIGMOD '93:
Proceedings of the 1993 ACM SIGMOD international conference on Management of data, New York,
NY, USA, 1993 (pp. 12--21). ACM.

[17] Valdez, A. C. (2006). Entwicklung einer Benchmark und eines Werkzeugs zur Performance-
Messung fir Datenbankzugrisschichten. Masters thesis, Rheinisch-Westfilischen Technischen
Hochschule Aachen.

[18] Alagbz, F. (2006). Konzeption und Implementierung eines Messverfahrens fiir den Performanz-
Vergleich Konzeption und Implementierung eines Messverfahrens fir den Performanz-Vergleich von
Datenbankzugrisschichten. Masters thesis, Rheinisch-Westfdlischen Technischen Hochschule
Aachen.

[19] Smith, K. E. and Zdonik, S. B. (1987). Intermedia: A case study of the differences between
relational and object-oriented database systems. SIGPLAN Not., 22(12), 452--465.

[20] Cook, William, R., Greene, Robert, Linskey, Patrick, Meijer, Erik, Rugg, Ken, Russell, Craig,
Walker, Bob, and Wittig, Christof (2006). Objects and databases: state of the union in 2006. In
OOPSLA '06: Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, New York, NY, USA, 2006 (pp. 926--928). ACM.

[21] HibernateTeam (2009). Hibernate.org. Retrieved 18 dec 2009 from
https://www.hibernate.org/.

[22] Red Hat Middleware (2009). Hibernate reference documentation. Manning Publications Co..,
http://docs.jboss.org/hibernate/stable/core/reference/en/html/

[23] hibernate forum (2009). SchemaExport not creating index for FK columns any more. Retrieved
17 dec 2009 from https://forum.hibernate.org/viewtopic.php?t=924910.

[24] hibernate forum (21 jan 2004). hbm2ddl: Automatic creation of indexes on foreign keys.
Retrieved 17 dec 2009 from https://forum.hibernate.org/viewtopic.php?t=948998.

55| Page

Master Thesis Software Engineering

Monday, January 11, 2010

Appendixes

X

X
. X
loolco UNIVERSITEIT VAN AMSTERDAM

(0

56| Page

Appendix A: Example mappings used in this research

In Figure 41 we indicated the mapping configuration we used in our research to create the table
representations (indicated with the circle and number within). The recursive relationships are
created in a similar way, but with both configurations in one object. For a description of these
configurations see chapter 4.2 Mapping configuration or for more detail the Hibernate reference

documentation [22].

O O © 00

Object

Object

@
<component name="child" class="B">
<parent name="parent"/>

<property name="value" column="comp_value" length="40" />

</component>

<one-to-one name="child"
cascade="all"
lazy="proxy" fetch="select"/>

<many-to-one name="child"
column="childld"
unique="true"
not-null="false"
lazy="proxy" fetch="select"
cascade="all"/>

<one-to-one name="child"
property-ref="parent" cascade="all"
lazy="proxy" fetch="select"/>

<join table="JuncTableAB"
optional="true">
<key column="parentld"
/>
<many-to-one name="child"
column="childld"
not-null="true"
unique="true"
cascade="all"
lazy="proxy" fetch="select"/>
</join>

<set name="children" inverse="true"
cascade="all"
lazy="true" fetch="select">
<key column="parentld"/>
<one-to-many class="B"/>
</set>

<set name="children"
table="JuncTableAB"
lazy="true" fetch="select"
cascade="all">
<key column="parentld"
/>
<many-to-many column="childrenld"
unique="true"
class="B"
lazy="proxy" fetch="select"/>
</set>

<set name="children"
table="JuncTableAB"
lazy="true" fetch="select"
cascade="all">
<key column="parentsld"

/>
<many-to-many column="childrenld"
class="B"

lazy="proxy" fetch="select"/>
</set>

Figure 41: Example mappings used in this research

&)

