
The Core of Open Source Systems

Jorge Nicolas Barrionuevo
Master of Science Thesis

Software Engineering
University of Amsterdam

Faculty of Science
Supervisors: Dr. Bas Van Vlijmen and Dr. Jurgen Vinju

Availability: Confidential

October 29, 2012

Revision History

Version 1.2: October 27, 2012 Complete version including corrections
based on feedback of previous revision.

Version 1.1: October 25, 2012 Complete version including corrections
based on feedback of previous revision.

Version 1.0: October 22, 2012 Complete version including corrections
based on feedback of previous revision. Complete Appendices.

Version 0.2: October 19, 2012 Draft complete version.

Version 0.1: August 16, 2012 Initial version to present structure.

i

Contents

1 Introduction 1
1.1 Prelude . 1
1.2 Motivation and Relevancy . 2
1.3 Research Question and Hypothesis 3
1.4 Research Method . 4

2 Theory 6
2.1 Core and Periphery in Open Source Systems 6
2.2 Coupling in Object Oriented Systems 8

2.2.1 Object Oriented Metrics 8
2.2.2 Clustering the Core . 10

2.3 Contributions in Open Source Systems 10

3 Methods and Tools 13
3.1 Outline . 13
3.2 Finding the Technical Core . 14
3.3 Computing the Core . 15
3.4 Mining Software Repositories . 15
3.5 Computing Contributions . 16
3.6 Sampling Strategy . 16

4 Results 18
4.1 Jenkins . 18

4.1.1 Case Presentation . 18
4.1.2 Results . 18
4.1.3 Analysis . 20

4.2 Rascal . 21
4.2.1 Case Presentation . 21
4.2.2 Results . 22
4.2.3 Analysis . 25

4.3 Clojure . 26
4.3.1 Case Presentation . 26
4.3.2 Results . 26
4.3.3 Analysis . 28

4.4 Oscar . 29
4.4.1 Case Presentation . 29
4.4.2 Results . 29
4.4.3 Analysis . 31

ii

4.5 Solr . 32
4.5.1 Case Presentation . 32
4.5.2 Results . 32
4.5.3 Analysis . 34

4.6 Voldemort . 35
4.6.1 Case Presentation . 35
4.6.2 Results . 35
4.6.3 Analysis . 37

5 Conclusions 39

6 Future Work 40

Appendix A Core Java Files of the Open Source Systems 44

Appendix B Commiters and Authors 54

iii

List of Figures

1.1 Conceptual model of the research study. 4

3.1 Application design for the experiment. 14

4.1 Ratio of contribution of core developers of Jenkins (from total). . 19
4.2 Total and core developer contribution of Jenkins. 19
4.3 Total and core developers of Jenkins. 19
4.4 Contributions to the core of Jenkins (in time frame preceding

revision 1.460). 20
4.5 Total contributions to Jenkins (time frame preceding revision

1.460). 20
4.6 Ratio of contribution of core developers of Rascal (from total). . 22
4.7 Total and core developer contribution of Rascal. 22
4.8 Contributions to the core of Rascal (in time frame preceding re-

vision 0.1.15). 23
4.9 Total contributions to Rascal (time frame preceding revision 0.1.15). 23
4.10 Contributions to the core of Rascal (in time frame preceding re-

vision 0.5.1). 24
4.11 Total contributions to Rascal (time frame preceding revision 0.5.1). 24
4.12 Total and core developers of Rascal. 25
4.13 Ratio of contribution of core developers of Clojure (from total). . 26
4.14 Total and core developer contribution of Clojure. 27
4.15 Total and core developers of Clojure. 27
4.16 Contributions to the core of Clojure (in time frame preceding

revision 1.4). 28
4.17 Total contributions to Clojure (time frame preceding revision 1.4). 28
4.18 Ratio of contribution of core developers of Oscar (from total). . . 30
4.19 Total and core developer contribution of Oscar. 30
4.20 Total and core developers of Oscar. 30
4.21 Contributions to the core of Oscar (in time frame preceding re-

vision 10.12). 31
4.22 Total contributions to Oscar (time frame preceding revision 10.12). 31
4.23 Ratio of contribution of core developers of Solr (from total). . . . 32
4.24 Total and core developer contribution of Solr. 33
4.25 Total and core developers of Solr. 33
4.26 Contributions to the core of Solr (in time frame preceding revision

3.1.0). 34
4.27 Total contributions to Solr (time frame preceding revision 0.3.1.0). 34
4.28 Ratio of contribution of core developers of Voldemort (from total). 35

iv

4.29 Total and core developer contribution of Voldemort. 36
4.30 Total and core developers of Voldemort. 36
4.31 Contributions to the core of Voldemort (in time frame preceding

revision 0.96). 37
4.32 Total contributions to Voldemort (time frame preceding revision

0.96). 37

A.1 Total and core Java files of Jenkins. 44
A.2 Total and core Java files of Rascal. 46
A.3 Total and core Java files of Clojure. 48
A.4 Total and core Java files of Oscar. 49
A.5 Total and core Java files of Solr. 51
A.6 Total and core Java files of Voldemort. 52

B.1 Commits of commiters and authors of Jenkins. 54
B.2 Commits of commiters and authors of Rascal. 55
B.3 Commits of commiters and authors of Clojure. 55
B.4 Commits of commiters and authors of Oscar. 55
B.5 Commits of commiters and authors of Solr. 56
B.6 Commits of commiters and authors of Voldemort. 56

v

List of Tables

3.1 Open source systems sampled. 17
3.2 Technical-structural properties of the sample. 17

vi

Acknowledgements

To begin, I want to thank Alejandra, my girlfriend, for her invaluable love, com-
pany and support during all this year.
Then, I would like to thank to those who helped me with this research project.
To Bas van Vlijmen for the continuous encouragement, dedication, good listen-
ing and nice brainstorming sessions during all the thesis preparation process.
To Jurgen Vinju, for sharing his knowledge and precise suggestions, that helped
me find the way in difficult moments.
I would like to express my gratitude to Hans Dekkers for sharing his creativity
in the conception stage of this project and for all the support, dedication and
listening during the whole academic year.
Thanks to Professor Hans van Vliet (Vrije Universiteit van Amsterdam) and
Chintan Amrit (University of Twente) for receiving me at their offices to dis-
cuss the project and for providing interesting ideas.
Finally, I would like to thank all those who collaborated in some extent with
this research: the professors from the University of Amsterdam, who shared
their knowledge, views and provided feedback, and also to Bert Lisser (Cen-
trum Wiskunde & Informatica), Alexander Serebrenik (Eindhoven University
of Technology) and Andy Zaidman (Delft University of Technology).

vii

Dedication

To Alejandra.
To my mother Alicia, mi father Jorge and mi brother Sebastian.
To my grandmother Julia, who will always live in my memory.

viii

Abstract

Open source systems are extensively used both in industry and academy. This
widespread utilization, combined with the unique opportunities offered by these
systems for outside researchers to study, both the engineering and the social
aspects of the development, make this field extremely interesting. However, after
several years of experimentation, there are questions that are still unanswered.
It is not clear yet if those open source developers who produce the artifacts that
are core to the function of the software structure are also those who contribute
the most to the construction of the entire system. Understanding this correlation
will increase the knowledge about the contribution patterns on which these
systems are evolving, and this can help to determine how to organize roles and
assign work in future projects, or suggest the possibility to replicate the pattern
in other type of initiatives (i.e. proprietary software). The outcome of the
present work will allow to suggest that, in the context of open source systems
development, the top contributors are, in a great extent, those developers who
produce the core of the system. This is a step forward to the definition of core
developers that opens new possible paths for future research.

Chapter 1

Introduction

1.1 Prelude

Nowadays, the relevance of open source systems is widely accepted both in in-
dustrial and academic circles and in the last 20 years several research works have
been conducted to study their properties. One particular characteristic related
to these systems is the core-periphery arrangement, that can be studied from
two different perspectives: the technical-architectural and the social (aspects
involving the people that is part of the development process, their activities
and interactions).
On the one hand, the technical-architectural core of the software is usually made
of the artifacts that are critically important for the system. When these entities
exhibit high levels of connection or dependency with other components, that is,
when the artifact that is being studied is both using and being used by other
software entities. On the other hand, the technical-architectural periphery of
the system is defined as a composition of artifacts that are less strongly con-
nected to other artifacts.
Considering the contribution of the developers that produce the technical core
of the open source systems, it could be claimed that these core artifacts are
generally created and maintained by the developers that are key to the project
in terms of participation, commitment, decision power and access rights. In
the same line of reasoning, it could be argued that the artifacts that constitute
the technical periphery of the system may tend to be created or maintained
by developers that contribute less to the project, have less decision power and
access rights to the critical artifacts of the system. These are called peripheral
developers. However, the presence of this pattern of contribution will depend
on other factors as the governance style of the project (a priori definition of
when, who, which roles, and in what extent they are allowed to access to the
core), the level of development centralization (extent on which one developer do
disproportionately more than the rest), the particular necessity in certain stages
to count with core developer participation in the periphery (i.e. near release
dates) and the software architecture (how well the system allow to develop-
ers with different levels of knowledge and experience to work simultaneously in
different parts of it).

1

The main goal of the present study is to determine if a correlation between
the participation of top developers (those who contribute more to the project)
and those developers who build and evolve the technical core can actually be
distinguished. This would favor the understanding of the contribution patterns
of open source systems and, consequently, to help determine how future projects
of this or other types may be organized.

1.2 Motivation and Relevancy

The study of core-periphery properties of open source systems is relevant in
several aspects.

First, understanding contributions in open source projects is useful to facil-
itate the comprehension of the characteristics of the processes that are imple-
mented to build these systems. Therefore, it can help to increase knowledge
relevant to improve coordination, work assignment and, consequently, to help
take decisions aimed to avoid the failure or to promote the success of projects.
This is important in a context where outsiders, with no prior knowledge of the
project, need to gather information from the software system and processes in
order to make decisions.

Second, it allows to increase the understanding of the coupling characteristics
of the systems. These properties are directly related to the modularity of the
software [18] and hence to the propagation of changes across them, which in
turn, have managerial implications, as maintenance costs, work assignment and
resource allocation (associated with the independence or interdependence of
tasks and communication among members and teams). The more coupled are
the artifacts of a system, the more difficult it would be to understand, change,
and correct this system [5]. Thus, understanding core-periphery features of
software systems favor the comprehension of the modularity and the structural
complexity they present.

