
Exploring the Detection of Method Naming Anomalies

Jouke Stoel

(23-07-2012)

Master Software Engineering

Supervisor : dr. Jurgen Vinju

Universiteit van Amsterdam

Contents

1 Introduction 6
1.1 The importance of identifiers . 6
1.2 Coming up with the right identifier name 7
1.3 How to define meaning? . 7
1.4 Consistent naming . 7
1.5 Research questions . 8
1.6 Scope . 9
1.7 Organisation . 10

2 Background 11
2.1 The ‘other’ language . 11
2.2 Why consistent identifier naming is important 11
2.3 Consistent method naming . 12
2.4 Finding implementation clues . 13
2.5 The Nano Pattern Catalogue . 13
2.6 Method Naming Anomalies . 14
2.7 Locating Method Naming Anomalies . 15
2.8 Related work . 15

2.8.1 The role of concepts and names on program comprehension 15
2.8.2 Checking for consistent identifier names 16
2.8.3 Using patterns for source code analysis 17

3 Finding Nano Patterns 18
3.1 Rationale . 18
3.2 Research method . 19

3.2.1 Analysing the method implementation 19
3.2.2 Qualifying the result . 20

3.3 Results . 22
3.3.1 Difference per pattern . 22
3.3.2 Number of analysed methods . 22
3.3.3 Differences in pattern presence . 23
3.3.4 Difference in entropy score . 24

3.4 Analysis . 24

2

3.5 Conclusion . 25

4 Finding method naming anomalies using the method of Høst and Østvold 26
4.1 Rationale . 26
4.2 Research method . 27

4.2.1 The Java corpus . 27
4.2.2 Analysing the method name . 27
4.2.3 Grouping methods per action-token 29
4.2.4 Method occurrences threshold . 29
4.2.5 Finding naming anomalies using nano pattern frequencies 30
4.2.6 Qualifying the result . 32

4.3 Results . 33
4.3.1 Applying the threshold . 33
4.3.2 Analysing the found outliers . 33

4.4 Analysis . 39
4.5 Conclusion . 40

5 An alternate approach 41
5.1 Rationale . 41
5.2 Research method . 42

5.2.1 Formal Concept Analysis . 43
5.2.2 Constructing Formal Contexts . 45
5.2.3 Building Concept Lattices . 46
5.2.4 Finding outliers using FCA . 46
5.2.5 Qualifying the result . 47

5.3 Results . 47
5.3.1 Comparing both methods . 47
5.3.2 Validating the found outliers . 48

5.4 Analysis . 48
5.4.1 Comparing the methods . 48
5.4.2 Examining a found outlier . 49
5.4.3 Limitations of the used method . 50

5.5 Conclusion . 51

6 Discussion 52
6.1 Threats to validity . 52

6.1.1 The diversity of the corpus . 52
6.1.2 Experimenter bias . 53

6.2 Future work . 53
6.2.1 Finding Naming Anomalies . 53
6.2.2 Handling Naming Anomalies . 53

A Overview of Java AST nodes in Rascal 59

3

B Definition of the Nano Patterns as implemented in the source code
analyser 63

C Pattern frequencies for the top ten action-tokens 65

D Review of the samples 71

4

Abstract

Program comprehension is a major part of software maintenance. Earlier research has
shown that identifiers have a big impact on comprehensibility. For instance, using the
wrong name for a method leads to spoiled comprehension in numerous other places.
Given this, it is strange that there is little support for analysing the used names.

In this research we will investigate the automatic detection of method implementations
that are in conflict with their given names. The goal is to get a deeper insight into these
so called Method Naming Anomalies.

In order to analyse the method implementation we turn to previous research of Høst
and Østvold who used nano patterns, simple properties exhibited by the code, to compare
methods with each other. We extract these nano patterns from the source code, earlier
research used byte code for this extraction. Methods that contain different nano patterns
compared to other methods with similar names, are considered outliers.

By evaluating the found outliers we find that the method that was presented by Høst
and Østvold does quicker lead to identifying methods that have bad names compared to
when we take a random selection of methods.

Next to this we propose an alternate approach in finding these method naming
anomalies using Formal Concept Analysis. By making use of Formal Concept Analysis we
can locate methods which contain rare combinations of nano patterns. We show that the
methods that get identified by this method also have a higher change of being methods
that have a bad name. While both outlier location methods have overlap regarding the
found outliers, there are also differences in found outliers.

5

Preface

The last three years of studying was an intense but very satisfying ride. I am very grateful
that I was able to experience it. I found that studying besides a job is not always easy.
This especially counts for the final phase but this thesis is a testimony that even difficult
tasks come to a close.

Special thanks goes out to my tutor Jurgen Vinju for his guidance during the last
period. His deep knowledge and endless optimism was of great support.

Next I would like to thank the other tutors of the Software Engineering Master of
the Universiteit van Amsterdam, Paul Klint, Hans Dekkers, Tijs van der Storm, Jan van
Eijck and Hans van Vliet. I have learned a lot during their classes.

Another big thanks goes out to all the other persons in the SEN-1 research group of
CWI. Conversations at the coffee machine or over lunch helped in getting new cool ideas
or discard rubbish once. Being able to work in such an environment is very inspiring.

I would also like to thank Jeremy Singer of the University of Glasgow for giving us the
source code of the nano pattern analyser they used in their research into nano patterns.
This enabled us to do a deeper analysis on some of our found results.

I my three years of studying I have met a lot of nice fellow students. Some however I
feel I owe special thanks to.

First of all Christian Koeppe. We have spend a lot of time working together on
various assignments and he was a big help during the writing of this thesis. Next I would
also like to extend my gratitude to Arie van der Veek and Davy Meers for, like Christian,
we spend a lot of time together finishing various courses. I feel that we were a good team.

I would also like to mention my fellow students Denis van Leeuwen en Luuk Stevens.
Both also dived into the world of naming. The discussions we had and the exchange of
ideas was very fruitful.

I also owe a lot of gratitude to my employer, Ordina for making it possible for me to
study. I think that there are not many companies that are so lenient and relaxed about
employees that are also part-time students.

And last but most important I am very grateful to my girlfriend Sara who has endured
the last three years with flying colors. She has been of invaluable support —thank you.

6

Chapter 1

Introduction

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.

Martin Fowler

It is widely recognized in the field of software engineering that it is important to write
code that is easily understood. Already in 1971 this was recognized by Weinberg who
wrote about ’ego less programming’ [28]. In his book Weinberg states that the central
objective of ego less programming is “making the program clear and understandable to
the person or people who would ultimately have to read it.” In more recent years this has
been underlined by experts in the field like McConnell who emphasised that developers
should “write programs for people first, computers second” [21].

Even though the influence of readability is widely recognized this does not mean that
it is an easy task. This is illustrated by the amount of research that has been done in
this field. For instance, Rugaber note that reading code is the most time consuming
part of program understanding [24]. Buse and Weimer propose the use of a specialised
readability metric to measure the readability of a program [3].

1.1 The importance of identifiers

Deissenboeck and Pizka investigated the Eclipse1 source code and showed that identifiers
make up for more than 70% of all the characters [8]. Other investigations of other
applications show similar results. Although code consists of more then identifiers —like
keywords, delimiters, operators and literals— claiming that identifiers are an important

1Eclipse is a open-source Java IDE which is widely used by Java developers (http://www.eclipse.org,
version 3.3.1)

7

source of information is not far fetched. These claims are backed by research of Lawrie
et al. who showed the impact of identifier names on program comprehension [18].

1.2 Coming up with the right identifier name

If identifiers are that important it is strange that there is little support for choosing
the right name while developing. The only guidance that is given is on the syntactical
element of naming or contain vague descriptions on the meaning of a name. For instance,
on the convention of method names the original Sun Java Code Conventions state that:
“Method should be verbs, in mixed case with the first letter lowercase, with the first letter
of each internal word capitalized” [22].

While convention of syntax is important it does not help a developer in choosing
a name which is meaningful. Many times the advice is given that a name should be
meaningful, guidance on how to determine meaningfulness is not supplied. It is up to
the developer to determine whether or not a name is suitable for the given situation.

1.3 How to define meaning?

In an attempt to tackle this problem Høst and Østvold turn to Wittgenstein2 [14].
According to Wittgenstein the meaning of a word is derived from the way it is used [29].
The word itself does not have an "abstract" or "objective" meaning or, as remarked by
Høst and Østvold, the meaning of a word is determined by the sum of its use [14].

Using this notion the meaning of an identifier could be approximated by analysing
its use. By doing this we should be able to find the common properties of an identifier
which are embedded in its usage. We have to accept that this approximation will always
be imperfect since we are incapable to analyse all different uses of the identifier and new
uses will always be added [14].

1.4 Consistent naming

Deissenboeck and Pizka note that meaningfulness alone is not enough, a name should be
used consistent [8]. It should consistently refer to the same concept the programmer wants
to express. Inconsistent naming use increases the effort of a programmer to understand a
program [8].

The possibilities of automatically checking for consistent identifier usage by analysing
the used identifier names has been subject of earlier research [8, 17, 27]. In most of this
research the focus lay on comparing identifier names with each other3. The usage, or
how the identifiers were used, was not taken into account

2Wittgenstein was a language philosopher who lived between 1889 and 1951
(http://en.wikipedia.org/wiki/Ludwig_Wittgenstein)

3In the research of Thies and Roth type information of the identifier was also taken into account [27]

8

Høst and Østvold present a novel way of checking consistent method naming by
relating the method name to its implementation [14]. They use the notion of approximated
meaning as described earlier. By identifying the presence of certain nano patterns in
the methods byte code they are able to check if an implementation was consistently
used with methods that share similar names. Inconsistencies between the name and the
implementation is called a Method Naming Anomaly.4

The difference between the approach of Høst and Østvold and others is that they
used the information embedded in the method body itself to find inconsistent method
names.

1.5 Research questions

Earlier research of Høst and Østvold showed that it is possible to check whether method
names were used consistently by comparing their implementations [14]. Methods that
had inconsistent implementations were marked as anomalies.

A question remaining is what these found anomalies tell us about the code. Without
a deeper understanding it is hard to reason about their severity. By reproducing the
research of Høst and Østvold we want to get more insight in the nature of these method
naming anomalies. Therefore the central goal of our research will be acquiring a deeper
understanding of Method Naming Anomalies and how they can be located

Java
source code

1. Nano-pattern
analysis

2. Outlier identification
using percentiles

3. Outlier identification
using FCA

4. Comparing
both methods

Outlier methods
comparison result

Nano-pattern analyser
comparison result

Outlier comparison
result

Research steps

Chapter 3 Chapter 4

Chapter 5

Figure 1.1: Research framework and organisation

To get this deeper insight we have split up our research into three different parts (see
Figure 1.1). In the first part we focus on the nature of nano patterns and how they can
be located in the source code (chapter 3). We do this by building a source code nano

4Høst and Østvold use the term Method Name Bug

9

pattern analyser and comparing it to the byte code nano pattern analyser of Singer et al.
[26]. In this part we want to answer the questions:

Question 1. How does our source code nano pattern analyser compare to the byte code
analyser created by Singer et al.?

In the second part we take a deeper dive into identifying method naming anomalies
using the method of Høst and Østvold [14] (chapter 4). By doing this we want to get a
better insight on the nature of method naming anomalies and the type of methods that
get identified when using their method. In this part we want to answer the following
question:

Question 2. Do the methods that get identified using the method of Høst and Østvold
have bad names?

In the third part we present an alternate approach in finding method naming anomalies
(chapter 4). By making use of Formal Concept Analysis we want to access the rare
combinations of nano patterns that methods exhibit as a possible method of finding
naming anomalies. The question that we want to answer in this part is:

Question 3. How does our FCA method of identifying method naming anomalies compare
to the method of Høst and Østvold?

To summarize, this thesis makes three main contributions:

• It presents a nano pattern analyser based on the actual source code instead of the
byte code (chapter 3).

• It describes the influence of different boundary values while locating method naming
anomalies using the original method as introduced by Høst and Østvold (chapter
4).

• It presents a different approach for locating method naming anomalies using Formal
Concept Analysis (chapter 5).

• It compares the results found between the original locating method and our presented
method (chapter 5).

1.6 Scope
In our research we will focus on method names and their implementations in Java code.
We have chosen to analyse Java code because it is widely available and is used in earlier
research which we want to reproduce [14].

We will focus on the first part of the method name. This is often a verb, but not
always. According to the Java Code Conventions it should however contain the action-
oriented part of the name [22]. That is why we refer to this first part of a method name
as the action-token.

10

The reason why we chose to analyse the first token of the method name and not the
complete name is twofold. The first reason is simplicity. Comparing method names based
on the same first token is easy. Comparing method names based on the complete name is
harder. In the first case it is suffice to do a check on equality of the token, in the second
case it would mean that we would have to decompose the whole name and analyse the
semantics of the name using a mechanism like part-of-speech tagging.

Next to this Høst and Østvold have shown that by grouping methods based on the first
token of their name and analysing their implementations we can analyse the behaviour
that is shared amongst methods starting with the same token [13].

1.7 Organisation
Chapter 2 contains the background of our research and summarizes related work. Chapter
3 describes the source code analyser and the comparison with the byte code analyser
of Singer et al. [26]. In chapter 4 we investigate and reproduce earlier work by Høst
and Østvold described in their paper ’Debugging Method Names’ [14]. In chapter 5 we
present our own novel approach on finding method name anomalies and we compare it
with the results found in chapter 4. Chapter 6 contains a discussion and an overview of
possible future work.

11

Chapter 2

Background

Carefully breaking a computation into methods and care-
fully choosing their names communicates more about your
intentions to a reader then any other programming decision.

Kent Beck

2.1 The ‘other’ language

Next to the computer language that is used in an application another language exists. This
language is used for naming the identifiers [19]. The language describes the application
domain and contains a vocabulary to identify the different concepts that are present in
the domain.

Opposed to a computer language this language is informal and is not imposed by
the compiler. Therefore it holds no meaning for the compiler. The sole purpose of this
language is to make the application understandable for people. For example, a compiler
does not differentiate between an identifier that is called ‘Xasdf13kjt’ and one that is
called ‘findPerson’. For us humans this is a big difference. Without proper naming
understanding an application is much harder. Evidence for this claim is the existence of
so called ‘Code Obfuscaters’; applications that deliberately change the names of identifiers
to meaningless labels so that the code is harder to understand and its content is protected
[20].

2.2 Why consistent identifier naming is important

This ‘other’ language consists of a vocabulary with which we can identify the different
concepts that are applicable in our application domain. For instance, in a banking

12

Name space (N) Concept space(C)

front

first element
in list

head

(a) Example of a synonym

Name space (N) Concept space(C)

path
relative path

absolute path

(b) Example of a homonym

Figure 2.1: Examples of synonyms and homonyms as described by Deissenboeck and Pizka,
Lawrie et al. [8, 17].

application this can be concepts like Account or Currency but also can consist of technical
concepts like List or Controller or even operations like addAccountToList, getCurrency
or findPersonWithAccount.

Using the same name for the same concepts throughout an application is important
for the comprehensibility [8]. By using the same names for the same concepts the learning
effort needed by a new maintainer or developer is reduced. Different names for the same
concepts, synonyms, needlessly enlarge the total vocabulary of the application language
and increase the needed learning effort [8] (see 2.1(a)). The opposite, homonyms, have
the same effect. A homonym is present in code when one identifier is used for multiple
concepts. To know which concept is referred you would have to know the context of the
usage. This needlessly increases the effort that is needed for understanding (see 2.1(b)).
Therefore we define, after Deissenboeck and Pizka [8]:

Definition. An identifier name is used consistently when a name only refers to one
concept and a concept is only referred to by one name.

2.3 Consistent method naming

A difficult problem in determining whether identifier names are consistently used in an
application is defining all the relevant concepts they can refer to. Deissenboeck and
Pizka proposed a human expert to create this mapping between used identifier names
and concepts that are relevant within an application [8]. This might be a good approach
if this is done while the application is being developed but can be a costly task when
done on an existing application [17].

Høst and Østvold manage to overcome this problem by not predefining the used
concepts of an application. Instead they investigate how the names are used [13].

They made the observation that the intention of a method is manifested in the method
body itself. A simple example shows their point.