<one-to-one name="parent"
constrained="true"
lazy="proxy" fetch="select"
cascade="all"/>

<one-to-one name="parent"
property-ref="child" cascade="all"
lazy="proxy" fetch="select"/>

<many-to-one name="parent"
column="parentld"
unique="true"
not-null="false"
lazy="proxy" fetch="select"
cascade="all"/>

<join table="JuncTableAB"

optional="true"

inverse="true">

<key column="childld"
unique="true"/>

<many-to-one name="parent"
column="parentld"
not-null="true"

lazy="proxy" fetch="select"/>
</join>

<many-to-one name="parent" column="parentld" />

<join table="JuncTableAB"
optional="true" inverse="true">
<key column="childrenid"
/>
<many-to-one name="parent"
column="parentld"
not-null="true"
cascade="all"
lazy="proxy" fetch="select"/>
</join>

<set name="parents"
table="JuncTableAB"
lazy="true" fetch="select"
cascade="all" inverse="true">
<key column="childrenld"

/>
<many-to-many column="parentslid"
class="A"

lazy="proxy" fetch="select"/>
</set>

57| Page

Appendix B: Relation querying behaviour

In this appendix we worked out the relation querying of the type of relationships with different
fetching strategies. For the legend of the diagrams used in this appendix, see Figure 42.

Legend

Join

z_

Indicates the possibility to execute this query lazy.

Duplicated values

(where N is the amount of objects in the relation)

Overhead when using a bidirectional relationship,

Continues N amount of times, this can be rows or queries.
- compared to a unidirectional relationship.

JT Columns from a Junctiontable.

Indicates the extra overhead when the
bidirectional relationship back to object A
is set to join fetching.

Figure 42: Legend behaviour diagrams

When looking at the performance we can distinguish three different factors that influence the
performance: the amount of queries, type of query and size of the ResultSets. In the next part we
compare these for each different table representations and fetching strategies. For convenience we
also indicate what the behaviour is when the reference is set to lazy (if the object is not always
needed, there can be a performance gain by not querying the object).

Underneath the TR (table representation) number we indicate the fetching strategy of the reference.

One to one (non-recursive)

When comparing the non-recursive one-to-one relationships, there are five table representations
and four object representations possible.

58| Page

Object reference representation Table representation

Hibernate mapping possibilities @ 1-1 one table

1 - 1
O QO
PK P
a @ ——
1-1 foreign key is primairy key
: : : table A table B

B[P le—E P
L0y ©

1-1 unique foreign key
table A table B

PK [P PK [P
FK |u/ |

1-1 unique foreign key
table A table B

PK P PK P
| e |u

1-1 with junction table

table A A 9 table B
PK =n iy junction table

EK P ™ |”

Figure 43: One to one (non-recursive), object and table representations

O O O ©

Unidirectional aggregation

When a unidirectional aggregation relationship is used, there two table representations possible: one
with and one without a junction table (see Figure 44).

Q—»Q
@ 1-1 unique foreign key @ ResultSet1 ResultSet2
table A table B Table A Table B
EK P BK P Select PKA | columnsA | FKB PKB | columnsB
K U L — columns | columns
O ——
@ ResultSet1
; Table A | TableB
Join
PKA | columnsA | FKB || PKB | columnsB
@ 1-1 with junction table @ ResultSet1 ResultSet2
Ht(able AP Junction table Plt(able BP Join Select TableA T Table B
= ~EK P V« =& PKA | columnsA || FKB PKB | columnsB
@ ResultSet1
Join Join TableA JuT | TableB
PKA | columnsA lFKB l PKB | columnsB

Figure 44: Unidirectional one to one aggregation

59| Page

Bidirectional aggregation

When a bidirectional aggregation relationship is used, there three table representations possible (see
Figure 45).