When studying open source projects, several publications determine the
most important developers in terms of amount of activity [20, 25, 9, 22]. One
may question if it is a good definition of a key (core) developer. Intuitively they
can be presented as the individuals who work on the most important parts of
the system, those parts that require the most experienced and knowledgeable
contributors.

While working in the present study and reasoning about the definitions of
the different roles of developers in relation to the core of the systems (core or
key and top contributors) it was not possible to find a research that focused on
validating the assumption that, the core of the systems, is developed by the most
important contributors of the project. Just two academic publications [1, 22]
that define core developers in relation to their affiliation to the technical core
were found. Amrit et al. [1] propose that developers may be defined as core or
peripheral in terms of the part of the system they work on (core or periphery)
but it is suggested further research to validate this definition. The only authors
who apply and try to validate the assumption are Oliva et al. [22] where core
developers (treated as “ key”) are those who work on the core, and, it was found
that this group is made by the same who commit or work the most. The main
problem in this case is that the study was conducted on a single open source
system, reducing the extent of generality of the conclusion. In summary, the

2

definition was not defensible (could no be used in other studies).
The relevancy of the present research work relies on identifying a correla-

tion between the total contribution realized in an open source project and the
developers who produce the technical core of these systems. In other words, it
favors the understanding of the relations existing between the definitions of top
contributor and core developer.

1.3 Research Question and Hypothesis

Following the line of reasoning presented in the previous section, the research
question is introduced:

RQ: Is the technical core of open source systems being developed by the top
contributors?

In turn, this question led to the following hypothesis:

H: In the context of open source systems, the top contributors tend to be those
who produce the core.

This expectation is deducted from the definition of core developer. On the
one hand, it is reasonable that those who produce in a greater extent and are
more committed to the project, also have the capacity, knowledge and access
rights to the areas of the software structures that are critical for the system as
a whole. On the other hand, it should be regarded that according to how the
projects are organized in terms of core access rules, role advancement policies
(in the community), style of management or level of development centralization,
this may vary.

In summary, some publications assume the core to be the most tightly cou-
pled part of the system and the core developers as those who most contribute
but: Do they actually correlate? From this, in Figure 1.1 the conceptual model
of this study is presented.

3

Technical core of the
system (tightly coupled

classes)

Top
developers

Core
developers

Technical periphery of the
system (loosely coupled

classes)

Top developers
(Those who

contribute most
to the system)

Core developers
(Those who

actually produce
the technical

core)

RQ?

Open source system

Figure 1.1: Conceptual model of the research study.

In this context, it is important to mention that the model of Figure 1.1
is just an abstraction of the structure the systems may present, as they can
be actually composed by multiple artifacts (or cores) that have high coupling
properties. This abstraction is aimed to favor the analysis and understanding
of the contribution patterns.

1.4 Research Method

In the next section, a summary of the research method is presented. The method
will be repeated for each case study.

1. Select an open source system to be studied.

2. Identify software revisions to divide the study in time frames between
them.

3. For each studied sub-period of the project:

(a) Measure the coupling levels of each class of the technical structure.

(b) Aggregate the coupling levels from class to source file (for each class
that is part of a Java file, calculate the sum of each metric value
independently).

(c) Define a coupling threshold to group the Java files (the ratio at which
each metric value will be considered high or low).

(d) Determine the presence of a static-coupling core-periphery structure
in the software.

4

(e) Define the core of the system by creating a set of the Java files that,
according to the defined threshold, present high coupling in all the
metric values.

(f) Measure contribution of each developer (as author) to the whole tech-
nical structure studied. Calculate the total contribution of the pe-
riod.

(g) Measure the contributions related to the technical core of the sys-
tem. Those developers who produced the core will be defined as core
developers.

(h) Verify the extent (correlation) to which the whole technical structure
(the system) was developed by core developers.

4. Measure other variables related to the technical structure that will be
appropriate to understand the results of the period.

5. Measure other variables related to the contribution in the period that will
be convenient, to analyse the results.

According to the presented research method, on one hand, if the developers
that are identified as core (3.g) are found to be producing a high proportion of
the total contribution realized in each period (3.f), this will be an indication of
a strong relation between core and top developer groups (core developers are
contributing the most to the whole project). On the other hand, if the amount
of total participation (3.f) produced by those who are evolving the core (3.g) is
found to be low, this can be considers as a sign of weak relation (core developers
are not producing the most of the total contribution in the project).

5

Chapter 2

Theory

2.1 Core and Periphery in Open Source Systems

From a network theory perspective, a core periphery structure can be defined as
a network where a reduced number of central entities gather a disproportionate
amount of connections, while most other entities maintain few relationships [12].
As this type of structure is common in social networks [12] it is expected that
a piece of work (i.e. open source software system) that is the product of social
interaction, will preserve the properties of (or correlate in some way to) the
structure under it was conceived (i.e the Conways’ law [8]).

Borgatti and Everett [4], also based on a social network approach, and start-
ing from the accepted assumption that the core is dense, cohesive and the pe-
riphery is sparse and unconnected, intent to formalize this and other intuitive
definitions of core and periphery into discrete and continuous models. One def-
inition assumes that in a network of nodes, all of them belong in a greater or
lesser extent to the network, some entities may be better connected than others
but it is not possible to make a partition where one group is cohesive and the
other is not. The other intuitive definition is the notion of two class partition
where one group is the core and the other the periphery.

The present study, though it will not have a social network approach, will
base on the two class partition concept, so one group of artifacts will be consid-
ered core and the rest non-core or periphery. This study has been scoped in this
way because the focus will be on the contribution of those software developers
that produce the artifacts that have core properties and it would not help to
apply a continuous analysis.

Mac Cormack et al. [18] made a study over 19 complex and successful
applications (in terms of size and number of end users respectively) and found
that in most of the cases a technical core-periphery structure was present. The
research covered systems with different languages and was conducted at module
aggregation level. It was found that the amount of modules in the core may
vary among systems (even performing the same function) and that the size
of the core across the evolution of the system may be stable or may grow in
proportion to the rest of the software structure. The publication defines core
components as those that are tightly coupled to other components (high fan-in
and fan-out visibility) and, in contrast, peripheral components as those that

6

are loosely coupled to other components (low fan-in and fan-out visibility).
Coupling is measured by creating a call graph of the system and by counting
direct and indirect calls in both directions but no other consideration regarding
the characteristics of the studied language (as inheritance or field access) are
taken into account.

In the present research, it was decided to limit the scope of the study of the
technical structures to the characteristics of a defined language, object oriented
in this case (Java). It would be difficult to form judgement from results that are
product of measuring properties of the software artifacts written in languages
with different characteristics. From this perspective and in order to define the
artifacts that are core to the system function (a system with particular proper-
ties inherent to the utilized language), it is important to:

1. Consider an adequate aggregation level.

2. Understand the specific coupling mechanisms between artifacts.

3. Utilize the appropriate measures to quantify the connections.

In the present work, unlike Mac Cormack et al. [18] and in order to charac-
terize core artifacts, it was decided to work at class level (instead of modules)
and to measure other properties that reflect the conceptual definition of the
core, in terms of object oriented coupling (as class and method relations instead
of only fan in and fan out dependencies).

Oliva et al. [22] define the technical core of the studied system using depen-
dency call graphs. Then the key developers are defined in terms of their volume
of contribution to the technical core and their social participation (activity in
the mailing list). It was found that only 25% of the developers may be con-
sidered as key and that there is no difference between key developer and top
contributor set (the ones who most contribute are same who access to the tech-
nical core of the system). In the present research work, this correlation between
those who most participate and those who work in the core will be focused and
validated in more systems (Oliva et al. [22] found and studied the relation in
just one case).

Amrit and van Hillegersberg [1] studied the socio-technical movements in
open source projects. It was found that when developers contributing to the
periphery move towards the core across the evolution of the system, it is bene-
ficial for the project, in contraposition to shifts away from the core that are not
good for it. The paper studies which developer is working in each part of the
technical core-periphery at any given point in time and relate the shifts to the
interest that developers have in the project. On one hand, the author defines
the technical core as the more dependant part of the code in terms of class and
function dependencies: a modification on a core module will affect more core
modules than when working on the periphery. On the other hand, developers
are defined as core or peripheral in terms of the technical parts of the system
they are related to. In this work, several Java open source projects with diverse
characteristics (in terms of domain, size and community) were studied. In the
present research, a similar approach will be utilized, first defining the technical
core (though using object oriented metrics) and then analyzing the participation
of developers in this structure.

7

2.2 Coupling in Object Oriented Systems

Coupling is a concept that was introduced in the context of structured devel-
opment, as “the measure of the strength of association established by a con-
nection from one module to another” [23]. If the modules are tightly coupled
with other modules (more inter-related) the system will be more complex and
consequently, the resulting software will be more difficult to understand and
maintain [5]. However, coupling is not an exclusive characteristic of modules in
structured development but it also applies to object oriented systems (and to
their artifacts). In the latter case, coupling is a more complex property due to
the diversity of mechanisms that can constitute it [5].

The concept of coupling is directly related to another important architec-
tural definition, the modular decomposition, that characterizes how a design is
separated into modules. A system is modular, to an extent, if the modules that
constitute it are strongly interdependent within themselves and weakly depen-
dent to other modules [18]. This is what is called loose coupling. This concept
is important because, in a modular design, a modification to a module is ex-
pected to have less impact in others [18] and this will favor the maintenance
process and may add value to software designs (by creating options to improve
the system by substituting or experimenting on individual modules [2]).

2.2.1 Object Oriented Metrics

In order to measure the levels of coupling of object oriented systems, several
metrics have been defined (i.e. Chidamber and Kemerer [7] or Martin [19]).
These metrics can be classified into two groups: static and dynamic. Despite
some publications consider dynamic metrics as more precise [26], in the context
of the present study it would be not possible to implement this type of metrics.
Dynamic coupling measurements require the study of the execution environment
for each software system analyzed and the selection of a set of relevant scenarios
to be measured. This approach has two disadvantages: it is very expensive in
terms of time for research and there will be areas of the system that cannot be
covered (due to the limitation of the scope to a set of scenarios or, for example,
in the case of “dead” code, that is still relevant in terms of contribution). These
were the reasons why it was decided to conduct a static study to understand
the coupling characteristics of the software systems.

