
Deriving metric thresholds for the
SIG Test Code Quality Model: A

benchmarking study.

Mohammed el Mochoui
m.mochoui@gmail.com

July 16, 2017, 198 pages

Academic supervisor: Jurgen Vinju, Jurgen.Vinju@cwi.nl

Daily supervisor: Pepijn van de Kamp MSc., p.vandekamp@sig.eu

Host organisation/Research group: Software Improvement Group, www.sig.eu

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Master Software Engineering

http://www.software-engineering-amsterdam.nl

mailto:m.mochoui@gmail.com
mailto:Jurgen.Vinju@cwi.nl
mailto:p.vandekamp@sig.eu
www.sig.eu
http://www.software-engineering-amsterdam.nl

Abstract

Software testing is an essential part of the software development process of which the scientific literature
has shown that doing well leads to higher throughput and production code productivity. Assessing test
code quality remains an open challenge. Together with the SIG, we will estimate threshold values for
various test code metrics in order to get one step closer to an accurate test code quality model. We
investigate in which way our code corpus should be split for estimating threshold values, which test code
metrics are too complex and redundant and finally we estimate the threshold values for the metrics. We
have concluded that separating production from test code, as well as Java and CSharp code is advisable
because these code types are statistically very different from each other for certain metrics. In addition,
we have seen that the Assert/CC, Assert/Branch and the Test:production code metrics show the least
correlation with other metrics. Finally, we estimated threshold values and tested them for their ability
to distinguish between well tested and poorly tested projects.

1

Contents

1 Introduction 6
1.1 Problem statement . 6
1.2 Research questions . 6
1.3 Research method . 7
1.4 Contributions . 8

2 Background 9
2.1 Terminology . 9

2.1.1 Metrics . 9
2.1.2 SIG Tools . 9

2.2 Statistics . 10
2.2.1 Skewness & Kurtosis . 10

2.3 Threshold benchmarking . 12
2.3.1 Alves method . 12
2.3.2 Baggen method . 12

3 Related work 13
3.1 Athanasiou’s test code quality model . 13
3.2 SIG Test code quality model . 13

4 Dataset description 15
4.1 Introduction . 15
4.2 Method . 15
4.3 Dataset preparation . 15

4.3.1 Querying . 15
4.3.2 Filtering . 16

4.4 Frequencies . 17
4.5 Sample data points . 17

4.5.1 Unit level . 17
4.5.2 File level . 18
4.5.3 System level . 18

4.6 Analysis . 18
4.6.1 Under-representation . 18
4.6.2 Potential threats to validity . 20

4.7 Conclusion . 20

5 Exploratory data analysis 22
5.1 Introduction . 22
5.2 Research method . 22
5.3 Hypothesis . 23
5.4 Results . 23

5.4.1 Unit level . 23
5.4.2 File level . 24
5.4.3 System level . 26

5.5 Analysis . 29
5.5.1 Interesting values . 29
5.5.2 Distributions . 30

2

CONTENTS

5.6 Conclusion . 31

6 Comparative analysis 32
6.1 Introduction . 32
6.2 Hypotheses . 33
6.3 Method . 33
6.4 Java - CSharp production code compared . 33

6.4.1 Production . 33
6.4.2 Test code . 35

6.5 Production and test code compared . 36
6.5.1 Java . 36
6.5.2 CSharp . 37

6.6 Conclusion . 38
6.6.1 Threats to validity . 38

7 Correlation analysis 40
7.1 Introduction . 40
7.2 Hypotheses . 40
7.3 Method . 41
7.4 Results: File metrics . 41

7.4.1 Java . 41
7.4.2 CSharp . 42

7.5 Analysis: File metrics . 43
7.6 Results: System metrics . 43

7.6.1 Java . 43
7.6.2 CSharp . 44

7.7 Analysis: System metrics . 45
7.8 Conclusion . 45

7.8.1 Threats to validity . 46

8 Threshold analysis 47
8.1 Introduction . 47
8.2 Method . 47
8.3 Risk profiles Assert/Branch & Assert/CC metrics . 48

8.3.1 Assert/branch . 48
8.3.2 Assert/CC . 49
8.3.3 Analysis . 50

8.4 Risk profiles Assert/Branch & Assert/CC metrics for filtered files 51
8.4.1 Assert/branch . 51
8.4.2 Assert/CC . 53
8.4.3 Analysis . 54

8.5 Risk profiles Unverified Branchpoints & Unverified CC 54
8.5.1 Unverified Branchpoints . 54
8.5.2 Unverified CC . 56
8.5.3 Analysis . 57

8.6 Risk profiles Unverified Branchpoints & Unverified CC Filtered 57
8.6.1 Unverified CC . 59
8.6.2 Analysis . 60

8.7 Thresholds for Assert/Branch & Assert/CC metrics . 61
8.7.1 Assert/branch . 61
8.7.2 Assert/CC . 62
8.7.3 Analysis . 63

8.8 Thresholds for unverified branchpoints and unverified CC. 63
8.8.1 Unverified branchpoints . 63
8.8.2 unverified CC . 64
8.8.3 Analysis . 64

8.9 Thresholds for unverified branchpoints and unverified CC. (filtered) 65
8.9.1 Unverified Branchpoints . 65
8.9.2 Unverified CC . 65

3

CONTENTS

8.9.3 Analysis . 65
8.10 Thresholds for Test:production code ratio metric . 66

8.10.1 Analysis . 67
8.11 Conclusion . 67

8.11.1 Threats to validity . 67

9 Validation 68
9.1 Comparative Analysis . 68

9.1.1 Conclusion . 68
9.2 Correlation Analysis . 69

9.2.1 Conclusion . 69
9.3 Threshold study . 69

9.3.1 Projects . 69
9.3.2 Metrics . 70
9.3.3 Star scores . 70

10 Conclusion 72
10.1 Future work . 72

Bibliography 73

Appendix A Comparative analysis results 75
A.1 Java production - CSharp production . 75

A.1.1 Unit level . 75
A.1.2 File level . 76
A.1.3 System level . 78

A.2 Java test - CSharp test . 80
A.2.1 Unit level . 80
A.2.2 File level . 81
A.2.3 System level . 83

A.3 Java production - Java test . 85
A.3.1 Unit level . 85
A.3.2 File level . 86
A.3.3 System level . 88

A.4 CSharp production - CSharp test . 90
A.4.1 Unit level . 90
A.4.2 File level . 91
A.4.3 System level . 93

Appendix B Validation: Comparative analysis 96
B.1 Java production - CSharp production . 96

B.1.1 Unit level . 96
B.1.2 File level . 101
B.1.3 System level . 110

B.2 Java test - CSharp test . 118
B.2.1 Unit level . 118
B.2.2 File level . 123
B.2.3 System level . 129

B.3 Java production - Java test . 136
B.3.1 Unit level . 136
B.3.2 File level . 141
B.3.3 System level . 148

B.4 CSharp production - CSharp test . 154
B.4.1 Unit level . 154
B.4.2 File level . 159
B.4.3 System level . 166

Appendix C Validation: correlation analysis 173
C.1 File level . 173

4

CONTENTS

C.1.1 CSharp . 179
C.2 System level . 186

C.2.1 Java . 186
C.2.2 CSharp . 192

5

Chapter 1

Introduction

Software testing is an essential part of the software development process [1] and as much as 30-50% of
the time invested in a project goes into testing [2]. Testing is done primarily to find defects in the current
system, to pinpoint where these defects are located [3], and to make it possible to modify the system and
add innovations without breaking parts of the system [4]. Preliminary literature shows that production
code that is exercised by test code affected by test smells is more defect-prone [5]. The literature has
also shown that high test code quality leads to higher throughput, the number of resolved issues per
month divided by the KLOC of the system, and a higher productivity in production code [6]. Therefore,
maintaining high quality test code is essential.

Assessing test code quality remains an open challenge [1]. Also, research has shown that certain
source code metrics are correlated with test code effectiveness, making them a suitable candidate for a
test code quality model [7]. This has led to several test code quality models being developed, for example
the one described by Athanasiou [6]. The SIG has also ventured into developing a model that assesses
test code quality. This research is an extension of that model, to get one step closer to a model that can
be used to assess test code quality.

1.1 Problem statement

We observe assumptions made in previous research, that test and production code exhibit different
characteristic properties, which leads to separation of these two code types during analysis. In addition,
we also see that, for example in the SIG maintainability model [8], Java and CSharp code are described
as being very similar. We want to test the assumption that include both production code and test
code, and both Java code and CSharp code in the corpora that we will use to benchmark threshold
metrics for the test code quality model is wrong. In the remainder of this study, we refer to including
the different code types in these corpora, as we just described, as combining the different code types:
Java and CSharp, and Production code and Test code. These assumptions need to be substantiated, as
incorrectly combining different types of code can lead to inaccurate assessment models.
Second, the metrics used in the SIG test code quality model have been scientifically substantiated through
analysis conducted by the SIG, but have not yet been calibrated. It has not been determined how the
values of these metrics are interpreted, which must be done in order for the model to function as an
accurate measurement tool for test code quality.
Finally, we need to provide some substantiation that the information given by these new metrics is not
the same as metrics that have been researched before and are simpler to calculate, such as SLOC, CC,
or the number of assert statements. When the new metrics provide the same information as these simple
metrics, it is difficult to justify why the model is using these more complex, new metrics rather than the
simple metrics that have already been the subject of more research.

1.2 Research questions

To address these issues, we divide the study into three parts. These three parts are briefly described
below followed by a listing of the questions it answers.

6

CHAPTER 1. INTRODUCTION

Comparative analysis

In this section of the study, we will focus on the assumptions made in previous research, and will challenge
these assumptions. We will focus on the following research questions:

• Can a training corpus containing both Java and CSharp projects be used to arrive at accurate
thresholds for metrics measuring test quality?

• Can a training corpus containing both Production and Test code be used to arrive at accurate
thresholds for metrics measuring test quality?

Correlation study

With our correlation study, we want to find out whether the new metrics make sense and whether they
give us new information relative to other metrics. We calculate the pairwise linear correlation for each
of the metrics. If there is strong linear correlation then we do not see a reason to extend a quality model
with the extra metric since there does not seem to be any additional information captured by that metric
compared to the correlating metric.

1. Is there pairwise linear correlation between the metrics used in the test code quality model?

Threshold study

In our Threshold study, we will calibrate the model to find out in what way we should interpret the values
that measure the metrics to accurately asses the test code. In section 2 we introduce this model and
the relevant metrics, including the Assert/Branch metrics and the production/test code ratio metrics.
Based on our correlation study, we will select metrics that we think are potentially the most suitable
for the model and conduct our threshold study on them. To derive the threshold metrics, we will use
the Alves [9] and Baggen [10] methodologies, described in previous literature. We will introduce these
methodologies in section 2.

These metrics can be analyzed at the unit, file, and system levels, where unit is defined as to a
function or method in Java or CSharp systems [8]. For each metric, we need to consider whether the
metric value at the file level is equivalent to summing the metric values of all the units it contains, or
whether they should be measured individually at the file level. The same applies at the system level. An
example would be the number of lines of code in a unit, file, or overall system.

We answer the following questions about the selected metrics:

1. What is the risk profile of these metrics at the file level?

• What percentiles of code do we use for estimating our risk profile?

2. What are the system-wide threshold values of these metrics, to arrive at a 5-star score?

3. Which metrics are not compatible with the Alves and Baggen methods and require a deviation
from them?

1.3 Research method

Comparative study

To find out what the test code qualities look like, we will perform a statistical analysis on a dataset
supplied from the proprietary system corpus of the SIG. We also take a look at the distributions of
these systems. We do this at the unit, file and system level. Next, we use these statistical values and
distributions to compare the code types, in order to conclude in what ways these types of code differ and
if it is advisable to combine the code types to derive metric thresholds or to separate them.

Correlation study

To find out if our test code metrics provide us with different information than the simple metrics such as
SLOC, CC and the number of assert statements, we will calculate the Pearson correlation between these
metrics. We chose the Pearson method because it describes the linear correlation between two variables
[11]. This linear correlation describes the extent in which one variable can be used to estimate the value

7

CHAPTER 1. INTRODUCTION

of another variable. High predictability indicates that the two variables provide us with largely the same
information and that one of them is redundant. We will then interpret these correlation values after
which we can conclude which metrics are redundant and provide us with the same information.

We interpret variables with high correlation as redundant because we believe that this high pre-
dictability between these two variables indicates a high change of the existence of an underlying factor
that explains both metrics, or that one explains the other. To definitively rule this out, we would need
to examine the metrics with high correlation, to see if there is also a plausible causation that causes this
high correlation. This is beyond the scope of this study.

Threshold study

To determine the threshold values, and threshold percentiles, we will focus on two research methods that
have been established in previous studies. Using the threshold derivation method described by Alves [9],
we will create risk profiles at the unit or file level. On the system level we use the Baggen method [10]
to estimate a star score.

1.4 Contributions

We divide the contributions of our research in the three main parts of our research. Our research makes
the following contributions:

Comparative study

1. We offer insights into what production and test code looks like using statistics.

2. We test the assumptions in previous studies where the corpora consisted of either production code
or test code, but consisted of both Java code and CSharp code.

3. We offer a statistics based answer whether to include both production code and test code, and
both Java code and CSharp code in the corpora that we use to benchmark threshold metrics for
the test code quality model.

Correlation study

1. We introduce modifications to the SIG test code quality model based on the linear correlations
that the metrics exhibit with metrics that are easier to compute.

Threshold study

1. We show the cumulative distribution of the metrics on unit and file level and choose the appropriate
thresholds at which to estimate the metric values.

2. We provide threshold values and risk profiles for the selected metrics, which can be used in the test
code quality model to assess test code. The selected metrics will be mentioned in the introduction
of chapter 8. The selection of the metrics is based on chapters 6 and 7.

8

Chapter 2

Background

2.1 Terminology

In this section we will explain the terminology the will be used in this research. These will mainly be
software metrics that we are researching.

2.1.1 Metrics

LOC

In this study, we use the LOC metric as defined in the SIG’s maintainability model [8]. We define the
LOC metric as all lines of code that are not blank or comment lines.

Unit

We also use the definition from the SIG’s maintainability model for the unit metric [8]. A unit is
equivalent to a function or method in Java or CSharp systems.

Cyclomatic complexity (CC)

The Cyclomatic Complexity describes the complexity of a unit. We calculate it by counting the number
of control flow statements and adding 1 to this. For Java and CSharp, the control flow statements
include: if, case, ?, ??, &&, ‖, while, for, foreach and catch [12].

Branch point

A branch point is one of the statements mentioned above and is thus a synonym for control flow state-
ments. Thus, the number of branch points in a unit is equal to the number of CC minus 1.

Assert

An assertion is defined in the Java docs as an expression by which we can test assumptions about our
code [13]. By examining the results of the tool we used for this research, we found that the tool does
not distinguish between assert statements from Java and CSharp itself, and assert statements defined in
3rd party libraries.

2.1.2 SIG Tools

SAT

The SAT, Software Analysis Tool, is the tool developed by the SIG and used for analyzing systems at
the unit, file, and system level. This is the tool used to generate the data for this study.

SAW

The SAW, Software Analytics Warehouse, is the database in which all analysis data generated by the
SAT is stored. The corpus used in this study was queried from this database.

9

CHAPTER 2. BACKGROUND

2.2 Statistics

2.2.1 Skewness & Kurtosis

To describe our dataset and compare the different categories to find out which types of code can be
analyzed together and which should be taken independently we will look at the distribution of the
data, among other things. We will use the Kurtosis and Skewness metrics to compare the distributions,
in addition to the Lorenz curves and the Gini coofiecient. We are mainly interested in the Skewness
and Kurtosis because these metrics describe clear properties of the distributions, which can be easily
compared between different datasets.

Skewness

The Skewness is a metric that defines the symmetry of a distribution. This metric can be positive,
negative or 0.

Figure 2.1: An example of a perfect symmetric distribution. [14]

In figure 2.1 we see an example of a perfectly symmetric distribution. It is characterized by having
a mean and median that are equal to each other [14].