1 -

1

O O O O O ©

1-1 unique foreign key

table A table B
PK [P PK [P
FK |U L
1-1 unique foreign key
table A table B
PK [P PK P
FK |U]
1-1 unique foreign key
table A table B
PK [P PK [P
| T~Fk |u
1-1 unique foreign key
table A table B
PK P PK P
| ~{Fx | U
1-1 with junction table
table A i table table B
Gl o 2 G
FK | U
1-1 with junction table
table A table table B
PK | Py K P A PK | P
FK | U

Ol ©

o
=)
5

w
oy
t?@
Q

[
9.
E)

(OO

Join Select

Join Join

Figure 45: Bidirectional one to one aggregation

ResultSet1 ResultSet2
Table A Table B Table A
PKA | columnsA | FKB PKB | columnsB [PKAT columnsA [FKB |
ResultSet1
Table A Table B Table A Table B
PKA | columnsA | FKB || PKB | columnsB |PKA| columnsA |FKB PKB| columnsB |
ResultSet1 ResultSet2
Table A Table B
PKA | columnsA PKB | columnsB | FKA
ResultSet1
Table A Table B
PKA | columnsA | PKB | columnsB | FKA
o0
ResultSet1 ResultSet2
Table A JT Table B JT
PKA | columnsA § FKB PKB | columnsB JFKB
ResultSet1
Table A JT Table B JT
PKA | columnsA J§ FKB § PKB | columnsB J§ FKB

In the bidirectional relationships the fetching strategies are configured the same as the first object.
Thus if object A has a join with the junction table and than a select with object B, object B will also
have a join with the junction table and a select with object A.

Unidirectional composition.

When an unidirectional composition relationship is used, there three table representations possible
(see Figure 46).

60| Page

020

1-1 one table

table

PK

P

1-1 unique foreign key

table

A table B

PK
FK

P PK [P
vk

1-1 unique foreign key

GO O & & O

table A table B
PK P PK P
FK ub—"
— "
1-1 with junction table
table A junction table table B
PK P PK P
0 ‘7 % P / -0
1-1 with junction table
Plt(able AP junction table Plt(able BP
AN s FK P / AN

Figure 46: Unidirectional one to one composition

O © © O

Join Select

©

Join Join

ResultSet1

Table AB

PKA | columnsA | columnsB

o0
ResultSet1 ResultSet2
Table A Table B

PKA | columnsA | FKB

PKB | columnsB

ResultSet1

Table A

Table B

PKA | columnsA | FKB' PKB | columnsB

o0
ResultSet1 ResultSet2
Table A | I Table B

PKA | columnsA || FKB

PKB | columnsB

ResultSet1

TableA [ot |

Table B

PKA | columnsA || FKB | PKB | columnsB

6l|Page

Bidirectional composition

When an bidirectional composition relationship is used, there three table representations possible
(see Figure 47).

1 -

1

Select fetching

Figure 47: Bidirectional one to one composition

@ 1-1 one table @ ResultSet1
table Table AB
Bk [P PKA | columnsA | columnsB
@ 1-1 foreign key is primairy key ResultSet! Resultset2
table A table B Select Table A Table B
PK |P EK | P PKA | columnsA PKB | columnsB
@ 1-1 foreign key is primairy key @ ResultSet1
table A table B Join Table A Table B
EK |P i EK |P PKA | columnsA JPKB | columnsB
o0
@ 1-1 unique foreign key ResultSet1 ResultSet2
table A table B_| Select Table A Table B Table A
PK P PK P
FK U | —7— PKA | columnsA | FKB PKB | columnsB | PKA | columnsA | FKB |
@ 1-1 unique foreign key @ ResultSet1
table A table B Join Table A Table B Table A Table B
% |E || EK | P PKA | columnsA [FKB | PKB | columnsB | PKA] columnsA | FkB [PKB | columnsB |
@ 1-1 unique foreign key ResultSet1 ResultSet2
table A table B Select Table A Table B
PK P PK P PKA | columnsA PKB | columnsB | FKA
| [~ Fx |u
@ 1-1 unique foreign key ResultSet1
table A table B Join Table A Table B
PK |P \ % |E PKA | columnsA | PKB | columnsB | FKA
@ 1-1 with junction table ResultSet] ResultSet2 q
table A Tunction table table B Join Select Table A JT Table B JT
PK |F’ EK P /% |F‘ PKA | columnsA JFKB | |PKB | columnsB JFKB |
FK U
@ 1-1 with junction table @ ResultSet1 q
F’}t(able AP junction table F.It(able BP JoiMoin Table A JT Table B JT
_ | EK P / — | PKA | columnsA J§ FKB § PKB | columnsB JFKB |
FK U