An important feature of coupling is the direction of the dependency. In this
sense there are two types of coupling: import and export. The first refers to the
use of services provided by others, and the second refers to providing services
to others. Zaidman et al. [26] propose a method to identify “key classes”, that
are those important as a starting point to help software engineers (who are new
to a project) to understand the inner workings of the software architecture.
These classes are defined as those that have a controlling role (give orders to
other classes), and this is represented in terms of strength of import coupling.
The other approach is proposed by Mac Cormack et al.[18], where coupling is
defined in terms of direction as fan-in (export) or fan-out (import) and in terms
of strength. Under this denomination, four types of categories of components
are defined:

8

1. Core (high fan-in and high fan-out).

2. Shared (high fan-in and low fan-out).

3. Control (low fan-in and high fan-out).

4. Peripheral (low fan-in and low fan-out).

In the present work, the “coreness” of the artifacts of the system will be
defined in terms of high levels of both import and export coupling as Mac
Cormack et al. did [18] because the focus will be on the importance of the
artifacts to the system function and not on the cognitive level (to facilitate
program comprehension for new software engineers).

Chidamber and Kemerer [7] produced a classical work on the theory behind
object oriented metrics. In this publication, the author defines Coupling Be-
tween Objects (CBO) as a metric that measures the number of other classes
to which a class is coupled to, including inheritance (“a method m of a class
c uses a method or attribute of an ancestor class of c” [7] or in other words
“because an inherited method is considered a method of another class.”[5]). He
also defines Response For a Class metric (RFC), that count the response set of
a class, that is, the set of methods that can potentially be executed in response
to a message received by an object of the measured class.

Briand et al. [5] studied existing object oriented coupling frameworks. This
publication standardizes the related terminology and analyses motivation, em-
pirical hypotheses and application of several coupling metrics. The authors
propose a unified framework based on the issues discovered. This paper will be
used as a source to support the applicability of the existing metrics (and the ne-
cessity to extend them with new features or the need to utilize other measures)
to the context of technical core-periphery definition. In this study, CBO and
RFC metrics are mapped to the domain of class measures. In the context of
the present work, as CBO is regarded as a measure of both import and export
coupling and as RFC is utilized to gauge export coupling [5], these metrics will
be regarded as suitable to evaluate core properties.

Martin [19] presents object oriented design concepts as category, responsi-
bility, independence and stability (of a category). A class category is a group
of cohesive classes that will tend to be modified together (that is, if one class
has to change, all the classes in the category are also open to change). These
classes are reused together because they are strongly interdependent, and they
also share a common function or goal to achieve [19]. The author presents object
oriented metrics useful to measure the quality of the design in terms of respon-
sibility, independence and stability. These metrics are Afferent Coupling (Ca)
and Efferent Couplings (Ce). On one hand, Ca measures the number of classes
outside the category (on which the measured class inhabits) that depend upon
classes within its own category. On the other hand, Ce measures the number of
classes inside its own category that depend upon classes outside this category.

In relation to the purpose of the research, Ca will be utilized to measure
how many classes are using a measured class, and Ce purpose is to compute
the number of classes that the measured class is depending on. Thus, these
measures, together, will reflect the number of bidirectional dependencies that
define the core (in terms of inheritance, field accesses, method calls, arguments,
exceptions and return types).

9

Finally, and with the purpose of excluding from the focus of the measure-
ments exceptions and return types (to avoid deviations that could be caused by
them), it was decided to include two extra class coupling metrics. In subsequent
sections these will be denominated as inbound and outbound dependencies. On
the one hand, inbound dependency metrics refer to the classes of the same and
other packages that depend on (use or import) the measured class. On the other
hand outbound dependencies refer to the count of other classes that the evalu-
ated class is depending on (using or importing), both in the same and in other
packages. This metric reflect class coupling based on the count of dependencies
to other classes, their fields and methods.

In the present research work the introduced metrics will serve to implement
the coupling concepts required to define the technical core of the systems. These
object oriented metrics are CBO, RFC, Ca, Ce, inbound and outbound depen-
dencies.

2.2.2 Clustering the Core

Once the metrics that reflect the properties of the core are measured, and to
facilitate the study of the contributions of developers to them, it is necessary to
generate an abstraction of the technical core. In order to do this it is necessary
to:

1. Change the aggregation level to source (Java) files.

2. Cluster the source (Java) files.

On the one hand, the first item is required to match the aggregation level found
in the software repositories. On the other hand, the clustering or grouping of
the files is required to enable the focus of the contribution study in a single
structure defined as a core (though there could be actually multiple ones) and
in those who develop it.

In order to cluster the files to represent the core-periphery dichotomy, it is
required to define a metric threshold value and to group the files of the system
based on the coupling level of all the metrics. Therefore, all the files that present
values that are above the threshold, for each of its metrics, will be considered
part of the core.

As every mentioned metric have its own motivation and empirical hypothe-
ses, this threshold value must be calculated for each of them. That is why the
threshold will be defined as a ratio of the total range and then translated to
absolute values for each metric. In this way the conceptual independency of
metrics is preserved.

2.3 Contributions in Open Source Systems

The onion model has been accepted as a representation of the distribution of
contributions in open source projects [20, 10]. In this model a group of devel-
opers that do most of the work and are responsible for important decisions are
considered core, while, other group that contribute less frequently and use to
have less decision power is defined as the periphery [25]. In this sense, the model

10

is directly related to the concept of development centralization, namely, the ex-
tent to which projects will have code written by a small group of individuals,
which is an important aspect of open source project development [10].

Other definitions of core developer can be found in different studies. Amrit
and van Hillegersberg [1], for example, present an integrative socio-technical
approach. It bases the definition of architectural core and periphery on call
graph (function calls) and class dependencies. Core and peripheral developers
are defined in terms of which part of the software they work on. If a movement
of developers that work on the core towards the periphery is not followed by
a movement of developers that work on the periphery towards the core it is
interpreted as negative for the project (key developers are loosing interest).
This “shift” of the contributors working in the core is considered an indicator
of the health of the project. The study proposes that further research should be
done in order to asses the quality of the assumed definition of core-peripheral
developers in terms of technical affiliation. Following this line of work, the
present study will try to find the correlation between the top contributors and
core parts of the systems to help assess the mentioned definition.

Terceiro et al. [25] define core developers as the most active, the ones who
perform most of the work and are responsible for the most important decisions
of the project. Peripheral developers contribute less frequently and have less
decision power. The present work will use the definition of core developer in
terms of activity and amount of work but in this case, and from now on, will
be denominated as “top contributor”. This notion will be compared with the
definition of core developer in terms of affiliation to the core codebase (those
authors who produce and evolve the core).

Crowston et al. [9] present 3 methods to define core developers of FLOSS
projects and compare them: the claimed list in the documentation, the fre-
quency of contributions to the bug tracker system and a measure related to the
social network activity. The three techniques suggest the core is a small fraction
of the total number of contribution (5%) but different individuals are identified
as core developers by each method so it is suggested that the measures should
be refined. It was found that developer list is not a good measure to define core
contributors (from bug tracking systems) and that the skew of contribution in
the communication domain is higher than in the code domain.

A socio-technical approach is proposed by Oliva et al. [22] to identify key
developers of an open source project. The method is based on the analysis
of different time frames in the history of the project and utilizes call graphs to
define the core artifacts and commit “coreness” to define key developers (amount
of contribution to the core). Then the study focuses on social aspects as top
contributors, communication network, coordination requirements network and
congruence between them. What is particularly relevant for the present work
in this study is that the identified group of key developers is exactly the same
as the set of top developers: those who work on the technical core are the
same who made the most part of commits. In the present study, the definition
of key developer (commit contributions to the core) will be compared with the
definition of top developer (commit contribution in a period to the whole system)
to understand if these are correlated.

Finally, Huang et al. [13] defined the core developers in relation to the
common directories they work on (in an affiliation graph) but the correlation
to the technical core is not studied. From this work it is not possible to state

11

that the core of the system (as tightly coupled artifacts) is produced by the top
developers of the project.

In the present work, the main goal is to answer if those who contribute to
the areas of the systems that present core properties (high levels of coupling
with other artifacts) can also be considered core as it is defined by Terceiro et
al. [25] and Crowston et al. [9] for the case of amount of contributions. In other
words, the idea is to determine what is the impact (in terms of contribution)
that the developers who produce the core have in the rest of the system.

Summarizing, in previous publications core developers were defined as those
who produce or modify the core of the systems [1, 22]. It was suggested the
necessity to validate this definition [1] and it was found that, at the moment,
this had not been made with a reasonable extent of generality [22]. The present
work is aimed to increase the understanding of how core and top developer
groups relate by producing a research focused in this particular issue and by
studying a larger sample of open source systems.

12

Chapter 3

Methods and Tools

3.1 Outline

Due to the characteristics associated with the evolution of software systems
and the projects under which those are created, it would be difficult to draw
precise conclusions and to understand contribution patterns related to parts
of these systems, just by computing total participation, or by assuming that
the software is made of a set of permanent artifacts. These projects may have
been developed during long periods (i.e. years) and, in each of them, there
could be found developers arriving and leaving, artifacts being created and
deleted, roles being changed (i.e. promotions), differences in productivity levels
(contribution), variation in the access rights to certain areas of the code etc.

These changing characteristics are the reason why the present research has a
software evolution approach that will allow to produce conclusions based on the
understanding of how the projects mature in relation to the mentioned aspects.
In this context, it means that both the study of the technical properties of the
core and the study of contributions will be done in intervals between software
revisions.

In order to realize the experimental stage of the study, it was necessary
to design and develop a software application to automate the extraction of
facts concerning both the software systems and the contributions realized by
developers.

The application was designed with two independent modules: the core-
periphery and the MSR modules. In the case of the first of them, it was divided
into two submodules, one for the implementation of the object oriented metrics
and the other for computing dependencies (see Figure 3.1). In the case of the
latter, it is aimed to process the data from the version control systems, where
the sampled projects reside.

13

JGit

MSRReporter
.java

MSR.java

References

MSR Core-Periphery

CorePeripheryExtractor.java

DFMetricExtractor.java

TechnicalReporter.java

CKJM
Dependency

Finder

Use Java Library

Java code

Flow

RepositoryMSR API Library

Figure 3.1: Application design for the experiment.

In the following sections, the implementation decisions of the core detection
and MSR tools will be explained.