In the case of a non-symmetric distribution, we experience one of the two following situations.

Figure 2.2: A left skewed asymmetrical distribution. [14]

In figure 2.2 we see an example of an asymmetrical left skewed distribution. We speak of a Skewness
to the left if the mean is less than the median [14].

10

CHAPTER 2. BACKGROUND

Figure 2.3: A right skewed asymmetrical distribution. [14]

In figure 2.3 we see an example of an asymmetrical right skewed distribution. We speak of a Skewness
to the right if the mean is greater than the median [14].

The author of the article summarizes this as: “generally if the distribution of data is skewed to the
left, the mean is less than the median, which is often less than the mode. If the distribution of data is
skewed to the right, the mode is often less than the median, which is less than the mean.” [14].

Kurtosis

The Kurtosis is a value that describes the tailedness of a distribution. The interpretation of this metric is
defined as follows: “its only unambiguous interpretation is in terms of tail extremity; i.e., either existing
outliers (for the sample Kurtosis) or propensity to produce outliers (for the Kurtosis of a probability
distribution)” [15].

Figure 2.4: Examples of distributions with their Kurtosises. (Red: infinity, Blue: 2, Black:
0) [16]

Distributions can be divided into three different categories when it comes to them Kurtosis, depending
on the excess Kurtosis. This is the Kurtosis from which 3 is subtracted.

Mesokurtic

A Mesokurtic distribution has an excess Kurtosis of 0, and thus a Kurtosis value of 3. An example of a
distribution that falls under the Mesokurtic category is the normal distribution.

Leptokurtic

A Leptokurtic distribution has a positive excess Kurtosis which means that this distribution produces
more outliers. An example of a distribution that falls under the Leptokurtic category is the exponential
distribution.

11

CHAPTER 2. BACKGROUND

platykurtic

A Platykurtic distribution has a negative excess Kurtosis and has thinner tails, implying that this
distribution produces fewer outliers. An example of a distribution that falls under the Platykurtic
category is the Bernoulli distribution. ‘

2.3 Threshold benchmarking

2.3.1 Alves method

In this section, we examine a methodology for determining thresholds using benchmarking data as
presented by Alves [9]. This is also the methodology used by SIG to determine metrics thresholds for
their models. The methodology is characterized by the following three features:

• Data-driven: It uses real world code corpora.

• Robust: The outcome is not influenced by outliers.

• Pragmatic: The method should be easy to repeat.

The Alves paper [9] states that previous research has derived metric thresholds for test code quality
models that were primarily based on:

• Experience

• Metric analysis

• Error models

• Cluster Techniques

The method advocated by this research is a benchmark-based method to derive thresholds. It consists
of the following steps:

1. metrics extraction: Metric values are calculated over the code. A weight is assigned to this metric
that is based on the number of LOC. This weight will be used for normalizing.

2. weight ratio calculation: The weight ratio is calculated for each method.

3. The weights of all units are aggregated, The result of this step is a weighted histogram.

4. weight ratio aggregation: A matrix is derived by sorting the metric values and taking the maximal
value as a representation for a certain percent of the code.

5. thresholds derivation: A threshold value is determined by picking a percentage and reading from
this graph what metric corresponds to it.

2.3.2 Baggen method

The Baggen paper [10] provides a high-level overview of SIG’s method for code analysis and quality
consulting focused on software maintainability. This includes calibrating metrics scores over a 5-star
system at the system level. We do this by sorting the systems from a low to high score per metric, and
then dividing them into the following percentiles: 5, 35, 65, 95 and 100. This ensures that systems that
score 5 stars for a given metric are among the 5% highest scoring systems for that metric. Determining
thresholds in this way has a number of advantages, including [10]:

• It is based on data, and therefore objective.

• It can nearly be automated, which allows for easy updates on the thresholds of a model.

The SIG uses this method to benchmark their models yearly.

12

Chapter 3

Related work

3.1 Athanasiou’s test code quality model

In Athanasiou’s study [6], a model for test code quality is proposed. This model consists of the following
metrics:

• Code Coverage

• Assert/CC Ratio

• Assert density (The amount of assert statements divided by the total Test-LOC)

• Directness (The percentage of production code that is directly called by the test suite)

• Maintainability of test code

These metrics map to the subcategories completeness, effectiveness and maintainability. The aggre-
gation of the properties per sub-characteristic is performed by acquiring the average.

This model is benchmarked using the Baggen method [10]. On a system level the metric score is
expressed on a 5 star system based on the (5, 35, 65, 95) percentiles. On metric levels, the risk profiles
are derived using the Alves method [9], and are sorted into the categories low, moderate, high and very
high. The boundaries for these risk groups are defined as the 70th, 80th and 90th percentiles.

3.2 SIG Test code quality model

SIG has also designed a model by which test code quality can be assessed. A Test Quality model with 3
base characteristics and 6 system properties was defined. The model is defined to address the following
problems related to software testing:

• Changing not well-tested code risks the introduction of bugs.

• Having knowledge of which code parts are not well tested helps to localize the risk.

• Having knowledge of how not-well tested the code is helps assessing the amount of risk.

In table 3.1 we can see the conclusions drawn during the studies done by the SIG to design the model.

13

CHAPTER 3. RELATED WORK

Metric Conclusion

Code coverage

Higher code coverage results in less defects per line of code.

Higher code coverage results in a faster defect resolution

Mutation coverage Mutation coverage is a good indicator of test effectiveness.

Assert/McCabe ratio

The ratio of assert and CC is a good indicator of test effectiveness

Higher assert/McCabe ratio results in a higher throughput

(solved issues/KLOC) and productivity (solved issues/per dev).

Software consultants have indicated that they do not agree

with measuring the assert statements against the CC,

since this would mean that getters and setters have to be tested as well.

Maintainability of test code Maintainability of test code has no relation with the issue reslution time

Test smells

Code smells in the test code indicate

test code with a high likelihood to contain bugs.

Code smells in the test code do not indicate a high likelihood

for bugs in production code.

Test code / Production code Ratio

The test:production code ratio metric can be used as a predictive metric

for code coverage.

This metric does not call to action and has no straightforward solution.

Asserts / Branch points Ratio
As a solution for the problem that software consultants dislike the use

of the Assert/CC metric, the amount of branch points can be used instead.

Proportions of test case types This is an industry wide accepted concept, that has no thresholds yet..

Table 3.1: Summary of the results of the studies done leading up to the SIG test code
quality metric.

The model consists of the following metrics:

• Test:Production code Ratio

• Asserts/Branch points Ratio

• Code Coverage

• Proportions of test case types

• Mutation coverage

The model consists of the following three sub-characteristics:

• Completeness. (Test:production ratio, code coverage)

• Effectiveness. (Assert:branch point ratio, Mutation coverage)

• Efficiency. (Test type proportion)

All these metrics are measured on a 5 star scale, that SIG also used in their other models [8]. The
model is not yet in production and the metrics have yet to be calibrated through a benchmarking study.
In Section 8, we will take a look at some of these metrics and benchmark them to find out the associated
thresholds.

14

Chapter 4

Dataset description

4.1 Introduction

In this section, we would like to introduce the reader to the corpus used for this study, and to explain
the creation of this corpus. In addition, we try to find the threats to validity that are introduced by
the use of this corpus for this study. We will do this using randomly selected samples in which the data
points are anonymized. We will also motivate in what way we filtered the data points. The questions
this section answers can be summarized as:

• How was this corpus established and prepared?

• What are the frequencies of each category of code?

• Are there code categories that are underrepresented?

• What potential threats to validity can we identify from this analysis?

Answering these questions lays the foundation for this research and provides the reader with informa-
tion about the creation of the dataset that will be used in all experiments. Finally, this section serves as
a basis for the following sections in which we delve deeper and attempt to answer the research questions.
In this section, we anticipate on this and use the insights we gain through this experiment to adjust
our expectations of the result. The corpus we use consists of Java and CSharp units, files and systems
measured by the SAT, and stored and queried from the SAW.
Because of the linear interpolation used in section 6, all metric values in this study are presented as
floats. Integer metrics might be presented as halves, which is technically incorrect, but does not impact
the end result of this study because assessing real world projects with integer metric values works the
same as ceiling the result to the nearest integer. This float representation will be used throughout this
research.

4.2 Method

We used Python [17] and Pandas [18] to calculate the frequency table which we present in Table 4.1.
We also used Pandas to sample from our dataset to present the sample data points in Tables 4.2, 4.3
and 4.4. We then used the frequency table 4.1 to calculate the ratios between the corresponding code
categories.
By observing the data and looking at choices made in preparing the dataset we identified potential
threats to validity. We used the ratios between the corresponding code categories in Table 4.5 and the
absolute numbers in Table 4.1 to see if any categories were underrepresented.

4.3 Dataset preparation

4.3.1 Querying

The dataset is sourced from the SIG and stored in the SIG data warehouse. The SIG data warehouse is
a database which stores the metric values on a unit, file and system level. We have queried the data on
a unit, file and system level from the data warehouse with a Python script using the PyMongo database.
The criteria set for querying the data are:

15

CHAPTER 4. DATASET DESCRIPTION

• Language: Java or CSharp

• Type: Production or Test

• Snapshot date: Greater than 01-09-2020.

We select only the snapshots taken after introducing the test code quality model where the number
of branch points and the number of direct asserts are also measured.

4.3.2 Filtering

We stored this data in three different CSV files, for unit, file and system data separately. We read this
data into a Python Pandas DataFrame in the Jupyter Lab environment. Using these data frames, we
were able to inspect the data for strange values.

General filtering

We have found a number of systems with an incorrect snapshot date that is in the future. We filtered
these out of the dataset, as we do not know if the rest of the metrics are also incorrect. We additionally
filtered out all units, files and systems that do not have both production and test SLOC. This ensures
that we analyze for the same systems and code at the unit, file and system level.

Unit level

At the unit level, we filtered out the default methods. The SAT defines default unit as all code that is
not in a unit but is in a class. Often these are the instance variables. These are measured by the SAT
as units with a SLOC value of N/A. We filtered these out because we interpreted the default units to
not be units, but code outside the units.

File level

At the file level, we converted all N/A values for the direct assert metric to 0. At the implementation
level, it was decided that the SAT assigns an N/A value to all files for which no corresponding test file
was found. This essentially means that the file was not tested at all, or tested by not adhering to the
naming conventions of test files. We therefore interpret the absence of the corresponding test file as 0
direct asserts.

System level

Also at the system level, we converted the N/A values for the direct assert metric to 0. This is according
to the same reasoning as for files.

16

CHAPTER 4. DATASET DESCRIPTION

4.4 Frequencies

Units Files Systems

Total 10525855 1637630 1001

Production 9130799 1286979 1001

Test 1395056 350651 1001

Java 5184720 783232 517

CSharp 5341135 854398 493

Java production 4420262 598932 517

Java test 764458 184300 517

CSharp production 4710537 688047 493

CSharp test 630598 166351 493

Table 4.1: Amount of data points per category in the dataset.

Table 4.1 shows the numbers by category in our dataset. At a unit level, we see that 88% of our units
are production units. Deriving metric thresholds on a dataset that combines production and test code
using this dataset introduces problems if we find out that production and test code differ significantly.
The results would be largely influenced by production code, and only a small part by test code.
We see that we have about 52% more Java systems than CSharp systems in our test code, despite the
fact that Java and CSharp unit and file counts differ little from each other. In fact, we see that we
have more CSharp files than Java files. CSharp units and files are distributed over a smaller number of
systems than Java units and files.

4.5 Sample data points

4.5.1 Unit level

type lang SLOC CC branchpoints

0 production Java 14.0 1.0 0.0

1 production Java 3.0 1.0 0.0

2 test Java 3.0 1.0 0.0

3 production Java 3.0 1.0 0.0

4 production CSharp 1.0 1.0 0.0

Table 4.2: A random sample of 5 points of the unit level data.

In Table 4.2, we see 5 example data points from our unit-level dataset. At the unit level, we have 3
metrics: SLOC, CC and branch points. In addition, we also included the language and type of each unit
in our dataset. These are determined by the SAT while analyzing the Java projects.

17

CHAPTER 4. DATASET DESCRIPTION

4.5.2 File level

type lang SLOC CC branchpoints asserts direct asserts

0 test Java 469.0 31.0 0.0 27.0 0.0

1 test CSharp 67.0 9.0 2.0 0.0 0.0

2 production Java 33.0 2.0 0.0 0.0 0.0

3 production CSharp 24.0 9.0 0.0 0.0 0.0

4 production Java 49.0 14.0 9.0 0.0 0.0

Table 4.3: A random sample of 5 points of the file level data.

At the file level, we see the same metrics recurring as at the unit level. In addition, we see two new
metrics that are not measured at the unit level. At the file level, the number of assert statements per
file is also stored. In addition, for each file, the number of direct asserts measured is stored.

4.5.3 System level

type lang SLOC CC branchpoints asserts direct asserts

0 production Java 125249.0 26605.0 13208.0 0.0 0.0

1 test CSharp 810.0 80.0 2.0 18.0 0.0

2 production CSharp 66664.0 14760.0 4363.0 550.0 4707.0

3 production Java 5671.0 1087.0 361.0 0.0 0.0

4 test Java 3435.0 436.0 18.0 249.0 0.0

Table 4.4: A random sample of 5 points of the system level data.

Systems level metrics are also measured independently by the SAT. We chose to aggregate the file level
data to arrive at the system level data. This aggregation is done by summing the metrics. Since all code
in a system resides in a file, aggregation by summation is correct for the above metrics. This is not true
for aggregation from unit level to file level, as not all code in a file is in units. We will see examples of
this in section 5. Examples of code pieces that reside in files but not in a unit are instance variables and
import statements.
The decision to aggregate the metrics rather than use the SAW data at the system level fell due to
the lack of a documentation regarding querying the data from the SAW, making this a problematic
process. In addition, implementation decisions in the SAT, such as the complexity of excluding default
units at the file level but including them at the system level, leads to the SAW system level data is not
a correct summation from file level to system level. Since we could not find any motivation for these
implementation choices, which we also could not find in previous literature, we adhere to the aggregation
of file level to system level by summation.

4.6 Analysis

In this section, using the data delivered above, we attempt to answer the questions posed in the intro-
duction. In particular, we will focus on the potential under-representation of a code category and the
threats to validity that we can identify from the dataset or its creation.

4.6.1 Under-representation

By studying Table 4.1, we can answer the question of whether there are code categories that are under-
represented. We see that we have a lot less data points on all test categories. The ratios between the
corresponding code categories are listed in Table 4.5.

18

CHAPTER 4. DATASET DESCRIPTION

Unit File System

Production : Test 6.55 3.67 1

Java : CSharp 0.97 0.92 1.05

Java production : Java test 5.78 3.25 1.05

CSharp production : CSharp test 7.47 4.14 1.05

Table 4.5: Ratios between corresponding code categories.

In table 4.5 we see the ratio’s between the different code categories. On a system level we see ratio’s
between the code categories close to 1. This is because we have only queried systems from the SAW that
contain both production and test code, and these ratios are based on the number of data points, in this
case systems. On a unit and file we see higher ratio’s between all production and test categories. If the
ratio between production and test code is too large, production code will be dominant in the threshold
calculations. In the event that production and test code individually provide very different thresh-
old values for the metrics, the combination of these two categories will cause the combined threshold
values to be much closer to production code than test code, making it inaccurate for evaluating test code.

Units Files Systems

Total 71302778.0 126547634.0 126547634.0

Production 59261827.0 86109590.0 86109590.0

Test 12040951.0 40438044.0 40438044.0

Java 33531240.0 60827283.0 60827283.0

CSharp 37771538.0 65720351.0 65720351.0

Java production 28439295.0 41777028.0 41777028.0

Java test 5091945.0 19050255.0 19050255.0

CSharp production 30822532.0 44332562.0 44332562.0

CSharp test 6949006.0 21387789.0 21387789.0

Table 4.6: Amount of SLOC per category in the dataset.