13

Listing 2.1: A simple example (originated in [13])

public Person _(String name) {
for (Person p : persons) {

if (name. equals (p. getName ()) {
return p;

}
}

return null;
}

Listing 2.1 shows a method of which the name is omitted. Even without the name
it will probably be clear that this method does some sort of find operation of a Person.
Giving this method the name findPerson sounds just about right. That we have a notion
of which name this method should bear is a pointer that the method radiates information
about its intention, so called implementation clues [13].

2.4 Finding implementation clues

Høst and Østvold investigate how these implementation clues can be formalised so that
they can be automatically recognized [13]. They defined a set of semantic attributes
which they described as “properties that a given implementation may or may not possess”
[13]. Semantic attributes should be easy to identify by simple static analysis [12, 26].
An example of such attributes is the prevalence of a loop or the absence of method
parameters in a signature. No whole-program analysis should be needed to find these
attributes.

The intention of a method can be described with these semantic attributes. By
aggregating these semantic attributes in a given method a meta description of a method
emerges. This description is of a higher level of abstraction than the method implemen-
tation itself. Høst and Østvold dubbed this “usage semantics” [13]. The usage semantics
of a method is not endless —like the implementation of a method can be— but is always
as long as the defined set of semantic attributes. Comparing sets of semantic attributes
is therefore a trivial task.

Another term for a semantic attribute is a nano pattern [12, 26]. We will use this
term in the remainder of this thesis.

2.5 The Nano Pattern Catalogue

Throughout their research Høst and Østvold use different sets of nano patterns [13, 14,
15, 16]. They devised different sets of patterns which they found most fitting for the
research task at hand. Although this approach is perfectly viable the problem is that
there is no insight in the inter-working of the chosen attributes (“does pattern A mean

14

Category Name Description
Calling NoParam Takes no argument

NoReturn Returns void
Recursive Calls itself recursively
SameName Calls another method with the same name
Leaf Does not issue any method calls

Object-Orientation ObjectCreator Creates new object
FieldReader Reads (static or instance) field values from an object
FieldWriter Writes values to (static or instance) field of an object
TypeManipulator Uses type casts or instanceof operations

Control Flow StraightLine No branches in method body
Looping One or more control flow loops in method body
Exceptions May throw an unhandled exception

Data Flow LocalReader Reads values of local variables on stack frame
LocalWriter Writes values of local variables on stack frame
ArrayCreator Creates a new array
ArrayReader Reads values from an array
ArrayWriter Writes values to an array

Table 2.1: nano pattern catalogue as introduced by Singer et al. in [26]. Boldface patterns were
originally introduced by Høst and Østvold in [13]

.

that pattern B exists?”) or the distribution of the patterns throughout the corpus of
code (“how many methods contain this pattern?”). Høst and Østvold are aware of this
problem as they note “a more structured approach would be to use the marginal entropy
of individual attributes to select from a pool of candidate attributes those that provide
the best separation power” [13].

Singer et al. analyse a fixed set of nano patterns in their research [26]. The set they
chose is very similar to the set used by Høst and Østvold in their initial research on
the used verbs in method names [13]. Singer et al. find that the nano patterns in their
catalogue are fairly independent meaning that whether or not a nano pattern is present
in a method is not easily predictable [26]. A full overview of the nano pattern catalogue
is shown in Table 2.1.

2.6 Method Naming Anomalies

Method Naming Anomalies are method implementations that differ from the intention of
the given method name. These are methods which implementations deviate from the
common usage of a method name. An simple example can illustrate this.

Lets assume that the method of Listing 2.1 was called containsPerson. Given this
name we would expect that this method would tell us, a simple yes-or-no question, if
the list contains a person with the given name. When we inspect the method body we
find that this method does not only tell us that the list contains a person with the given
name but it will also return the person object if it is present in the list. Suddenly our

15

expectation of what this method is supposed to do and what it actually does is in conflict.
This would be considered a method naming anomaly.

2.7 Locating Method Naming Anomalies

Høst and Østvold propose to use a “wisdom of the crowds1” technique to locate method
naming anomalies [14]. They made the observation that in software we do have access to
the intended idea of the developer when he named a method: the method body. Høst and
Østvold devise a way to find methods that act in contrary with this intended idea. Given
enough methods with the same name we can analyse what the commonly used patterns
are. If we find methods that act against these commonly used patterns we consider this
a method naming anomaly. Based on the definition of Deissenboeck and Pizka [8] we
define consistent method naming as:

Definition. A method name is used consistently if the method name and the the imple-
mentation are in line with common patterns (the concept) exhibited in methods that have
a similar name.

Originally Høst and Østvold called a violation of the above definition a Method
Naming Bug but we propose not to use this term. Instead we propose to use the term
Method Naming Anomaly. Calling these outliers bugs feels to heavy at this point in time
since we are not sure whether the found inconsistency are really bugs like we have other
software bugs [14].

In the remainder of our research we will analyse different ways of finding these method
naming anomalies. We will use the method as presented by Høst and Østvold [14] and we
will construct our own method of identifying with the use of Formal Concept Analysis .

2.8 Related work

The naming of identifiers has been a field of research that has gained some interest in the
passed decade. The coming sections give an overview of this research. For convenience
reasons we divided it into three different categories: the role of concepts and names on
program comprehension, checking for consistent identifier names and using patterns for
source code analysis.

2.8.1 The role of concepts and names on program comprehension

Rajlich and Wilde note that concepts play an important part in human learning and that
there is much overlap between human learning and program comprehension [23]. To find
concepts in code maintainers often resort to searching for identifiers that are used but
they note that it has serious deficiencies because there can easily be a mismatch between

1“Wisdom of the crowds” means that the collective opinion of a group is taken into account instead of
that of one expert (http://en.wikipedia.org/wiki/Wisdom_of_the_crowd)

16

the term the maintainer uses for a concept and the term the creators of the system used
for the concept.

Liblit et al. inspect the cognitive perspective of naming [19]. They state that metaphors
are central in naming program entities as they are useful vehicle to represent domain
tasks and in making abstractions concrete. In code these metaphors can be referenced by
certain names, so called concept keywords.

Lawrie et al. investigate whether use of full English-words in identifiers lead to better
program comprehension. By setting up an experiment in which more than hundred and
twenty people participated, mostly professionals and some students, they where able to
conclude that the use of full English-word identifiers lead to better understanding than
abbreviated forms [18].

Caprile and Tonella analyse the structure of identifiers [5]. They devise a grammar
which describes the ’language of identifiers’. With this grammar they parse ten C
programs and investigate the decomposed identifiers. They envisage that this grammar
can be used for forward and reverse engineering tasks.

Deissenboeck and Ratiu construct a meta-model that map names present in an
application onto concepts which root from ontologies [9]. This meta-model can be
populated using a semi-automatic process. Their main motivation is that using this
meta-model it becomes possible to map the low-level source code onto the ontology which
describes the high-level intentions and information. They envisage that such a model
can be of benefit in detecting naming defects because it makes the relations between the
used names in a program and the concepts they represent explicit. Finding synonyms
and homonyms for concepts is then an easy task [9].

2.8.2 Checking for consistent identifier names

Deissenboeck and Pizka define definitions for consistent and concise naming [8]. They
create a tool that uses this definition to check for identifiers that refer to the same
concepts (homonym violations). This tool, which they called Identifier Data Dictionary,
finds these homonyms based on the types of identifiers. The tool relied on a human
expert to create a mapping between identifiers and concepts.

Lawrie et al. investigate consistent naming by decomposing the identifier names
them self [17]. By looking at the structure of an identifier name they found possible
synonym identifiers. Their method required the analysis of the syntactical elements of an
identifier name and comparing them with each other. Finding identifiers that contain the
same syntactical elements are considered a violation. They call this method syntactic
consistency violations.

Thies and Roth used a slight different approach [27]. In their approach they look at
harmonizing identifier names by looking at the variable assignments. They argued that if
multiple references exist to a single object they ought to have the same name. This can
also be considered a way of finding possible identifier synonyms. If two variables have a
different names but reference the same object (concept) this is considered a synonym
violation.

17

2.8.3 Using patterns for source code analysis

Gil and Maman introduce the term Micro Patterns which are class level traceable
attributes [12]. They define a catalogue of 27 micro patterns and examine the prevalence
and inter-relations of the patterns in a corpus of code. They showed that the distribution
of the different micro patterns is dependant on the type of application and that the
use of micro patterns tend to be the same when analysing consecutive releases of the
same application. Notably, it is also Gil and Maman who propose to use the term nano
patterns for method level patterns2.

The correspondence between micro patterns and class names is investigated by Singer
and Kirkham [25]. They concentrate on the suffix of the class name, like Impl and
investigate whether there is a relation between these suffices and the used micro patterns.
They use this knowledge to build an Eclipse plug in which gives suggestions to the
developer on which micro patterns are often included in other classes that contain the
same suffix.

As noted earlier, Høst and Østvold have an extended track record when it comes to
nano patterns and source code analysis. By analysing the prevalence in methods starting
with the same verb they generate a lexicon which they call The Programmer’s Lexicon
[13]. This lexicon describes in natural language the nano patterns that are often used
in forty commonly used verbs to start method names with. In [16] Høst and Østvold
use nano patterns to find methods that contain similar actions (according to the present
nano patterns) but which method names start with different verbs. These methods are
considered synonyms of each other. Their goal is to identify all verb synonyms so that
they can be eliminated and replaced by a single verb.

2They also propose to use the term milli patterns for package level patterns

18

Chapter 3

Finding Nano Patterns

Figure 3.1: Step 1: Locating nano patterns by analysing source code

In the first step of our research we analyse JHotDraw, a Java application, and
identify the present nano patterns. We use this data to analyse the difference between
the nano pattern byte code analyser that was used by Singer et al. and our created source
code nano pattern analyser [26].

3.1 Rationale

Earlier research by Høst and Østvold and Singer et al. searched for nano patterns by
analysing the byte code [14, 26]. We propose to use the source code instead.

Information can be lost during compilation like in the case of Java, generic type
information or source code annotations. Next to this the compiler can change the
structure of the code to for instance enhance the runtime performance of the application.

19

We believe that using source code instead of byte code might be more suited for this
analysis because we want to analyse the actual code written by the developer instead of
the interpreted code by the compiler.

Throughout their research Høst and Østvold used different definitions of nano pattern
catalogues [13, 14, 15, 16]. They chose the nano patterns as they saw fit for the task at
hand. This is a perfectly viable approach but makes it hard to reason about the used
nano pattern set itself. For instance, it is not known whether the chosen nano patterns
influence each other. Singer et al. do show this for the nano pattern set they chose for
their research by using techniques like association mining [1] For this reason we chose
this nano pattern catalogue as basis for our research [26].

The main question we will try to answer in this chapter is

Question 1. How does our source code nano pattern analyser compare to the byte code
analyser created by Singer et al.?

To answer this question we will compare the outcome of both analysers by using some
of the same methods Singer et al. used in their research on nano patterns [26].

3.2 Research method

Java source code Identify used Nano-Patterns

Nano Pattern Analyzer

Identify methods Construct profile Nano-Pattern
Profiles

(per method)

Figure 3.2: Overview of the different steps to identify the nano patterns

Figure 3.2 shows the process of locating nano patterns. In this step we focus on
analysing the method implementation.

3.2.1 Analysing the method implementation

Analysis tool

We use Rascal1 as our main analysis tool. Rascal is a meta-programming environment
developed at CWI. It has built-in features for software analysis purposes like querying
and manipulating the Abstract Syntax Trees (AST) of, for instance, Java code. We use
this feature for locating nano patterns.

1http://www.rascal-mpl.org/

20

Figure 3.3: An example of Java AST created by Rascal

Analysing the Abstract Syntax Tree

The AST contains nodes for every syntactic construct in the source code. Different
operations have different types of nodes. For instance, when an if-else construct is used
in the source the AST will contain a node ifStatement with a booleanExpression, a
thenStatement and an optional elseStatement as children. Each child can have children of
their own. To check for the presence of nano patterns we check for the presence of certain
nodes, or combinations of nodes in the AST. The Object Creator nano pattern for
instance can be checked by looking for the presence of the Class Instance Creation
node in the AST. The definition of the nano patterns in terms of AST nodes is described
in appendix B.

In the current implementation of Rascal the Eclipse Java Development Tools (JDT)
is used to construct the AST. Therefore the structure of the AST in Rascal has strong
resemblance with the AST structure as constructed by JDT. We have defined 80 possible
nodes, syntactic constructs, that can be present in the AST. Appendix A shows an
overview of all the different nodes.

Constructing nano pattern profiles

The result of the localizing nano pattern process is stored in a nano pattern profile. A
nano pattern profile describes the existence of individual nano patterns in a method (see
Figure 3.4). A profile can be seen as a meta-description of a method; a fixed length and
binary description. Profiles function as a base for comparing methods with each other.

3.2.2 Qualifying the result

To compare our source code analyser with the byte code analyser used by Singer et al.
we use two methods that were also originally used by them [26]. The first method is
comparing the frequencies of the different nano patterns found by the source code and

21

getOriginalText(), action-token: get 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0
createImagesMenu(), action-token: create 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rsi
ve

Sa
m
eN

am
e

Le
af

Ob
jec

tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
igh

tL
in
e

Lo
op
in
g

Ex
ce
pt
ion

s
Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

Figure 3.4: Examples of a nano pattern profiles taken from JHotDraw

byte code analyser. The second method is comparing the entropy score of the result
found by both analysers.

The byte code analyser of Singer et al.[26]

We do not make use of the pattern frequency table as described by Singer et al. because
this would mean we have to exactly mimic their earlier research with the same corpus of
code [26]. Instead we use the byte code analyser implementation of Singer et al. which
was made available by them.2

Nano pattern frequency

Calculating the frequency of a nano pattern is straightforward. The frequency is calculated
per pattern. We count the times a pattern is present in the analysed methods and divide
this by the total amount of analysed methods. We do this for all 17 patterns in our
catalogue.

Shannon’s entropy; the predictability of nano patterns

In information theory entropy relates to the uncertainty of a random variable3. In other
words entropy measures the predictability of a variable. For instance, a coin toss with a
fair coin is unpredictable, you can not predict whether it will end up heads or tail. On
the other hand tossing a coin with heads on both sides has no uncertainty, it will end up
heads on every toss.

Singer et al. uses entropy to calculate the predictability of the nano pattern catalogue
[26]. The lower the score the more predictable the presence of nano patterns in a code
base are. Having a low score would mean that nano patterns are not that useful for
classification of source code; the existence of the patterns in all code would be very
predictable and so they can not be used to differentiate between different pieces of code
like different methods [26].

2The binary and source code of the nano pattern byte code analyser by Singer et al. was downloaded
from http://www.dcs.gla.ac.uk/ jsinger/code.html

3http://en.wikipedia.org/wiki/Entropy_(information_theory) on 21-03-2012

22

To measure the entropy score Singer et al. use the definition of Shannon’s entropy
(see Definition 3.1).

H = −
∑
b∈B

pb log2(pb) (3.1)

B contains all possible nano pattern profiles. There are 17 nano patterns in our
catalogue. Because of the binary nature of nano patterns the total set of possible nano
pattern profiles B consists of 217 elements. Therefore the highest number of entropy that
the nano patterns can exhibit is log2 |B| which is 17. pb is defined as the probability of
the occurrence of a certain nano pattern profile b ∈ B in the total corpus (see section
4.2.1) [26].

To compare the byte code analyser of Singer et al. with our source code analyser we
will calculate the entropy score on the outcome of both methods. If the score has risen
the uncertainty of the nano patterns have increased. If it has lowered the uncertainty
decreased.

3.3 Results

3.3.1 Difference per pattern

Table 3.1 shows the difference per pattern between of the byte code analyser used by
Singer et al. [26] and the source code analyser created by us. There are several reasons
why these differences occur. We have highlighted some of the most significant differences
in the results.

3.3.2 Number of analysed methods

As is shown in Table 3.1 there is a difference in the number of analysed methods. This is
due to anonymous inner classes that are created in the constructor of a class. When an
anonymous inner class is created it will be compiled into a second class4 containing

• an initializer

• the overridden or added methods

The byte code analyser will analyse this created class like it does every other compiled
class file. The initializer method will be skipped but the overridden or added methods
will be analysed. These methods are skipped by the source code analyser because they
are defined inside a constructor which is skipped completely. This results in 21 methods
that are analysed by the byte code analyser but missed by our source code analyser.