3.2 Finding the Technical Core

It was decided to conduct the experiment at class aggregation level because
some of the well known coupling metrics for object oriented systems [7, 19]
made focus in classes. In order to integrate the outcome of both the technical
core extraction and the MSR tools, it was necessary to add an extra process to
aggregate from class to source file level (Java files). In the present experiment
it was decided to address this aggregation by calculating the sum of the values
of each metric (independently).

Although this stage is required, it could become a threat to validity in the
cases where there are classes with a disproportionate number of inner classes
that present low coupling. Despite this, the sum approach was preferred to
aggregating with average measures because, in the case that an outlier class (in
terms of coupling) is found in a source file with a great amount of other inner
classes (that present very low coupling measures), the calculation of the average
will make loose track of this core class.

Given the defined requirement to utilize the mentioned static metrics, and
due to the outcome variations mentioned in previous work [17], it was decided to
not implement the metric specifications from the beginning but to reuse other
implementations from two existing open source projects already employed in
academic research [24, 15, 16, 1]. These projects are CKJM1 and Dependency
Finder2.

The introduced metric tools require the bytecode files (.class) as the input of
the process. Focus will be kept on the classes that constitute the central part of
the software binary distribution and those classes that are foreign to the project
(libraries) will be discarded.

1http://www.spinellis.gr/sw/ckjm/
2http://depfind.sourceforge.net/

14

3.3 Computing the Core

The core of the systems is determined by measuring the coupling levels of all the
metrics introduced in Chapter 2.3. For all the classes that are part of a source
file, the aggregated values are calculated (addition of each of them by metric
type). The Java files that present values above the threshold are considered
tightly coupled and grouped into sets per metric. Finally, the core is defined
as their intersection, in other words, the files that present measures over the
threshold for all the metrics (see description of metrics in Appendix A).

For example, in the case of Jenkins project it was found that the following
files are part of the core:

jenkins/model/Jenkins.java,360,1023,386,360,28,117
hudson/FilePath.java,262,708,246,262,101,163
hudson/model/Queue.java,150,446,132,150,26,48
hudson/util/ProcessTree.java,128,408,93,128,28,64
hudson/model/UpdateCenter.java,158,432,90,158,40,73

While the following is a sample of files that are not part of the core:

hudson/model/FileParameterDefinition.java,12,24,0,12,0,2
hudson/model/WorkspaceListener.java,7,7,2,7,0,2
hudson/init/impl/InitialUserContent.java,3,9,0,3,0,1
hudson/cli/GetJobCommand.java,7,9,0,7,0,2
hudson/search/CollectionSearchIndex.java,4,15,4,4,4,2

In the first case, the values of the metrics related with the core are high in
relation with the second example (non core).

3.4 Mining Software Repositories

In order to produce the results for this type of research it is important to avoid
some methodological issues that emerge from the use of self reported data and
statistics offered by the project members or the forges that host them (like
SourceForge or GitHub)[11]. This data may be problematic and biased and that
is why in the present study it was decided to extract and analyze it directly from
the version control systems where the sample of open source projects resides.
This task is time consuming but it is worth the effort to overcome these potential
threats to validity and improve the objectivity of the measures.

The fact that open source projects may be available in different version
control systems and the need to produce a software application to process the
required data in a limited amount of time, led to the necessity to select a version
control system that satisfies the requirements of the research. In this sense the
most important aspect to evaluate is the accuracy of the version control system
to attribute contributions to software developers. The log of the system must
reflect the diversity of collaborations and this is not possible if a centralized
version control system is used because, in this case, the logging of the activities
of contributors outside the group of commit right is not possible.

In Git, the authors may contribute a modification in two different ways.

15

First, they can clone the repository, make modifications to their working copy
and ask the developers with commit right to the main repository to pull the
changes to it. Second, they can create a patch with a commit (or a sequence of
them) and send it to the developers (by email for example) with access to the
central repository so they can apply the patch to it. In both cases the authorship
information is always available. That is, the author information travels through
repositories and is preserved. This is possible in Git because there are two fields
available to reflect contribution, committer and author [3]. Bird et al. [3] the
number of authors of a project that started using SVN and then migrated to
Git were studied. It was found that the amount of authors per period increased
after the migration to Git and this may be attributable to the better authorship
tracking facilities offered by this version control system.

Another important advantage of Git is the way it treats data. Git stores
data as a snapshot of the files in the commit and then references it (the files
that are not modified are not stored again). Other version control systems store
the data as a list of file based changes [6]. Other advantage of Git is that the
possibility to work on local repositories makes almost all operations local, and
this reduces the network latency overhead [6]. These features are the main
reasons for choosing Git in the present research work.

In order to create a flexible tool for mining the software repositories, it was
decided to build it on top of the Java Git open source API 3, also, already used
in other academic works [21].

3.5 Computing Contributions

The method implemented to measure contribution of a developer consists in
counting the number of times (where the developer performs as author) that a
Java file is modified. The total contribution of a period is defined as the sum of
all the instances of work regarding all the developed or maintained files present
in the sampled structure. In the same line, the contributions to the core are
those instances of work that are made in the files that constitute the technical
core.

3.6 Sampling Strategy

In order to conduct this research, the selection of the open source projects to
study had to satisfy certain characteristics, to assure that the contribution and
properties of the technical core could be measured. The systems needed to be
large enough in order to offer a degree of complexity, count with at least 4
revisions to exploit the benefits of the software evolution approach (study of
different time frames), having evolved throughout a period of more than 3 years
of development (also to explore evolutionary aspects) and having at least 15
developers to improve the understanding of contribution patterns (it would be
more difficult to draw conclusions if the studied project has, for example, one
or two developers).

Also, the systems must be diverse in size (lines of code), amount of developers
and application domain to improve the extent of generality of the conclusions

3http://www.jgit.org/

16

(no particular focus in a type of system). The systems that were selected as
data samples for the present study are presented in Table 3.1

System Developers Time frame (days) Revisions LOC
Jenkins 285 4,473 11 40,667
Rascal 27 1,372 5 81,201
Clojure 98 2,210 4 2,640
Oscar 52 3,225 9 105,431
Solr 17 1,890 5 42,796
Voldemort 61 1334 10 36,892

Table 3.1: Open source systems sampled.

Regarding the technical structure, the dataset studied presents the charac-
teristics introduced in Table 3.2

System Packages Files Classes Inner Classes
Jenkins 56 815 1,804 891
Rascal 94 963 2,134 1292
Clojure 21 164 759 549
Oscar 173 1,405 1,518 103
Solr 41 671 1,191 414
Voldemort 69 385 672 284

Table 3.2: Technical-structural properties of the sample.

17

Chapter 4

Results

4.1 Jenkins

4.1.1 Case Presentation

Jenkins 1 (formerly Hudson Labs, until early 2011) is a continuous inte-
gration server. It is aimed to support developers in the building and testing
processes of software applications. Jenkins posses a plugin architecture and has
many plugins available. The project has a total of 285 developers that partic-
ipated throughout its life cycle (almost 6 years). It has a robust community
behind and is used by several companies and open source initiatives 2.

4.1.2 Results

As Figure A.1 shows, the core of Jenkins represent a small part from total
in terms of Java files. The core developers are a fraction from the total (both
groups maintain a quite direct proportional relation, see Figure 4.3) and they
produce the most of the total contributions in all the studied time frames of the
project (Figures 4.1 and 4.2).

1http://jenkins-ci.org/
2https://wiki.jenkins-ci.org/pages/viewpage.action?pageId=58001258

18

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00
R

at
io

 o
f

co
n

tr
ib

u
ti

o
n

Revisions

Figure 4.1: Ratio of contribution of core developers of Jenkins (from total).

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

C
o

n
tr

ib
u

ti
o

n

Revisions

Total contribution

Contribution of core
developers

Figure 4.2: Total and core developer contribution of Jenkins.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

D
e

ve
lo

p
e

rs

Revisions

Total developers

Core developers

Figure 4.3: Total and core developers of Jenkins.

19

In terms of contributions to the core, it can be observed that in this project
there is one developer that does most of the work. In Figures 4.4 and 4.5 it
can be observed that this author produced the greatest extent of the core and
performed the most of the total contribution in a particular time frame. This
scenario is repeated in all the studied periods of the project.

0

10

20

30

40

50

60

70

80

90

100

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.4: Contributions to the core of Jenkins (in time frame preceding revi-
sion 1.460).

0

200

400

600

800

1000

1200

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.5: Total contributions to Jenkins (time frame preceding revision 1.460).

4.1.3 Analysis

This project is the biggest in relation with the number of contributors (see Ta-
ble 3.1) and exhibits a pattern were most of the work is done by one developer
(Figure 4.5). This arrangement of contribution, with one person doing dis-
proportionately more than the rest, must be regarded, because it may mean
that this developer is working everywhere (he may be not specially affiliated
to the core). In this sense, it would be interesting to see if the correlation of

20

Figure 4.1 could be found also in systems where the contribution is more evenly
distributed.

This project seems to be doing well in reference to the community, in the
sense of generating interest and attracting new developers. As can be noticed
in Figure 4.3 the number of developers is growing steadily. Just as the amount
of contribution as seen in Figure 4.2 is not showing the same growth tendency
and ratio, it is suggested that the addition of more developers does not imply an
immediate increase in productivity. On the contrary (and in accordance with
the Brook’s law [14]) as the total contribution is fluctuating, it may mean that
during some periods, top (core) contributors may be assuming other responsi-
bilities related to the control, communication, education or coordination that
the new members require.

As the productivity is oscillating, but presenting a tendency to increase, it
could also mean that new developers are eventually overcoming the learning
stage (becoming productive) and as they know how and what to do, the com-
munication overhead is reduced and the top (core) contributors can be released
to an extent where they can direct again their efforts to development tasks.

It also can be observed that the number of developers and authors is the
same throughout most of the studied period except in the last two revisions
(1.420 and 1.460) where the project changed its name from Hudson to Jenkins
(see Figure B.1). This could mean two things. It could be either that before
this point in the life of the project it was not part of the process to register
authors in the commit or that the project was migrated from other version
control system to Git, so in previous commits it was impossible to distinguish
contribution type (committer or author).