In the Alves and Baggen method the data points are normalized by their SLOC [9, 10] to derive ac-
curate threshold metrics. Table 4.6 displays the distribution of the SLOC among the different categories.
Here we see that almost all ratio values on a unit and file level have gone down compared to the ratios
in table 4.5, which reduces their impact on the combined threshold values. Nevertheless, the values at
unit and file level are still high and undesirable for the combined threshold values, as the result is more
influenced by the bigger variable.

Unit Level System

Production : Test 4.92 2.13 2.13

Java : CSharp 0.89 0.93 0.93

Java production : Java test 5.59 2.19 2.19

CSharp production : CSharp test 4.44 2.07 2.07

Table 4.7: Ratios between corresponding code categories based on SLOC.

19

CHAPTER 4. DATASET DESCRIPTION

4.6.2 Potential threats to validity

Production-test frequency ratio

The large difference in the number of production and test units and files is a potential threat to validity,
depending on whether production and test code differ significantly from each other. This would mean
that production code exerts a great deal of influence on the outcome results when production and test
code are analyzed in combination to determine threshold values.

Missing data

Entering 0 values with the direct assert metric in case the corresponding test file is missing is a choice
that carries a threat to validity. It can affect the final results since the 0 values do not properly indicate
whether testing was done but there are no direct asserts or no tests were written at all. By entering 0
values in the direct asserts metric, we give the impression that the corresponding test files were found,
but that they do not contain assert statements.

SAT implementation of systems

Finally, systems occur in our data set that have a data point for CSharp and Java. This is then a system
that consists of both CSharp and Java. There is no minimum threshold defined for the size of a system.
Thus, a system that consists largely of CSharp code and a single file with 5 lines of code Java, will be
measured as two independent systems, one for CSharp and one for Java with 5 lines of code. This gives
the impression that there is a Java system with 5 lines of code, where in reality this is a CSharp project
with a small piece of Java code. In table 4.8 we see the 5 smallest systems in our dataset, that illustrate
this problem.

SLOC CC Branchpoints asserts Direct asserts

0 20.0 4.0 0.0 0.0 0.0

1 20.0 4.0 0.0 0.0 0.0

2 20.0 4.0 0.0 0.0 0.0

3 21.0 4.0 0.0 0.0 0.0

4 21.0 4.0 0.0 0.0 0.0

Table 4.8: The 5 smallest systems in the dataset.

4.7 Conclusion

In Section 4.3, we discussed the steps we took to arrive at the dataset that will be used for the Analysis
during this study. We first queried the appropriate data from the SIG’s database and then filtered these
values to remove unwanted data points correct undesired values.
We divided our dataset into code categories and calculated their frequencies. These can be found in
Table 4.1.
Using this frequency table, we calculated the frequency ratios between corresponding code categories.
These frequency ratios are listed in 4.5. From this table we are able conclude that there is a large
difference between production and test code and that production code is dominant when the data set is
used for determining thresholds, without separating production and test code.
By analyzing the above data, we identified the following threats to validity:

• In the case of a difference between production and test code, combined analysis of these two code
categories will yield results where production code exerts a more dominant influence. This threatens
the validity of the estimated threshold metrics.

• By filling in 0 values for missing values in the direct assert metric, the information about the
existence of the associated test file is lost. This threatens the validity of the estimated threshold

20

CHAPTER 4. DATASET DESCRIPTION

metrics because the original data has been altered without proof of the correctness of this alteration.
The modifications of the original data influence the threshold metric estimations.

• Handling missing production or test code on a system level by filling in the values with 0 causes
the thresholds to be lower than they really are. This influences the threshold metrics the same way
the previous threat does.

• The way the SAT implements a system gives the impression that certain systems are tiny, when in
fact they are only part of the overall system. This also affects the results of statistical calculations,
as more system data points with small values are included in the data set. This is a threat to the
validity of the conclusions drawn on a system level by interpreting the term system differently from
other literature [19]. Conclusions drawn in this study on a system level might not be applicable or
comparable to conclusions drawn in other literature, because the terminology is different.

21

Chapter 5

Exploratory data analysis

5.1 Introduction

In this section we will describe our dataset. We have made the choice to describe all the data together
as we do not yet see any reason to split the data. In the previous literature [8, 19] we have seen no
demonstrable differences between test and production code, or between Java and CSharp code. We
describe the dataset so that the reader develops an understanding of the data used for the analysis in
this study. We will look at how data points translate to code with focus on edge cases. The questions
this section answers can be summarized as:

• What does the frequency distribution of our dataset look like?

• Is the mean representative for this dataset?

• How do interesting data points translate into code?

The distributions of the datasets are important factors in determining the threshold values according
to the Alves [9] and Baggen method [10]. In addition, in the next section we will find out whether
CSharp, Java, production and test code can be combined when determining threshold values. For this,
we want to know if the average can be used as a starting point for comparing these code categories.
There again, the distribution of datasets plays a major role. Finally, we also want to be able to translate
these data points into real code, to paint a picture towards what these values mean in code.
We will qualitatively describe the distributions using histograms in which we can visually see the distri-
bution. Quantitatively, we will look at the Skewness and kurtotis values, which describe the asymmetry
and tailedness of the distribution. Using the Kurtosis and Skewness, we can conclude how representative
the mean is of the data points in the dataset.

5.2 Research method

We will answer these questions by generating tables that display descriptive statistics (quantiles, mean,
min, max, Skewness and kurtosis) for the data. The quantile values give us the maximum value for each
metric at this quantile of data points. We use the Skewness and Kurtosis metrics to describe the the
shape of the distribution. In addition, we also present histograms of the data with which we visualize
this distribution.
By calculating and presenting descriptive statistical metrics in the table and visualizing the frequency
distribution through histograms we describe the distribution. With this distribution we can conclude
whether the average is a representative value. We then use these histograms and tables to identify in-
teresting values, after which we can look at how these translate into code.

We chose to analyze the entire dataset and we do not split the dataset by code category. This is
because we have not yet confirmed nor disproved the assumption that production, test, Java and CSharp
code differ from each other. Since we do not yet know if these categories differ from each other, and how
they differ from each other, we do not split the dataset. In Chapter 6, we will look at whether and how
the categories differ from each other.

22

CHAPTER 5. EXPLORATORY DATA ANALYSIS

5.3 Hypothesis

Hypothesis 1. We expect skewed long tail distributions on a unit and system level.
In previous research we have seen that at the unit and system level these distributions have been observed
[19]. We expect a high Skewness value and that small values dominate the dataset.

Hypothesis 2. We expect the mean to not be representative for this dataset.
We expect this based on the dominance of the small values and the influence that the large outliers have
on the mean in the skewed long tail distributions [19].

5.4 Results

5.4.1 Unit level

Tables

min 5% 25% 50% 75% 95% max mean skew kurt

SLOC 0.0 0.0 1.0 3.0 7.0 24.0 15549.0 6.77 104.44 74632.49

CC 1.0 1.0 1.0 1.0 1.0 5.0 1084.0 1.73 37.78 5294.09

Branchpoints 0.0 0.0 0.0 0.0 0.0 4.0 1083.0 0.73 37.78 5294.09

Table 5.1: Descriptive statistical metrics for Units in the dataset.

SLOC Frequency

3.0 2642094

0.0 1867374

1.0 1530671

4.0 656239

5.0 402449

CC Frequency

1.0 8276125

2.0 918243

3.0 479346

4.0 272342

5.0 163333

Branchpoints Frequency

0.0 8276125

1.0 918243

2.0 479346

3.0 272342

4.0 163333

Table 5.2: Frequency tables for unit level metrics.

Plots

Figure 5.1: Histogram of unit level metrics.

23

CHAPTER 5. EXPLORATORY DATA ANALYSIS

5.4.2 File level

Tables

min 5% 25% 50% 75% 95% max mean skew kurt

SLOC 0.0 8.0 16.0 34.0 76.0 265.0 68502.0 77.27 52.99 10378.40

CC 0.0 1.0 2.0 5.0 11.0 41.0 5822.0 12.09 30.80 2518.59

Branchpoints 0.0 0.0 0.0 0.0 3.0 22.0 4349.0 4.99 30.55 2179.50

asserts 0.0 0.0 0.0 0.0 0.0 11.0 5430.0 2.39 81.02 17771.86

Direct asserts 0.0 0.0 0.0 0.0 0.0 4.0 2766.0 1.06 51.34 8385.31

Table 5.3: Descriptive statistical metrics for Files in the dataset.

SLOC Frequency

9.0 41175

10.0 40784

12.0 39732

11.0 38860

8.0 38408

CC Frequency

2.0 355492

3.0 169787

4.0 146923

5.0 111011

6.0 94835

Branchpoints Frequency

0.0 995624

1.0 129851

2.0 92648

3.0 62379

4.0 49159

Asserts Frequency

0.0 1293361

1.0 73990

2.0 48915

3.0 30652

4.0 26988

Direct asserts Frequency

0.0 1518875

2.0 13044

4.0 10739

3.0 10545

5.0 8151

Table 5.4: Frequency tables for File level metrics.

24

CHAPTER 5. EXPLORATORY DATA ANALYSIS

Plots

Figure 5.2: Histogram of file level metrics.

25

CHAPTER 5. EXPLORATORY DATA ANALYSIS

Figure 5.3: Histogram of file level metrics zoomed in.

5.4.3 System level

Tables

min 5% 25% 50% 75% 95% max mean skew kurt

SLOC 34.0 835.05 7004.00 26323.0 86216.50 568331.15 3749092.0 125294.69 5.42 38.21

CC 6.0 104.35 997.00 4008.5 13074.50 87049.00 650534.0 19603.92 5.91 45.84

Branchpoints 0.0 23.80 278.25 1197.0 4628.00 31507.80 430953.0 8088.08 8.45 97.57

asserts 0.0 3.45 96.00 512.5 2223.75 19460.85 122049.0 3870.39 5.96 43.64

Direct asserts 0.0 0.00 3.25 123.5 825.00 6815.85 86309.0 1712.70 8.01 76.47

Table 5.5: Descriptive statistical metrics for Systems in the dataset.

26

CHAPTER 5. EXPLORATORY DATA ANALYSIS

SLOC Frequency

431.0 4

32759.0 4

15591.0 4

14278.0 3

33236.0 3

CC Frequency

63.0 4

66.0 3

43.0 3

5216.0 3

49.0 3

Branchpoints Frequency

15.0 9

27.0 5

14.0 5

48.0 5

13.0 4

Asserts Frequency

0.0 31

4.0 9

2.0 9

10.0 8

7.0 8

Direct asserts Frequency

0.0 232

1.0 11

22.0 7

8.0 7

13.0 6

Table 5.6: Frequency tables for System level metrics.

Plots

Figure 5.4: Histogram of system level metrics.

27

CHAPTER 5. EXPLORATORY DATA ANALYSIS

Figure 5.5: Histogram of system level metrics zoomed in.

28

CHAPTER 5. EXPLORATORY DATA ANALYSIS

5.5 Analysis

In this section we will analyze the tables, and we will demonstrate how values we think are interesting
translate into code.

5.5.1 Interesting values

Unit level

At the unit level, we primarily consider the minimum for the SLOC metric to be interesting. This is
an interesting value because these units are the smallest methods we encounter in our dataset, and the
value is also 0. Because a method declaration is in itself a SLOC, we are very interested in what a 0
SLOC method looks like.

public interface UserDeta i l s extends S e r i a l i z a b l e {

boolean isAccountNonLocked () ;

. . .

}

Listing 5.1: An example of a method with 0 SLOC [20].

In code snippet 5.1 we see an example unit with 0 SLOC. The SAT does not count lines of code
for interface methods, so all interface methods have a SLOC value of 0. According to the Oracle Java
tutorials, interface methods are standard abstract methods [21]. For this reason, we did not filter these
units from the dataset.
In the frequency table 5.1, we see that 3 SLOC is the mode at the unit level. Since this is the most com-
mon value, we want to know what it looks like in code. We take a look at how this looks in a code example.

protected Use rDe ta i l s S e rv i c e g e tUs e rDe t a i l s S e r v i c e () {
return this . u s e rDe t a i l s S e r v i c e ;

}

Listing 5.2: An example of a method with 3 SLOC [22].

In code snippet 5.2 we see a getter that has 3 SLOC. The many getters and setters that Java and CSharp
contain cause the unit-level mode for SLOC to be 3.
Furthermore, we also see in the frequency table 5.1 that methods with 1 SLOC are common. This is
an interesting value, given that the method declaration is already a line in itself. We find out what a
method with 1 SLOC looks like.

public class Api {
public void doStu f f () {}

}

Listing 5.3: An example of a method with 1 SLOC [23].

In code snippet 5.3 we see that it is indeed a method without a body. Only the method signature is
counted in the number of SLOC for this unit.
For the remaining two metrics, we see no interesting values. The most common value is 1 CC, which
translates to methods that do not contain branch points. In code snippet 5.2 we see an example of this.

File level

At the file level, we find the minimum SLOC value to be interesting, as it is 0. We would expect this to
be an empty file.

29

CHAPTER 5. EXPLORATORY DATA ANALYSIS

/∗∗
∗ Licensed to the Apache Software Foundation (ASF) under one
∗ or more con t r i bu t o r l i c e n s e agreements . See the NOTICE f i l e
∗ d i s t r i b u t e d with t h i s work f o r add i t i ona l in format ion
∗ regard ing copyr i gh t ownership . The ASF l i c e n s e s t h i s f i l e
∗ to you under the Apache License , Version 2.0 (the
∗ ”License ”) ; you may not use t h i s f i l e excep t in compliance
∗ with the License . You may ob ta in a copy o f the License at
∗
∗ h t t p ://www. apache . org/ l i c e n s e s /LICENSE−2.0
∗
∗ Unless requ i red by a p p l i c a b l e law or agreed to in wr i t ing , so f tware
∗ d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expres s or imp l i ed .
∗ See the License f o r the s p e c i f i c language governing permiss ions and
∗ l im i t a t i o n s under the License .
∗/

Listing 5.4: An example of a file with 0 SLOC [24].

As we see in code snippet 5.4, this is indeed a file with 0 SLOC, since the file only contains a multi-line
comment.
We also see that files exist with 1 SLOC. This is remarkable because a class declaration by itself is 1
SLOC. We therefore examine whether this is a file with only a class declaration.

public class Other {}

Listing 5.5: An example of a file with 1 SLOC [25].

In code snippet 5.5 we see that our assumption is confirmed. All other values need no further explanation.

System level

At the system level, we want to take a look at what a system is according to the SAT. We want to
demonstrate that the SAT also registers parts of a system as a system, for this programming language.

SLOC CC Branchpoints asserts Direct asserts

system

Tensorflow 15979.0 2182.0 1098.0 845.0 797.0

Facebookyoga 17217.0 1073.0 370.0 7094.0 68.0

Table 5.7: Tensorflow and Facebook-Yoga system level metrics.

In table 5.7 we have extracted two systems from the dataset that highlight this issue. If we go to the
respective Github pages for Tensorflow [26] and Facebook-Yoga [27], we see that the languages measured
in the table do not account for the majority of the code. This gives the impression that the systems are
smaller than they really are, as only the CSharp and Java code is measured.

5.5.2 Distributions

We see skewed long tail distributions in the histograms at the unit, file and system levels. We see that
the majority of the data points show small values and that there are large outliers.
The large Skewness values we read in the tables 5.1, 5.3 and 5.5 confirm that we are indeed looking at
rightly skewed distributions. The high Kurtosis values are indicators on large outliers in the data. All
values greater than 2 or less than -2 are considered a significant deviation from a normal distribution
[28].
We can confirm the first hypothesis, we indeed see longtailed distributions at the unit and file level. We
substantiate this through the graphs we see in Figures 5.1, 5.2, and we see this even better in the zoomed
in file plot in figure 5.3. In addition, we support this through the Skewness and Kurtosis values we read
in Tables 5.1 and 5.3.
Because of the way our data is distributed, and the large outliers it contains, the mean differs significantly

30

CHAPTER 5. EXPLORATORY DATA ANALYSIS

from the median and mode. Distributions with high Skewness and Kurtosis values cause the mean to
become larger than the median. We can see this in the Tables 5.1, 5.3 and 5.5. In the frequency tables
5.2, 5.4 and 5.6 we see that the mean also deviates from the mode, which are mostly in the low values.
Because the mean differs from the mode and median, we find that the mean is not a representative
description of the dataset, and the value is too large. We confirm hypothesis 2.