4which has the same name as the containing class suffixed by $[nr]

23

nano pattern Byte code analyser (in %) Source code analyser (in %) Difference (in %)

NoParam 64.8 64.8 0.0
NoReturn 67.2 67.2 0.0
Recursive 0.3 0.3 0.0
SameName 20.9 21.0 -0.1
Leaf 41.6 47.6 -6.0

ObjectCreator 19.6 19.2 0.4
FieldReader 26.8 21.1 5.7
FieldWriter 17.0 16.4 0.6
TypeManipulator 7.1 8.4 -1.3

StraightLine 80.7 84.5 -3.8
Looping 6.0 6.0 0.0
Exceptions 40.9 41.1 -0.2

LocalReader 64.5 36.6 27.9
LocalWriter 17.9 17.8 0.1
ArrayCreator 1.5 0.7 0.8
ArrayReader 2.2 2.2 0.0
ArrayWriter 1.4 1.4 0.0

Total # of methods 4407 4386 21

Table 3.1: Coverage scores for each nano pattern as present in JHotDraw (version 709) found
by the byte code analyser and the source code analyser

3.3.3 Differences in pattern presence

Local Reader

The presence of the Local Reader pattern differs greatly, 27.9%, between the two analyser
implementations. This is by design. The original description given by Singer et al. of
the Local Reader pattern was “reads values of local variables on stack frame” [26]. In
the implementation of the byte code analyser the pattern is assigned to a method when
one of the load operation codes5 is present in the method. These are very prevalent
operation codes. For instance if an operation needs the current object, this, because
it calls another method or uses the value of a class variable, the current object will get
loaded to the local stack frame resulting in the occurrence of the ALOAD operation code
[2].

The implementation of the Local Reader pattern in the source code analyser is
different. We interpreted Local Reader as “reads a variable which is defined in the scope
of a method”. The source code analyser will therefore only trigger the presence of the
Local Reader pattern when a local method variable is read, not when a variable gets
loaded onto the local stack frame. By using this definition the Local Reader and Field
Reader patterns are natural counterparts of each other. Local Reader is only triggered
for variables that are defined within the scope of a method whereas Field Reader is

5The possible load operation codes are: ILOAD, LLOAD, FLOAD, DLOAD, ALOAD

24

only triggered for variables that are defined in the scope of a class.

Leaf

The number of methods in which the Leaf pattern is present is 6% higher when the
project is analysed by the source code analyser compared to the byte code analyser. This
difference can be explained by the difference in object creation between byte code and
source code. In byte code the operation code new (object creation) will be followed by
the invokespecial (method call) code which will invoke the initializer, the constructor,
of the newly created object. This invokespecial is seen by the byte code analyser as a
method call and thus breaking the rule of the leaf pattern. The source code analyser does
not contain the same implementation of the leaf pattern. To abide to the leaf pattern
rule a method should not call any other method. The implementation of the source code
analyser therefore only looks for other method or super method invocations in a method.
A class instantiation by itself is not seen as a method call. If no method is invoked on
the newly created object then no method call is registered by the source code analyser.
Listing 3.1 contains an example of the difference.

Listing 3.1: Listing of a method that complies to the Leaf pattern in the source code analyser but
breaks the pattern according to the byte code analyser

public List createList () {
return new ArrayList ();

}

3.3.4 Difference in entropy score

Like Singer et al. we have calculated the entropy score (after Shannon) on JHotDraw
for both the byte code analyser and the source code analyser (see Table 3.2). The entropy
score measured on the source code analyser is slightly higher than the score measured on
the byte code analyser. This is probably mostly due to the different implementation of
the Local Reader pattern.

Entropy measures the uncertainty of a random variable. The uncertainty of the entire
nano pattern catalogue has gone up. In the byte code analyser the presence of the Field
Reader pattern did often imply the presence of the Local Reader pattern. The source
code analyser handles this differently. Here the existence of the Field Reader pattern
does not imply the existence of the Local Reader pattern (see section 3.3.3). Therefore
the separation power of the nano pattern catalogue goes up.

3.4 Analysis

Both byte code and source code seem to give similar results. The biggest difference is the
difference of the Local Reader pattern. This can be explained because we used another
interpretation of the pattern Other patterns also show some different prevalence scores.

25

Byte code analyser Source code analyser

Total # of methods 4407 4386
of unique pattern profiles 321 453
Entropy score 5.43 5.78

Table 3.2: Difference in entropy score (after Shannon) between the byte code analyser and the
source code analyser measured in JHotDraw (version 709)

Most of these differences can be explained by the slight differences between the source
code and the byte code or a slight interpretation difference.

All-in-all we conclude that our source code pattern analyser is a good basis for our
further research since it shows similar results than the byte code analyser of Singer et al.,
both in pattern presence as in entropy score. This makes us conclude that the patterns
found by our source code analyser will have similar or better separation powers as the
patterns found by the byte code analyser.

Next to the above we envisage that the source code analyser can be extended in the
future with patterns that can easily be identified in the source but might be problematic
when analysing the byte code. This is because the source code analyser has access to
the AST which contains information that might be lost when only analysing the byte
code. An example is generic type information6. The source code analyser still has access
to this information while the byte code analyser does not since this information is lost
during compilation7.

3.5 Conclusion
In this chapter we wanted to get an answer to the question:

Question 1. How does our source code nano pattern analyser compare to the byte code
analyser created by Singer et al.?

Both analysers show similar results. The difference can be explained by different
interpretations of the meaning of a nano pattern and some slight differences in structure
between the source code and the compiled byte code. The entropy score has slightly gone
up which indicate that the separation power of the whole nano pattern catalogue has
slightly increased.

6Generic type information was added to the Java language in version 5
7It is possible to access this information via the ASM library but it then makes use of the Java

reflection API and not of the byte code [2]

26

Chapter 4

Finding method naming
anomalies using the method of
Høst and Østvold

Figure 4.1: Step 2: Finding method naming anomalies using the method of Høst and Østvold

4.1 Rationale

In this step we use the method of Høst and Østvold to identify possible method naming
anomalies [14]. By reproducing their steps and analysing the outcome we try to get more
insight in the nature of method naming anomalies which are found using their method.

To summarize, we will try to answer the following question:

27

Question 2. Do methods that get identified by this method have bad names?

4.2 Research method

Nano-Pattern Profiles Tokenize method name:
Identify action-token

Calculate frequency
for each pattern

(for each action-token)

Locate outliers Method Name Anomalies

Finding Method Name Anomalies using percentiles

Apply threshold

Figure 4.2: Overview of the different steps to identify method naming anomalies using the
method of Høst and Østvold

In this section we will explain the different steps we take to find method naming
anomalies. By applying the steps shown in Figure 4.2 we will locate methods with method
naming anomalies. We can draw conclusions by judging whether these found outliers,
methods with method naming anomalies, truly have bad names.

4.2.1 The Java corpus

The corpus that we use for finding method naming anomalies contains a cross section of
projects used in earlier research by Høst and Østvold and Singer et al. By choosing the
same projects we want to minimize the chance that different projects give different result
than earlier research has shown. Table 4.1 gives an overview of all the different projects
in our corpus of code.

The research of Høst and Østvold divided the projects in the corpus into different
software categories [14]. We follow this approach.

In our corpus each category contains between 14.000 and 23.000 methods1. Although
the categories are somewhat arbitrary chosen, we do agree with Høst and Østvold that it
is good idea to take the domain of the application into account to prevent the possibility
that the corpus might be skewed towards a certain domain. If the corpus would lean
heavily on a certain domain it could potentially reduce the applicability of the found
results.

4.2.2 Analysing the method name

The structure of method names

Although a method name can be any random combination of characters this is most often
not the case. In most cases the method name is a structured string and is constructed
using a combination of verbs, nouns, adverbs and adjectives [5]. According to the original

1with the exception of the Jakarta Commons Utilities category which only contains 8.000 methods
because there are simply not enough Jakarta Commons projects

28

Category Name Version # Analysed methods
Benchmarking JikesRVM* 2.9.1 13958

Desktop application JHotDraw* 709 2466
JEdit 4.3 5820
ArgoUML 0.24 9038

Jakarta common utilities Commons Collections 3.2 3210
Commons Net 1.4.1 927
Commons Digester 1.8 420
Commons Codec 1.3 170
Commons Lang 2.3 1785
Commons HTTP-client 1.0.1 1164
Commons IO 1.3.1 431

Language and language tools BSF 2.4.0 294
ASM 2.2.3 918
BCel 5.2 2043
JRuby 0.9.2 5230
Polyglot 2.1.0 3993
Antlr 2.7.6 2066

Middleware, frameworks and toolkits Struts 2.0.1 2267
TranQL 1.3 1323
Tapestry 4.0.2 3037
Spring 2.0.2 9122

Programmer tools Ant 1.7.0 7747
JUnit 4.2 569
Velocity 1.4 1366
FitNesse** 2011-01-04 6868

Server and database JBoss*** 3.2.7 19125

Utilities and libraries XML-Batik 1.6 9328
Hibernate 3.2.1 9739
Ognl 2.6.9 713
JarJar Links 0.7 244

XML tools Castor 1.1 7808
Xalan-J 2.7.0 8479
Xerces-J 2.9.0 6494

Total 148162

Table 4.1: Overview of the analysed corpus.
(*) Analysed by Singer et al. [26] not by Høst and Østvold.
(**) Analysed version by Høst and Østvold unkown [14].
(***) Analysed version differs from the version analysed by Høst and Østvold [14]

.

29

Sun Java Code Conventions method names should be verbs like run(), runFast() or
getBackground() [22]. This convention is well established and known in the Java
development community but there are cases where non-verbs are used at the beginning of
method names. For some actions, like transformations, it is known that other words like
’to’ are used as the first token of a method name [5]. Other possibilities are the so called
indirect actions on objects like the method size() on lists where the intention is to get
the size of the list but because this is such a well-known operation the verb is omitted [5].

Because of these exceptions we will refer to the first token of a method name with
the term action-token.

Tokenizing a method name

To identify the action-token we use a simple token capitalisation strategy. We split the
method name on the first occurrence of upper case letter and use the first token as the
verb of the method. For example the identified action-token of the method getName()
would be get.

Again this strategy is in line with the original Sun Java Code Conventions which
states that method names should be “... mixed case with the first letter lower case, with
the first letter of each internal word capitalized” [22] . Butler et al. show that 91.6% of
the method names in a large Java corpus are indeed composed in this manner [4]. By
using this strategy we should be able to correctly identify the first token of a method
name in approximately nine out of ten times. By applying a threshold (as described in
section 4.2.4) we suspect that we will flush out any remaining incorrect tokenized names.

4.2.3 Grouping methods per action-token

We calculate the frequency of nano patterns per action-token. To do this we group all
the methods that start with the same action-token. For instance, all the methods that
start with the token accept are considered as one set, a so called action-token set. By
doing this we get insight in which patterns are often or rarely used in methods starting
with the same action-token (see Figure 4.3).

4.2.4 Method occurrences threshold

Not all methods are used in our analysis. If we want to be able to compare methods with
each other which share the same action-token there should be a certain number of these
methods available. Trying to find a common pattern for an action-token does not work if
there are only two method instances available starting with this token. We should apply
a threshold to make sure that a specific token has a minimal occurrence.

Next to the above problem we also have a potential other problem. It can be that
a certain action-token is only used in a specific application or in a specific application
domain. This would mean that the found common patterns would only be applicable
for that application or application domain. This is in violation with the idea that we
want to tap into the common understanding of developers community and not into the

30

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100
0.

96
47

.7
0

13
.4

1
3.

26
3.

83
24

.1
4

1.
53 5.

36
81

.8
6.

9
4.

6
97

.3
2

14
.3

7
1.

53 3.
83

0.
77

Pa
tt
er
n
fr
eq
ue

nc
y

Figure 4.3: Frequency of the different nano-patterns for methods that start with accept (calcu-
lated over 522 methods)

understanding of the developers of a specific application. To prevent this we should also
apply a threshold on the number of projects in which a certain action-token needs to
occur.

In their research Høst and Østvold also apply a threshold [14]. They state that
a method name should be present in at least half of the projects and should have a
minimum occurrence of 100 times. Their total corpus contains more then 1.000.000
methods making 100 methods about 0,01% of the corpus. If we apply the same kind of
relative threshold value to our corpus it would mean that an action-token should occur
15 times (0,01% of the total amount of methods in our corpus) and should be present in
at least 16 projects. The need for a method to be present in at least 16 projects overrules
the other threshold value therefore we will only apply the project threshold value.

4.2.5 Finding naming anomalies using nano pattern frequencies

Høst and Østvold observed that the nano pattern frequencies each action-token set
exhibits could be used to find outliers [14]. For instance, if we find a method that includes
a nano pattern that is not often used in other methods within the same action-token set
this could be considered an anomaly. Figure 4.3 shows the nano pattern frequencies of
all the methods that start with the action-token accept. None of the methods in this
action-token set do a recursive method call.2 Finding a method which starts with the

2The nano pattern "Recursive" has a frequency value of 0 for the action-token set accept

31

action-token accept that does do a recursive method call would mean that it is the first
method of its group that would exhibits this behaviour. Because this behaviour is so
rare for this action-token set we would therefore considered this method as an outlier.

The attribute rule set

To determine whether or not a method is an outlier Høst and Østvold devised a set of
rules they called the attribute rule set (see Table 4.2). Each rule corresponds to a partition
of the frequency set. When a method is in violation with one of the inappropriate rules
it is considered an outlier. For instance, if a method does not contain a nano pattern
which is present in 98% of the other methods of its action-token set, it violates the
inappropriate if omitted rule and thus making the method an outlier.

The rule set of Høst and Østvold distinguished between three different levels of
severity of violations [14]. In our research we do not make this distinction. The question
what the severity of a found outlier is might be interesting but at this moment a little
premature. First we have to determine whether the found outliers are truly outliers.
Then we can focus on gradations of severity of the found outliers. To put it in other
words, first we have to determine whether the found outliers are indeed methods that
have a bad name, then we can experiment whether or not there is a gradation of badness
regarding naming.

We propose to use an attribute rule set consisting of 3 rules. These rules are
inappropriate if included, no violation and inappropriate if omitted.

Original attribute rule set Narrowed attribute rule set
Severity From - To From - To
Inappropriate if included 0.0 - 5.0 0.0 - 3.0
No violations 5.0 - 95.0 3.0 - 97.0
Inappropriate if omitted 95.0 - 100.0 97.0 - 100.0

Table 4.2: Attribute rule sets using different frequency partitions

The rule no violation indicates that there is no violation if a method includes
or omits the pattern. For instance, when we again take a look at the frequency set of
accept (Figure 4.3) this would mean that the presence or absence of the No Return, Same
Name, Field Reader, Type Manipulator, Straight Line, Looping and Local Writer
patterns in a method starting with accept would not trigger any violations.

The narrowed attribute rule set

The original values of the attribute rule set as determined by Høst and Østvold were
arbitrary chosen [14]. To investigate what the influence of these values are we propose
the use of a second attribute rule set. This rule set has narrowed partitions (see Table
4.2). This means that the range of frequencies in which the occurrence or omission of a
nano pattern in a methods is considered a violation is narrowed. We hypothesise that by

32

choosing a narrowed range we will find less outliers but these outliers will more often
have a bad name.

4.2.6 Qualifying the result

Qualifying the threshold mechanism

By applying the threshold we will remove methods from our corpus. We will investigate
the lost methods by manually inspecting the ’drop-out’ list and inspecting the different
reasons why these methods were excluded. We will also take a look at the list of the
methods that are included.

Qualifying the difference between the two attribute rule sets

By comparing the statistics for the found outliers for both sets and investigating the
noticeable differences we get more insight into the influence of the values of the attributes
set.

Qualifying the identified anomalies

In their original research Høst and Østvold investigated 50 randomly chosen outliers to
judge whether or not the found outliers were truly ’buggy’ method names. To do this
they relied on their own best judgement.

We will use a similar approach with the addition of a control group. We will take
a random sample from the outlier list and mix this with a random sample from the
total analysed method list. When we judge the samples on the list it is not known to us
whether the chosen sample was marked as an anomaly or not. The samples from both
groups, anomalies and non-anomalies, are randomly distributed in our sample list. We
make sure that the samples that are taken from the total analysed method list are not
on the outlier list. Of each outlier we will motivate whether or not it has a badly chosen
name. To do this we will consult the method and class implementation and, if present,
the JavaDoc.