62| Page

One to one (recursive)

When comparing the recursive one-to-one relationships, there are two table representations and
two object representations. See Figure 48.

Object reference representation Table representation

1 Hibernate mapping possibilities

a @ 1-1 recursive with foreign key

1 -
@S o table
TP
: a FK U
E @ 1-1 recursive with junction table
table junction table
PK [P le—FK P
FK U

Figure 48: One to one (recursive), object and table representations

Unidirectional aggregation
When a unidirectional relationship is used, there two table representations possible: one with and
one without a junction table (see Figure 49).

1 -1
@S Select fetching
Oo—0
@ 1-1 recursive with foreign key @ ResultSet1 ResultSet1
table Table A Table A
< PK P PKA1 | columnsA1 | FKA2 PKA2 | columnsA2 | FKA3
FK U
o—0
@ 1-1 recursive with junction table @ ResultSet1 ResultSet2
table junction table jlablelly | IS Table A |
PK P le—EK P PKA1 | columnsa1 [FKA2 PKA2 | columnsAz [FKAB
FK U - —
1 -1
@S Join fetching
1-1 recursive with foreign key @ ResultSet1
Table A | Table A
table
K = PKA1 | coumnsa1 [Fra2 [Pra2 | columnsaz | Fias
FK UR R RO

@ 1-1 recursive with junction table @ ResultSet1
Table A I | Table A | I

table junction table | ' I | '
PK P ‘< EK P PKA1 | columnsA1 B FKA2 ll PKA2 | columnsA2 [} FKA3

Figure 49: Unidirectional one to one recursive aggregation

63| Page

Bidirectional aggregation
With a recursive variant of the bidirectional aggregation there are no extra table representations
possible compared to the unidirectional variant.

1

1 -
@Q Select fetching
o0
<

1-1 recursive with foreign key @ ResultSet! ResultSet3
Table A Table A Table A Table A

table
BK B PiA1 | columnsat [FKa2 | [PKAo | columnsao [FKAt PKA2 | comnsa2 [FKA3 | [PKAT] columnsat | ka2 |
FK Iu
o0
1-1 recursive with junction table @ ResultSet1 ResultSet2
— Table A JT
table junction table LEDA ur ur able Il
PK P e EK P PKA1 | comnsat [FKa2f FKAo | [PKa2 | columnsaz [Fiaa | Frat
FK U

1

1 -
@:x Join fetching
@ 1-1 recursive with foreign key @ ResultSet1
Table A | Table A Table A Table A Table A Table A
<

PKAT | columnsat | Fiaz [P2 | colurnsaz [FKa3 | [PKAO [columnsao [FKat [PKAt | coumnsat [Fka2 | | PKat [coumnsat [a2 fPKa2 [columnsaz | FKA3 |
FK U

‘x

@ 1-1 recursive with junction table @ ResultSet 1
Table A [] Table A | Il I Table A o |

[table |
E — % E PAT [columnsat | FKa2 [FKao JPka2 [columnsa2 [Fras [Frat fpkao | coumnsao [Fkat f Fra-t |

Figure 50: Bidirectional one to one recursive aggregation

One to many (non-recursive)
When comparing the non-recursive one-to-many relationships, there two table representations and
three object representations possible.