5.6 Conclusion

We have described through Histograms and Tables the distribution of the dataset. We see skewed long
tail distributions in the histograms at the unit, file and system levels. We see that the majority of the
data points show small values and that there are large outliers.
In addition, we used frequency tables, along with the histograms and the statistically descriptive values,
to identify interesting values where we did not have a good idea how this translates to code. We explained
these with examples above.
We were able to accept hypothesis 1 based on viewing the histograms and the corresponding Kurtosis
and Skewness values indicating a rightly skewed long tail distribution.
Also, we were able to confirm hypothesis 2 by showing that the mean deviates from the mode and median.
Due to the large outliers, it is larger. Also, this is something characteristic of a distribution with high
Skewness and Kurtosis values.

31

Chapter 6

Comparative analysis

6.1 Introduction

Before moving on to deriving threshold values for the Test Code Quality Metrics, we will research how
to split the corpus. In the SIG’s maintainability study, we found that CSharp and Java projects were
analyzed together, with the assumption that these languages differ little from each other [8]. In the
Landman study [19], the claim was made that production and test code differed and all test code was
removed from the corpus for that study. We will try to challenge these two assumptions in the context
of determining threshold values.
Combining code categories can introduce problems for the accuracy of the threshold values, if the in-
dividual threshold values differ from each other. When the threshold values of the two code categories
separately are much different from each other, the combined threshold value will be somewhere in be-
tween. Depending on the number of data points, it will then be closer to one of the two languages. In
case one of the two code categories has more data points, the combined threshold value will be mainly
influenced by the dominant code category. In the case of a large difference between the individual thresh-
old values, this will cause the combined threshold value for the code category with fewer data points to
become less accurate.

We will focus on answering the following questions in this section:

• Can Java and CSharp projects be taken together to arrive at accurate threshold metrics?

• Can production and test code be taken together to arrive at accurate threshold metrics?

To answer the above questions, we will compare the distributions of the two code categories. We do this
by using the Gini coefficient and the Lorenz curves, which allows us to compare how fairly both code
categories are distributed. In addition, we will make cumulative percentile plots, which correspond to
the plots made for determining risk profiles in the Alves method [9]. These are both visual tools that
we will use to detect differences between the two code categories. We then calculate the maximum value
for each 10th percentile for the metric to compare between the two code categories, so that in this way
we can make a quantitative judgment about the difference in threshold values between the two code
categories. We will determine the main differences at the 70th, 80th, and 90th percentiles, as these are
common percentiles where many metrics show variability, as explained in the Alves method [9].
We chose to determine the maximum value for each 10th percentile instead of calculating the percentiles
that we can read in the percentile plots. We did this because the percentile plots are linearly interpolated,
which allows us to read values that cannot be found in our dataset. By calculating the maximum values
below a percentile, we only get values that are actually data points.
An improvement point on the methodology described above is to determine the threshold percentiles
based on the variability they show, as the methodology of Alves describes [9]. We chose to use fixed
percentiles, the 70th, 80th and 90th percentiles, for all metrics due to time constraints.

Due to the size of all the results, we have moved them to Appendix A. Below we have presented only
the tables we used to answer the above questions.

32

CHAPTER 6. COMPARATIVE ANALYSIS

6.2 Hypotheses

Hypothesis 1. We expect Java and CSharp code to yield to approximately the same threshold values.
We base our hypothesis on the assumption done in the Maintainability paper [8] and the fact that a
lot of the code constructs that exist in Java also exist in CSharp. They share the same defenition for a
branch point for example.

Hypothesis 2. We expect production and test code to yield different threshold values.
We base our hypothesis on the assumption done in the Landman paper [19] where the claim is made
that Test code has different characteristics from Production code.

6.3 Method

We started by splitting the data based on four code categories:

• Java production code

• Java test code

• CSharp production code

• CSharp test code

We stored these code categories in Python Pandas DataFrames for further analysis. Then we plot-
ted the Lorenz Curves for the code categories we want to compare. To compare Java and CSharp, we
compare Java production code with CSharp production code and Java test code with CSharp test code.
To compare Production code and CSharp code, we compare Java production code with Java test code
and CSharp production code with CSharp test code.
After plotting all Lorenz curves, for the same code categories, we plotted the percentile plots where the
code categories we want to compare are reflected in a plot. We created these percentile plots using the
method described in the Alves paper [9]. We have done this for each metric, at the unit, file and system
level. For each data point, we calculated a weight based on the number of SLOC. We then sorted all the
data points by the metric we wanted to plot and summed the weights cumulatively, giving the largest
data point the cumulative weight of 1.
Finally, we calculated the metric for each 10th percentile. We did this by querying the maximum value
in our dataset that falls below the cumulative percent value. We can then compare the percentile tables
we created for each metric for the two code categories. For this we calculate the difference, and this
ultimately allows us to conclude whether Java, CSharp, Production and Test code should be separated
when determining threshold values.

6.4 Java - CSharp production code compared

In this part of the analysis, we look for counter examples that show that the distributions between Java
and CSharp production code for certain metrics significantly, which results in different threshold values.
We present for the relevant metrics the tables for which each 10th percentile is the maximum metric over
the percentage of SLOC.

6.4.1 Production

Unit level

By studying the Gini values and the percentile plots, we see that the biggest difference between Java
and CSharp units is in the SLOC metric.

33

CHAPTER 6. COMPARATIVE ANALYSIS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production lines of code 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 70.0 2238.0

CSharp production lines of code 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

Differences 0.0% 133.33% 66.67% 55.56% 50.0% 47.06% 47.83% 38.89% 28.57% 93.57%

Table 6.1: Percentile values of Java production and CSharp production for the lines of code
metric on a Unit level.)

In table 6.1 we see that between the 50th and 90th percentiles there is a minimum difference of
47%, with the CSharp code being in units with at least 47% more SLOC. In absolute numbers, this
is not a large difference, but it can result in numerous Units coming into different risk profiles when
assessing systems at the unit level. This makes the calibration of the thresholds inaccurate, as we then
get thresholds that are between the accurate Java and CSharp thresholds.

File level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 829.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 10.0 1149.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 38.6%

Table 6.2: Percentile values of Java production and CSharp production for the asserts
metric on a File level.

In Table 6.2, we see large differences between the number of assert statements we find in files between
Java and CSharp production code. Whereas at least 90% of Java production code is in files with no
assert statements, at least 60% of CSharp production code sits within files with less than or equal to 1
assert statements. In Java, the 70th, 80th and 90th percentiles would not yield beneficial or usable risk
profiles, since all these values are 0.

System level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 2.0 3.0 8.0 30.0 100.0 421.0 1264.0 25081.0

CSharp production asserts 301.0 686.0 1676.0 2455.0 3567.0 5479.0 6907.0 10041.0 11276.0 21348.0

Differences ˜ ˜ 83700.0% 81733.33% 44487.5% 18163.33% 6807.0% 2285.04% 792.09% 17.49%

Table 6.3: Percentile values of Java production and CSharp production for the asserts
metric on a System level.

At the system level, this difference that we saw at the file level in Table 6.2 is further magnified. We can
see from the differences in table 6.3 at almost all percentiles that there is a clear difference between Java
and CSharp production code when it comes to the number of assert statements we can find in a system.

34

CHAPTER 6. COMPARATIVE ANALYSIS

6.4.2 Test code

Unit level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test lines of code 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 1592.0

CSharp test lines of code 7.0 11.0 16.0 23.0 31.0 47.0 80.0 126.0 188.0 3605.0

Differences 75.0% 83.33% 100.0% 130.0% 158.33% 193.75% 300.0% 350.0% 300.0% 126.44%

Table 6.4: Percentile values of Java test and CSharp test for the lines of code metric on a
Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test McCabe 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 122.0

CSharp test McCabe 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 358.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 400.0% 1500.0% 766.67% 193.44%

Table 6.5: Percentile values of Java test and CSharp test for the McCabe metric on a Unit
level.

In Tables 6.4 and 6.5, we see the differences between Java and CSharp test code for the SLOC and CC
metrics. We see large differences in both metrics, particularly in the 70th, 80th, and 90th percentiles.
Here we see clear differences that combined derivation of threshold values between Java and CSharp code
would lead to inaccurate results for the SLOC and CC metrics in test code.

File level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test lines of code 46.0 71.0 99.0 133.0 177.0 239.0 330.0 484.0 855.0 18933.0

CSharp test lines of code 53.0 86.0 126.0 178.0 253.0 367.0 558.0 901.0 1854.0 68502.0

Differences 15.22% 21.13% 27.27% 33.83% 42.94% 53.56% 69.09% 86.16% 116.84% 261.81%

Table 6.6: Percentile values of Java test and CSharp test for the lines of code metric on a
Files level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test nr of branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 23.0 656.0

CSharp test nr of branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 19.0 82.0 2828.0

Differences ˜ ˜ ˜ ˜ ˜ 0.0% 50.0% 111.11% 256.52% 331.1%

Table 6.7: Percentile values of Java test and CSharp test for the nr of branchpoints metric
on a Files level.

At a file level, we see that Java and CSharp test code differ mainly when it comes to the SLOC and
Branchpoint metrics. In Table 6.6, we see that the difference at the 70th, 80th and 90th percentiles is
at least 69%. In Table 6.7, we see an even larger difference at the 80th percentile, which is 111%.

35

CHAPTER 6. COMPARATIVE ANALYSIS

System level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 1736.0 4697.0 8632.0 14063.0 21127.0 26800.0 49274.0 66636.0 92921.0 96968.0

CSharp test asserts 1609.0 4538.0 8011.0 15738.0 20400.0 29171.0 41071.0 50276.0 56122.0 85742.0

Differences 7.89% 3.5% 7.75% 11.91% 3.56% 8.85% 19.97% 32.54% 65.57% 13.09%

Table 6.8: Percentile values of Java test and CSharp test for the asserts metric on a System
level.

If we look at the percentile plots at the system level for Java and CSharp test code at the system level we
see the biggest differences in the assert metrics. We find the metrics values by 10th percentile in Table
6.8. Here we see that the differences we see here are smaller than the differences we saw at the file and
unit levels.

6.5 Production and test code compared

6.5.1 Java

Unit level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production McCabe 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 776.0

Java test McCabe 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 122.0

Differences 0.0% 0.0% 0.0% 100.0% 100.0% 200.0% 400.0% 600.0% 400.0% 536.07%

Table 6.9: Percentile values of Java production and Java test for the McCabe metric on a
Unit level.

In Table 6.9, we see the differences between production and test code for Java in the CC metric. We see
that this is at least 400% for the 70th, 80th, and 90th percentiles, which will therefore ensure a large
difference between the individual thresholds and the combined thresholds for Java production and test
code.

File level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production nr of branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 104.0 1963.0

Java test nr of branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 23.0 656.0

Differences ˜ ˜ ˜ ˜ ˜ 700.0% 575.0% 444.44% 352.17% 199.24%

Table 6.10: Percentile values of Java production and Java test for the nr of branchpoints
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 829.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 89.0 1529.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 84.44%

Table 6.11: Percentile values of Java production and Java test for the asserts metric on a
File level.

36

CHAPTER 6. COMPARATIVE ANALYSIS

At the file level, we see large differences in the number of branch points and the number of assert
statements. For the number of branchpoints, in Table 6.10, we see a minimum difference of 350% in the
70th, 80th, and 90th percentiles. For the Assert metric, we even see that at least 90% of the SLOC in
Java production code is in files without assert statements. Also, we see that at least less than 20% of
the SLOC is in files without assert statements for the test code.

System level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production nr of branchpoints 2414.0 6268.0 12021.0 18061.0 25915.0 35034.0 73326.0 97166.0 139875.0 187433.0

Java test nr of branchpoints 245.0 563.0 1133.0 1780.0 2465.0 4401.0 7256.0 10829.0 18823.0 34532.0

Differences 885.31% 1013.32% 960.99% 914.66% 951.32% 696.05% 910.56% 797.28% 643.11% 442.78%

Table 6.12: Percentile values of Java production and Java test for the nr of branchpoints
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 2.0 3.0 8.0 30.0 100.0 421.0 1264.0 25081.0

Java test asserts 1736.0 4697.0 8632.0 14063.0 21127.0 26800.0 49274.0 66636.0 92921.0 96968.0

Differences ˜ ˜ 431500.0% 468666.67% 263987.5% 89233.33% 49174.0% 15728.03% 7251.34% 286.62%

Table 6.13: Percentile values of Java production and Java test for the asserts metric on a
System level.

At the system level, the differences are evident in almost all percentiles. We see large differences for the
Branchpoints and Asserts metrics between Java production and test code.

6.5.2 CSharp

Unit level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production lines of code 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

CSharp test lines of code 7.0 11.0 16.0 23.0 31.0 47.0 80.0 126.0 188.0 3605.0

Differences 133.33% 57.14% 60.0% 64.29% 72.22% 88.0% 135.29% 152.0% 108.89% 20.17%

Table 6.14: Percentile values of CSharp production and CSharp test for the lines of code
metric on a Unit level.

At the unit level, we see that the number of SLOC for CSharp production and test code differs mainly
at the 70th, 80th and 90th percentiles, with at least 108%.

File level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production McCabe 4.0 7.0 11.0 18.0 27.0 42.0 69.0 121.0 272.0 5822.0

CSharp test McCabe 2.0 2.0 3.0 5.0 7.0 12.0 21.0 42.0 123.0 2972.0

Differences 100.0% 250.0% 266.67% 260.0% 285.71% 250.0% 228.57% 188.1% 121.14% 95.9%

Table 6.15: Percentile values of CSharp production and CSharp test for the McCabe metric
on a File level.

37

CHAPTER 6. COMPARATIVE ANALYSIS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production nr of branchpoints 0.0 0.0 2.0 6.0 12.0 21.0 39.0 74.0 171.0 4349.0

CSharp test nr of branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 19.0 82.0 2828.0

Differences ˜ ˜ ˜ ˜ 1100.0% 950.0% 550.0% 289.47% 108.54% 53.78%

Table 6.16: Percentile values of CSharp production and CSharp test for the
nr of branchpoints metric on a File level.

At the file level, we see large differences in the CC and Branchpoint metrics. In Table 6.15 we see at
least a 121% difference between the two code categories for the CC metric and in Table 6.16 we see a
difference of at least 108% for the Branchpoint metric in the 70th, 80th and 90th threshold percentiles.

System level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production nr of branchpoints 2800.0 7958.0 12701.0 20300.0 30834.0 40252.0 72772.0 102699.0 117813.0 243970.0

CSharp test nr of branchpoints 256.0 760.0 1486.0 2359.0 3843.0 4963.0 8125.0 9188.0 48751.0 186983.0

Differences 993.75% 947.11% 754.71% 760.53% 702.34% 711.04% 795.66% 1017.75% 141.66% 30.48%

Table 6.17: Percentile values of CSharp production and CSharp test for the
nr of branchpoints metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 301.0 686.0 1676.0 2455.0 3567.0 5479.0 6907.0 10041.0 11276.0 21348.0

CSharp test asserts 1609.0 4538.0 8011.0 15738.0 20400.0 29171.0 41071.0 50276.0 56122.0 85742.0

Differences 434.55% 561.52% 377.98% 541.06% 471.91% 432.41% 494.63% 400.71% 397.71% 301.64%

Table 6.18: Percentile values of CSharp production and CSharp test for the asserts metric
on a System level.