By using this sampling technique we want to minimize the effect of our own personal
bias towards the found outliers. By mixing the samples that are and are not marked as
outliers we can see whether our judgement on the correctness of the used names is in-line
with the results returned by the outlier method. It could be for example that we would
identify as much naming anomalies in a set of methods that was not marked as an outlier
than we would in a set that is marked as outliers. This would reduce the usefulness of
this method of identifying anomalies.

33

4.3 Results

4.3.1 Applying the threshold

As discussed in section 4.2.4 we applied a threshold to filter out all the action-tokens
with a low occurrence. Table 4.3 shows the number of methods which were included after
applying the threshold.

Total (in #) % of total

Methods included after applying the threshold 109730 74.00
Methods excluded by applying the threshold 38563 26.00
Unique action-tokens included after applying the threshold 91 3.27
Unique action-tokens excluded by applying the threshold 2688 96.73

Total # of methods in corpus 148293
Total # of unique action-tokens in corpus 2779

Table 4.3: Number of methods and action-tokens in- and excluded after applying the threshold

Out of the analysed methods 74% of the used action-tokens have occurrences above the
threshold. This means that 26% of the methods are excluded by applying the threshold.
When we look at the action-tokens we see that there are a total of 2779 uniquely used
in our corpus. The methods that were excluded because of the threshold contain 2688
different action-tokens. This is 97% of the total action-tokens.

If we investigate the words that were excluded we see a combination of verbs (like
’abbreviate’ or ’operate’), nouns (like ’frozen’ or ’garbage’), abbreviation (like ’abs’ or
’jvm’) and random combination of letters (like ’aaa’ or ’jj’). In most cases the reason
why these words are not included is because they only occur a few times in one or two
projects. There are 1621 methods that get excluded because of an unexpected method
name. These methods start with an upper-case or an underscore character. In these
cases the action-token that is identified by our tokenization strategy is an empty string.

When we take a look at the action-tokens that are most used we see that get is by
far the most used verb followed by set (see Table 4.4). This means that almost 50% of
the methods that are included in our research begin with the verbs get or set. This is
to be expected since using get and set is such a prevalent pattern in Java to manipulate
object properties. Other research show similar results on the use of get and set [13].

Further investigation of the included word list shows that there are non-verbs included
(for instance, in the top ten the word ’to’ is included). When we analyse the words using
WordNet3 we find that out of the 91 included action-tokens 78 (86%) are actual verbs.

4.3.2 Analysing the found outliers

We have run the outlier method for both the original and the narrowed attribute rule
set. Table 4.4 shows an overview of the found outliers. In the coming sections we will

3WordNet is a database for the English language. See http://wordnet.princeton.edu/

34

occurrences

get 37847
set 16472
is 6265
add 4106
create 4077
to 3037
visit 1925
remove 1915
has 1514
read 1121

Total 78279

get

34.5%
set

15.0%

is
5.7%

add

3.7%

create

3.7%

to

2.8%

visit

1.8%

remove

1.7%

has

1.4%

read

1.0%
others

28.7%

Figure 4.4: Overview of the top ten used verbs in the corpus

investigate the result and take a deeper dive into the found outliers.

Overview of the outliers found with the original attribute rule set

By using the attribute rule set also used by Høst and Østvold we find that out of all
the methods in our corpus 10558 (9.6 percent) get marked as anomalies. The Ognl
project has the highest reported number of outliers, 24,9%. When we investigate the
reported outliers for Ognl we see that out of the 117 reported outliers, 63 are found for
the get action-token. Almost all these outliers, 62, share the same reason; the methods
violate the inappropriate if included: Array Reader rule. Returning values from
an array seems to be a common pattern used in the Ognl code base.

39 out of the 62 methods share the same name: getValueBody. An inspection of the
methods show that they all have a similar method structure (see Listing 4.1). As the class
names suggest these classes represent an AST and the getValueBody methods perform
the node operation and return the values. These methods and their accompanying names
make sense within the scope of the Ognl application. We would therefore deem these
methods as correctly named.

Overview of the outliers found with the narrowed attribute rule set

When we narrow the attribute rule set the number of found outliers go down by 68%
from a total of 9111 to 3160 methods. The earlier mentioned outliers found in Ognl
for the get action-token are now not found any more. An examination of the pattern
frequency set for the get action-token explains this behaviour; the Array Reader pattern
is present in 4.3% of all gets. Since the narrowed attribute rule set only marks a method
in violation if a nano pattern has a occurrence of less then 3%, the presence of this

35

(a) Original attribute rule set
Project # methods % of total

Ant 475 6.90
Antlr 77 7.91
ArgoUML 677 9.58
ASM 120 14.27
BCel 168 9.10
BSF 22 11.52
Castor 526 8.06
Commons Codec 12 8.45
Commons Collections 271 11.10
Commons Digester 25 6.67
Commons HTTP-client 70 6.74
Commons IO 39 11.02
Commons Lang 117 8.36
Commons Net 60 10.58
FitNesse 481 13.70
Hibernate 668 8.73
JarJar Links 25 12.14
JBoss 1421 9.26
JEdit 473 12.35
JHotDraw 61 3.85
JikesRVM 629 8.51
JRuby 351 10.87
JUnit 34 11.00
Ognl 117 24.95
Polyglot 86 5.48
Spring 455 5.93
Struts 152 7.42
Tapestry 107 4.63
TranQL 86 7.08
Velocity 59 6.98
Xalan-J 834 12.45
Xerces-J 650 11.99
XML-Batik 643 8.28

Total 9991 9.11

(b) Narrowed attribute
rule set

methods % of total

193 2.80
23 2.36

185 2.62
36 4.28
75 4.06
7 3.66

228 3.49
6 4.23

71 2.91
8 2.13

14 1.35
12 3.39
29 2.07
19 3.35

106 3.02
154 2.01
1 0.49

467 3.04
164 4.28
16 1.01

160 2.17
96 2.97
13 4.21
26 5.54
22 1.40

138 1.80
13 0.63
17 0.74
35 2.88
17 2.01

345 5.15
255 4.70
209 2.69

3160 2.88

(c) Difference
methods %

282 59.37
54 70.13

492 72.67
84 70.00
93 55.36
15 68.18

298 56.65
6 50.00

200 73.80
17 68.00
56 80.00
27 69.23
88 75.21
41 68.33

375 77.96
514 76.95
24 96.00

954 67.14
309 65.33
45 73.77

469 74.56
255 72.65
21 61.76
91 77.78
64 74.42

317 69.67
139 91.45
90 84.11
51 59.30
42 71.19

489 58.63
395 60.77
434 67.50

(d)
%

0.85
1.18
0.85
0.30

-
0.00
0.88
0.00
1.14
0.34
1.46
5.17
1.93
1.58
2.14
2.00
0.72
0.95
1.30

-
-

1.27
3.50
0.45
1.64
1.52
1.06
0.87
1.17
0.67
1.21
0.19
0.76

Table 4.4: Violations found with both the original (a) and the narrowed attribute rule sets (b)
and an overview of the original presented figures by Høst and Østvold in their research [14] (d)

pattern is not considered a violation any more. In this case this seems just since we
would also judge them as correctly named.

By narrowing the partitions all the projects see the outliers reduced by at least
50%. A project that has the most drastic decline of outliers is the JarJar Links
project. Here the number of outliers go down from 25 to 1. A comparison of the found
outliers with the original and the narrowed attribute sets show that using the original
attribute rule set it marked 24 visit methods as outliers because they violated the
rule inappropriate if included: No Param. When we inspect these methods we see
that they are implementations of an external interface (from the ASM library) meaning
that the name can not be changed by the implementing class (see Listing 4.2). Since
this is outside the scope of the JarJar Links project we would judge these methods as
correctly named. This judgement is debatable. Having methods called visit without
parameters that get passed in is in some contrast with the Visitor design pattern [11].

Comparing the results with the results of Høst and Østvold [14]

If we do a comparison with the original values reported by Høst and Østvold we see big
differences in the reported number of outliers. For some projects, for instance the BSF
project, Høst and Østvold do not find any outliers while our method, especially when we

36

Listing 4.1: Listing of a method from Ognl that was marked as an outlier using the original attribute
rule set (ognl.ASTShiftRight)

protected Object getValueBody (OgnlContext context , Object source) throws
OgnlException {

Object v1 = children [0]. getValue (context , source);
Object v2 = children [1]. getValue (context , source);

return OgnlOps . shiftRight (v1 , v2);
}

Listing 4.2: Visit method from JarJar Links that was marked as an outlier using the original attribute
rule set but not using the narrowed attribute rule set

public SignatureVisitor visitInterface () {
sw. visitInterface ();
return this;

}

use the original attribute rule set, marks more than 11% of the methods as outliers. This
could be explained because of three differences between the method we have used and
the method used by Høst and Østvold.

1. Høst and Østvold analysed a corpus containing more then a 1.000.000 methods,
ours contains 100.000

2. Høst and Østvold analyse the complete method name —the method phrase [15]—
we analyse the first token of the name

3. Høst and Østvold used a different nano pattern catalogue

It could be that the number of methods in the corpus influence the constructed
frequency set for each action-token. For instance, if there are more methods beginning
with the token add it could be that there is a different distribution of present nano
patterns. In our case we see that the pattern Local Reader is present in methods that
start with add in 95.88% of the cases (see Figure C.4). Having a bigger corpus and thus
having more methods that start with the action-token add could mean that the presence
of the Local Reader pattern falls under the boundary of the attribute rule set.

Another difference is that Høst and Østvold analysed the whole method name.
They tagged the complete name using a part-of-speech tagger and constructed different
frequency sets for the complete method phrase. It could be that the found frequency sets
are less distinct than the ones we have constructed for the action-tokens. For instance,
almost all of our action-token frequency sets contain at least one pattern were its presence
of absence would trigger a violations. This means that our corpus will almost always
contain outliers for a given action-token set. Whether or not this is also the case for the

37

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100

3.
07

81
.8

6
0.

95
25

.1
1

5.
21

32
.1

7
65

.3
9

15
.2

5
14

.0
3

57
.4

3
13

.4
14

.8
3

95
.8

8
35

.1
4

4.
41 5.
94

6.
16

Pa
tt
er
n
fr
eq
ue

nc
y

Figure 4.5: Frequency of the different nano-patterns for methods that start with add (calculated
over 4106 methods)

frequency sets that where constructed by Høst and Østvold is unknown, no results have
been published on this. Next to this it is unknown how many methods where included
after Høst and Østvold applied their threshold. It could be that a lot of methods where
lost because of it. In comparison with our method we lost more than a quarter of our
initial methods by applying our threshold and we only concentrate on the first token of
the name, not on the name as a whole.

The used nano pattern catalogue also differs. This also could have an influence on
the number of found outliers. For instance, Høst and Østvold make a difference in return
types [14]. Their patterns check whether or not the return type is void, int, string, a
reference, a boolean or whether the return type is used in the method name. These
patterns are clearly more fine grained than our No Return pattern. It could be that the
presence of these patterns are more scattered over a certain method phrase rendering
these patterns less useful for outlier spotting.

Overview of the judgement review

For each attribute rule set we have judged a set of 60 samples. These samples were taken
randomly from both the list containing the method outliers as from the list containing
the other methods (see section 4.2.6). During the judgement of each separate method on
the list it was unknown to us whether or not it was marked as an outlier.

Figure 4.6 shows the result of our judgement. For both attribute rule sets we argued
that 15 of the 30 methods on the outlier list had incorrect names. For the non-outlier

38

Outliers Non-Outliers
0

5

10

15

20

25

30

15

24

15

6

correct incorrect

(a) Original attribute rule set

Outliers Non-Outliers
0

5

10

15

20

25

30

15

28

15

2

correct incorrect

(b) Narrowed attribute rule set

Figure 4.6: Correctly and incorrectly identified naming outliers

list this was lower for both judgement sessions, respectively 6 and 2 times. Appendix
D contains an overview of all the samples and accompanying reasoning why we judged
whether or not a method had a correct name.

An example of an identified outlier which we consider valid is shown in Listing
4.3. This outlier violates two rules; inappropriate if included: Array Writer and
inappropriate if included: No Return. The method bears the name getChars but
does not return anything (as was highlighted by the outlier method). Instead it copies a
sequence of characters of an internal string into a passed in character array. We would
argue that the name copyChars would be more appropriate.

Listing 4.3: Listing of a method from Xalan-J that was marked as an outlier using the original
attribute rule set (org.apache.xml.utils.XMLStringDefault)

public void getChars (int srcBegin , int srcEnd , char dst [],
int dstBegin) {

int destIndex = dstBegin ;

for (int i = srcBegin ; i < srcEnd ; i++) {
dst[destIndex ++] = m_str. charAt (i);

}
}

Other cases of methods that are marked as outliers are not that clear. Listing 4.4

39

shows a method in ArgoUML that was identified as an outlier using the original attribute
rule set. It is marked as an outlier because it violates the inappropriate if included:
Field Writer rule. On examination of the method we see that it checks whether the
value that is going to be returned is already created. If it not created it gets constructed
before the value is returned. This is a known design pattern called Lazy Initializer [10]
and, on inspection, is often used in ArgoUML. We would therefore consider this method
as correctly named making this an incorrectly identified naming anomaly.

Listing 4.4: Listing of a method from ArgoUML that was incorrectly marked as an outlier using the
original attribute rule set (org.argouml.uml.diagram.static_structure.ui.UMLClassDiagram)

protected Action getActionComposition () {
if (actionComposition == null) {

actionComposition = makeCreateAssociationAction (
Model. getAggregationKind (). getComposite (),
false , " button .new - composition ");

}

return actionComposition ;
}

4.4 Analysis

To find an answer to our question we have described the different steps in the process of
finding method naming anomalies. Somewhat remarkable was the outcome of applying
the threshold. By doing this we lost about a quarter of the methods in our corpus.
Investigation of the lost methods showed that these methods contained the majority of
the unique action-tokens in the corpus (see Table 4.3). Considering the task we were set
out to do —finding methods that have bad names— it can be argued that specifically
these methods might be methods that are not correctly named. At least, the meaning of
these method names are not commonly known by the development community.

In other samples of identified outliers we see that whether or not the chosen action-
token is correct, is often debatable. When we read code and investigate methods the
decision whether a chosen name is appropriate is not a simple yes or no question. The
appropriateness often lies somewhere in the middle between highly appropriate and
completely inappropriate. Where we draw the line between good and bad depends on
the eye of the beholder. What we did find is that the applied method does find methods
with debatable names and more often also points out methods of which we would judge
that they are badly named (see Figure 4.6). Although it still is hard to reason about the
number of correctly identified methods with bad names, in this case we found a false
positive rate of 50%, our result do indicate that using this method we will quicker identify
methods with bad names compared to randomly selecting methods from a corpus.

Comparison between the original attribute rule set and the narrowed attribute rule

40

set show that the number of identified outliers go down drastically. But when we judge a
sample from both sets we do not see a difference in the number of correctly identified
methods bearing bad names. The biggest problem in this comparison is that we can not
reason about the number of false negatives still remaining in our corpus. These are the
methods the that have a bad name but were not identified as such. If we would like to be
able to reason about this number we must have an application which contains methods
of which the names are generally accepted as correct. To our knowledge such a ’golden
standard’ does not exists.

4.5 Conclusion
The question we were set out to answer in this chapter was:

Question 2. Do methods that get identified by the method of Høst and Østvold have bad
names?

Yes, the method does find methods with bad names. It is imprecise by nature,
however, and it is hard to find a measure for its imprecision. What we can say is that by
using the described method the chance of quickly identifying methods with bad names is
higher then by randomly selecting methods from a corpus. What the influence of the
values of the attribute rule set is, is undecided. Less methods get identified but the
number of true positives stays the same.

41

Chapter 5

An alternate approach

Figure 5.1: Step 3: Finding method naming anomalies using Formal Concept Analysis

In this chapter we introduce a new method of finding method naming anomalies using
Formal Concept Analysis (FCA).

5.1 Rationale

In our previous chapter we have reproduced the approach of Høst and Østvold to identify
method naming anomalies. We were able to identify method naming anomalies using
the frequencies of nano patterns exhibited by action-token sets. These action-token sets
contain all the methods that start with the same token. For instance, the action-token
set of get contains all the methods that start with the verb get.

With the method of Høst and Østvold there are two possible reasons why a method
is marked as an outlier:

42

• a method contains a pattern that is not often used by methods in the same
action-token set

• a method does not contain a pattern that is often used by methods in the same
action-token set

The method focusses on the presence or absence of separate patterns. What we do not
see is the influence of combinations of patterns in methods.