Object reference representation Table representation

Hibernate mapping possibilities

1 - m
@ 1-m foreign key
G table A table B
PK P PK P

@ 1-m with junction table
table A table B

BK Cu g ﬂj(unctlon t;ble / PK 3
P+U

Figure 51: One to many (non-recursive), object and table representations

-n
=

Unidirectional aggregation

When a unidirectional aggregation relationship is used, there two table representations possible: one
with and one without a junction table (see Figure 52). This relationship can be from either object A to
B as well as from object B to A. The reference from B to A (many-to-one) is left out, because it can be
compared to the one-to-one relationship (with table representations 4 and 7), but with the
difference of a unique constrained or composition of the primary key. In the behaviour of Hibernate
there will not be a difference, as the java object does not know if it belongs to a many or an one side.

64| Page

1-m foreign key ° O ®
table A @ble B ResultSet1 ResultSet2
Select

PK P PK P Table A Table B

| \FK PKA | columnsA FKA | PKB | PKB | columnsB
FKA | PKB | PKB | columnsB
FKA | PKB | PKB | columnsB

ResultSet1
Join Table A Table B
PKA | columnsA § FKA | PKB | PKB | columnsB
D D FKA | PKB | PKB | columnsB
D D FKA | PKB | PKB | columnsB
o0 o0
@ 1-m with junction table @ ResultSet1 ResultSet2 ResultSet3
table A Tunction table table B Select Select jlablel) U jlable]D
PK P J PK P PKA | columnsA FKA | FKB PKB | columnsB
n | FK P -
FK P+U FKA | FKB o> o)
FKA | FKB ResultSet4
Table B
PKB | columnsB
ResultSet1 ResultSet2
Join Select Table A | L Table B
PKA | columnsA FKA [FKB PKB | columnsB
D D JFKa [FkB OO
D D I FKA | FKB ResultSet3
l Table B
PKB | columnsB
Q>0
>0
ResultSet1 ResultSet2
Select Join Table A JT Table B
PKA | columnsA FKA | FKB | PKB | columnsB

FKA | FKB § PKB | columnsB
FKA | FKB § PKB | columnsB

ResultSet1
Joinmein TableA [UT Table B
PKA | columnsA IFKA PKB | columnsB
D D WFkafPkB | columnsB
D D WFKAJPKB | columnsB

Figure 52: Unidirectional one to many aggregation

65| Page

Bidirectional aggregation

When a bidirectional aggregation relationship is used, there two table representations possible (see
Figure 53).

With this relationship the other side (the reference from B back to A) can be set a specific fetching
strategy as well (besides the reference from A to B). The back reference of TR 8 is ignored, as this will
never execute more queries joining or joining more tables together.

As the reference from B to A can be seen as an one-to-one relationship, the table B will always be
joined with the junction table. The relationship between the junction table and table A will therefore
be the only “back” reference that can be set to a specific fetching strategy. When this is set to select,
object A can be retrieved from the cache (because we retrieved it before and we know the primary
key). If this reference is set to join, the table will be joined with the previous query even if this object

is already known (in Figure 53 we indicated this extra joining with a mark).

66 | Page

o—*0
1-m foreign key ResultSet1 ResultSet2 -
table A table B Select Table A Table B
PK |F’ I % |P PKA | columnsA FKA | PKB | PKB | columnsB | FKA
FKA | PKB | PKB | columnsB | FKA
FKA | PKB | PKB | columnsB | FKA
ResultSet1 -
h Table A Table B
PKA | columnsA §j FKA | PKB | PKB | columnsB | FKA
D D FKA | PKB | PKB | columnsB | FKA
D D FKA | PKB | PKB | columnsB | FKA
o0 o0
@ 1-m with junction table ResultSet1 ResultSet2 ResultSet3
table A oD table B SelecTSelect Table A JT Table B JT
PK |P FK B PK |P PKA | columnsA FKA | FKB PKB | columnsB § FKA
FK P+U / FKA | FKB Q_>Q
FKA | FKB F
Table B JT
PKB | columnsB || FKA
ResultSet1 ResultSet2
Join Select Table A JT Table B JT
PKA | columnsA § FKA | FKB PKB | columnsB || FKA
D D FKA | FKB
D D FKA | FKB ResultSet3
Table B JT
PKB | columnsB || FKA
o0
@ ResultSet1 ResultSet2
Select Join Table A JT Table B JT
PKA | columnsA FKA | FKB § PKB | columnsB f§i FKA