Also, at the system level, we see large differences in the Branchpoints and Asserts metrics between the
two code categories, which we can find in Tables 6.17 and 6.18. These large differences create inaccurate
combined threshold values of CSharp production and test code in this corpus, for metrics that are
calibrated at the system level.

6.6 Conclusion

In the above study, we examined if there is a difference between CSharp and Java code and Test and
Production code. We found differences at the unit, file and system level for some of the metrics examined
between Java and CSharp code. We also saw that differences are present for production and test code.
These differences lead us to conclude that Java, CSharp, Production and Test code should all be kept
separate from each other to produce threshold values that are accurate.
In the tables above, we have presented the biggest differences between Java and CSharp, and between
Production and Test code in our corpus. Based on this, we can answer both questions posed in the
introduction in the negative. We reject our first hypothesis, using the large differences we see, for
example, in the assert metrics for production code in file and system level, and, for example, the CC
metrics at file level for test code. We can substantiate Hypothesis 2 with the examples we have given
above. In particular, the Assert metric differs at the file and system level for Java and CSharp between
production and test code.

6.6.1 Threats to validity

There are a number of threat to validations for this research that we would like to name. First, the
70th, 80th, and 90th percentiles are not universal values that are appropriate for every metric. They
are often used in the literature because they are also appropriate percentiles for many of the metrics.
These percentiles have only been tested for production metrics, so the percentiles for test code could be

38

CHAPTER 6. COMPARATIVE ANALYSIS

different. We see this reflected in Table 6.11, where we see that the Assert metric for Java production
code still lacks variation at the 70th and 80th percentiles. Thus, these threshold percentiles are not
appropriate for these file-level metrics. This is a threat to the correctness of the conclusions drawn
above, because we have compared the different code types on percentiles with low variability, which
might not represent the real difference that exist between these two code types and give the impression
that they are similar.
In addition, we see that the percentile plots are linearly interpolated. This interpolation affects the
accuracy of the percentile values read, since the plot indicates values that do not exist in the data set.
Because of this interpolation, the percentile data also contain floats, while the metrics are integers. To
calculate the threshold values, we took this into account by looking at the maximum value within the
data set below the 70th, 80th and 90th percentiles of code. So these are always values that are also found
in the data set. This is a threat to the validity of the metric values used to compare the code types,
since many of the analyzed metrics are integers.
Also, this study asses quantitative data qualitative. We have tried to limit this as much as possible by
presenting quantitative values in addition to the plots, the percentage difference between the threshold
values. However, no acceptable deviation has been determined for these quantitative values, making
it difficult to determine when two values deviate significantly from each other. This is a threat to the
correctness of the conclusions drawn from this experiment, since there is no ground truth and the results
are open for interpretation.
Finally, we have the influence of selection bias on this study. The results of a study on one corpus do
not necessarily apply to other corpora. The final result can be strongly influenced by the coincidental
choice of data points in the corpus. We will address this threat to validity in our validation chapter in
Chapter 9. We will do this by repeating the study multiple times on a random subset of this corpus,
and then looking at the differences in the results. The selection bias introduces a threat to the validity
of the comparison done between the code types above, since these estimations might only be true for
our corpus and might not be true to other corpora. We expect that especially percentiles with very high
variability might yield other results in other corpora.

39

Chapter 7

Correlation analysis

7.1 Introduction

In the correlation analysis, we are going to take a closer look at the proposed metrics in the SIG test code
quality model to see how these metrics correlate with each other, and with other basic metrics. A high
linear correlation between two metrics means that the metrics provide us with the same information.
Having two highly correlated metrics in a model is not beneficial, as has been explained in the previous
chapters. A high correlation indicates that existence of an underlying factor that explains both metrics,
or that one explains the other.
We also use this to test whether the proposed metrics give us new insights compared to common simple
metrics. In case of high correlation, the trade-off can be made to use the simple metric instead of the
new metric. These simple metrics are often metrics that have been researched more and are also more
familiar to the end user of the model.
The prototype metrics we will analyze are:

1. Unverified Branchpoints

2. Unverified CC

3. Assert/Branch point ratio

4. Assert/CC ratio

5. Production/test code ratio

The simple basic metrics against which we will test the prototype metrics are:

1. SLOC (production / test)

2. CC

3. Branchpoints

4. Asserts

5. Direct asserts

This leads to the following questions for this section:

• How do the proposed metrics correlate with each other?

• How do the proposed metrics correlate with the simple metrics?

• Which of the proposed metrics do not give us new information?

7.2 Hypotheses

Hypothesis 1. We expect assert/CC and assert/branch metrics to have a high correlation with each
other.
The antecedent in both ratios are the same. The difference between the two ratios is in the consistent.
The difference between CC and number of branch points at the file level is equal to the number of units
in the file. So we see a clear relationship between the two metrics. From this we base our expectation
that the two metrics will show a high correlation with each other.

40

CHAPTER 7. CORRELATION ANALYSIS

Hypothesis 2. We expect unverified assert (branch) and unverified assert (CC) metrics to have a high
correlation with each other.
Here we have a similar situation. In both metrics, the number of direct asserts is subtracted from another
metric. In the case of unverified assert (branch), the number of asserts is subtracted from the number of
branch points. In the case of unverified assert (CC), the number of asserts is subtracted from the CC.
Since we subtract the same metric from two metrics that we know have a relationship with each other,
we expect a high correlation between these metrics.

Hypothesis 3. We expect the assert/CC metric to have a high correlation with the direct assert and
CC metrics.
Because the metrics are built from these two metrics, we believe that these direct assert and CC metrics
directly affect the Assert/CC ratio and thus exhibit a high correlation.

Hypothesis 4. We expect the assert/branch metric to have a high correlation with the direct assert and
branchpoint metrics.
Just as hypothesis 3, this metric is calculated using the direct assert and branchpoint metrics. Therefore
these two metrics have a direct influence on the Assert/branch metric. This makes us expect a high
correlation between these metrics.

Hypothesis 5. We expect the production/test code ratio to have a high correlation with production and
test SLOC.
Because the production/test code ratio is a calculated metric from two simple metrics, we expect these
two simple metrics, the SLOC in production code and the SLOC in test code, to directly affect this ratio.
Therefore, we expect to see high correlations in between these metrics.

7.3 Method

With Python we have read the data from CSV files into four DataFrames, Java files, Java systems,
CSharp files and CSharp systems. In the next step we have filtered all files and systems with 0 direct
asserts. We have made this choice based on the fact that approximately 90% of our files for Java and
CSharp have 0 direct asserts. These files would influence the correlations, by making the difference
between the unverified branch point metric and the branch point metric for 90% of the files 0. Besides
that, we will later on filter these 0 values for the threshold analysis as well.
Then we have calculated the pairwise Pearson correlation of all the metrics. We have created two new
dataframes from these Pearson correlations for each of the four code categories to only contain the
correlations we are interested in. The first DataFrames consists of the correlations between the test code
metrics and the simple metrics, the second consists of the Pearson correlation of the test code metrics
between each other.
We have made correlation tables from these DataFrames, which we will present in the results below.
We have observed and analyzed these tables and answered the questions mentioned in the introduction
based on the calculated Pearson correlations.

7.4 Results: File metrics

7.4.1 Java

Table 7.1: Pearson correlation for Java files between test code metrics and simple metrics
(Total)

lines of code McCabe nr of branchpoints asserts asserts in direct test

assert/branch -0.099921 -0.114691 -0.127230 -0.005568 0.292228

assert/McCabe -0.103089 -0.105874 -0.080644 -0.015495 0.264436

unverified assert branch 0.731290 0.831372 0.896116 0.020333 0.037145

unverified assert McCabe 0.822888 0.902895 0.893246 0.028536 0.049681

41

CHAPTER 7. CORRELATION ANALYSIS

Table 7.2: Coefficient of determination for Java files between test code metrics and simple
metrics (Total)

lines of code McCabe nr of branchpoints asserts asserts in direct test

assert/branch 0.009984 0.013154 0.016187 0.000031 0.085397

assert/McCabe 0.010627 0.011209 0.006503 0.000240 0.069927

unverified assert branch 0.534785 0.691179 0.803023 0.000413 0.001380

unverified assert McCabe 0.677145 0.815219 0.797888 0.000814 0.002468

Table 7.3: Pearson correlation for Java files between test code metrics (total)

assert/branch assert/McCabe unverified assert branch unverified assert McCabe

assert/branch 1.000000 0.769121 -0.091251 -0.141759

assert/McCabe 0.769121 1.000000 -0.065481 -0.116251

unverified assert branch -0.091251 -0.065481 1.000000 0.945392

unverified assert McCabe -0.141759 -0.116251 0.945392 1.000000

Table 7.4: Coefficient of determination for Java files between test code metrics (total)

assert/branch assert/McCabe unverified assert branch unverified assert McCabe

assert/branch 1.000000 0.591547 0.008327 0.020096

assert/McCabe 0.591547 1.000000 0.004288 0.013514

unverified assert branch 0.008327 0.004288 1.000000 0.893765

unverified assert McCabe 0.020096 0.013514 0.893765 1.000000

7.4.2 CSharp

Table 7.5: Pearson correlation for CSharp files between test code metrics and simple met-
rics. (total)

lines of code McCabe nr of branchpoints asserts asserts in direct test

assert/branch -0.072674 -0.093187 -0.106298 -0.020112 0.400784

assert/McCabe -0.067825 -0.084173 -0.074591 -0.019850 0.445390

unverified assert branch 0.853561 0.913961 0.946681 0.262041 0.041341

unverified assert McCabe 0.891766 0.952839 0.941340 0.276548 0.048787

Table 7.6: Coefficient of determination for CSharp files between test code metrics and
simple metrics. (total)

lines of code McCabe nr of branchpoints asserts asserts in direct test

assert/branch 0.005282 0.008684 0.011299 0.000404 0.160628

assert/McCabe 0.004600 0.007085 0.005564 0.000394 0.198372

unverified assert branch 0.728566 0.835325 0.896205 0.068666 0.001709

unverified assert McCabe 0.795246 0.907902 0.886120 0.076479 0.002380

42

CHAPTER 7. CORRELATION ANALYSIS

Table 7.7: Pearson correlation for CSharp files between test code metrics (total)

assert/branch assert/McCabe unverified assert branch unverified assert McCabe

assert/branch 1.000000 0.796654 -0.085892 -0.113396

assert/McCabe 0.796654 1.000000 -0.070878 -0.098849

unverified assert branch -0.085892 -0.070878 1.000000 0.971354

unverified assert McCabe -0.113396 -0.098849 0.971354 1.000000

Table 7.8: Coefficient of determination for CSharp files between test code metrics (total)

assert/branch assert/McCabe unverified assert branch unverified assert McCabe

assert/branch 1.000000 0.634658 0.007377 0.012859

assert/McCabe 0.634658 1.000000 0.005024 0.009771

unverified assert branch 0.007377 0.005024 1.000000 0.943528

unverified assert McCabe 0.012859 0.009771 0.943528 1.000000

7.5 Analysis: File metrics

We discuss Java and CSharp correlations together because we see little difference between the two corre-
lation tables. If we examine table 7.3, 7.4, 7.7 and 7.8 we see high 𝑟2 values for unverified branchpoints
and unverified CC with basically all simple metrics. The 𝑟2 values of the Assert/branch and the As-
sert/CC metrics fall lower for all simple metrics. We also see few differences in the 𝑟2 values between
Assert/Branch and Assert/CC and also between unverified branch points and unverified CC.
If we compare the 𝑟2 value of the metrics among themselves we see that unverified branchpoints and
unverified McCabe show very 𝑟2 high values. We also see these high values between Assert/branch and
Assert/McCabe. Between the ratio and absolute metrics, for example Assert/branch and unverified Mc-
Cabe, we see a moderate 𝑟2 value.
Based on the 𝑟2 with simple metrics, we conclude that the absolute metrics, unverified branchpoints and
unverified McCabe, provide little new information compared to the simple metrics, and see little reason
to use these new metrics instead of the simple metrics. The ratio metrics have lower 𝑟2 values and are
therefore the better option.
Based on the 𝑟2 values between the test code metrics themselves, we conclude that it is not a good idea
to use both the absolute metrics, or both the ratio metrics. The metrics from the same category, abso-
lute and ratio, have a high correlation with each other and thus provide us with the same information.
Because of the medium 𝑟2 values between the metrics from the different categories, we think it is wise
to use only 1 of them.

7.6 Results: System metrics

7.6.1 Java

Table 7.9: Pearson correlation for Java systems between test code metrics and simple
metrics (total)

lines of code prod lines of code test McCabe prod nr of branchpoints prod asserts prod asserts test asserts in direct test

assert/branch -0.190467 -0.008387 -0.194996 -0.199455 -0.030822 0.015242 0.082863

assert/McCabe -0.170792 0.040412 -0.176449 -0.181257 -0.002459 0.076874 0.156640

unverified assert branch 0.826080 0.253185 0.872762 0.942448 0.137529 0.228783 0.112775

unverified assert McCabe 0.966229 0.523403 0.984235 0.977336 0.280772 0.494087 0.382942

test/prod -0.116606 0.163543 -0.127328 -0.147913 0.013813 0.167582 0.146696

43

CHAPTER 7. CORRELATION ANALYSIS

Table 7.10: Coefficient of determination for Java systems between test code metrics and
simple metrics (total)

lines of code prod lines of code test McCabe prod nr of branchpoints prod asserts prod asserts test asserts in direct test

assert/branch 0.036278 0.000070 0.038023 0.039782 0.000950 0.000232 0.006866

assert/McCabe 0.029170 0.001633 0.031134 0.032854 0.000006 0.005910 0.024536

unverified assert branch 0.682408 0.064102 0.761714 0.888207 0.018914 0.052341 0.012718

unverified assert McCabe 0.933599 0.273951 0.968719 0.955185 0.078833 0.244122 0.146644

test/prod 0.013597 0.026746 0.016212 0.021878 0.000191 0.028084 0.021520

Table 7.11: Pearson correlation for Java systems between test code metrics (total)

assert/branch assert/McCabe unverified assert branch unverified assert McCabe test/prod

assert/branch 1.000000 0.864013 -0.228424 -0.231233 0.630935

assert/McCabe 0.864013 1.000000 -0.235291 -0.226291 0.646401

unverified assert branch -0.228424 -0.235291 1.000000 0.934446 -0.202656

unverified assert McCabe -0.231233 -0.226291 0.934446 1.000000 -0.170422

test/prod 0.630935 0.646401 -0.202656 -0.170422 1.000000

Table 7.12: Coefficient of determination for Java systems between test code metrics (total)

assert/branch assert/McCabe unverified assert branch unverified assert McCabe test/prod

assert/branch 1.000000 0.746518 0.052178 0.053469 0.398079

assert/McCabe 0.746518 1.000000 0.055362 0.051207 0.417835

unverified assert branch 0.052178 0.055362 1.000000 0.873189 0.041070

unverified assert McCabe 0.053469 0.051207 0.873189 1.000000 0.029044

test/prod 0.398079 0.417835 0.041070 0.029044 1.000000

7.6.2 CSharp

Table 7.13: Pearson correlation for CSharp systems between test code metrics and simple
metrics (total)

lines of code prod lines of code test McCabe prod nr of branchpoints prod asserts prod asserts test asserts in direct test

assert/branch -0.123650 0.052962 -0.125140 -0.121006 -0.093000 0.149089 0.251770

assert/McCabe -0.079280 0.063362 -0.081172 -0.077211 -0.050510 0.163805 0.253107

unverified assert branch 0.925003 0.603632 0.935817 0.986835 0.840166 0.376638 0.154144

unverified assert McCabe 0.991801 0.702697 0.995303 0.975467 0.911789 0.522846 0.300556

test/prod -0.106872 0.207650 -0.105235 -0.113117 -0.079954 0.270271 0.241261

Table 7.14: Coefficient of determination for CSharp systems between test code metrics and
simple metrics (total)

lines of code prod lines of code test McCabe prod nr of branchpoints prod asserts prod asserts test asserts in direct test