In reference to the core, it can be seen in Appendix A that during the
evolution of the system the coupling levels are growing. What is interesting
in this case is that this tendency is followed by a growth in the number of
developers that work in the core of the system. On one hand, this may be
an indication that the core is becoming more coupled to other parts due to
the growth of the system as a whole in terms of artifacts (see Figure A.1) and
consequently deriving in an expected raise in the number of connections. On the
other hand the increase of coupling may mean a lack of modularity (though to
conclude this it would be necessary to measure also the cohesion of the classes)
and therefore a bad response to the increase in the number of developers, in
terms of coordination and division of labor.

4.2 Rascal

4.2.1 Case Presentation

Rascal is a domain specific language to perform software analysis and ma-
nipulation (meta-programming)3. The project, that features 27 total developers
(throughout its life cycle), has been in development for more than 5 years 4 and
is realized mainly in the Centrum Wiskunde & Informatica (CWI, the national
research institute for mathematics and computer science in The Netherlands).

3http://www.rascal-mpl.org/
4https://github.com/cwi-swat/rascal

21

4.2.2 Results

In terms of contribution it can be appreciated that, although the correla-
tion is still high (between 95% and 48%) the rate of total participation of core
developers is steadily dropping (see Figures 4.6 and 4.7).

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

R
at

io
 o

f
co

n
tr

ib
u

ti
o

n

Revisions

Figure 4.6: Ratio of contribution of core developers of Rascal (from total).

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

0.1.15 0.3.6 0.4.17 0.5.0 0.5.1

C
o

n
tr

ib
u

ti
o

n

Revisions

Total contribution

Contribution of core
developers

Figure 4.7: Total and core developer contribution of Rascal.

It can be seen that in the first time frame studied the core developers corre-
late very good with top contributors (see Figures 4.8 and 4.9), with four out
of five core authors precisely matching the group of those who participate the
most in the project.

22

0
5

10
15
20
25
30
35
40
45

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.8: Contributions to the core of Rascal (in time frame preceding revision
0.1.15).

0

200

400

600

800

1000

1200

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.9: Total contributions to Rascal (time frame preceding revision 0.1.15).

In the last studied period, it can be appreciated that the correlation is present
in a lower extent because a developer, that is not in the core, is contributing
significantly to other parts of the system (see Figures 4.10 and 4.11), in this
case, essentially libraries (to org/rascalmpl/library/ package).

23

0
0.5
1

1.5
2

2.5
3

3.5
C

o
n

tr
ib

u
ti

o
n

Developers

Figure 4.10: Contributions to the core of Rascal (in time frame preceding revi-
sion 0.5.1).

0

10

20

30

40

50

60

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.11: Total contributions to Rascal (time frame preceding revision 0.5.1).

In this sampled system, it was found a practically direct relation between
core and top contributors (see Figure 4.12) with a decrease in the amount of
developers that participate in the core in the first two periods.

24

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00
D

e
ve

lo
p

e
rs

Revisions

Total developers

Core developers

Figure 4.12: Total and core developers of Rascal.

It also can be mentioned that, as in terms of inner class density this project
present a relative high value compared with the other studied cases (see Table
3.2), it should be known that this could potentially produce some deviation
in the outcome of the coupling aggregation process, and consequently, on the
definition of the core files.

4.2.3 Analysis

In this project the number of developers is smaller though in terms of produc-
tivity (SLOC) seems to be doing well (see Table 3.1).

What is particularly interesting in this case is the decrease of correlation in
the last period. This is caused by a peripheral developer that is participating
in a very high proportion. If this scenario were found in other studied cases, it
could represent a threat to the definition of peripheral developers (as those who
contribute less to the project [25]). But this is not the case and the situation is
not replicated in other sampled systems.

It is important to mention that the number of both total and core developers,
trough the life cycle of the project, tends to decrease (see Figure 4.12) and this
may also have an impact in the drop of the correlation (as the number of core
authors is reduced and they may be focused, intentionally, in other parts of the
software). This fall in the number of individuals evolving the technical core
could also be related with the stability reached. For example, it can be seen in
Appendix A that the coupling levels of all the files of the core are (in general)
either not increasing or decreasing. This may mean that the core has reached
certain stability, and that the development could be focused in other activities
(i.e. maintenance or refactoring) and that core developers could have moved to
peripheral parts of the code or to different activities.

Although this project seems to be centralized in terms of development (with a
small group of top contributors doing considerably more than the rest), another
factor that may have influenced the drop in the correlation is that the project
is, apparently, becoming slightly more decentralized (number of contributions
are more equally distributed among developers, see Figure 4.11).

25

4.3 Clojure

4.3.1 Case Presentation

Clojure is a dynamic programming language predominantly functional that
is aimed to offer both the features of a scripting language combined with an
infrastructure for multithreading programming. Clojure is a dialect of Lisp
that is targeted to the Java Virtual Machine and compiled into Bytecode 5.
According to the data mined from its main repository 6, the project count with
98 authors across the studied period (more than 6 years). Also, the project has
several user groups in different countries 7.

4.3.2 Results

This project is also presenting a positive and very high correlation between
core developers and top contributors. Its values are variating between 90% and
100% in the time period studied (see Figures 4.13 and 4.14).

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

R
at

io
 o

f
co

n
tr

ib
u

ti
o

n

Revisions

Figure 4.13: Ratio of contribution of core developers of Clojure (from total).

As it can be observed, in this project, there is a quite direct relation between
core and top developers (see Figure 4.15).

5http://clojure.org/
6https://github.com/clojure/clojure
7http://dev.clojure.org/display/community/Clojure+User+Groups

26

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

1.0.0 1.2 1.3 1.4

C
o

n
tr

ib
u

ti
o

n

Revisions

Total contribution

Contribution of core
developers

Figure 4.14: Total and core developer contribution of Clojure.

In this case, there is a great amount of contribution in the first time frame
studied and it is produced by a single developer (see Figures 4.14 and 4.15).
Also, throughout the evolution of the system there is a considerable growth in
the number of contributors involved, especially in the periods between versions
1.0.0 and 1.3 (see Figure 4.15).

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

D
e

ve
lo

p
e

rs

Revisions

Total developers

Core developers

Figure 4.15: Total and core developers of Clojure.

It also can be appreciated that the core developers (and particularly those
who contribute more to the core) produce the most of the system (see Figures
4.16 and 4.17).

27

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
C

o
n

tr
ib

u
ti

o
n

Developers

Figure 4.16: Contributions to the core of Clojure (in time frame preceding
revision 1.4).

0

5

10

15

20

25

30

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.17: Total contributions to Clojure (time frame preceding revision 1.4).

4.3.3 Analysis

As it was shown (see Figure 4.17) this project is also centralized in terms
of development, with a reduced number of contributors doing the most of the
work.

In this system, it seems that a small group of developers are adopting the role
of committers, while other larger group of people are participating as authors
in most of the periods (see Appendix B). In this case, the authorship tracking
feature provided by Git is being utilized as part of the development process.
This is one of the few studied systems that shows this characteristic.

In this case it is interesting that core developers are highly dominant in
terms of participation (see Figure 4.14) and that the increase in the number of
authors (see Figure 4.15) is not being proportionately reflected in the amount

28

of contribution. However, this consideration could have an opposite meaning
because it should be considered that the period prior to version 1.0.0 is present-
ing disproportionate amount of contribution. This could be product to the fact
that this situation is perceived in an also disproportionately long time frame
(with more than three years out of a total of seven for all the revisions).

It is also interesting to highlight that the increase in the amount of developers
is followed by a pronounced rise in the coupling levels as in the time frame
between revisions 1.0.0 and 1.3, there is a sustained growth of both measures
(see Figure 4.15 and Appendix A).

4.4 Oscar

4.4.1 Case Presentation

Oscar 8 is an open source EMR (electronic medical record) application. The
project has been produced collaboratively by a group of developers and health
care providers of Canada and it is mainly supported, evolved and promoted by
a team at Mc Master university (OSCAR McMaster). According to the data
available on its main repository 9 the project has been developed for almost 10
years and features a total of 52 software developers.

4.4.2 Results

Again, in this sample it can be appreciated that developers that are con-
tributing more to the technical core are in general those who produce the most
of the total system (see Figures 4.21 and 4.22). Consequently, the correlation
core-top developer contribution is, as in the other cases, very high (between
70% and 98% approximately) in most of the time frames analyzed (see Figures
4.18 and 4.19). In the periods between revisions 2009-06-01 and 2009-08-13, a
steep fall in correlation can be observed but, as it is clear in Figure 4.19 the
cause of it is a drop in the total contribution, related to the studied structure,
in both time frames.

8http://oscarmcmaster.org/
9git://oscarmcmaster.git.sourceforge.net/gitroot/oscarmcmaster/oscarmcmaster

29

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00
R

at
io

 o
f

co
n

tr
ib

u
ti

o
n

Revisions

Figure 4.18: Ratio of contribution of core developers of Oscar (from total).

0.00
500.00

1000.00
1500.00
2000.00
2500.00
3000.00
3500.00
4000.00
4500.00
5000.00

C
o

n
tr

ib
u

ti
o

n

Revisions

Total contribution

Contribution of core
developers

Figure 4.19: Total and core developer contribution of Oscar.

In terms of amount of authors, in this studied system there is also an almost
proportional relation between core and top developers (see Figure 4.20). Core
contributors are a fraction of the total, equivalently to the rest of samples.

0.00

5.00

10.00

15.00

20.00

25.00

D
e

ve
lo

p
e

rs

Revisions

Total developers

Core developers

Figure 4.20: Total and core developers of Oscar.

30

In relation with the behaviour of specific developers inside and outside the
technical core, it can be seen again, that most of those who access and work
in the core are also producing the greatest amount of the total contribution in
the last period (see Figures 4.21 and 4.22). This pattern is common in other
revisions on the project.

0
5

10
15
20
25
30
35
40
45
50

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.21: Contributions to the core of Oscar (in time frame preceding revision
10.12).

0

200

400

600

800

1000

1200

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.22: Total contributions to Oscar (time frame preceding revision 10.12).

4.4.3 Analysis

In this system, a fluctuation of the participation can be observed (Figure
4.19). It is also followed by a oscillating movement of the amount of participating
developers (Figure 4.20). This could imply that this project is not evolving
smoothly in terms of community (or that is experiencing other contingencies or
particular stages in its evolution).

In the sense of the development distribution, this project can also be con-
sidered as highly centralized, as can be appreciated in Figure 4.22 (a reduced
number of authors is doing more than most of the developers).

31

In this project, the authorship tracking feature is not part of the development
process as there is no single difference in the number of those who are committers
and authors (see Appendix B).