FKA | FKB | PKB | columnsB §I FKA
FKA | FKB § PKB | columnsB § FKA

@ ResultSet1
Join Join Table A JT

Table B JT
PKA | columnsA § FKA fl PKB | columnsB J FKA
D D FKA | PKB | columnsB J§ FKA
D D FKA | PKB | columnsB J§ FKA

Figure 53: Bidirectional one to many aggregation

67 |Page

One to many (recursive)
When comparing the recursive one-to-many relationships, there are two table representations and
two object representations.

Object reference representation Table representation

1 -
: @ 1-m recursive with foreign key

Hibernate mapping possibilities
m

table

G < PK P
a FK
m 1-m recursive with junction table

table junction table
PK P <] EK P
FK P+U

Figure 54: One to many (recursive), object and table representations

Unidirectional aggregation
When a unidirectional aggregation relationship is used, there two table representations possible: one
with and one without a junction table (see Figure 54).

68 | Page

@ ResultSet! ResultSet2 ResultSet3
. . . Select
@ 1-m recursive with foreign key Table A Table A Table A
PKA1 | columnsAt FKA1 | PKA2 | PKA2 | columnsA2 FiA2 | PKA3 [PKA | columnsAg
E FKA1 | PKA2 | PKA2 | columnsA2
FK
FKAT | PKA2 [PKA2 | columnsA2 ResultSetd
Table A

Fia2 [Pras [Pras | columnsaa

ResultSet1 ResultSet2
Table A Table A Table A
PKAT | coumnsa1 | FKA1 | PkA2 [Pra2 | columnsa2 FiA2 | PKA3 [PKAS [columnsAs
D D FKA1 [PKA2 | PKA2 columnsA2
D D FKA1 [PKA2 | PKA2 | columnsA2 ResultSet3
Table A

FikA2 [Pra3 [PrA3 | columns3

ResultSetd
1-m recursive with junction table Q=0 o0 o0
ResultSet1 ResultSet2 ResultSet3 ResultSetd
PK FK P Select Select Table A JT Table A JT
P+U PKA1 | columnsAt FKAT [FKA2 PKA2 | columnsa2 FKA2 | FKA3
FKA1 | FKA2
FKAT | FKA2 L Rw%m
Table A JT
PKA2 | columnsa2 FKA2 [FKAS
>0 Ona®)
o0
Join Select ResultSet! ResultSet2
Table A JT Table A |
PKAT [columnsat || FKA1 [FKA2 PKA2 | columnsa2 | FKA2 [Fraa
D D FKA1 | FKA2
e w A || e ResultSet3
Table A |
PrA2 [columnsaz [FrA2 | FrA3
Ona®)
|
[]
Oma® o0
Select Join ResultSet1 ResultSet2 ResultSet3
Table A JT Table A L | Table A
PKA1 | columnsAt KA1 | Faz Pra2 | columnsa2 Pra2 [FrA3 | PrA3 | columnsaa
FKA1 | FKA2 § PKA2 columnsA2 o
FKAT | FKA2 f PrAZ | columnsa2 ResultSed
R | Table A
Pra2 [Fra3 | Pra3 | columnsas
Oma®)
[1.1
Join Join ResultSet1 ResultSet2
Table A JT Table A o | Table A
PKAT [columnsa1 [Fiat ka2 [columnsaz FKA2 [FiAs [Pra2 [columnsa2
D D FKA1 § PKA2 [columnsA2
D D FKA1 | PKA2 | columnsA2 ResultSet3
L | Table A

FiAz | Fias | Praz [columnsa2

Figure 55: Unidirectional one to many aggregation

69 |Page

Bidirectional aggregation

When a bidirectional aggregation relationship is used, there three table representations possible (see
Figure 56).