assert/branch 0.015289 0.002805 0.015660 0.014642 0.008649 0.022228 0.063388

assert/McCabe 0.006285 0.004015 0.006589 0.005961 0.002551 0.026832 0.064063

unverified assert branch 0.855631 0.364371 0.875753 0.973843 0.705878 0.141856 0.023760

unverified assert McCabe 0.983668 0.493784 0.990629 0.951535 0.831359 0.273368 0.090334

test/prod 0.011422 0.043118 0.011074 0.012795 0.006393 0.073047 0.058207

44

CHAPTER 7. CORRELATION ANALYSIS

Table 7.15: Pearson correlation for CSharp systems between test code metrics (total)

assert/branch assert/McCabe unverified assert branch unverified assert McCabe test/prod

assert/branch 1.000000 0.899621 -0.141396 -0.152598 0.520117

assert/McCabe 0.899621 1.000000 -0.098886 -0.106204 0.413398

unverified assert branch -0.141396 -0.098886 1.000000 0.955005 -0.138291

unverified assert McCabe -0.152598 -0.106204 0.955005 1.000000 -0.132357

test/prod 0.520117 0.413398 -0.138291 -0.132357 1.000000

Table 7.16: Coefficient of determination for CSharp systems between test code metrics
(total)

assert/branch assert/McCabe unverified assert branch unverified assert McCabe test/prod

assert/branch 1.000000 0.809318 0.019993 0.023286 0.270521

assert/McCabe 0.809318 1.000000 0.009778 0.011279 0.170898

unverified assert branch 0.019993 0.009778 1.000000 0.912034 0.019124

unverified assert McCabe 0.023286 0.011279 0.912034 1.000000 0.017518

test/prod 0.270521 0.170898 0.019124 0.017518 1.000000

7.7 Analysis: System metrics

Also, at the system level, we do not see major differences between Java and CSharp values and will
discuss them together. At a system level we see, in the tables 7.10 and 7.14 that the 𝑟2 values between
unverified branchpoints, unverified CC and the simple metrics are much higher than the 𝑟2 values between
assert/branch, assert/CC and the simple metrics.
Looking at the 𝑟2 values in tables 7.12 and 7.16 we see that the values between Assert/branch and
Assert/CC and also between unverified branchpoints and unverified CC is high. On this we base our
conclusion that it is not a good idea to have the two ratio metrics and the two absolute metrics both
in one model. We see that between these metrics categories moderate 𝑟2 are present, which leads us to
conclude that it is better to choose 1 metric for in the model.
Due to the correlations between unverified branchpoints, unverified CC and the simple metrics, we
conclude that the unverified branchpoints and unverified CC are not suitable metrics for in the model.
They add additional complexity, but provide little new information compared to these simple metrics.
Against our expectations, we see that the production/test code metric exhibits low 𝑟2 values with the
production and test SLOC. Between these metrics, we expected higher 𝑟2 values. The production/test
code metric shows very low values for all calculated correlations and 𝑟2 values, leading us to conclude
that the metric is not redundant.

7.8 Conclusion

As we explained above in our analysis, we calculated the correlations and 𝑟2 values between the SIG
test code quality metrics and the simple metrics to find out which metrics are not appropriate for in
the model. Here we were able to find that the ratio metrics (Assert/branchpoint, Assert/CC) correlate
less with the simple metrics than the absolute metrics (unverified branchpoints, unverified CC). We also
found that the absolute metrics correlate a lot with each other, and the ratio metrics also correlate a
lot with each other. Between the ratio and absolute metrics, we find a moderate correlation. This leads
us to conclude that we want to include only one of the four metrics in the SIG test code quality model.
Because the ratio metrics correlate less with the simple metrics than the absolute metrics, we conclude
that the ratio metrics are better options for in the model relative to the absolute metrics. These conclu-
sions apply to both File and System levels.
The test/production code ratio metric exhibits low correlations and 𝑟2 values with all other metrics.
Against our expectations, correlations with production SLOC and test SLOC are also low.

We accept hypothesis 1 based on the correlations between Assert/CC and Assert/branch for Java at
the file level (0.769121), for CSharp at the file level (0.796654), for Java at the system level (0.864013),
and for CSharp at the system level (0.899621).

45

CHAPTER 7. CORRELATION ANALYSIS

We also accept hypothesis 2 based on the correlations between unverified branch points and unverified
CC for Java at the file level (0.945392), for CSharp at the file level (0.971354), for Java at the system
level (0.934446), and for CSharp at the system level (0.955005).
Next, we reject hypothesis 3 based on the correlations between the Assert/CC and the CC metrics and
direct asserts based on the low correlations on file level: -0.105874 and 0.264436 for Java, -0.084173 and
0.445390 for CSharp, and also because of the low correlations on a system level: -0.176449 and 0.156640
for Java and -0.081172 and 0.253107 for CSharp.
The correlations between the Assert/branchpoint ratio and the branchpoint and direct asserts metrics
is -0.127230 and 0.292228 for Java on a file level, -0.106298 and 0.400784 for CSharp on a file level,
-0.199455 and 0.082863 for Java on a system level and -0.121006 and 0.251770 for CSharp on a system
level. Based on these moderately high correlations on a file level and low correlations on a system level,
we reject hypothesis 4.
Finally, we reject hypothesis 5 based on the low correlations that this metric has with all other metrics,
both on a file and system level.

7.8.1 Threats to validity

Our biggest threat to validity is selection bias. We calculated these correlations across the entire dataset,
but we do not know if these correlations are also found across other Java and CSharp corpora. These
results may be specific and exclusive to this corpus. To counter this, in the validation of this research,
chapter 9, we will repeat the experiment with a random sample of this corpus, in order to compare
whether the results match and how much variability the iterations show. The selection bias introduces a
threat to the validity of the calculated Pearson correlation between two variables, since these correlations
might only be true for our corpus and might not be true to other corpora. We cannot say for certain
that two variables that are highly correlated in our corpus, will be highly correlated for every corpus.
Another threat to validity is the choice to filter all files with 0 direct asserts from the dataset. We made
this choice because a large portion of the files have no direct asserts. For the unverified branch and CC
metrics, this ensures that in numerous cases these are equal to the branchpoint and CC metrics of those
files, which of course would lead to a high correlation. This is a threat to the correctness of the calculated
correlations, since the alteration of the data might have introduced correlations that would be different
for the whole corpus. Also, the filtration of the corpus might have reduced the size to an extent that is
too small to calculate correlations.

46

Chapter 8

Threshold analysis

8.1 Introduction

In this section, we will calculate the threshold values the new metrics: Assert/branch, Assert/CC,
unverified branch, unverified CC and prod:test code ratio. We will focus on the Assert/McCabe ratio
and the Test/production code metrics. These metrics are chosen based on our correlation study in
Chapter 7. We will do this separately for Java and CSharp, based on our conclusions in Chapter 6.
At the file level, risk profiles are calculated for the Assert/branch metric using the Alves method [9]. At
the system level, for the Assert/branch and the test/production code ratio, the system wide thresholds
are calculated using the Baggen method [10].
We will also do this for the Assert/CC, unverified branch and unverified CC metrics, to identify the pain
points in using the Alves and Baggen method. In this section, we will focus on the following questions:

• What is the risk profile of the Assert/branch metrics at the file level?

– What are the threshold percentiles to calculate the risk profile?

• What are the system-wide threshold values of the Assert/branch and Test/production metrics to
arrive at a 5-star score?

• What are the pain points in using the Alves and Baggen method for deriving threshold values?

8.2 Method

With Python we have read all the CSV files containing the SIG Data Warehouse data on a unit, file and
system level into dataframes. We have calculated all the metrics on a file and system level and stored
that as separate dataframe columns. Nest we calculate the risk profiles for the file level metrics. We do
this according to the Alves method.
We first normalize the datapoints according to their SLOC. Next we sort the datapoints according to
the metric we are calibrating. Finally, we plot the total cumulative metric using the cumulative weights.
In the same plot we plot the cumulative metric of each system, to identify the variability.
Using the risk thresholds, we continue on determining the system level thresholds for each metric. We
do this by calculating for each system the percentage of SLOC that falls within one of the risk values.
We plot this data for each risk value into a graph, and calculate the 5th, 35th, 65th and 95th percentiles
of the systems, sorted on the percentage of SLOC that falls within the risk value. This is done for all
risk values, which we can combine into the threshold tables we will see below.

47

CHAPTER 8. THRESHOLD ANALYSIS

8.3 Risk profiles Assert/Branch & Assert/CC metrics

8.3.1 Assert/branch

Figure 8.1: Risk profile plot for the Java Assert/Branch metric on a file level.

Assert/Branch

10% 0.0

20% 0.0

30% 0.0

40% 0.0

50% 0.0

60% 0.0

70% 0.0

80% 0.0

90% 1.1

Table 8.1: Cumulative percentile values for Assert/Branch metric for Java files.

48

CHAPTER 8. THRESHOLD ANALYSIS

Figure 8.2: Risk profile plot for the CSharp Assert/Branch metric on a file level.

Assert/Branch

10% 0.0

20% 0.0

30% 0.0

40% 0.0

50% 0.0

60% 0.0

70% 0.0

80% 0.0

90% 0.138

Table 8.2: Cumulative percentile values for Assert/Branch metric for CSharp files.

8.3.2 Assert/CC

Figure 8.3: Risk profile plot for the Java Assert/CC metric on a file level.

49

CHAPTER 8. THRESHOLD ANALYSIS

Assert/CC

10% 0.0

20% 0.0

30% 0.0

40% 0.0

50% 0.0

60% 0.0

70% 0.0

80% 0.0

90% 0.403

Table 8.3: Cumulative percentile values for Assert/CC metric for Java files.

Figure 8.4: Risk profile plot for the CSharp Assert/CC metric on a file level.

Assert/CC

10% 0.0

20% 0.0

30% 0.0

40% 0.0

50% 0.0

60% 0.0

70% 0.0

80% 0.0

90% 0.010

Table 8.4: Cumulative percentile values for Assert/CC metric for CSharp files.

8.3.3 Analysis

In the tables and percentile plots above, we immediately identify a pain point of the Alves method for
determining risk profiles. Due to the large number of 0 values for the Direct assert metric, for Java
and CSharp 80% of the SLOC are in files with an Assert/Branch and Assert/CC metric of 0. This is
problematic, since we do not accept negative values for these metrics. This results in a non-useful risk
profile. We can solve this by analyzing only files that have a Direct assert metric of greater than 0. This

50

CHAPTER 8. THRESHOLD ANALYSIS

does not affect the accuracy of the thresholds since the files without Direct asserts are automatically
assigned a low score. With this method we base the risk profiles only on files that have actually been
tested in the corresponding test files which comply with the naming conventions of Java and CSharp for
test files.

8.4 Risk profiles Assert/Branch & Assert/CC metrics for fil-
tered files

8.4.1 Assert/branch

Figure 8.5: Risk profile plot for the Java Assert/Branch metric on a file level (filtered).

Assert/Branch

10% 0.135

20% 0.314

30% 0.538

40% 0.805

50% 1.12

60% 1.527

70% 2.034

80% 3.0

90% 5.0

Table 8.5: Cumulative percentile values for Assert/Branch metric for Java files. (filtered)

51

CHAPTER 8. THRESHOLD ANALYSIS

Figure 8.6: Risk profile plot for the CSharp Assert/Branch metric on a file level. (filtered)

Assert/Branch

10% 0.052

20% 0.163

30% 0.308

40% 0.5

50% 0.830

60% 1.225

70% 1.909

80% 3.0

90% 5.077

Table 8.6: Cumulative percentile values for Assert/Branch metric for CSharp files. (fil-
tered)

52

CHAPTER 8. THRESHOLD ANALYSIS

8.4.2 Assert/CC

Figure 8.7: Risk profile plot for the Java Assert/CC metric on a file level. (filtered)

Assert/CC

10% 0.077

20% 0.167

30% 0.268

40% 0.388

50% 0.512

60% 0.667

70% 0.889

80% 1.188

90% 1.808

Table 8.7: Cumulative percentile values for Assert/CC metric for Java files. (filtered)

Figure 8.8: Risk profile plot for the CSharp Assert/CC metric on a file level. (filtered)

53

CHAPTER 8. THRESHOLD ANALYSIS

Assert/CC

10% 0.039

20% 0.111

30% 0.2

40% 0.322

50% 0.476

60% 0.667

70% 0.962

80% 1.333

90% 2.222

Table 8.8: Cumulative percentile values for Assert/CC metric for CSharp files. (filtered)

8.4.3 Analysis

Above we see that our problem with the 0 values was solved by filtering out all files with 0 Direct asserts.
We see in the plots that the variability is around the 70th, 80th and 90th threshold percentiles, which
makes them suitable percentiles for determining the risk profile. In the tables we see very high values for
the 70th, 80th and 90th percentiles. Here we have identified the second pain point. The Alves method
is not suitable for creating risk profiles for metrics where the high values are desired. We determine the
percentage of SLOC that is below a particular metric. Instead, we are looking for the percentage of
SLOC that is above the metric value.
Here we can think of two solutions. First, we can mirror the plots so that the high values sit with the
low percentiles. The problem with this solution is that the variability is mirrored along with it, putting
it at the lower values as well. If we then pick the 10th, 20th and 30th percentiles for the metric values,
we get the same values as before. If we stick to the 70th, 80th and 90th percentiles, they are not really
based on anything anymore.
The other solution is to choose the 10th, 20th and 30th percentiles, without mirroring the plot. As
explained above, we then have no methodology on which to base the percentile values, which makes
this method unreliable. This leaves us with no suitable solution for this problem. We will derive the
thresholds for these metrics on a system level with the Baggen method further below.

8.5 Risk profiles Unverified Branchpoints & Unverified CC

8.5.1 Unverified Branchpoints

Figure 8.9: Risk profile plot for the Java Unverified Branchpoints metric on a file level.

54

CHAPTER 8. THRESHOLD ANALYSIS

Unverified Branchpoints

10% 0.0

20% 0.0

30% 1.0

40% 3.0

50% 6.0

60% 12.0

70% 23.0

80% 43.0

90% 98.0

Table 8.9: Cumulative percentile values for the Unverified Branchpoints metric for Java
files.

Figure 8.10: Risk profile plot for the CSharp Unverified Branchpoints metric on a file level.

Unverified Branchpoints

10% 0.0

20% 0.0

30% 1.0

40% 4.0

50% 10.0

60% 19.0

70% 36.0

80% 71.0

90% 166.0

Table 8.10: Cumulative percentile values for the Unverified Branchpoints metric for CSharp
files.

55

CHAPTER 8. THRESHOLD ANALYSIS

8.5.2 Unverified CC

Figure 8.11: Risk profile plot for the Java Unverified CC metric on a file level.

Unverified CC

10% 3.0

20% 6.0

30% 10.0

40% 15.0

50% 22.0

60% 33.0

70% 49.0

80% 79.0

90% 159.0

Table 8.11: Cumulative percentile values for the Unverified CC metric for Java files.

Figure 8.12: Risk profile plot for the CSharp Unverified CC metric on a file level.

56

CHAPTER 8. THRESHOLD ANALYSIS

Unverified CC

10% 3.0

20% 6.0

30% 10.0

40% 16.0

50% 25.0

60% 40.0

70% 66.0

80% 117.0

90% 269.0

Table 8.12: Cumulative percentile values for the Unverified CC metric for CSharp files.

8.5.3 Analysis

For the unverified branchpoint and unverified CC metrics, we see that both problems we saw above have
been solved. The 0 values of the Direct assert metric do not cause all of our metrics to become 0 for the
percentiles, and the low values of the metrics are desirable, thus making the Alves method suitable for
these metrics. So the problem with this metric is not the creation of a suitable risk profile, but the high
correlations that we saw in Chapter 7.
The fact that we include all untested files in determining risk profiles and thresholds is also a problem.
We know that the unverified branchpoints and unverified CC of untested files is always equal to the
branchpoints and CC of the file. Therefore, we will also create risk profiles where all untested files are
filtered out of the dataset. In this way we ensure that the model, which is intended to analyze test code,
is only calibrated with files for which test code is also written.