Listing 5.1 shows an example of a method with a rare combination of nano patterns
for a method beginning with the token get. It exhibits the patterns Straight Line,
Local Reader, Object Creator, Field Reader, Type Manipulator and Same Name.
According to the original attribute rule set (see Section 4.2.5) a method is considered
in violation when it exhibits a pattern of which the occurrence in the corresponding
action-token set is below 5%. If we take a look at the frequency set for get (see Figure
C.1 in Appendix C) we see that the frequencies of the individual patterns that this
method exhibits are all above the threshold of 5%. This means that this method is not
in violation according to the method of Høst and Østvold.

Still, it is clear that the name this method has does not support its operation. Instead
of returning an existing value it always creates a new object. We judge that the name
create would therefore be better suited. What makes this method special is not that it
includes or omits a certain nano pattern but the combination of patterns.1

Listing 5.1: Example of method with a rare combination of nano patterns
(org.tranql.ejb.ManyToManyCMR in TranQL)

public Object get(InTxCache cache , CacheRow row) {
return new ManyToManyRelationSet (cache , row.getId (), (Set) next.get(

cache , row));
}

To be able to get insight in the interdependencies of the patterns we will use an
alternate approach to identify naming anomalies. A way to find this rare combinations
of the patterns is by using FCA. We will present a new method of identifying naming
anomalies using FCA.

In the remainder of this chapter we will seek an answer to the following question:

Question 4. How does our FCA method compare to the method of Høst and Østvold?

5.2 Research method

We apply the steps as shown in Figure 5.2 to the action-token sets we constructed for the
method described in the previous chapter. The outcome is that we will get another list of

1In this case the combination of the patterns Straight Line, Local Reader, Object Creator, Type
Manipulator and Same Name only has an occurrence of 0.07% in the action-token set get

43

Nano-Pattern Profiles
(filtered using threshold) Construct

Concept Lattice

(for each action-token)

Locate outliers Method Name Anomalies

Finding Method Name Anomalies using FCA

Figure 5.2: Overview of the different steps to identify method name anomalies using our FCA
method

outliers. We can draw our conclusions by judging the identified outliers and comparing
them with earlier results we found using the method of Høst and Østvold.

5.2.1 Formal Concept Analysis

In the coming section we will explain FCA. Our approach will be twofold. We will start
with the formal definition followed by a more intuitive definition.

Formal definition

Formal Concept Analysis is a mathematical theory based on conceptual hierarchy [7]. It
comprises of a set of well known techniques for the analysis of data. A Formal Context
—a model at the heart of FCA— consists of objects O and attributes A and the relations
between them I. The relation between an object and an attribute can be written as oIa
for o ∈ O and a ∈ A. The set of all attributes that have a relations with a set O ∈ O
is defined by O′ = {a ∈ A : oIa ∀o ∈ O}. All objects that have a relations with the set
A ∈ A is defined by A′ = {o ∈ O : oIa ∀a ∈ A}.

A Formal Concept is the combination of (O, A) for which holds that O′ = A and
A′ = O. O is called the extent and A is called the intent of the concept C = (O, A).

An ordering can be applied to concepts [6]. Let (O1, A1) and (O2, A2) be concepts of
the context C(O,A, I), then (O1, A1) is a subconcept of (O2, A2) if O1 ⊆ O2 (which is
equivalent to A1 ⊇ A2). Under the same conditions we can also say that (O2, A2) is a
superconcept of (O1, A2). The relation ≤ is called the hierarchical order of the concepts
[6]. This ordered set of concepts C(O,A, I;≤) is called a Concept Lattice.

Intuitive definition

FCA gives insight in the relations between attributes and objects. Table 5.1 shows a
matrix of animals and some possible properties that might apply to them. If a cell
contains an x it means that a certain property applies to the animal of that particular
row. Although it is possible to see the shared properties amongst the animals it is hard
to see all the underlying connections. By generating a concept lattice these combinations
of attributes emerge.

44

Figure 5.3 shows the concept lattice associated with Table 5.1. The lattice shows all
the explicit and latent relationships that exists between the animals and their properties.
Each node in the lattice corresponds with a concept. In this lattice a concept consists
out of a list of animals (the objects) and their accompanying properties (the attributes)
they share. For instance, concept A contains the animal Monkey as its objects and the
property Has hands as its attribute.

The lattice is hierarchically ordered. This means that the hierarchy of the concepts in
the lattice matter. All the attributes that are applicable to the superconcepts reachable
from a certain concept apply to this concept (the intent of a concept). An example can
explain this.

The properties that apply to concept B in our lattice (see Figure 5.3) are Can fly,
Has wings and Has beak. Although concept B does not have direct properties related to
it, traversing through its superconcept relations we find all the properties that apply to
the animal of the concept; the eagle. An examination of the context (Table 5.1) shows
that this is indeed the case; the eagle has the properties Can fly, Has beak and Has
wings.

To get the extent of a concept we have to traverse the subconcept relation. By doing
this we find all the objects which also are applicable for a certain concept.

Concept C in the lattice (Figure 5.3) does not contain any direct objects. It does
however contain the attribute Has wings. If we traverse the subconcept relation we find
concepts which contain the animals Penguin, Bat and Eagle. An examination of the
context (Table 5.1) shows that these are the only animals that share the property Has
wings.

```````````Animal
Property Breathes

in water
Can fly Has

beak
Has
hands

Has
wings

Bat x x
Eagle x x x
Monkey x
Parrot Fish x x
Penguin x x

Table 5.1: A simple context containing animals and their attributes

Why use FCA?

We hypothesise that a group of methods starting with the same action-token should,
next to being consistent in the the separate nano patterns it exhibits, also be consistent
in the combination of nano patterns that are used. Finding methods that exhibit
rare combinations of nano patterns can therefore also be seen as methods that break
consistency. Methods that have rare combinations of nano patterns are methods that do
different operations than other methods with similar names. FCA allows us to explore
the explicit and latent relations that exists between a group of methods and the nano
patterns they exhibit.

45



Figure 5.3: A FCA lattice constructed from the context shown in Table 5.1 visualized via
ConExp (http://conexp.sourceforge.net)

5.2.2 Constructing Formal Contexts

We will construct a formal context for each action-token set. The individual method
names of the methods in an action-token set will be used as the object set of a context.
The attribute set of the context consists out of the different nano patterns. A formal
concept therefore consist of a combination of methods starting with the given action-token
(the objects) and the nano patterns they share (the attributes). Table 5.2 shows an
excerpt of a context constructed using the method names of an action-token set and the
nano patterns they posses.2

The action-token sets which we use to construct formal contexts are the same sets
that we used for the analysis with the method of Høst and Østvold. These are the
action-token sets that we are left with after we applied the threshold as described in
section 4.2.4.

```````````Method
Nano pattern No Return Type Manipulator ... Straight Line

doTypeCheck() x ... x
doCheckOfObject(Object) x ... x
doCheckAndCast(Object) x x ...
doCast() x x ... x

Table 5.2: An excerpt of a formal context constructed for methods that start with the action-
token do

2The methods used to populate the formal context shown in Table 5.2 are all taken from our test
project and are not part of our corpus.

46

5.2.3 Building Concept Lattices

We construct concept lattices out of the formal contexts. Figure 5.4 shows an example of
such a concept lattice. By constructing this lattice we may see latent relations between
the nano patterns and the methods of an action-token set. For instance, by examining
the lattice we see that there is a concept (denoted with the letter A in the Figure 5.4)
consisting of the combination of the nano patterns Straight Line, Leaf, No Param and
No Return with the methods doCast() and doCheckOfObject(Object). There is no
direct method or nano pattern associated with this concept but it still exists.

Seeing these kind of relations is harder when we do not have access to the concept
lattice. What the lattice shows are all the unique relations that exists between a given
set of objects and its attributes, or, in our case, a set of methods and the nano patterns
they contain. We use this property of the concept lattice to locate our outliers.

Figure 5.4: Example of a concept lattice for methods starting with the action-token do. It shows
the method names (the objects of a concept) and the associated nano patterns (the attributes of
a concept). Table 5.2 shows a part of the formal context

5.2.4 Finding outliers using FCA

In our constructed concept lattices we want to find concepts that contain rare combinations
of nano patterns compared to the other methods in the action-token set. By focussing
on concepts that have a low amount of methods we can locate methods which have these
rare combinations of nano patterns.

We calculate the percentage of the objects of each concept in regards to the total num-
ber of objects in the context. For instance, concept A in Figure 5.4 contains the objects
doCast and doCheckOfObject(Object). Considering that the context is constructed
with 4 methods means that concept A contains 50% of all the methods in the context. Con-

47

cept B holds 3 methods namely doTypeCheck(), doCast and doCheckAndCast(Object)
meaning that this concept holds 75% of all the methods in the context.

We define a percentage threshold, a minimum number of methods that a concept
should contain before it is considered an outlier. The example above does not contain
many concepts but the number of concept quickly grow depending on the number of
methods and present nano patterns. Since our biggest action-token set, the action-token
set for get, contains 37847 methods we expect that we can have a high number of
concepts. Given the above we define, after some initial experimentation, that a concept
should at least contain 0.15% of all the methods in the context. The methods contained
by a concept are considered in violation when the concept contains less then 0.15% of all
the methods of the context.

5.2.5 Qualifying the result

Comparing both methods

To validate the results we will compare the outcome of our FCA method with the
outcome of the method of Høst and Østvold. This gives an overview of the statistics on
the found outliers for both methods. We will compare the number of found outliers for
both methods. Next to this we will examine the overlap in found outliers between both
methods. This gives us insight in the number of outliers that were found with our FCA
method but were not located using the method of Høst and Østvold or vice versa.

Qualifying the found outliers

Like we did for the result found by the method of Høst and Østvold we will judge a
random sample taken from the outlier list found by our FCA method mixed with random
samples taken from the list that were not marked as outliers. Again, when we judge the
samples it is unknown to us which of the samples were marked as outliers and which
not. For the random samples from the FCA method we will only use those methods that
are not marked as outliers by the method of Høst and Østvold but were marked as such
by our FCA method. By doing this we can measure the impact of our FCA method
separately from the method of Høst and Østvold.

5.3 Results

5.3.1 Comparing both methods

Table 5.3 shows the result of comparing our FCA method with the method of Høst and
Østvold. Out of the total methods, 2.67% get marked as outliers by our FCA method.
This is just under the number of outliers that get found when using the narrowed attribute
rule set.

If we do a outlier comparison on the outliers that are found by both methods we
see that compared to the method using the original attribute rule set almost 70% of

48

FCA Original attribute rule set Narrowed attribute rule set
Action # methods % of total # methods % of total # shared # methods % of total # shared

get 1607 4.25 3969 10.49 1165 1306 3.45 620
set 527 3.20 2398 14.56 420 647 3.93 278
is 181 2.89 544 8.68 151 117 1.87 65
add 165 4.02 433 10.55 94 39 0.95 20
create 158 3.88 183 4.49 53 15 0.37 7
to 86 2.83 201 6.62 55 86 2.83 20
visit 32 1.66 133 6.91 16 49 2.55 10
remove 39 2.04 67 3.50 16 67 3.50 16
has 28 1.85 194 12.81 28 96 6.34 25
read 23 2.05 14 1.25 6 14 1.25 6

Total 2922 2.67 9991 9.12 2044 3160 2.88 1087

Note: The ’# shared’ column relates to the number of shared methods that are found by both the FCA method
and the method of Høst and Østvold

Table 5.3: Comparison of FCA method with the method of Høst and Østvold (both original as narrowed
attribute rule set) for the top ten action-tokens

the outliers get found by both methods. Compared to the method using the narrowed
attribute rule set this is less, they share a little more then 37% of their outliers.

The action-token that has the most shared outliers is has. All the outliers found
using FCA are also marked as an outlier using the original attribute rule set and in 89%
of the cases using the narrowed attribute rule set.

If we take a look at the number of outliers that get found per action-token set we see
that the amount of found outliers, absolute and relative, are less for smaller action-token
sets. Further investigation shows that if the action-token set contains less than a 1000
methods no more outliers get reported.

5.3.2 Validating the found outliers

Figure 5.5 shows the outcome of the random sample test with our FCA method. Out of
the 30 samples that were marked as outliers with our FCA method we judged that 12
methods had a bad name. The other 18 cases we deemed correctly named.

The non-outlier list shows similar results as earlier although we slightly judged more
methods on the non-outlier list to be incorrectly named as before. This time we correctly
judged that 23 out of the 30 cases. The other 7 cases had, according to our judgement,
bad names. Table D.2 in Appendix D contains the samples and our reasoning.

5.4 Analysis

5.4.1 Comparing the methods

Number wise we see that our FCA method find a similar amount of outliers compared
to the method of Høst and Østvold using the narrowed attribute rule set. Some of the

49

Outliers Non-Outliers
0

5

10

15

20

25

30

12

23

18

7

correct incorrect

Figure 5.5: Correctly and incorrectly identified naming outliers using the FCA method

identified methods using our FCA method also get identified with the method of Høst
and Østvold. Next to this overlap there are methods that only get identified using our
FCA method. If we judge these outliers we do find that some are indeed methods that
have bad names.

Our judgement experiment showed that the rate of correctly identified naming
anomalies using our FCA method was lower than the earlier found results judging the
outliers that were found using the method of Høst and Østvold. Whether or not we
would see the same results if we would repeat the test is hard to say. We would have to
expand our experiment before we can draw any conclusions on this.

5.4.2 Examining a found outlier

Listing 5.2 shows an outlier which gets found using our FCA method but not using the
method of Høst and Østvold. This method reads objects from an input stream and adds
them to an inner map. Although the method bears the name read this only partially
describes what the method does. After the object is read it is added to the map. Another
noteworthy detail about this method is that is actually does not read a single object
although the name of the method does let us to belief. The method continues on reading
objects from the input stream as long as they are available. These two arguments let us
to believe that this method has a bad name.

The method is not found using the method of Høst and Østvold. An inspection of
the frequency set of the action-token read explains why this is the case (see Figure C.10
of Appendix C). The frequencies of the nano patterns in the action-token set are none

50

distinctive. Almost all frequencies lie between 5% and 95%. Only the occurrence of the
pattern Recursive is distinctive with a frequency of 1.25%.

That these kind of methods gets identified using our FCA method supports our
intuition that the combination of rare nano patterns also is an indicator of methods that
have bad names.

Listing 5.2: An example of a found outlier using our FCA method that was not marked as an outlier using
the original attribute set method of Høst and Østvold (org.apache.commons.collections.ReferenceMap
of Commons Collections)

private void readObject (ObjectInputStream inp) throws IOException ,
ClassNotFoundException {

inp. defaultReadObject ();

table = new Entry[inp. readInt ()];
threshold = (int)(table. length * loadFactor);
queue = new ReferenceQueue ();
Object key = inp. readObject ();

while (key != null) {
Object value = inp. readObject ();
put(key , value);
key = inp. readObject ();

}
}

5.4.3 Limitations of the used method

The fact that no more outliers get reported when the number of methods in an action-
token set fall under a certain limit is probably due to the static nature of our applied
occurrences threshold. Our method reports an outlier when a concept contains less than
0.15% of the methods in the complete action-token set. Depending on the absolute
amount of methods and the stability of the occurring nano patterns of these methods it
could be that the lattice simply does not contain concepts that break this rule. A simple
example helps to explain our point.

The minimal amount of methods (objects) that is contained by a concept is 1. Now
let us build an lattice out of an action-token set that consists out of 100 methods. In this
lattice the concepts with the least contained methods (1) still contain 1% of the total
amount of methods in the action-token set. Therefore there will never be any outliers
found by our FCA method for these smaller action-token sets. A possible way around
this problem is to make the applied threshold dynamic. Instead of applying the same
threshold for every size of action-token set we could determine the height of the threshold
based on the amount of methods in the set.

51

5.5 Conclusion
In this chapter we wanted to answer the following question:

Question 4. How does our FCA method compare to the method of Høst and Østvold?

Our FCA method finds outliers that are not recognized using the method of Høst
and Østvold. Similar to the results we saw for the method of Høst and Østvold these
outliers also have a higher change of being methods that have bad names. This indicates
that rare combinations of nano patterns are also an indicator for methods that have bad
names.

52

Chapter 6

Discussion

We were set out to acquire a deeper understanding of method naming anomalies and
how they could be located.