Oscar presents, in relation with other systems studied, lower levels of cou-
pling in the core (see Appendix A). What is interesting is that, at the same
time, this system is the largest in terms of lines of code and source files (see
Tables 3.1 and 3.2). Consequently, these two factors combined may imply
that the software structure is well modularized (though other measure would be
required to conclude this).

4.5 Solr

4.5.1 Case Presentation

Solr is an open source enterprise search platform, part of the Apache Lucene
project. It supplies distributed search, index replication and some of their fea-
tures include full-text search, hit highlighting, faceted search, dynamic cluster-
ing, database integration, and rich document handling 10. According to the
data available in the studied repository of the project 11, it accounts with 17
developers.

4.5.2 Results

In this project it can be appreciated that the correlation between those who
produce the core and those who most contribute is very high (between 90% and
100% for the studied time frames, see Figures 4.23 and 4.24).

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

R
at

io
 o

f
co

n
tr

ib
u

ti
o

n

Revisions

Figure 4.23: Ratio of contribution of core developers of Solr (from total).

10http://lucene.apache.org/solr/
11https://github.com/apache/lucene-solr

32

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

1.1.0 1.2 1.3.0 1.4.0 3.1.0

C
o

n
tr

ib
u

ti
o

n

Revisions

Total contribution

Contribution of core
developers

Figure 4.24: Total and core developer contribution of Solr.

Considering the number of contributors, in this case there is also a quite
pronounced relationship between core and top developers (see Figure 4.25).
What is different from other studies is that here the core group is greater in
proportion to the group of total contributors.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

D
e

ve
lo

p
e

rs

Revisions

Total developers

Core developers

Figure 4.25: Total and core developers of Solr.

In terms of particular developers, it can be appreciated that the core con-
tributors are (except in one case) the same who produce the greatest amount
of total contribution (see Figures 4.26 and 4.27).

33

0
2
4
6
8

10
12
14

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.26: Contributions to the core of Solr (in time frame preceding revision
3.1.0).

0
10
20
30
40
50
60
70
80
90

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.27: Total contributions to Solr (time frame preceding revision 0.3.1.0).

4.5.3 Analysis

Solr presents a highly centralized contribution pattern, as can be seen in
Figure 4.27, where three developers are producing considerably more than the
rest of the contributors of the project. In this case, there is no variation between
the number of authors and developers despite the project shows a tendency to
incorporate more contributors throughout the time (see Appendix B and Figure
4.25). It seems that there is no utilization of the authorship tracking feature
provided by Git.

34

4.6 Voldemort

4.6.1 Case Presentation

Voldemort is an open source distributed key-value storage system. Some
of their features include automatic data replication over multiple servers, au-
tomatic data partitioning, pluggable serialization, data items versioning, no
central point of failure and support for pluggable data placement strategies 12.
According to the master repository 13, the project count with 61 developers
through a period of almost 4 years.

4.6.2 Results

With reference to the correlation between top and core contributors, in this
open source project, three different behaviours can be observed (see Figures 4.28
and 4.29). First, in the time frame between revisions 0.57.1 and 0.80, it presents
high levels (between 74% and 99%). Second, from revision 0.80 to 0.81, it drops
abruptly within 0% and 20%. This happens because, as can be seen in Figure
4.29, there is no activity related to the technical core in the period. Finally, in
the time frame between revisions 0.90 and 0.96, the correlation is considerable
again though a pronounced decrease from 98% to 52% can be appreciated.

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

R
at

io
 o

f
co

n
tr

ib
u

ti
o

n

Revisions

Figure 4.28: Ratio of contribution of core developers of Voldemort (from total).

12http://www.project-voldemort.com/voldemort/
13https://github.com/voldemort/voldemort

35

0.00

500.00

1000.00

1500.00

2000.00

2500.00
C

o
n

tr
ib

u
ti

o
n

Revisions

Total contribution

Contribution of core
developers

Figure 4.29: Total and core developer contribution of Voldemort.

In this case, there is an oscillating behavior in the number of total developers
in each time frame analyzed (Figure 4.30). It can be observed that the peaks
are reached in the first and in the last studied periods (prior to versions 0.57.1
and 0.96 respectively). Core developers are still a fraction of the total but in a
period (prior to version 0.70.1) they reach almost the total number of developers.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

D
e

ve
lo

p
e

rs

Revisions

Total developers

Core developers

Figure 4.30: Total and core developers of Voldemort.

In this sample it can be seen that the two core developers are amongst the
top three contributors of the time frame analyzed (see Figures 4.31 and 4.32).
Again, this tendency can be observed in all the periods (provided that there are
some activity related to the technical core).

36

0

0.5

1

1.5

2

2.5

3

3.5
C

o
n

tr
ib

u
ti

o
n

Developers

Figure 4.31: Contributions to the core of Voldemort (in time frame preceding
revision 0.96).

0
10
20
30
40
50
60
70

C
o

n
tr

ib
u

ti
o

n

Developers

Figure 4.32: Total contributions to Voldemort (time frame preceding revision
0.96).

Finally, as it can be appreciated in Appendix A, the core is generally com-
posed by two files. One of them (VAdminProto.java) is showing an increasing
coupling behavior, while the other, remains relatively stable throughout the
time (VProto.java).

4.6.3 Analysis

As in the previous analyzed cases, it is perceived that this project also
presents development centralization characteristics, with a reduced group of
people doing considerable more than most of the team (see Figure 4.32).

In terms of community, the project seems to be unstable, because the number
of developers is fluctuating (see Figure 4.30). This may mean that the interest
or commitment to the project are not sustained in time. In this sense it also can
be observed that in some periods the activity in the core falls to zero and this

37

may be product of a lack of interest or due to the migration of core developers to
peripheral parts of the code. Also, another potential indication of the instability
in relation to the community, is the fluctuating number of core developers (see
Figure 4.30).

Considering the productivity in this project, it can be observed that it is
not following a sustained tendency (see Figure 4.29) but it is interesting that
the relation between the number of developers and the amount of participation
seems to be, in general, positively related (in revisions 0.57.1, 0.70.1, 0.90.1 and
0.96, see Figures 4.29 and 4.30).

In this case, in most of the time frames studied, it can be perceived a consid-
erable difference in the number of committers and authors (see Appendix B).
This is reflecting that the authorship tracking feature provided by Git is utilized
as part of the process.

38

Chapter 5

Conclusions

In previous publications core developers were defined as those who produce or
modify the core of the systems. The necessity to validate this definition was
suggested [1] and it was also perceived that at the moment it had not been
made with a wide extent of generality [22]. In the present study it was found
that, for the sample of open source systems studied, the group of developers
that have access, produce and modify the part of the systems that present high
levels of coupling (core developers), are also those who participate more actively
and contribute the most to these systems (top contributors).

Considering the developers individually, it was found that, in general terms,
those who produce the core in a great extent are also the top contributors of
the project.

Also, it was validated that development centralization, as it was mentioned
in the related work [25, 20, 10], is an important characteristic of open source
projects. Even the projects with a reduced number of developers (which the
contribution, knowledge and commitment levels are expected to be similar)
were found to be just slightly more decentralized.

Simultaneously, and for all the sampled open source projects, it was observed
that the number of artifacts that present core properties is reduced in relation
to the total.

Additionally, it was observed that the authorship tracking option present in
the Git version control system is not utilized in most of the sampled projects.
Though it is not clear if this is product of an intention or an omission, it would
be helpful for this type of research if this feature could be exploited.

39

Chapter 6

Future Work

First, it would be interesting to understand variations product of defining the
core in different ways, studying other variables that can influence the meaning
of technical core. For example, outbound coupling as it is presented in [26],
and architectural analysis (i.e. extension points, interfaces and architectural
patterns used in open source systems).
Second, it would be interesting to have a different sampling strategy in the sense
of focusing on open source projects that are in earlier stages of their evolution
and that seem not to be doing well in terms of health [1], although in these
cases, it would be difficult to obtain adequate data sets.
Finally, as it was shown that core developers are correlated with those who are
top contributors, it would be interesting to have an inverse approach. That is,
finding clusters of top developers and looking for correlations between them and
the properties of the software.

40

Bibliography

[1] Chintan Amrit and Jos van Hillegersberg. Exploring the impact of socio-
technical core-periphery structures in open source software development. J
Inf technol, 25:216–229, 06 2010.

[2] Carliss Y. Baldwin and Kim B. Clark. The architecture of participation:
Does code architecture mitigate free riding in the open source development
model? Management Science, 52(7):1116–1127, July 2006.

[3] C. Bird, P.C. Rigby, E.T. Barr, D.J. Hamilton, D.M. German, and P. De-
vanbu. The promises and perils of mining git. In Mining Software Repos-
itories, 2009. MSR ’09. 6th IEEE International Working Conference on,
pages 1 –10, may 2009.

[4] Stephen P Borgatti and Martin G Everett. Models of core/periphery struc-
tures. Social Networks, 21(4):375 – 395, 2000.

[5] L.C. Briand, J.W. Daly, and J.K. Wust. A unified framework for cou-
pling measurement in object-oriented systems. Software Engineering, IEEE
Transactions on, 25(1):91 –121, jan/feb 1999.

[6] Scott Chacon. Pro Git. Apress, 2009.

[7] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented
design. Software Engineering, IEEE Transactions on, 20(6):476 –493, jun
1994.

[8] M.E. Conway. How do committees invent? Datamation, Vol. 14(No. 4):28–
31, 1968.

[9] K. Crowston, Kangning Wei, Qing Li, and J. Howison. Core and periphery
in free/libre and open source software team communications. In System
Sciences, 2006. HICSS ’06. Proceedings of the 39th Annual Hawaii Inter-
national Conference on, volume 6, page 118a, jan. 2006.

[10] Kevin Crowston and James Howison. The social structure of free and open
source software development. First Monday, 10(2 - 7), February 2005.

[11] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins.
Free/libre open-source software development: What we know and what we
do not know. ACM Comput. Surv., 44(2):7:1–7:35, March 2008.

[12] Daniel A. Hojman and Adam Szeidl. Core and periphery in networks.
Journal of Economic Theory, 139(1):295 – 309, 2008.

41

[13] Shih-Kun Huang and Kang-min Liu. Mining version histories to verify the
learning process of legitimate peripheral participants. In Proceedings of
the 2005 international workshop on Mining software repositories, MSR ’05,
pages 1–5, New York, NY, USA, 2005. ACM.