8.6 Risk profiles Unverified Branchpoints & Unverified CC Fil-
tered

Figure 8.13: Risk profile plot for the Java Unverified Branchpoints metric on a file level.
(filtered)

57

CHAPTER 8. THRESHOLD ANALYSIS

Unverified Branch

10% 0.0

20% 0.0

30% 0.0

40% 0.0

50% 0.0

60% 1.0

70% 6.0

80% 19.0

90% 52.0

Table 8.13: Cumulative percentile values for the Unverified Branchpoints metric for Java
files. (filtered)

Figure 8.14: Risk profile plot for the CSharp Unverified Branchpoints metric on a file level.
(filtered)

Unverified Branch

10% 0.0

20% 0.0

30% 0.0

40% 0.0

50% 0.0

60% 6.0

70% 18.0

80% 51.0

90% 150.0

Table 8.14: Cumulative percentile values for the Unverified Branch metric for CSharp files.
(filtered)

58

CHAPTER 8. THRESHOLD ANALYSIS

8.6.1 Unverified CC

Figure 8.15: Risk profile plot for the Java Unverified CC metric on a file level. (filtered)

Unverified CC

10% 0.0

20% 0.0

30% 2.0

40% 5.0

50% 11.0

60% 18.0

70% 30.0

80% 52.0

90% 107.0

Table 8.15: Cumulative percentile values for the Unverified CC metric for Java files. (fil-
tered)

59

CHAPTER 8. THRESHOLD ANALYSIS

Figure 8.16: Risk profile plot for the CSharp Unverified CC metric on a file level. (filtered)

Unverified CC

10% 0.0

20% 0.0

30% 1.0

40% 4.0

50% 10.0

60% 21.0

70% 43.0

80% 90.0

90% 227.0

Table 8.16: Cumulative percentile values for the Unverified CC metric for CSharp files.
(filtered)

8.6.2 Analysis

So by filtering out all the untested files we see that at all percentiles have smaller unverified CC and
unverified Branch points values. We feel this is more accurate since with the SIG Test code quality model
was created to evaluate test code. Therefore, we calibrate the risk profiles only on test code that has
actually been tested. This automatically ensures that untested code falls into higher risk profiles.

60

CHAPTER 8. THRESHOLD ANALYSIS

8.7 Thresholds for Assert/Branch & Assert/CC metrics

8.7.1 Assert/branch

Figure 8.17: Threshold plot for the Java Assert/branchpoint metric on a file level.

Assert/Branch

⋆ ⋆ ⋆ ⋆ ⋆ >2.719

⋆ ⋆ ⋆⋆ >0.939

⋆ ⋆ ⋆ >0.264

⋆⋆ >0.004

⋆ <

Table 8.17: Threshold values for the Assert/Branch metric for Java systems.

Figure 8.18: Threshold plot for the CSharp Assert/branchpoint metric on a file level.

61

CHAPTER 8. THRESHOLD ANALYSIS

Assert/Branch

⋆ ⋆ ⋆ ⋆ ⋆ >2.471

⋆ ⋆ ⋆⋆ >0.339

⋆ ⋆ ⋆ >0.071

⋆⋆ >0.003

⋆ <

Table 8.18: Threshold values for the Assert/Branch metric for CSharp systems.

8.7.2 Assert/CC

Figure 8.19: Threshold plot for the Java Assert/CC metric on a file level.

Assert/CC

⋆ ⋆ ⋆ ⋆ ⋆ >0.719

⋆ ⋆ ⋆⋆ >0.270

⋆ ⋆ ⋆ >0.085

⋆⋆ >0.002

⋆ <

Table 8.19: Threshold values for the Assert/CC metric for Java systems.

62

CHAPTER 8. THRESHOLD ANALYSIS

Figure 8.20: Threshold plot for the CSharp Assert/CC metric on a file level.

Assert/CC

⋆ ⋆ ⋆ ⋆ ⋆ >0.590

⋆ ⋆ ⋆⋆ >0.100

⋆ ⋆ ⋆ >0.022

⋆⋆ >0.001

⋆ <

Table 8.20: Threshold values for the Assert/CC metric for CSharp systems.

8.7.3 Analysis

As we see above, we deviated from the standard Alves and Baggen method of determining thresholds to
find that these metrics pose problems in risk profiling. We sorted the systems based on the metrics, and
took the 5th, 35th, 65th, and 95th percentiles of systems as the threshold value. This way is independent
of the variability of the metrics. This method is more commonly used for system level metrics for which
risk profiles cannot be created and is similar to the method SIG used to calibrate the Duplication metric
in the maintainability model [8]. The same method will be used to calibrate the thresholds for the
production:test code ratio metric, since that is a system level metric.

8.8 Thresholds for unverified branchpoints and unverified CC.

8.8.1 Unverified branchpoints

Moderate High Very High

⋆ ⋆ ⋆ ⋆ ⋆ 76.75% 59.27% 45.09%

⋆ ⋆ ⋆⋆ 99.77% 92.63% 83.23%

⋆ ⋆ ⋆ 100% 100% 97.49%

⋆⋆ 100% 100% 100%

⋆ - - -

Table 8.21: Threshold values for the unverified branchpoints metric for Java systems.

63

CHAPTER 8. THRESHOLD ANALYSIS

Moderate High Very High

⋆ ⋆ ⋆ ⋆ ⋆ 68.10% 52.40% 37.65%

⋆ ⋆ ⋆⋆ 96.16% 85.77% 74.05%

⋆ ⋆ ⋆ 100% 97.81% 91.09%

⋆⋆ 100% 100% 100%

⋆ - - -

Table 8.22: Threshold values for the unverified branchpoints metric for CSharp systems.

8.8.2 unverified CC

Moderate High Very High

⋆ ⋆ ⋆ ⋆ ⋆ 64.00% 43.83% 25.57%

⋆ ⋆ ⋆⋆ 95.82% 79.16% 61.37%

⋆ ⋆ ⋆ 100% 95.90% 82.62%

⋆⋆ 100% 100% 100%

⋆ - - -

Table 8.23: Threshold values for the unverified CC metric for Java systems.

Moderate High Very High

⋆ ⋆ ⋆ ⋆ ⋆ 59.30% 38.61% 22.62%

⋆ ⋆ ⋆⋆ 90.73% 73.92% 56.34%

⋆ ⋆ ⋆ 100% 91.32% 75.42%

⋆⋆ 100% 100% 100%

⋆ - - -

Table 8.24: Threshold values for the unverified CC metric for CSharp systems.

8.8.3 Analysis

As we see again above, the unverified branch points and unverified CC are suitable for the Alves and
Baggen method to arrive at threshold values. The tables cumulatively indicate what portion of the SLOC
may fall into what risk profile to achieve that number of stars as a score. These are the threshold values
for the unverified branch points and unverified CC metrics including all untested files. We motivated
above why we think it is more accurate to calibrate thresholds only with tested files. We will do that
below.

64

CHAPTER 8. THRESHOLD ANALYSIS

8.9 Thresholds for unverified branchpoints and unverified CC.
(filtered)

8.9.1 Unverified Branchpoints

Moderate High Very High

⋆ ⋆ ⋆ ⋆ ⋆ 62.77% 41.55% 21.76%

⋆ ⋆ ⋆⋆ 94.89% 79.11% 58.16%

⋆ ⋆ ⋆ 100% 95.18% 78.57%

⋆⋆ 100% 100% 100%

⋆ - - -

Table 8.25: Threshold values for the unverified Branchpoints metric for Java systems.
(filtered)

Moderate High Very High

⋆ ⋆ ⋆ ⋆ ⋆ 56.21% 34.76% 18.43%

⋆ ⋆ ⋆⋆ 89.06% 70.07% 49.36%

⋆ ⋆ ⋆ 100% 88.87% 66.11%

⋆⋆ 100% 100% 98.29%

⋆ - - -

Table 8.26: Threshold values for the unverified Branchpoints metric for CSharp systems.
(filtered)

8.9.2 Unverified CC

Moderate High Very High

⋆ ⋆ ⋆ ⋆ ⋆ 49.94% 20.90% 3.82%

⋆ ⋆ ⋆⋆ 84.24% 54.92% 18.77%

⋆ ⋆ ⋆ 98.43% 76.34% 36.82%

⋆⋆ 100% 100% 75.74%

⋆ - - -

Table 8.27: Threshold values for the unverified CC metric for Java systems. (filtered)

Moderate High Very High

⋆ ⋆ ⋆ ⋆ ⋆ 44.35% 19.57% 3.84%

⋆ ⋆ ⋆⋆ 79.03% 50.29% 17.20%

⋆ ⋆ ⋆ 94.09% 70.26% 31.72%

⋆⋆ 100% 100% 66.80%

⋆ - - -

Table 8.28: Threshold values for the unverified CC metric for CSharp systems. (filtered)

8.9.3 Analysis

Above, we see that filtering out the untested files makes higher scores more difficult to obtain, by reducing
the maximum percentages for each bin. We think that filtering the untested files makes the model more
accurate, since the model is created to evaluate test code.

65

CHAPTER 8. THRESHOLD ANALYSIS

8.10 Thresholds for Test:production code ratio metric

Figure 8.21: Threshold plot for the Java Test:production code ratio metric.

Test:Production code ratio

⋆ ⋆ ⋆ ⋆ ⋆ >201

⋆ ⋆ ⋆⋆ >3.89

⋆ ⋆ ⋆ >1.44

⋆⋆ >0.64

⋆ <0.64

Table 8.29: Threshold values for the Test:production code ratio metric for Java systems.

Figure 8.22: Threshold plot for the CSharp Test:production code ratio metric.

66

CHAPTER 8. THRESHOLD ANALYSIS

Test:Production code ratio

⋆ ⋆ ⋆ ⋆ ⋆ >115.58

⋆ ⋆ ⋆⋆ >4.92

⋆ ⋆ ⋆ >1.78

⋆⋆ >0.52

⋆ <0.52

Table 8.30: Threshold values for the Test:production code ratio metric for CSharp systems.

8.10.1 Analysis

Because the Test:production code ratio metric is a system level metric, no risk profiles have been created
for it. We departed from the standard Alves and Baggen method for establishing threshold values and
adapted the Baggen method. We sorted all systems based on the Test:production code metric, from
which the plots were created in Figures 8.21 and 8.22 are created. From this plots we calculate the 5th,
35th, 65th, and 95th percentile of systems, which are the threshold values for this metric. We find these
threshold values in Tables 8.29 and 8.30.

8.11 Conclusion

Above we have seen that not all metrics have a ready-made method for determining thresholds. The
Alves and Baggen methods work in many cases, but we have shown that there are still problematic
metrics where the methods do not work quite right.
The first and second questions are answered in the tables above. There we find the risk profiles and
threshold values for the metrics that were analyzed.
To answer the third question, we have seen that for metrics with low variability, for example with many
0 values, it is difficult to choose the appropriate threshold percentiles. In addition, we have also seen that
the Alves method does not work on metrics whose high values are desired. We solved this by determining
the system level thresholds with a modified Baggen method and skip the risk profile creation with the
Alves method.

8.11.1 Threats to validity

Our choice to include in certain sections only the files that were actually tested may be a threat to
validity. Thus, we did not do our analysis on all code, but on a selection of it. This of course affects the
results, as we have seen above. This is a form of selection bias that we will elaborate on next.
Selection bias is also a threat to validity in this part of our experiment. The results of this analysis is
only applicable over this corpus, including all modifications and filtering we did, so we do not know how
accurately it assesses systems from other corpora. We will discuss this in more detail in the validation
chapter.
Finally, we cannot establish with certainty that the modifications done to estimate threshold metrics
using the Alves method [9] and Baggen method [10] are actually correct. The methods do not describe
how to handle metrics where larger values are desired and metrics that we can only measure at the
system level. Applying these methods to these metrics requires modifications, as described above. We
have based the modifications on the Maintainability model [8], which has handled metrics that are only
measured at the system level in the same way. The paper describing this model does not address this
or justify the correctness of these modifications. This threatens the validity of the method used to yield
the results mentioned in this section.

67

Chapter 9

Validation

In this section, we will challenge the reliability of our results obtained from our experiment. We do this
for each of our experiments described in Chapters 6, 7, and 8.

9.1 Comparative Analysis

In our comparative analysis, we had to deal with selection bias. We performed our experiment on a
single Java and CSharp corpus. Thus, we do not know whether we would have obtained the same results
if we had chosen a different corpus.
To expose the influence of this selection bias, we used bootstrapping. This involves running the exper-
iment a number of times, and randomly selecting 50% of our corpus as the dataset. A large amount of
variance and different results between the iterations and our experiments indicate a high influence of the
selected corpus on our results. The bootstrapping results can be found in Appendix A. For evaluating
the variance, we look specifically at the 70th, 80th, and 90th percentiles because these are the percentiles
that are usually appropriate for determining thresholds.

Java and CSharp production code

We see in the tables B.8, B.17 and B.26 a low variance for the unit-level metrics.
At the file level, we also observe a low variance in the differences between Java and CSharp code between
the different iterations. These can be found in the tables B.35, B.44, B.54, B.62 and B.71. At the system
level, we do see a large variance in almost all metrics, allowing us to conclude that the selection of our
corpus likely had a large impact on our system-level results. This variance can be observed in the tables
B.80, B.89, B.98, B.107 and B.116.

In the same way as above, for the following categories: Java and CSharp test code, Java Production
and test code and CSharp production and test code, we will look at the variance exhibited in the
respective tables in Appendix A.

Java and CSharp test code

At the unit level, we see low variance in the tables for each metric. At the file level, we see higher
variance for assert metrics at the 80th and 90th percentiles, for example. At the system level, we see
very high variance for almost all metrics.

Java production and test code / CSharp production and test code

For the categories Java production and test code and CSharp production and test code, we see the same
pattern as we have seen in the categories above. At the unit level, we see little variance. At file level it
is a lot more and at system level it is clearly visible that the variance is very high.

9.1.1 Conclusion

The variance is generally low at the unit level, moderate at the file level, and high at the system level.
One possible cause is that we have many Unit data points, fewer file data points and even fewer system

68

CHAPTER 9. VALIDATION

data points. Perhaps this means that our data set is too small, so the random selection of data points
causes a lot of variance.
From this we can conclude that our experiment is reliable at unit level, but not at file and system level.
In the future, our experiment could be repeated with a larger corpus of Java and CSharp projects, with
more File and System data points. This might produce more reliable results than the results in the
experiments above.

9.2 Correlation Analysis

Also for the correlation study, we applied bootstrapping to see how large the variance is between different
iterations of our experiment, conducted on a portion of our corpus. When this variance is large, we can
conclude that the results of our experiment are not reliable and that selection bias is high. In that case,
the selection of our dataset has a great influence on the results obtained. The results of this bootstrapping
analysis can be found in Appendix C.

Java

Since we saw above that there was a large variance at the system level, and a moderate variance is at
the file level we expect to see the same thing reflected in our correlation validation. This is because we
suspect that our file and system datasets are too small, which causes a large variance. We then expect
this to translate into a higher variance at the file and system level for the correlations.
For Java, for all unit-level metrics, we see that the variance is low, and all iterations are close to the
mean. So from this we cannot conclude that our results are unreliable. Again, at a file level, the variance
is negligible and the correlations are all close to the mean. We see a somewhat larger variance on a
system level, but it is still all very close to the mean and not enough to draw the conclusion that our
results are unreliable.

CSharp

For CSharp, we expect the same outcomes as for Java. We see that at the unit level the variance is
low for all correlations. Also, at the file level, we see hardly any variation between the correlations and
cannot conclude that our results are unreliable. At the system level, we observe the largest variance, but
it too is negligible and does not cause us to draw different conclusions from the results of the individual
iterations.

9.2.1 Conclusion

For the correlations, we see values at all levels that are very close to the mean and little different from
each other. We see the greatest variance at the system level, but even at this level the variance is low.
As a result, we conclude that the variance at all levels is too low to show a high influence of selection
bias in our results.