In our research we have investigated the relation between the occurrence of nano
patterns and the used action-token of the method name. We have retraced and reproduced
earlier work done by Høst and Østvold on finding inconsistencies of present nano patterns
in methods and their name. Next to this method we have introduced an alternate
approach of identifying method name anomalies using FCA. With this method we were
able to investigate whether rare combinations of nano patterns are also a pointers to
methods that have bad names. The outcome was that both methods do seem to find
methods with debatable names.

The experiments that we have done indicate that method naming anomalies have a
higher change of being methods having bad names than compared to random selected
methods from a corpus. Whether this truly scales to the whole of the (Java) development
community is hard to say. If we want to able to prove this we should repeat our outlier
judging experiment with many more developers. With our current research we can say
that we have indications that a method name anomaly hints that there is a mismatch
between the chosen name and the method implementation.

6.1 Threats to validity

6.1.1 The diversity of the corpus

A possible threat is that our corpus was skewed onto a certain application domain or
development community. To prevent this we have chosen to use applications taken from
different application domains and from different sources. All applications were part of
earlier research on nano patterns or finding method naming inconsistencies

53

6.1.2 Experimenter bias

As part of our experiments we have reviewed outlier samples and judged them on their
correctness. To prevent experimenter bias we have mixed the random samples taken
from the outlier list with random samples from the non-outlier list. These lists were all
constructed automatically without our intervention. While we reviewed the samples it
was unknown to us if a sample was marked as an outlier or not.

6.2 Future work

6.2.1 Finding Naming Anomalies

Influence of the nano pattern catalogue

We have chosen to use the nano pattern catalogue as introduced by Singer et al.[26].
Høst and Østvold used different catalogues of nano patterns in the course of their
research[13, 14, 15, 16]. Seeing that we have a clear difference in found outliers with
the method introduced by [14] it is interesting to investigate what the influence of the
different nano pattern catalogues is.

Influence of the corpus

In our research we have focused on a corpus that contained applications from different
domains. It is interesting to see whether we see the same results using a corpus containing
only code from one company or one development community. It could be that certain
development and naming styles are detectable is we only focus on these applications.

6.2.2 Handling Naming Anomalies

One of the questions we have not touched in our research is what we should do with the
found method naming anomalies. How should they be handled? Simply changing the
name of the method is not always the solution to the found problem. Sometimes the
invalidity of the name is an indication for more structural problems. In those cases it
could be more advisable to change the implementation of the method then just the name.
These cases could also be considered as more general code smells. We came across some
of these cases in our search (see Listing 6.1).

Some research had been done by Høst and Østvold into this problem[14]. In their
research into Naming Bugs they came up with a method of suggesting name improvements
based on the method phrase frequency sets they constructed. This could be a suitable
solution for the first part of the problem -a method that has a wrong name- but this does
not fix the second part of the problem were the method implementation itself is incorrect.

54

Listing 6.1: An example of a found outlier where the underlying problem is maybe not the name but
the whole structure chosen to solve a certain problem. This method was marked as outlier by the FCA
method because it has a rare combination of the Leaf, Object Creator, Field Reader, No Param and
Type Manipulator nano patterns for methods that start with get

public Exception getLinkedException () {
// jason : this is bad , but whatever ... the jms folks
// should have had more insight

if (nested == null)
return this;

if (nested instanceof Exception) {
return (Exception) nested ;

}

return new NestedException (nested);
}

55

Bibliography

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets
of Items in large databases. In Proceedings of the International Conference on
Management of Data, pages 207–216. ACM SIGMOD Record, 1993.

[2] E. Bruneton. ASM 4.0 - A Java bytecode engineering library. Technical report,
OW2 Consortium, 2011.

[3] R. Buse and W. Weimer. A metric for software readability. Proceedings of the 2008
international symposium on Software testing and analysis - ISSTA ’08, page 121,
2008.

[4] S. Butler, M. Wermelinger, and Y. Yu. Improving the tokenisation of identifier
names. ECOOP 2011-Object-Oriented Programming, pages 130–154, 2011.

[5] C. Caprile and P. Tonella. Nomen est omen: Analyzing the language of function
identifiers. In Proceedings of the Sixth Working Conference on Reverse Engineering,
pages 112–122. IEEE, 1999.

[6] C. Carpineto and G. Romano. Concept Data Analysis: Theory and Application.
Wiley, 2004.

[7] S. Colton and D. Wagner. Using Formal Concept Analysis in Mathematical Discovery.
Towards Mechanized Mathematical Assistants, pages 205–220, 2007.

[8] F. Deissenboeck and M. Pizka. Concise and consistent naming. Software Quality
Journal, 14(3):261–282, September 2006.

[9] F. Deissenboeck and D. Ratiu. A unified meta-model for concept-based reverse
engineering. Proc. 3rd International Workshop on Metamodels, 2006.

[10] M. Fowler. Patterns of Enterprise Application Architecture. Number 2 in The
Addison-Wesley signature series. Addison-Wesley Professional, 2002.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wesley
Professional Computing Series. Addison Wesley, 1995.

[12] J. Gil and I. Maman. Micro patterns in Java code. ACM SIGPLAN Notices, 40(10):
97, October 2005.

56

[13] E. Høst and B. Østvold. The Programmer’s Lexicon, Volume I: The Verbs. Seventh
IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM 2007), pages 193–202, September 2007.

[14] E. Høst and B. Østvold. Debugging method names. ECOOP 2009-Object-Oriented
Programming, pages 294–317, 2009.

[15] E. Høst and B. Østvold. The Java programmer’s phrase book. Software Language
Engineering, pages 322–341, 2009.

[16] E. Høst and B. Østvold. Canonical Method Names for Java. Proceedings of the
Third international conference on Software language engineering, pages 1–20, 2011.

[17] D. Lawrie, H. Feild, and D. Binkley. Syntactic Identifier Conciseness and Consistency.
2006 Sixth IEEE International Workshop on Source Code Analysis and Manipulation,
pages 139–148, September 2006.

[18] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a Name? A Study
of Identifiers. 14th IEEE International Conference on Program Comprehension
(ICPC’06), pages 3–12, 2006.

[19] B. Liblit, A. Begel, and E. Sweeser. Cognitive perspectives on the role of naming in
computer programs. In Proceedings of the 18th Annual Psychology of Programming
Workshop. ACM, 2006.

[20] D. Low. Protecting Java code via code obfuscation. Crossroads, 4(3):21–23, 1998.

[21] S. McConnell. Code Complete. Microsoft Press, second edition, 2004.

[22] Sun Microsystems. Java Code Conventions. Technical report, Sun Microsystems,
1997.

[23] V. Rajlich and N. Wilde. The role of concepts in program comprehension. In
Program Comprehension, 2002. Proceedings. 10th International Workshop on, pages
271–278. IEEE, 2002.

[24] S. Rugaber. The use of domain knowledge in program understanding. Annals of
Software Engineering, 9(1):143–192, 2000.

[25] J. Singer and C. Kirkham. Exploiting the Correspondence between Micro Patterns
and Class Names. 2008 Eighth IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 67–76, September 2008.

[26] J. Singer, G. Brown, M. Luján, A. Pocock, and P. Yiapanis. Fundamental Nano-
Patterns to Characterize and Classify Java Methods. Electronic Notes in Theoretical
Computer Science, 253(7):191–204, September 2010.

57

[27] A. Thies and C. Roth. Recommending rename refactorings. Proceedings of the 2nd
International Workshop on Recommendation Systems for Software Engineering -
RSSE ’10, pages 1–5, 2010.

[28] G.M. Weinberg. The Psychology of Computer Programming. Computer Science
Series. Van Nostrand Reinhold, 1971.

[29] L. Wittgenstein. Philosophical Investigations, volume 34. Blackwell, 1953.

58

Appendices

59

Appendix A

Overview of Java AST nodes in
Rascal

The following AST nodes are defined in Rascal. These nodes can be present in the Java
AST and function as a base for our nano pattern source code analyser.

Table A.1: Defined Java AST nodes in Rascal

Type Node Properties

Declarations Anonymous Class Declaration list of Nodes: body declarations
Annotation Type Declaration list of Modifiers: modifiers, string: name,

list of Nodes: body declarations
Annotation Type Member Declaration list of Modifiers: modifiers, Node: type ar-

gument, string: name, list of Nodes: default
block*

Enum Declaration list of Modifiers: modifiers, string: name,
list of Nodes: implements, list of Nodes:
enum constants, list of Nodes: body decla-
rations

Enum Constant Declaration list of Modifiers: modifiers, string: name,
list of Nodes: arguments, list of Nodes:
Anonymous Class Declaration*

Type Declaration list of Modifiers: modifiers, string: object
type, string: name, list of Nodes: generic
types, list of Nodes: extends*, list of Nodes:
implements, list of Nodes: body declara-
tions

Field Declaration list of Modifiers: modifiers, Node: type, list
of Nodes: fragments

Initializer list of Modifiers: modifiers, Node: body
Method Declaration list of Modifiers: modifiers, list of Nodes:

generic types, list of Nodes: return type*,
string: name, list of Nodes: parameters,
list of Nodes: possible exceptions, list of
Nodes: implementation*

(* indicates an optional field)
Continued on next page

60

Table A.1 Defined Java AST nodes in Rascal – continued from previous page
Type Node Possible properties

Import Declaration string: name, boolean: static import,
boolean: on demand

Package Declaration string: name, list of Nodes: annotations
Single Variable Declaration string: name, list of Modifiers: modifiers,

Node: type, list of Nodes: initializer*,
boolean: is varargs

Variable Declaration Fragment string: name, list of Nodes: initializer*
Type Parameter string: name, list of Nodes: extendsList

Expressions Marker Annotation string: type name
Normal Annotation string: type name, list of Nodes: member

value pairs
Member Value Pair string: name, Node: value
Single Member Annotation string: type name, Node: value
Array Access Node: array, Node: index
Array Creation Node: type, list of Nodes: dimensions,

Node initializer*
Array Initializer list of Nodes: expressions
Assignment Node: left side, Node: right side
Boolean Literal: boolean: value
Cast Expression Node: type, Node: expression
Character Literal string: value
Class Instance Creation Node expression*, Node: type, list of Nodes:

generic types, list of Nodes: typed argu-
ments, Node anonymous class declaration*

Conditional Expression Node: expression, Node: then branch,
Node: else branch

Field Access Node: expression, string: name
Infix Expression string: operator, Node: left side, Node:

right side, list of Nodes: extended operands
Instanceof Expression Node: left side, Node: right side
Method Invocation Node expression*, list of Nodes: generic

types, string: name, list of Nodes: typed
arguments

Super Method Invocation string qualifier*, list of Nodes: generic
types, string: name, list of Nodes: typed
arguments

Qualified Name string: qualified name
Simple Name string: simple name
Null Literal
Number Literal string: number
Parenthesized Expression Node: expression
Postfix Expression Node: operand, string: operator
Prefix Expression Node: operand, string: operator
String Literal string: string value
Super Field Access string qualifier*, string: name
This Expression string qualifier*:
Type Literal Node: type

(* indicates an optional field)
Continued on next page

61

Table A.1 Defined Java AST nodes in Rascal – continued from previous page
Type Node Possible properties

Variable Declaration Expression list of Modifiers: modifiers, Node: type, list
of Nodes: fragments

Statements Assert Statement Node: expression, Node message*
Block list of Nodes: statements
Break Statement string label*
Constructor Invocation list of Nodes: generic types, list of Nodes:

typed arguments
Super Constructor Invocation Node expression*, list of Nodes: generic

types, list of Nodes: typed arguments
Continue Statement string label*
Do Statement Node: body, Node: while expression
Empty Statement
Enhanced For Statement Node: parameter, Node: collection expres-

sion, Node: body
Expression Statement Node: expression
For Statement list of Nodes: initializers, Node boolean

expression*, list of Nodes: updaters, Node:
body

If Statement Node: boolean expression, Node: then
statement, Node else statement*

Labelled Statement string: label, Node: body
Return Statement Node expression*
Switch Statement Node: expression, list of Nodes: statements
Switch Case boolean: is default, Node expression*
Synchronized Statement Node: expression, Node: body
Throw Statement Node: expression
Try Statement Node: body, list of Nodes: catch clauses,

Node finally
Catch Clause Node: exception, Node: body
Type Declaration Statement Node: Type Declaration
Variable Declaration Statement list of Modifiers: modifiers, Node: type, list

of Nodes: fragments
While Statement Node: expression, Node: body

Types Array Type Node: type of array
Parameterized Type Node: type of param, list of Nodes: generic

types
Qualified Type string: qualifier, string: name
Primitive Type string: primitive
Simple Type string: name
Wildcard Type Node wildcard type*, string bound*

Comments Block Comment
Line Comment

Javadoc Javadoc
Tag Element
Text Element
Member Ref
Member Ref Parameter

(* indicates an optional field)
Continued on next page

62

Table A.1 Defined Java AST nodes in Rascal – continued from previous page
Type Node Possible properties

63

Appendix B

Definition of the Nano Patterns
as implemented in the source
code analyser

This appendix contains the definitions of the nano patterns as they are implemented in
the Rascal source code analyser. The names type setted in monospace are references
to nodes or attributes of the nodes as described in appendix A

Table B.1: Definition of the Nano Patterns in the source code analyser

Nano Pattern Definition

No Param True if the list of parameters of the method
declaration is empty

No Return True if the list of return type of the method
declaration is empty or void

Recursive True if the method body contains a method invocation
on the current object with the same method name and
parameter types as the current method.

Same Name True if the method body contains a method invocation on
another object with the same name as the current method
or if the method body contains a method invocation on
the same object with the same name but with different
parameters or if the method body contains a super method
invocation with the same name as the current method.

Leaf True if the method body does not contain a method
invocation, super method invocation, constructor
invocation or super constructor invocation.

Object Creator True if the method body does not contain a class instance
creation

Continued on next page

64

Table B.1 Definition of the Nano Patterns in the source code analyser
Nano Pattern Definition

Field Reader True if the method body accesses a field on the current
or another object or if the right hand side of an assignment
contains a reference to a field (a simple name) of the current
object (which is not defined within the scope of the method)

Field Writer True if the left hand side of an assignment accesses a
field on the current or another object or the left hand side
of an assignment contains a reference to a field (a simple
name) on the current object (which is not defined within the
scope of the method)

Type Manipulator True if the method body contains a cast or an instanceof
expression

Straight line True if the method body does not contain a for or switch
statement, a conditional expression or a catch clause

Looping True if the method body contains a for, enhanced for,
while or do while statement

Exceptions True if the list of possible exceptions of the method
declaration is not empty

Local Reader True if the method body contains a reference to a field (a
simple name) which is declared within the scope of the
current method and is not part of the left hand side of an
assignment

Local Writer True if the method body contains a assignment of which the
left hand side contains a reference to a field (a simple name)
which is declared within the scope of the current method or
the method body contains a variable declaration

Array Creator True if the method body contains an array creation
Array Reader True is the method body contains an array access or an

enhanced for statement of which the collection it iter-
ates over is of type array which are not part of left hand side
of an assignment.

Array Writer True if the method body contains an array initializer
or the left hand side of an assignment contains an array
access

65

Appendix C

Pattern frequencies for the top
ten action-tokens

66

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100
69

.5
0.

46
0.

36
14

.9
1

50
.2

1
17

.1
1

64
.2

9
3.

03
14

.9
5

72
.1

6.
2 9.
01

34
.6

4
20

.5
3.

34 4.
3

2.
7

Pa
tt
er
n
fr
eq
ue

nc
y

Figure C.1: Frequency of the different nano-patterns for methods that start with get (calculated
over 37847 methods)

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100

3.
28

95
.4

9
0.

12
12

.2
3

55
.3

8
15

.2
1 22
.4

7
67

.4
5

6.
36

77
.7

4
3.

22 10
.0

4
95

.0
3

12
.5

6
1.

61
1.

71 2.
48

Pa
tt
er
n
fr
eq
ue

nc
y

Figure C.2: Frequency of the different nano-patterns for methods that start with set (calculated
over 16472 methods)

67

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100

56
.4

6
0.

85
0.

37
13

.5
8

50
.8

7
4.

45
52

.1
9

0.
53

9.
9

77
.4

9
6.

35
3.

88
43

.1
3

15
.4

5
0.

34 5.
19

0.
3

Pa
tt
er
n
fr
eq
ue

nc
y

Figure C.3: Frequency of the different nano-patterns for methods that start with is (calculated
over 6265 methods)

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100

3.
07

81
.8

6
0.