[14] F.P. Brooks Jr. The mythical man-month. Essays on Software Engineering,
Reading, MA, 1975. Addison-Wesley.

[15] Marian Jureczko and Diomidis Spinellis. Using object-oriented design
metrics to predict software defects. In Models and Methodology of Sys-
tem Dependability. Proceedings of RELCOMEX 2010: Fifth International
Conference on Dependability of Computer Systems DepCoS, Monographs
of System Dependability, pages 69–81, Wroc law, Poland, 2010. Oficyna
Wydawnicza Politechniki Wroc lawskiej.

[16] M.J. LaMantia, Yuanfang Cai, A.D. MacCormack, and J. Rusnak. Ana-
lyzing the evolution of large-scale software systems using design structure
matrices and design rule theory: Two exploratory cases. In Software Ar-
chitecture, 2008. WICSA 2008. Seventh Working IEEE/IFIP Conference
on, pages 83 –92, feb. 2008.

[17] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe. Comparing software met-
rics tools. In Proceedings of the 2008 international symposium on Software
testing and analysis, ISSTA ’08, pages 131–142, New York, NY, USA, 2008.
ACM.

[18] Alan MacCormack, Carliss Baldwin, and John Rusnak. The architecture
of complex systems: Do core-periphery structures dominate? MIT Sloan
School of Management Working Paper, pages 4770–10, 01 2010.

[19] Robert Martin. Object oriented design quality metrics - an analysis of
dependencies. In Proc. of Workshop Pragmatic and Theoretical Directions
in Object-Oriented Software Metrics, OOPSLA, may 1994.

[20] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies
of open source software development: Apache and mozilla. ACM Trans.
Softw. Eng. Methodol., 11(3):309–346, July 2002.

[21] J. Nonnen and P. Imhoff. Identifying knowledge divergence by vocabulary
monitoring in software projects. In Software Maintenance and Reengineer-
ing (CSMR), 2012 16th European Conference on, pages 441 –446, march
2012.

[22] G.A. Oliva, F.W. Santana, K.C.M. de Oliveira, C.R.B. de Souza, and M.A.
Gerosa. Characterizing key developers: A case study with apache ant. 2011.

[23] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM
Systems Journal, 13(2):115 –139, 1974.

[24] K. Stroggylos and D. Spinellis. Refactoring–does it improve software qual-
ity? In Software Quality, 2007. WoSQ’07: ICSE Workshops 2007. Fifth
International Workshop on, page 10, may 2007.

42

[25] A. Terceiro, L.R. Rios, and C. Chavez. An empirical study on the structural
complexity introduced by core and peripheral developers in free software
projects. In Software Engineering (SBES), 2010 Brazilian Symposium on,
pages 21 –29, 27 2010-oct. 1 2010.

[26] Andy Zaidman and Serge Demeyer. Automatic identification of key classes
in a software system using webmining techniques. Journal of Software
Maintenance and Evolution: Research and Practice, 20(6):387–417, 2008.

43

Appendix A

Core Java Files of the Open
Source Systems

In this section, all the Java files that are part of the technical core in each
time frame studied are presented. Following the name of the file, the coupling
values for each computed metric are presented. In order to interpret the data
the following convention must be used: file name, CBO, RFC, Ca, Ce, Ibound
dependencies, Outbound dependencies.

Jenkins

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

Ja
va

 f
ile

s

Revisions

Java Files

Core java files

Figure A.1: Total and core Java files of Jenkins.

Revision 1.60

hudson/model/Project.java,48,186,48,48,7,15
hudson/model/Build.java,50,143,50,50,8,14
hudson/model/Hudson.java,63,306,45,63,7,25
hudson/scm/CVSSCM.java,70,293,16,70,7,25
hudson/model/Run.java,44,226,51,44,10,30

44

Revision 1.100

hudson/scm/SubversionSCM.java,167,342,51,167,13,57
hudson/FilePath.java,134,340,134,134,59,88
hudson/scm/CVSSCM.java,129,487,36,129,14,61

Revision 1.140

hudson/scm/SubversionSCM.java,198,449,67,198,17,66
hudson/FilePath.java,143,394,151,143,66,101

Revision 1.180

hudson/scm/SubversionSCM.java,207,481,67,207,17,66
hudson/FilePath.java,149,413,154,149,68,104
hudson/model/AbstractBuild.java,73,216,100,73,23,25

Revision 1.220

hudson/model/Hudson.java,198,644,131,198,14,61
hudson/scm/SubversionSCM.java,222,534,74,222,17,74
hudson/FilePath.java,157,432,157,157,68,108
hudson/model/Queue.java,60,203,58,60,16,29
hudson/model/AbstractBuild.java,77,224,112,77,23,26

Revision 1.260

hudson/model/Hudson.java,219,704,151,219,16,68
hudson/scm/SubversionSCM.java,237,541,75,237,17,74
hudson/FilePath.java,165,465,175,165,70,111
hudson/model/Queue.java,77,250,71,77,17,33
hudson/model/UpdateCenter.java,83,243,52,83,28,46
hudson/model/AbstractBuild.java,80,228,133,80,26,26

Revision 1.300

hudson/FilePath.java,205,568,206,205,87,132
hudson/model/UpdateCenter.java,95,299,58,95,27,49

Revision 1.340

hudson/model/Hudson.java,299,944,281,299,21,101
hudson/FilePath.java,286,749,265,286,102,178
hudson/model/Queue.java,148,436,130,148,25,57
hudson/util/ProcessTree.java,84,335,71,84,22,43

Revision 1.380

hudson/model/Hudson.java,323,986,319,323,23,105
hudson/FilePath.java,245,648,236,245,95,150
hudson/model/Queue.java,139,419,122,139,26,48

45

hudson/util/ProcessTree.java,128,403,93,128,28,64
hudson/model/UpdateCenter.java,120,377,64,120,26,55

Revision 1.420

jenkins/model/Jenkins.java,345,982,354,345,27,113
hudson/FilePath.java,245,661,238,245,95,151
hudson/model/Queue.java,145,430,128,145,26,48
hudson/util/ProcessTree.java,128,408,93,128,28,64
hudson/model/UpdateCenter.java,145,407,85,145,38,68

Revision 1.460

jenkins/model/Jenkins.java,360,1023,386,360,28,117
hudson/FilePath.java,262,708,246,262,101,163
hudson/model/Queue.java,150,446,132,150,26,48
hudson/util/ProcessTree.java,128,408,93,128,28,64
hudson/model/UpdateCenter.java,158,432,90,158,40,73

Rascal

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

Ja
va

 f
ile

s

Revisions

Java Files

Core java files

Figure A.2: Total and core Java files of Rascal.

Revision 0.1.15

org/rascalmpl/ast/Declaration.java,73,176,81,73,14,46
org/rascalmpl/ast/ImportedModule.java,28,56,32,28,7,15
org/rascalmpl/ast/Kind.java,35,69,58,35,12,13
org/rascalmpl/interpreter/Evaluator.java,428,1064,47,428,16,37
org/rascalmpl/ast/Assignable.java,35,94,61,35,9,18
org/rascalmpl/ast/Statement.java,121,322,243,121,32,65
org/rascalmpl/ast/Expression.java,230,691,733,230,104,104
org/rascalmpl/ast/CharClass.java,25,72,40,25,8,10
org/rascalmpl/ast/Assignment.java,26,51,46,26,9,10
org/rascalmpl/ast/ShellCommand.java,42,84,66,42,12,18

46

org/rascalmpl/test/TestFramework.java,26,69,43,26,42,6
org/rascalmpl/ast/Literal.java,40,80,68,40,9,17
org/rascalmpl/ast/Symbol.java,51,132,69,51,14,22
org/rascalmpl/ast/StringTemplate.java,29,110,44,29,9,20
org/rascalmpl/ast/Command.java,33,65,45,33,7,15
org/rascalmpl/ast/StringLiteral.java,26,52,36,26,6,13
org/rascalmpl/interpreter/result/Result.java,37,245,86,37,12,6
org/rascalmpl/ast/BasicType.java,74,147,179,74,28,26
org/rascalmpl/ast/Type.java,43,90,95,43,27,18

Revision 0.3.6

org/rascalmpl/ast/Statement.java,127,327,234,127,61,65
org/rascalmpl/ast/Sym.java,97,253,116,97,32,39
org/rascalmpl/ast/Expression.java,240,709,660,240,175,106

Revision 0.4.17

org/rascalmpl/ast/Statement.java,129,328,205,129,62,66
org/rascalmpl/ast/Sym.java,99,254,90,99,32,40
org/rascalmpl/ast/Expression.java,255,758,613,255,184,110

Revision 0.5.0

org/rascalmpl/interpreter/Evaluator.java,105,387,376,105,18,26
org/rascalmpl/ast/Statement.java,129,328,205,129,62,66
org/rascalmpl/ast/Sym.java,99,254,90,99,32,40
org/rascalmpl/ast/Expression.java,255,758,615,255,184,110

Revision 0.5.1

org/rascalmpl/ast/Statement.java,129,328,152,129,62,66
org/rascalmpl/ast/Sym.java,103,264,93,103,33,42
org/rascalmpl/ast/Expression.java,255,758,490,255,184,110

47

Clojure

0.00

50.00

100.00

150.00

200.00

250.00

Ja
va

 f
ile

s

Revisions

Java Files

Core java files

Figure A.3: Total and core Java files of Clojure.

Revision 1.0.0

clojure/lang/Compiler.java,666,1487,384,666,78,208

Revision 1.2

clojure/lang/Compiler.java,904,2116,545,904,103,266

Revision 1.3

clojure/lang/Compiler.java,1000,2442,589,1000,106,285

Revision 1.4

clojure/lang/Compiler.java,1001,2453,593,1001,106,285

48

Oscar

0.00
200.00
400.00
600.00
800.00

1000.00
1200.00
1400.00
1600.00

Ja
va

 f
ile

s

Revisions

Java Files

Core java files

Figure A.4: Total and core Java files of Oscar.