1. 0m

@:;

@ 1-m recursive with foreign key o0 o0
S o B | Fonat \

[P [cotomonr [rcao] [[z [prre] comorz [rar| [[ries [| coommons |
ot [e [Pinz | courmsre [Fan

ResultSatt e [ResultSet2
Yot Table A Table A [Table A
PIAT | columnsAt | FKAO || FKAT | PKA2 [PKA2 | columnsh2_| FKAT [Fcaz [pras [Pras | coomnsas | pcaz |
D) D | FKAT [PKA2 | PKAZ | columnsA2 | FKAT
D) D | FKAT [PKA2 | PKAZ | columnsA2 | FKAT
Table A
1-m recursive with junction table
[table]
o0 o0
= TNE T e T
Select Select o [Tawen o
PKAT | columnsAt | FKAD Al [Fkaz | [PRa2 | colmnshz [FRat|
31 7 e = <)
FRAT | FRA2
Table A o
PKA2 | columnsAz | FKAT
(O]
—ﬂ
o0
Join Select ResultSett [ResultSet2]
Table A o o Tablo A o
PKA1 | columnsA1 | FKAO | FKAT | FKA2 PKAZ | columnshz A2 | FRAS
D D D | FKat [Fraz
D D D | Fat [Fraz
Select Join ResultSet2
o Table A o
PKAT | columnsAt | FKAD Fia1 | KAz | Praz | coumnsaz_ | FKAT
FKA1 | FKA2 | PKA2 | columnsAz_| FKAT
FKA1 | FKA2 | PKAZ | columnshz_| FKAT
Join Join ResultSett [Rosultset2
Table A il Table A o o Table A
PKAT | _columnsat_ || FKAO KA1 || PkA2 [PKA2 | columnsAz | FKAT FiA2 | FRA3 | PKAS | coumnsas_ | Fra2
D B D |FKat [PKAz | PKA2 | columnshz | FKAT
B B D |Fkat [Pz [PKA2 | columnshz | FKAT

Figure 56: Bidirectional one to many aggregation

70| Page

Many to many (non-recursive)

When comparing the non-recursive many-to-many relationships, one table representation and two
object representations are possible.

Object reference representation Table representation
n - m Hibernate mapping possibilities
@ @ n-m with junction table
table A table B

PK 5 ‘\F—{gnctlon tablle /% 5
P

The unidirectional many-to-many relationship can be compared to the unidirectional one-to-many
relationship (when choosing to use a junction table), except that the many side can now also be
owned by several other objects. When looking at the table scheme this will only be a unique
constraint or composition of the primary key. As the (right) many side does not have a reference
back to the (left) many side, there will be no difference in behaviour of Hibernate when comparing
with a one-to-many relationship.

-
P

Bidirectional aggregation

As the amount of queries is highly dependent on the amount of objects stored in the database and
will increase very rapidly we will not create an overview of the relation querying of this relationship.
The behaviour of this relationship can be created by concatenating multiple one to many
relationships.

Many to many (recursive)

When comparing the recursive many-to-many relationships, there are two table representations and
two object representations. See Figure 57.

Object reference representation Table representation
n - m Hibernate mapping possibilities
@@ @ @ n-m recursive with junction table
table _unction table
: PK P < é g

Figure 57: One to many (recursive), object and table representations

The recursive unidirectional many-to-many can also be compared with the recursive unidirectional
one-to-many relationship.

Bidirectional aggregation

As the amount of queries is highly dependent on the amount of objects stored in the database and
will increase very rapidly we will not create an overview of the objects retrieved. The behaviour can
be created by concatenating multiple recursive one to many relationships.

71| Page