95
25

.1
1

5.
21

32
.1

7
65

.3
9

15
.2

5
14

.0
3

57
.4

3
13

.4
14

.8
3

95
.8

8
35

.1
4

4.
41 5.
94

6.
16

Pa
tt
er
n
fr
eq
ue

nc
y

Figure C.4: Frequency of the different nano-patterns for methods that start with add (calculated
over 4106 methods)

68

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100
29

.0
2

10
.9

4
0.

37
19

.5
5

23
.7

7
66

.0
3

37
.9

2
8.

81
21

.3
4

61
.1

7.
68

31
.4

2
78

.5
4

48
.4

9
5.

89
4.

15 5.
76

Pa
tt
er
n
fr
eq
ue

nc
y

Figure C.5: Frequency of the different nano-patterns for methods that start with create
(calculated over 4077 methods)

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100

73
.9

2
1.

09

7
·1

0−
2

38
.7

6
27

.1
3

29
.5

60
.0

9
1.

71
10

.6
64

.6
4

15
.0

8
5.

86
46

.9
9

35
.7

3
4.

48 8.
59

3.
82

Pa
tt
er
n
fr
eq
ue

nc
y

Figure C.6: Frequency of the different nano-patterns for methods that start with to (calculated
over 3037 methods)

69

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100

4.
47

43
.5

3
0.

47
18

.4
4

5.
51

22
.9

6
38

.4
4

9.
45

21
.8

2
68

.2
1

8.
42 13

.1
9

86
.4

9
35

.9
5

1.
87 6.

08
1.

92

Pa
tt
er
n
fr
eq
ue

nc
y

Figure C.7: Frequency of the different nano-patterns for methods that start with visit (calculated
over 1925 methods)

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100

18
.2

8
64

.0
7

1.
31

34
.7

3
11

.6
4 25

.8
5

67
.4

2
11

.8 18
.5

4
55

.9
3

14
.8

8
14

.3
1

78
.6

9
38

.3
3

2.
35 7 5.

64

Pa
tt
er
n
fr
eq
ue

nc
y

Figure C.8: Frequency of the different nano-patterns for methods that start with remove
(calculated over 1915 methods)

70

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100
61

.4
3

0.
86

0.
26

14
38

.5
1

2.
64

53
.1

7
2.

05 4.
82

65
.9

2
7.

46
1.

65
40

.6
2

11
.2

9
0.

26 3.
96

0.
13

Pa
tt
er
n
fr
eq
ue

nc
y

Figure C.9: Frequency of the different nano-patterns for methods that start with has (calculated
over 1514 methods)

No
Pa
ra
m

No
Re

tu
rn

Re
cu
rs
iv
e

Sa
m
eN

am
e

Le
af

O
bj
ec
tC
re
at
or

Fi
eld

Re
ad
er

Fi
eld

W
rit
er

Ty
pe
M
an
ip
ul
at
or

St
ra
ig
ht
Li
ne

Lo
op
in
g

Ex
ce
pt
io
ns

Lo
ca
lR
ea
de
r

Lo
ca
lW

rit
er

Ar
ra
yC

re
at
or

Ar
ra
yR

ea
de
r

Ar
ra
yW

rit
er

0
10
20
30
40
50
60
70
80
90

100

30
.6

32
.0

2
1.

25
27

.4
8

7.
05

37
.2

47
.6

4
27

.0
3

28
.6

4
50

.8
5

20
.1

6
76

.8
1

82
.8

7
49

.4
2

7.
85 10

.0
8

8.
12

Pa
tt
er
n
fr
eq
ue

nc
y

Figure C.10: Frequency of the different nano-patterns for methods that start with read (calcu-
lated over 1121 methods)

71

Appendix D

Review of the samples

This appendix contains the overviews of the judgement of the different samples that
were taken from the outlier and non-outlier groups. There are three tables in total. The
first contains the judgement of the random samples using the Høst and Østvold method
with the original attribute rule set [14]. The second table contains the judgement of the
random samples using the Høst and Østvold method with the narrowed attribute rule
set (see 4.2.5). The third table contains the judgement of the random samples using our
FCA method. Table D.1 describes the meaning of the different columns used.

72

Table D.1: Meaning of the different columns

Column name Explanation
G The group the sample belongs to. Can have the value

O for Outlier group or C for Control group. It was
unknown at the time of judgement in which group a
sample belonged to.

Cor Whether or not the judgement was correct according
to the sample group. For instance: if a method name
was judged invalid and the sample belonged to the
outlier group it was marked as correct and vice versa.
It was also marked correct if the method name was
deemed valid and it belonged to the control group.

Project The project the sample belongs to.

Class The fully qualified name of the class. The packages
have been abbreviated to their first letter.

Method The name of the method including the types of its
arguments.

Appr Whether or not we judged the method name to be
appropriate and in line with its implementation.

Cert The certainty of our judgement. 1 meaning that we
are certain. 2 meaning we are not that certain.

Reason A brief description why we came to this conclusion.
Sometimes just contains a description of the method
implementation.

73

Table D.2: Result of the review of the Høst and Østvold method using the orgininal attribute rule set

G Cor Project Class Method Appr Cert Reason

C Yes Antlr a.DefineGrammarSymbols getHeaderActionLine(String) Yes 1 Method finds the line a so called
header token is contained. If it is
there it will return the line number

C Yes FitNesse f.d.Loop setupDecorator(array) Yes 2 Does a setup using the input vari-
ables

O Yes FitNesse f.s.HashWidgetConversionTestMapConstructor setMap(Map(String,String)) No 2 This method is called set but re-
turns a boolean. Furthermore,
nothing gets actually set

O No FitNesse f.w.VirtualEnabledPageCrawlerTest setUp() Yes 2 A normal test setup method
C Yes XML-Batik o.a.b.a.s.JAuthenticator run() Yes 1 Method of anonymous inner class
O Yes XML-Batik o.a.b.b.AbstractGraphicsNodeBridge getBBox() No 2 Lazy loaded get but does a lot of

operations
O No XML-Batik o.a.b.c.d.CSSOMSVGColor getBlue() Yes 1 Lazy loaded get
O No XML-Batik o.a.b.c.p.Parser parseRule() Yes 2 A parser method that does dis-

patches to other parser methods
C Yes XML-Batik o.a.b.d.s.SVGOMImageElement newNode() Yes 1 Create a new node, should use the

verb
C Yes XML-Batik o.a.b.d.s.SVGOMRect getWidth() Yes 2 Normal getter
O Yes XML-Batik o.a.b.e.a.i.c.PNGImageEncoder encode(RenderedImage) No 1 This is a very large method (approx

200 lines). Should be spilt up in
multiple methods that can be more
precise

C No Com Col o.a.c.c.CursorableSubList listIterator() No 2 The name itself is not a verb. In
this case an iterator is created and
returned

C No Com Col o.a.c.c.FastArrayList add(Object) No 1 This add lets you insert a element
on a certain location. Normally add
will add it to the collection without
specifying a location

C No Com Col o.a.c.c.m.AbstractHashedMap convertKey(Object) No 2 This only converts the key if its
null it then changes the value to an
newly initialized, empty object

C Yes Com Col o.a.c.c.m.ListOrderedMapValuesView size() Yes 2 Return the size by calling the su-
per.getSize() method

O No Com IO o.a.c.i.f.TrueFileFilter accept(File,String) Yes 2 The method always returns true but
this is implied by the class name
and explained in the java doc. Fur-
ther more, it only follows an inter-
face. No way of getting around this
name

C Yes Tapestry o.a.t.c.Foreach prepareForRender(IRequestCycle) Yes 2 Method initializes some variables
C Yes Tapestry o.a.t.s.i.LinkFactoryImpl setRequestCycle(IRequestCycle) Yes 2 Normal setter
C Yes Tapestry o.a.t.v.AbstractNumericValidator buildRangeMessage(IFormComp,Numb,Numb) Yes 2 Dispatches build call to other build

methods depending on the content
of the passed in variables

O No Ant o.a.t.a.f.ClassConstants read() Yes 1 Method does a lot but in essence
It reads the complete stream with
which the class got initialized and
initializes all the constants

Continued on next page

74

Table D.2 Result of the review of the Høst and Østvold method using the orgininal attribute rule set – continued from previous page

G Cor Project Class Method Appr Cert Reason

O Yes Xalan-J o.a.x.x.c.u.TypeCheckError toString() No 2 Breaks the contract of toString().
Creates objects if not initialized
while toString() should not change
program state (according to the
Java Language Spec)

O Yes Xalan-J o.a.x.x.u.IntegerArray toIntArray() No 1 Also copies the internal int array to
a new int array

C Yes Xerces-J o.a.x.d.RangeImpl selectNode(Node) Yes 1 Sets internal variables of object to
the selected node

O No Xalan-J o.a.x.d.r.DTMNamedNodeMap getLength() Yes 1 A lazy initialized length getter.
This is allowed because the map it-
self is unmodifiable

O Yes Xalan-J o.a.x.s.EmptySerializer setMediaType(String) No 2 Nothing actually happens âĂę but
then again, the class is called Emp-
tySerializer

O Yes Xalan-J o.a.x.u.XMLStringDefault getChars(int,int,char,int) No 1 Actually does a copy. Nothing is re-
turned.

C Yes Xalan-J o.a.x.a.FilterExprIterator setInnerExpression(Expression) Yes 2 Set a value on this object but also
sets the parent on the object that is
passed into the method

O No Xalan-J o.a.x.d.XPathResultImpl getStringValue() Yes 1 This method checks whether the re-
turn type is a string. If not it will
throw an exception otherwise it will
try to return the value as a string.

C Yes ArgoUML o.a.m.m.CoreHelperMDRImpl removeTaggedValue(Object,String) Yes 2 Method removes a value if it is ex-
isting

C No ArgoUML o.a.m.m.ModelManagementHelperMDRImpl getAllModelElementsOfKind(Object,Object) No 2 Method does a lot. Tries to do a
lookup of all the models of a certain
type. Does much more things then
a get should do

O No ArgoUML o.a.u.d.s.u.UMLClassDiagram getActionComposition() Yes 1 Again lazy loaded variable
O No ArgoUML o.a.u.d.s.u.UMLClassDiagram getActionPackage() Yes 1 Method returns a field. If the field

is not initialized it will get loaded
(laze load). ArgoUML seems to use
a lot of laze loading

C Yes ArgoUML o.a.u.SuffixFilter accept(File) Yes 2 Method return a boolean if the
given file contains the right file ex-
tention

C Yes Castor o.c.c.CacheAcquireException printStackTrace(PrintWriter) Yes 2 Method prints the whole stack trace
of the exception

C Yes Castor o.c.j.c.DataSourceDescriptor getIdentity() Yes 2 Just a normal getter
C Yes Castor o.c.j.c.JdoConfDescriptor getXMLName() Yes 2 Just a normal getter
O Yes Castor o.c.p.p.RelationCollection toArray(array) No 1 Method copies the given array into

a new array of possible a different
length

O Yes Castor o.e.c.p.FieldMolder setValue(Object,Object,ClassLoader) No 2 A big setter, it is a very generic set-
ter that can set almost all fields

O Yes JEdit org.gjt.sp.jedit.jEdit getViews() No 1 Method creates a array of all the
views. Apparently view is a linked
list of views.

C Yes Hibernate o.h.p.e.BasicEntityPropertyMapping toColumns(String,String) Yes 1 Basic conversion method to convert
the given input to another format
(in this case an String[])

C Yes JBoss o.j.e.p.c.j.k.JDBCDB2IdentityValLocalCreateCommand executeInsert(int,PrepStat,EntEnterprCon) Yes 2 Executes the insert command on
the given prepared statement

Continued on next page

75

Table D.2 Result of the review of the Høst and Østvold method using the orgininal attribute rule set – continued from previous page

G Cor Project Class Method Appr Cert Reason

O No JBoss o.j.i.r.m.s.SkeletonStrategyExceptionWriter write(OutputStream,Object) Yes 1 Writes the exception to a output
stream. If a writer method is set it
calls that instead of doing it itself

O Yes JBoss o.j.m.l.BasicLoaderRepository getResources(String,ClassLoader,List) No 1 Bad method. It creates resource
urls and puts it in a list. This list
is not returned but is a method pa-
rameter

O No JBoss o.j.u.Classes getAttributeSetter(Class,String,Class) Yes 1 Returns the setter of a certain prop-
erty in a class

O No JBoss o.j.u.MuBoolean set(MuBoolean) No 2 Set the new value and returns the
old value

C No JBoss o.j.u.MuCharacter setValue(Object) No 2 Methods has a generic Object as in-
put variable and then checks the
class does casts and calls specific
values on this casted object to get
the right value

C No JikesRVM o.j.c.o.i.OPT_Instruction getPureUses() No 1 Always returns a new instantiated
object

C Yes JikesRVM o.j.c.o.i.OPT_Register append(OPT_Register) Yes 2 Appends the given element as next
element in the list

C Yes JikesRVM o.j.VM write(char) Yes 2 Low level routine to write a char to
the console or sys.err.out

C Yes JRuby o.j.a.BlockPassNode accept(NodeVisitor) Yes 2 An accept on a visitor
O Yes JRuby o.j.e.o.X509Cert set_issuer(IRubyObject) No 2 Does not set anything on the cur-

rent object but on a generator.
Returns the parameter which was
given to the method in the first
place without changing it

C Yes JRuby o.j.r.Frame setCallingZSuper(boolean) Yes 2 A normal setter
O Yes JRuby o.j.u.WeakIdentityHashMap get(int,Object) No 2 Method actually does a find by cal-

culating the hash and looking into
the correct bucket. The thing is âĂę
it needs to be called get because of
the map interface

O No Spring o.s.b.MutablePropertyValues isEmpty() Yes 2 Return whether or not a list is
empty

O Yes Spring o.s.j.e.a.AbstractConfigurableMBeanInfoAssembler setNotificationInfos(array) No 2 Converts the passed in array to an
array of a different type before set-
ting it

O No Spring o.s.w.b.EscapedErrors getGlobalErrors() Yes 2 Returns a list of escaped errors
C Yes Spring o.s.w.c.r.AbstractRequestAttributes executeRequestDestructionCallbacks() Yes 2 Calls a run method on all elements

in its callback list
O Yes Spring o.s.w.s.v.x.XsltView getSourceTypes() No 2 Creates a new array of the source

types every time it is called.
C Yes TranQL o.t.s.j.b.TimeBinding getSQLType() Yes 2 Return the type of the binding

(which is a constant defined in
java.sql.types)

O No TranQL o.t.s.ReturnedValueTypeDetectorVisitor visit(Query,Object) Yes ? 1 It looks like a visit on a node but it
is hard to understand the intention
of the method

76

Table D.3: Result of the review of the Høst and Østvold method using the narrowed percentiles set

G Cor Project Class Method Appr Cert Reason

O Yes JEdit c.m.x.XmlParser setAttribute(String,String,int,String,String,int) No 1 Methods adds an attribute
C No FitNesse f.r.RawContentResponderTest getResultsUsing(String) No 1 Method does more things then just

returning a value, it changes state
C Yes FitNesse f.r.r.ExecutionLog addException(Throwable) Yes 1 Adds the exception to the list
O No JBoss j.m.MBeanNotificationInfo toString() Yes 1 Implementation of toString using

StringBuffer
C Yes XML-Batik o.a.b.a.s.JSVGViewerFrameUserAgent getPixelToMM() Yes 1 Delegates to another method
C Yes XML-Batik o.a.b.c.d.CSSOMSVGColorAbstractComponent getRectValue() Yes 2 Method always throws exception

when called but must be imple-
mented because of interface

C Yes BSF o.a.b.u.CodeBuffer getConstructorExceptions() Yes 1 Normal getter
C Yes Com Col o.a.c.c.b.TreeBidiMap isRed(TreeBidiMapNode,int) Yes 1 Wrapper method
O No Com Col o.a.c.c.m.CompositeMap isEmpty() Yes 1 Iterates over all the maps in its com-

position and returns false if one of
these is not empty

O No Com Col o.a.c.c.StaticBucketMap size() Yes 2 Gets the size by iterating over the
different buckets

O No Com Http o.a.c.h.HostConfiguration getProtocol() Yes 2 Delegated to other object in a null
safe way to return the protocol