Revision 1.1

oscar/oscarRx/data/RxAllergyData.java,10,61,14,10,5,7
oscar/oscarRx/data/RxCodesData.java,6,40,6,6,2,7
oscar/oscarRx/data/RxPatientData.java,18,134,15,18,3,13
oscar/form/data/FrmData.java,6,35,4,6,2,7
oscar/oscarRx/data/RxInteractionsData.java,4,29,4,4,2,4
oscar/oscarRx/data/RxDrugData.java,6,73,9,6,2,4
oscar/oscarRx/data/RxPrescriptionData.java,13,228,24,13,2,9
oscar/oscarEncounter/data/EctFormData.java,6,34,4,6,2,7
oscar/oscarReport/data/RptConsultReportData.java,9,59,6,9,3,14
oscar/oscarDB/DBHandler.java,3,22,99,3,2,4

Revision 2.0

oscar/oscarRx/data/RxAllergyData.java,5,36,11,5,4,7
oscar/billing/model/Appointment.java,7,66,9,7,5,6
oscar/billing/cad/model/CadProcedimentos.java,3,23,13,3,4,6
oscar/oscarRx/data/RxPatientData.java,18,137,13,18,3,13
oscar/oscarRx/data/RxDrugData.java,22,107,28,22,17,44
oscar/oscarRx/data/RxPrescriptionData.java,17,284,25,17,2,8
oscar/util/DAO.java,3,25,9,3,9,5
oscar/oscarDB/DBHandler.java,3,22,186,3,6,4
oscar/oscarBilling/data/BillingFormData.java,13,64,14,13,6,19

Revision 2.1

oscar/oscarDemographic/data/DemographicData.java,22,198,64,22,6,18
oscar/oscarEncounter/pageUtil/NavBarDisplayDAO.java,8,87,37,8,3,14
oscar/oscarRx/data/RxPatientData.java,18,147,33,18,4,13
oscar/oscarBilling/ca/bc/data/BillingFormData.java,16,94,17,16,6,19

49

oscar/oscarRx/data/RxDrugData.java,26,126,37,26,18,48
oscar/oscarRx/data/RxPrescriptionData.java,21,345,38,21,2,8

Revision 2009-01-22

oscar/oscarDemographic/data/DemographicData.java,22,210,68,22,6,18
oscar/oscarEncounter/pageUtil/NavBarDisplayDAO.java,8,86,37,8,3,14
oscar/oscarRx/data/RxPatientData.java,18,149,36,18,4,13
oscar/oscarBilling/ca/bc/data/BillingFormData.java,16,96,17,16,6,19
oscar/oscarRx/data/RxDrugData.java,26,126,38,26,18,48

Revision 2009-05-26

oscar/oscarDemographic/data/DemographicData.java,22,213,74,22,6,18
oscar/oscarEncounter/pageUtil/EctDisplayAction.java,7,29,15,7,15,3
oscar/oscarEncounter/pageUtil/NavBarDisplayDAO.java,8,86,39,8,3,14
oscar/oscarRx/data/RxPatientData.java,18,153,39,18,4,13
oscar/oscarBilling/ca/bc/data/BillingFormData.java,16,96,17,16,6,19
oscar/oscarBilling/ca/bc/MSP/MSPReconcile.java,18,266,17,18,3,14
oscar/oscarRx/data/RxDrugData.java,26,128,40,26,18,48

Revision 2009-06-01

oscar/oscarDemographic/data/DemographicData.java,22,212,72,22,6,18
oscar/oscarEncounter/pageUtil/EctDisplayAction.java,7,29,15,7,15,3
oscar/oscarEncounter/pageUtil/NavBarDisplayDAO.java,8,86,39,8,3,14
oscar/oscarRx/data/RxPatientData.java,18,151,39,18,4,13
oscar/oscarBilling/ca/bc/data/BillingFormData.java,16,96,17,16,6,19
oscar/oscarBilling/ca/bc/MSP/MSPReconcile.java,18,266,17,18,3,14
oscar/oscarRx/data/RxDrugData.java,26,128,38,26,18,48

Revision 2009-08-13

oscar/oscarDemographic/data/DemographicData.java,24,220,76,24,6,19
oscar/oscarEncounter/pageUtil/NavBarDisplayDAO.java,8,86,41,8,3,14
oscar/oscarRx/data/RxPatientData.java,18,155,40,18,4,13
oscar/oscarBilling/ca/bc/data/BillingFormData.java,16,96,17,16,6,19
oscar/oscarBilling/ca/bc/MSP/MSPReconcile.java,18,266,17,18,3,14
oscar/oscarRx/data/RxDrugData.java,26,128,40,26,18,48

Revision 10.06

oscar/oscarDemographic/data/DemographicData.java,25,219,74,25,6,19
oscar/oscarEncounter/pageUtil/NavBarDisplayDAO.java,8,86,41,8,3,14
oscar/oscarRx/data/RxPatientData.java,18,151,40,18,4,13
oscar/oscarBilling/ca/bc/data/BillingFormData.java,19,101,16,19,6,20
oscar/oscarBilling/ca/bc/MSP/MSPReconcile.java,18,263,17,18,3,14
oscar/oscarRx/data/RxDrugData.java,26,132,42,26,18,48

50

Revision 10.12

oscar/oscarDemographic/data/DemographicData.java,35,281,75,35,6,19
oscar/oscarEncounter/pageUtil/NavBarDisplayDAO.java,10,87,47,10,3,14
oscar/oscarRx/data/RxPatientData.java,24,147,40,24,4,13
oscar/oscarBilling/ca/bc/data/BillingFormData.java,19,100,16,19,6,20
oscar/oscarBilling/ca/bc/MSP/MSPReconcile.java,23,258,17,23,3,14
oscar/oscarRx/data/RxDrugData.java,32,135,42,32,18,48

Solr

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

Ja
va

 f
ile

s

Revisions

Java Files

Core java files

Figure A.5: Total and core Java files of Solr.

Revision 1.1.0

org/apache/solr/schema/IndexSchema.java,33,164,49,33,15,24
org/apache/solr/search/SolrIndexSearcher.java,108,257,52,108,20,49
org/apache/solr/core/SolrCore.java,61,205,36,61,10,31

Revision 1.2

org/apache/solr/servlet/SolrRequestParsers.java,54,115,19,54,10,23
org/apache/solr/schema/IndexSchema.java,41,199,59,41,18,29
org/apache/solr/search/SolrIndexSearcher.java,111,264,53,111,18,50
org/apache/solr/handler/CSVRequestHandler.java,60,111,23,60,11,26
org/apache/solr/core/SolrCore.java,54,170,45,54,12,30

Revision 1.3.0

org/apache/solr/client/solrj/impl/XMLResponseParser.java,48,129,40,48,12,17
org/apache/solr/schema/IndexSchema.java,72,285,97,72,27,43
org/apache/solr/search/ValueSourceParser.java,132,156,40,132,19,25
org/apache/solr/search/SolrIndexSearcher.java,117,337,77,117,20,54
org/apache/solr/core/SolrCore.java,83,309,90,83,17,44

51

Revision 1.4.0

org/apache/solr/schema/IndexSchema.java,82,311,110,82,30,47
org/apache/solr/search/ValueSourceParser.java,190,244,57,190,27,40
org/apache/solr/search/SolrIndexSearcher.java,107,318,76,107,14,36
org/apache/solr/core/SolrCore.java,97,345,107,97,21,46

Revision 3.1.0

org/apache/solr/schema/IndexSchema.java,92,341,119,92,31,48
org/apache/solr/search/ValueSourceParser.java,327,505,132,327,63,79
org/apache/solr/core/SolrCore.java,99,347,116,99,22,45

Voldemort

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

Ja
va

 f
ile

s

Revisions

Java Files

Core java files

Figure A.6: Total and core Java files of Voldemort.

Revision 0.57.1

voldemort/client/protocol/pb/VProto.java,606,2077,194,606,28,82

Revision 0.60.1

voldemort/client/protocol/pb/VAdminProto.java,656,2374,189,656,30,96
voldemort/client/protocol/pb/VProto.java,606,2077,231,606,37,82

Revision 0.70.1

voldemort/client/protocol/pb/VAdminProto.java,922,3353,260,922,41,127
voldemort/client/protocol/pb/VProto.java,606,2092,240,606,40,82

Revision 0.80

voldemort/client/protocol/pb/VAdminProto.java,998,3591,291,998,47,136
voldemort/client/protocol/pb/VProto.java,606,2092,247,606,41,82

52

Revision 0.80.1

voldemort/client/protocol/pb/VAdminProto.java,998,3591,291,998,47,136
voldemort/client/protocol/pb/VProto.java,606,2092,247,606,41,82

Revision 0.80.2

voldemort/client/protocol/pb/VAdminProto.java,998,3591,291,998,47,136
voldemort/client/protocol/pb/VProto.java,606,2092,247,606,41,82

Revision 0.81

voldemort/client/protocol/pb/VAdminProto.java,998,3603,291,998,47,136
voldemort/client/protocol/pb/VProto.java,606,2092,247,606,41,82

Revision 0.90

voldemort/client/protocol/pb/VAdminProto.java,1922,7169,569,1922,87,258
voldemort/client/protocol/pb/VProto.java,629,2272,296,629,53,86

Revision 0.90.1

voldemort/client/protocol/pb/VAdminProto.java,1996,7408,587,1996,90,267
voldemort/client/protocol/pb/VProto.java,629,2272,299,629,54,86

Revision 0.96

voldemort/client/protocol/pb/VAdminProto.java,2221,8233,652,2221,100,295
voldemort/client/protocol/pb/VProto.java,629,2272,305,629,56,86

53

Appendix B

Commiters and Authors

In this research work, it was found that the authorship tracking mechanism
offered by Git is utilized in different extent. In this section, the results related
with the measurement of the utilization of this feature are presented for each
sampled system.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

C
o

m
m

it
s

Revisions

Commiters

Authors

Figure B.1: Commits of commiters and authors of Jenkins.

54

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00
C

o
m

m
it

s

Revisions

Commiters

Authors

Figure B.2: Commits of commiters and authors of Rascal.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

C
o

m
m

it
s

Revisions

Commiters

Authors

Figure B.3: Commits of commiters and authors of Clojure.

0.00

5.00

10.00

15.00

20.00

25.00

C
o

m
m

it
s

Revisions

Commiters

Authors

Figure B.4: Commits of commiters and authors of Oscar.

55

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00
C

o
m

m
it

s

Revisions

Commiters

Authors

Figure B.5: Commits of commiters and authors of Solr.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

C
o

m
m

it
s

Revisions

Commiters

Authors

Figure B.6: Commits of commiters and authors of Voldemort.

56