O Yes Com Lang o.a.c.l.StringUtils getLevenshteinDistance(String,String) No 1 Method calculates the distance
C Yes Tapestry o.a.t.e.DeferredScriptImpl toString() Yes 1 Normal toString
C Yes Tapestry o.a.t.f.LabeledPropertySelectionModel setOption(Object) Yes 1 Normal setter
C Yes Ant o.a.t.a.t.c.Equals setTrim(boolean) Yes 1 Normal setter
C Yes Ant o.a.t.a.t.Input setValidargs(String) Yes 1 Normal setter
C Yes Ant o.a.t.a.t.o.j.JJTree setVisitorException(String) Yes 2 Methods sets the passed in value

into a map
O Yes Ant o.a.t.a.t.o.NetRexxCTraceAttr getValues() No 1 Methods instantiates a new String[]

everytime it is called
C Yes Xalan-J o.a.x.t.ElemForEach getTemplateMatch() Yes 2 Returns this object
C Yes Xalan-J o.a.x.x.d.NodeSortRecord compareDocOrder(NodeSortRecord) Yes 1 Return types an int
O Yes Xerces-J o.a.x.i.d.x.XSSimpleTypeDecl getActualValue(Object,ValCon,ValInf,boolean) No 2 Very large method.
C Yes Xerces-J o.a.x.j.v.ValidatorHandlerImpl endPrefixMapping(String) Yes 2 Wrapper method. But what does it

end?
C Yes Xalan-J o.a.x.d.r.s.SAX2DTM2TypedAttributeIterator next() Yes 2 Returns the int of the next node
C Yes ArgoUML o.a.m.AbstractStateMachinesHelperDecorator getAllPossibleSubvertices(Object) Yes 1 Delegates to implementation
O Yes ArgoUML o.a.p.XmlInputStream isLastTag(int) No 1 Method not only returns a boolean

but also changes inner state of the
object

O No ArgoUML o.a.u.ProjectBrowser clearDialogs() Yes 1 Disposes all the windows that are
owned by the object

C Yes ArgoUML o.a.u.d.s.u.SelectionComment createEdgeLeft(MutableGraphModel,Object) Yes 2 Method actually does not create
anything itself but delegates a call
to another object (which is passed
in as variable)

C No ArgoUML o.a.u.r.u.RESequenceDiagramDialog buildEdge(String,FigClassifierRole,FigClassifierRole,Object) No 2 Not only the edge is build, a lot of
operations are done in this method

O Yes ArgoUML o.a.u.u.b.s.PropPanelTransition getTriggerActions() No 1 Method creates a new array and re-
turns this

O No Castor o.c.u.c.ConcurrentHashMap clear() Yes 1 Clears the underlying map imple-
mentation

C Yes Castor o.e.c.b.d.DescriptorJClass addClassDescriptorOverrides(boolean) Yes 2 Code generator. Adds the @Over-
ride annotation and extend behav-
ior

Continued on next page

77

Table D.3 Result of the review of the Høst and Østvold method using the narrowed percentiles set – continued from previous page

G Cor Project Class Method Appr Cert Reason

C Yes JEdit o.g.s.j.s.KeywordMap getNonAlphaNumericChars() Yes 1 Delegates to another object
O Yes Hibernate o.h.e.JoinSequence getFromPart() No 1 Instantiates a new object and re-

turns this
C Yes Hibernate o.h.m.Collection getOrderBy() Yes 1 Normal getter
C Yes Hibernate o.h.u.IdentityMap toString() Yes 1 Delegates toString to internal map
O No JBoss o.j.e.p.CMPFilePersistenceManager isStoreRequired(EntityEnterpriseContext) Yes 1 Checks whether or not changes were

made
O No JBoss o.j.m.i.u.m.StreamDemux setFrameSize(short) Yes 1 Set the frame size in a synchronized

way
O No JBoss o.j.m.r.e.CompositeQueryExp setMBeanServer(MBeanServer) Yes 1 Set the server for all the underlying

query exponents
O Yes JBoss o.j.p.c.Proxies getInvocationHandler(Object,Class) No 2 Method only returns existing vari-

able in some cases, otherwise it in-
stantiates a new object

O Yes JBoss o.j.s.a.s.UsernamePasswordLoginModule getUsernameAndPassword() No 2 Method gets the username and pass-
word by calling other callback func-
tions after which the retrieving of
the name and password continue.
Bad return type btw

O Yes JBoss o.j.s.s.j.SRPCacheLoginModule getUserInfo() No 2 Same as with the getUsernameAnd-
Password method

O Yes JBoss o.j.s.ServiceDynamicMBeanSupport getMBeanInfo() No 1 Instantiates a lot of objects to re-
turn the info

C Yes JBoss o.j.w.t.s.CustomPrincipalValveUserPrinicpalRequest getDecodedRequestURI() Yes 1 Delegated getter
C Yes JikesRVM o.j.c.o.i.Call getClearResult(OPT_Instruction) Yes 2 Delegates to another object also

does an assert
C Yes JikesRVM o.j.c.o.i.OPT_Register setVolatile() Yes 2 Adds volatile as flag.
C Yes JikesRVM o.j.c.o.OPT_Diamond getTaken() Yes 1 Normal getter
C Yes JRuby o.j.a.ToAryNode accept(NodeVisitor) Yes 1 Clean implementation of visitor ac-

cepts method
O Yes JRuby o.j.e.o.x.PEM write_DSAPriKey(Writer,DSAPriKey,String,array) ? Method does a lot
O Yes JRuby o.j.e.o.x.X509_STORE_CTX get1_issuer(array,X509AuxCertificate) ? No 1 Don’t understand what happens
O Yes JRuby o.j.u.Glob getNames() No 2 Method gets all the files and then

iterates them for their names and
only if they match a pattern.

O Yes ASM o.o.a.ClassReader accept(ClassVisitor,array,boolean) No 2 Very large method (1000 lines).
Does a lot of things. Actually looks
like it does manually visits on mem-
bers

O No Spring o.s.j.s.r.ResultSetWrappingSqlRowSet getRow() Yes 1 Can throw exception when there is
a problem with the SQL

C Yes Spring o.s.o.h.LocalSessionFactoryBean setLobHandler(LobHandler) Yes 1 Normal setter
O No Spring o.s.o.h.LocalDataSourceConnectionProvider getConnection() Yes 1 Can throw exception
O No Spring o.s.t.i.DelegatingTransactionAttribute equals(Object) Yes 1 Delegates equals call. The class

is called DelegatingTransactionAt-
tribute

O No Spring o.s.u.AutoPopulatingList lastIndexOf(Object) Yes 1 Delegated setter
O No Spring o.s.v.BindException getFieldError() Yes 1 Delegated getter
O No Spring o.s.w.p.u.PortletRequestWrapper getParameterMap() Yes 1 Delegated getter
C Yes TranQL o.t.d.AbstractNode isOnlyChild() Yes 1 Normal check whether its an only

child
C Yes Polyglot p.t.Package_c toType() Yes 2 Method comes from inherited inter-

face, always return null

78

Table D.4: Result of the review of the FCA method

G Cor Project Class Method Appr Cert Reason

C No Ant o.a.t.a.t.MacroInstance addText(String) No 1 Method does not add anything but
just sets the text attribute

O No Ant o.a.t.a.t.GenerateKey createDname() Yes 1 Method does some checks whether
the object can get created. Other-
wise throws a runtime exception.

O No Ant o.a.t.a.t.o.Cab createExec() Yes 1 Method just instantiates a new ob-
ject and returns this newly created
instance

O No Ant o.a.t.a.t.XSLTProcessParam getName() Yes 1 Method does a null check. If the
field that will be returned is null it
throws a runtime exception.

O No Antlr a.BaseAST addChild(AST) Yes 1 Method adds the child to the exist-
ing child list or otherwise it adds it
to a new list

C Yes ArgoUML o.a.u.d.c.u.FigClassifierRole getLineWidth() Yes 1 Just a normal getter
O Yes ArgoUML o.a.u.d.s.u.FigInstance getMinimumSize() No 2 Methods calculates the minimum

size instead of just returning a value
C No ArgoUML o.a.u.u.b.s.UMLTransitionTriggerList getPopupMenu() No 1 Method always instantiates a new

object. Create would be a better
name

O No ArgoUML o.a.u.u.ActionGenerateAll isEnabled() Yes 1 Method just checks whether a cer-
tain condition is met

C Yes BCel o.a.b.c.Field accept(Visitor) Yes 1 Method / class implements default
Visitor pattern

C Yes BCel o.a.b.c.AccessFlags isStatic() Yes 1 Methods checks whether the static
flag is set

C Yes Castor o.c.j.e.SQLTypeConverters convert(Object,String) Yes 1 Method(s) convert values from one
type of boxed primitive to another

O No Castor o.e.c.n.u.URILocationImpl getReader() Yes 2 Lazy loaded get. If the needed ob-
jects are not yet initialized then
these are first initialized

C No Commons Collections o.a.c.c.FastArrayList addAll(int,Collection) No 1 JavaDoc already has a give a way:
Insert all of the elements in the
specified Collection at the specified
position in this list

O No Commons Collections o.a.c.c.SequencedHashMap getEntry(int) Yes 1 Returns a value at a certain posi-
tion in the Map

O No Commons Collections o.a.c.c.l.AbstractLinkedListLinkedListIterator getLastNodeReturned() Yes 2 Return the node that is currently re-
tained by the object. Nothing spe-
cial except it can possibly throw an
exception

O Yes FitNesse f.r.t.PageHistoryResponderTest addDummySuiteResult(File) No 2 The method instantiates a lot of
objects. Create would be better
suited. But then again, this is a test
method.

O Yes FitNesse f.w.SymbolicPage getData() No 2 The method changes state on the
object it returns before it actually
returns it

O Yes FitNesse f.r.r.f.CompositeFormatter getErrorCount() No 2 Methods iterates throw an ob-
ject list and calls a getErrorCount
method on these object. The high-
est result is returned

Continued on next page

79

Table D.4 Result of the review of the FCA method – continued from previous page

G Cor Project Class Method Appr Cert Reason

O Yes Hibernate o.h.m.DenormalizedTable createForeignKeys() No 1 There is a code smell here. The
method is called create but does
not return anything. Instead it iter-
ates a list and calls another method
called createForeignKeys which ac-
tually does return a key.

O No Hibernate o.h.c.PersistentList getOrphans(Serializable,String) Yes 2 Method delegates to another static
getOrphans() method

O No Hibernate o.h.j.AbstractBatcher getResultSet(CallableStatement,Dialect) Yes 2 Method returns a result set but also
add the result set to a list of result
sets that need to be closed later

C Yes Hibernate o.h.c.PersistentBag toArray() Yes 1 Before it converts the array to an
array it does a lazy initialization

O No Hibernate o.h.p.Printer toString(array,array) Yes 1 Method iterates over a collection
and calls other to..String methods
to collect the total string

O No JBoss o.j.p.c.ProxyImplementationFactory createConstructor() Yes 1 Method creates a byte-code con-
structor implementation

O Yes JBoss o.j.d.XSLSubDeployer createService() No 2 Method does not return the created
service instance, it initializes it

O Yes JBoss o.j.m.SpyXAException getLinkedException() No 1 Method always creates a new excep-
tion

C Yes JBoss o.j.i.CorbaORBService getSSLPort() Yes 1 Just a normal getter
C No JBoss o.j.m.i.o.OILServerIL getTemporaryQueue(ConnectionToken) No 1 Not only returns the temporary

queue but also connects to the
queue

O No JBoss o.j.e.p.c.j.b.JDBCEntityBridge2 remove(EntityEnterpriseContext) Yes 1 Removes the passed in context from
all underlying fields

O Yes JBoss o.j.h.j.HANamingService setClientSocketFactory(String) No 2 Method instantiates a new factory
class. The parameter passed in is
only used to set the name of the fac-
tory class

O Yes JBoss o.j.s.Main setServerSocketFactory(String) No 2 Same as the setClientSocketFac-
tory(). Method uses passed in vari-
able to instantiate a new factory us-
ing threadlocal classloader

C Yes JEdit o.g.s.j.g.VariableGridLayout getLayoutAlignmentY(Container) Yes 2 Always returns 0.5f. Methods needs
to have this name because of imple-
mented interface. The improvement
could be here not to return the 0.5f
value but to return a constant

O No JEdit o.g.s.u.PropertiesBean getPropertyDescriptors() Yes 1 Result is delegated to other object
C Yes JHotDraw C.i.d.c.h.DiamondFigureGeometricAdapter getShape() Yes 1 Method delegates to another

method (which is inherited)
O No JikesRVM o.j.c.o.i.OPT_AssemblerBase getDisp(OPT_Operand) Yes 2 Return a value but needs a type cast

for it
C Yes JikesRVM o.j.c.o.i.OPT_AssemblerBase getIndex(OPT_Operand) Yes 2 Same as the getDisp method
O No JikesRVM o.j.c.o.OPT_AnnotatedLSTNode getMonotonicStrideValue() Yes 2 Returns the value depending on the

internal state of an object
C No JikesRVM o.j.c.o.i.MIR_CondBranch2 indexOfBranchProfile1(OPT_Instruction) No 2 Method always returns the value 2

but next to that can potential fail
depending on the passed in method
variable

Continued on next page

80

Table D.4 Result of the review of the FCA method – continued from previous page

G Cor Project Class Method Appr Cert Reason

C Yes JRuby o.j.e.o.SSLContext initialize(array) Yes 2 Initializes the internal state of the
object and returns itself. Strange
thing: nothing is done with the
passed in variable

C Yes JRuby o.j.a.v.AbstractVisitor visitOptNNode(OptNNode) Yes 1 Method delegates to an general visit
method

C No Spring o.s.w.s.m.BaseCommandController checkCommand(Object) No 2 Method name is very general but
the implementation is very concrete.
The method should be called some-
thing like: isCommandCompatible

C Yes Spring o.s.c.s.DefaultMessageSourceResolvable equals(Object) Yes 1 Normal equals. Uses an external ob-
ject to do a null safe equals on the
internal field

C Yes Spring o.s.w.p.HandlerExecutionChain getHandler() Yes 1 Normal getter
C Yes Spring o.s.b.f.c.ConstructorArgumentValuesValueHolder setValue(Object) Yes 1 Normal setter
O Yes Struts o.a.s.c.t.WebTable setSortable(boolean) No 2 Not only changes the internal

boolean value but also changes, if
needed, the implementation of the
internal model

C Yes Tapestry o.a.t.a.DefaultAssetFactory createAsset(Resource,String,Locale,Location) Yes 2 Creates a new ExternalAsset and
returns this object. Strange thing,
there are more parameters passed
into this method than there are
used

C Yes Tapestry o.a.t.s.SpecFactory createBindingBeanInitializer(BindingSource) Yes 1 Creates and returns an object
O Yes Tapestry o.a.t.f.LabeledPropertySelectionModel getValue(int) No 2 Conditional get? Depending on the

value of the passed in index a result
value is returned

C Yes Tapestry o.a.t.s.ExtensionSpecification toString() Yes 1 Normal toString using a String-
Buffer

O Yes TranQL o.t.e.ManyToManyCMR get(InTxCache,CacheRow) No 1 Creates a new object and returns
this

C No Xalan-J o.a.x.x.t.SmartTransformerFactoryImpl newXMLFilter(Source) No 2 The name new is used but it should
have been create

O No Xalan-J o.a.x.d.r.DTMStringPool removeAllElements() Yes 1 Removes all elements from the inter-
nal lists

C Yes Xerces-J o.a.x.i.x.XMLSchemaValidatorXPathMatcherStack addMatcher(XPathMatcher) Yes 1 Add the passed in matcher into the
existing array. Array gets increased
if the size is not big enough

C No Xerces-J o.a.x.i.x.t.XSDAttributeTraverser checkDefaultValid(XSAttributeUseImpl) No 2 Method validates default values.
Should have been called validate

C Yes Xerces-J o.a.x.d.CoreDocumentImpl getErrorChecking() Yes 1 Normal getter
O No Xerces-J o.a.x.d.NodeImpl getNodeNumber() Yes 2 Method delegates call
C Yes Xerces-J o.a.h.d.HTMLLinkElementImpl getRel() Yes 2 Method delegates call
C Yes XML-Batik o.a.b.e.a.i.r.SpecularLightingRed copyData(WritableRaster) Yes 1 Copies it data onto the passed in

object
C Yes XML-Batik o.a.b.s.s.JSVGComponentBridgeUserAgentWrapperQuery run() Yes 2 Anonymous inner class with imple-

mentation of run. Nothing strange
is happening there

81