9.3 Threshold study

To verify the results and performance of our threshold study, we will test 6 projects tested with Sonar-
Qube. The projects were chosen so that 3 projects were rated as poor by SonarQube and 3 were rated as
good. We will verify that our model, with the calculated thresholds, draws the same conclusions about
these projects.

9.3.1 Projects

The projects were chosen based on the scores calculated by SonarQube that are on SonarCloud. A
limited number of metrics calculated across projects are shown here. Because of this small number of
metrics, and the small number of test metrics that SonarQube calculates in general, it is difficult to
properly distinguish between well and poorly tested projects. For the selection, we looked at the number
of bugs, code smells, the percentage of code coverage, and the number of unit tests. When rated A
by SonarQube, these scores are good according to SonarQube. For the poorly tested projects, we have
selected projects that score less well on these metrics.

69

CHAPTER 9. VALIDATION

We chose these metrics because we believe they are direct or indirect indicators of test quality. Code
coverage is one of the metrics that is in the SIG Test code quality model. We use the number of unit
tests as a proxy for the number of test code LOC, although this is unlikely to be very accurate. The
number of code smells and bugs are indirect indicators of poor test code, since writing a good test suite
should result in a lower number of code smells and bugs.

Code Coverage Unit tests Bugs Code smells

BxBot 91% 543 0 34

Trellis 99.5% 1800 0 255

Apache RNG 99.7% 2500 0 39

Table 9.1: Metrics for well tested projects.

Code Coverage Unit tests Bugs Code smells

WebGoat 31% 236 41 731

Replicator 20.6% 85 31 763

Service-web 14.2% 409 11 590

Table 9.2: Metrics for not well tested projects.

9.3.2 Metrics

We chose to validate only the Assert/CC, Assert/Branchpoint, and Test/production code ratio metrics,
since we concluded that the Unverified CC and unverified Branchpoint metrics are both highly correlated
with other metrics and thus add little value to the model.

LOC CC Branchpoints Direct Asserts LOC test Assert/branch Assert/CC Test/prod

bxbot 9959 1536.0 519.0 0.0 13911 0.000000 0.000000 1.396827

rng 2889 527.0 113.0 97.0 5074 0.858407 0.184061 1.756317

trellis 10535 1806.0 692.0 1735.0 20335 2.507225 0.960687 1.930233

replicator 8961 1663.0 749.0 162.0 3587 0.216288 0.097414 0.400290

service web 11600 2200.0 1016.0 276.0 3562 0.271654 0.125455 0.307069

webgoat 9427 1648.0 607.0 41.0 5468 0.067545 0.024879 0.580036

Table 9.3: Metrics for the validation projects.

9.3.3 Star scores

Assert/branch Assert/CC Test/prod

BxBot ⋆ ⋆ ⋆⋆

Trellis ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Apache RNG ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

WebGoat ⋆⋆ ⋆ ⋆ ⋆ ⋆

Replicator ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Service-web ⋆⋆ ⋆⋆ ⋆

Table 9.4: Star scores for good and bad systems.

In Table 9.4, we see the star scores of the systems for each metric. The first three projects are the well-
tested projects. The last three are less well tested. Based on the star scores obtained, we will evaluate
how good our thresholds are in determining test code quality, for these metrics.

70

CHAPTER 9. VALIDATION

What immediately stands out are the low metrics that the BxBot project exhibits for the As-
sert/branch and Assert/CC metrics. The reason for this is that the number of Direct Asserts for this
project is 0. On the other hand, we can observe that this project has 543 unit tests. This means that this
project did not follow the naming convention so the algorithm that calculates direct asserts did not find
any. Despite having adequate unit tests for an Assert/Branch metric of 0.5, the project scores poorly on
these two metrics.
The star scores are, on average, substantially closer together than Tables 9.1 and 9.2 suggest. We can see
that the star scores of the Trellis and Replicator projects for the Assert/branch and Assert/CC metrics
are the same, yet the number of unit tests and test coverage of these metrics are significantly different.
As a result, these metrics are unable to capture this disparity and translate it into star ratings.

We conclude that the good results of the first three projects and the poor results of the last three
projects on SonarQube do not translate into our star ratings. This means that the metrics cannot very
accurately differentiate between good and bad tested projects. We conclude this by the low scores that
the BxBot project shows, and the small difference between the Replicator and Trellis projects which
gives the impression that these two projects have similar test code quality.

71

Chapter 10

Conclusion

In this research, we focused on three sub components that together should lead to an improvement
of the SIG Test code quality model and provide new insights into determining test code quality and
calculating thresholds of software metrics. We initially looked at whether we needed to separate the
dataset by programming language and test/production context for our threshold derivation study. We
concluded that the accuracy of the threshold values is improved by separating the data points based on
programming language and context.
Next we put the various measures to the test by comparing how closely they correlated with one another
and with simple metrics to see which ones are redundant and don’t bring value to the model. As a result,
we were left with a list of metrics that we couldn’t prove were duplicated. These are the code metrics:
Assert/Branch, Assert/CC, and Test/Production.
Finally, using the results of the two previous conclusions, we computed the threshold value. We were
able to experience the use of multiple threshold benchmark methods and discover the pain points in their
use in addition to computing the thresholds. For example, we’ve seen that the approaches might not
be suitable for all types of metrics, particularly metrics where high values are desired and ratio metrics
where a denominator of 0 is a possibility.

10.1 Future work

First, we believe our work can be repeated using a different dataset to determine if the results are the
same. With our validation study for our comparison analysis, we were able to determine that our results
are not accurate at the file and system level due to selection bias. Another explanation could be that
there aren’t enough data points at the file and system level. An interesting follow-up study would be to
replicate the study with a different corpus with more file and system level data points.
Our comparative study can be drawn more broadly than what we have focused on. It can focus on how
different code types and programming languages differ from each other and how this looks like in real
code. These differences can then form the basis for choices to be made such as whether to combine code
types in a corpus for specific research.
Our correlation study could be extended to include alternative metrics from the literature that may be
easier to comprehend for the end user or easier to calculate. These could then be used as a proxy for
one of the metrics we propose as candidates for the SIG Test code quality model.
When we used the Baggen and Alves methodologies for our metrics during our threshold study, we
ran into several issues. A follow-up study could be conducted to confirm the divergent use of these
methodologies, as we have seen in this study, or to develop a new methodology that is more suited to
these problematic metrics, such as those that desire high values or ratio metrics with a denominator of
0.

72

Bibliography

[1] A. Bertolino, “Software testing research: Achievements, challenges, dreams,” in Future of Software
Engineering (FOSE ’07), 2007, pp. 85–103. doi: 10.1109/FOSE.2007.25.

[2] M. Ellims, J. Bridges, and D. Ince, “The economics of unit testing,” Empirical Software Engineer-
ing, vol. 11, Mar. 2006. doi: 10.1007/s10664-006-5964-9.

[3] G. Meszaros, xUnit Test Patterns: Refactoring Test Code, ser. Addison-Wesley Signature Series.
Addison-Wesley, 2007, isbn: 978-0-13-149505-0. [Online]. Available: https://www.safaribooksonline.
com/library/view/xunit-test-patterns/9780131495050/.

[4] K. Beck, Test Driven Development. By Example (Addison-Wesley Signature). Addison-Wesley
Longman, Amsterdam, 2002, isbn: 0321146530.

[5] S. D. P. F. Z. A. B. M. B. Alberto, “On the relation of test smells to software code quality,” 2018.
doi: https://doi.org/10.1109/ICSME.2018.00010.

[6] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code quality and its relation to issue
handling performance,” IEEE Transactions on Software Engineering, vol. 40, pp. 1100–1125, 2014.

[7] P. van Beckhoven, “Assessing test suite effectiveness using static analysis,” 2017.

[8] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring maintainability,” Oct.
2007, pp. 30–39, isbn: 978-0-7695-2948-6. doi: 10.1109/QUATIC.2007.8.

[9] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from benchmark data,” 2010
IEEE International Conference on Software Maintenance, pp. 1–10, 2010.

[10] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code quality benchmarking for
improving software maintainability,” Software Quality Journal, vol. 20, pp. 1–21, Jun. 2011. doi:
10.1007/s11219-011-9144-9.

[11] K. S. University, Spss tutorials: Pearson correlation, https://libguides.library.kent.edu/
SPSS, 2021.

[12] J. Visser, “Building maintainable software,” Software Improvement Group, B.V., vol. First Release,
2016.

[13] Oracle, “Programming with assertions,” 2021.

[14] P. Susan DeanBarbara Illowsky, “Descriptive statistics: Skewness and the mean, median, and
mode.,” 2012. [Online]. Available: http://cnx.org/contents/6c4fb0df- 8562-40db-8e48-
3d91d7dd65f7@9.

[15] W. P. H., “Kurtosis as peakedness,” 2014.

[16] Wikipedia, File:Pearson type VII distribution PDF.svg — Wikipedia, the free encyclopedia, https:
//commons.wikimedia.org/wiki/File:Pearson_type_VII_distribution_PDF.svg, [Online;
accessed 19-August-2021], 2020.

[17] P. S. Foundation, Python programming languague, https://www.python.org/, 2021.

[18] PyData, Pandas (python library), https://pandas.pydata.org/, 2021.

[19] D. Landman, A. Serebrenik, E. Bouwers, and J. J. Vinju, “Empirical analysis of the relationship
between cc and sloc in a large corpus of java methods and c functions,” Journal of Software:
Evolution and Process, vol. 28, no. 7, pp. 589–618, 2016. doi: https://doi.org/10.1002/smr.
1760. eprint: https://www.onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1760. [Online].
Available: https://www.onlinelibrary.wiley.com/doi/abs/10.1002/smr.1760.

73

https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1007/s10664-006-5964-9
https://www.safaribooksonline.com/library/view/xunit-test-patterns/9780131495050/
https://www.safaribooksonline.com/library/view/xunit-test-patterns/9780131495050/
https://doi.org/https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1007/s11219-011-9144-9
https://libguides.library.kent.edu/SPSS
https://libguides.library.kent.edu/SPSS
http://cnx.org/contents/6c4fb0df-8562-40db-8e48-3d91d7dd65f7@9
http://cnx.org/contents/6c4fb0df-8562-40db-8e48-3d91d7dd65f7@9
https://commons.wikimedia.org/wiki/File:Pearson_type_VII_distribution_PDF.svg
https://commons.wikimedia.org/wiki/File:Pearson_type_VII_distribution_PDF.svg
https://www.python.org/
https://pandas.pydata.org/
https://doi.org/https://doi.org/10.1002/smr.1760
https://doi.org/https://doi.org/10.1002/smr.1760
https://www.onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1760
https://www.onlinelibrary.wiley.com/doi/abs/10.1002/smr.1760

BIBLIOGRAPHY

[20] djechelon, Spring-security, https://github.com/spring-projects/spring-security/blob/
main/core/src/main/java/org/springframework/security/core/userdetails/UserDetails.

java, 2021.

[21] Oracle, “The java™ tutorials - defining an interface,” 2021.

[22] djechelon, Spring-security, https://github.com/spring-projects/spring-security/blob/
main/core/src/main/java/org/springframework/security/authentication/dao/DaoAuthenticationProvider.

java, 2021.

[23] ——, Spring-security, https://github.com/spring-projects/spring-security/blob/main/
buildSrc/src/test/resources/samples/javadocapi/multimodule/api/src/main/java/

sample/Api.java, 2021.

[24] A. C. Murthy, Hadoop, https://github.com/apache/hadoop/blob/trunk/hadoop- yarn-
project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/

java/org/apache/hadoop/yarn/server/nodemanager/webapp/AggregatedLogsPage.java,
2021.

[25] pniederw, Gradle, https://github.com/gradle/gradle/blob/master/subprojects/scala/
src/integTest/resources/org/gradle/scala/compile/ZincScalaCompilerIntegrationTest/

compilesJavaCodeIncrementally/src/main/scala/Other.java, 2021.

[26] J. sung Chung, Tensorflow, https://github.com/tensorflow/tensorflow, 2021.

[27] A. Pipatpinyopong, Facebook-yoga, https://github.com/facebook/yoga, 2021.

[28] George and Mallery, “Pss for windows step by step: A simple guide and reference,” Boston: Pear-
son., 2010.

74

https://github.com/spring-projects/spring-security/blob/main/core/src/main/java/org/springframework/security/core/userdetails/UserDetails.java
https://github.com/spring-projects/spring-security/blob/main/core/src/main/java/org/springframework/security/core/userdetails/UserDetails.java
https://github.com/spring-projects/spring-security/blob/main/core/src/main/java/org/springframework/security/core/userdetails/UserDetails.java
https://github.com/spring-projects/spring-security/blob/main/core/src/main/java/org/springframework/security/authentication/dao/DaoAuthenticationProvider.java
https://github.com/spring-projects/spring-security/blob/main/core/src/main/java/org/springframework/security/authentication/dao/DaoAuthenticationProvider.java
https://github.com/spring-projects/spring-security/blob/main/core/src/main/java/org/springframework/security/authentication/dao/DaoAuthenticationProvider.java
https://github.com/spring-projects/spring-security/blob/main/buildSrc/src/test/resources/samples/javadocapi/multimodule/api/src/main/java/sample/Api.java
https://github.com/spring-projects/spring-security/blob/main/buildSrc/src/test/resources/samples/javadocapi/multimodule/api/src/main/java/sample/Api.java
https://github.com/spring-projects/spring-security/blob/main/buildSrc/src/test/resources/samples/javadocapi/multimodule/api/src/main/java/sample/Api.java
https://github.com/apache/hadoop/blob/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/webapp/AggregatedLogsPage.java
https://github.com/apache/hadoop/blob/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/webapp/AggregatedLogsPage.java
https://github.com/apache/hadoop/blob/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/webapp/AggregatedLogsPage.java
https://github.com/gradle/gradle/blob/master/subprojects/scala/src/integTest/resources/org/gradle/scala/compile/ZincScalaCompilerIntegrationTest/compilesJavaCodeIncrementally/src/main/scala/Other.java
https://github.com/gradle/gradle/blob/master/subprojects/scala/src/integTest/resources/org/gradle/scala/compile/ZincScalaCompilerIntegrationTest/compilesJavaCodeIncrementally/src/main/scala/Other.java
https://github.com/gradle/gradle/blob/master/subprojects/scala/src/integTest/resources/org/gradle/scala/compile/ZincScalaCompilerIntegrationTest/compilesJavaCodeIncrementally/src/main/scala/Other.java
https://github.com/tensorflow/tensorflow
https://github.com/facebook/yoga

Appendix A

Comparative analysis results

A.1 Java production - CSharp production

A.1.1 Unit level

Figure A.1: Lorenz plots between Java and CSharp production units.

Figure A.2: Cumulative percentile plots between Java and CSharp production units.

Table A.1: Percentile values of Java production and CSharp production for the SLOC
metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 70.0 2238.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

Differences 0.0% 133.33% 66.67% 55.56% 50.0% 47.06% 47.83% 38.89% 28.57% 93.57%

75

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.2: Percentile values of Java production and CSharp production for the CC metric
on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 776.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

Differences 0.0% 0.0% 0.0% 0.0% 50.0% 33.33% 20.0% 28.57% 6.67% 39.69%

Table A.3: Percentile values of Java production and CSharp production for the Branch-
points metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 775.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 1083.0

Differences ˜ ˜ ˜ 0.0% 100.0% 50.0% 25.0% 33.33% 7.14% 39.74%

A.1.2 File level

Figure A.3: Lorenz plots between Java and CSharp production files.

76

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Figure A.4: Cumulative percentile plots between Java and CSharp production files.

Table A.4: Percentile values of Java production and CSharp production for the SLOC
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 103.0 142.0 197.0 283.0 434.0 805.0 9195.0

CSharp production SLOC 23.0 42.0 68.0 106.0 159.0 246.0 388.0 667.0 1417.0 36664.0

Differences 26.09% 19.05% 7.35% 2.91% 11.97% 24.87% 37.1% 53.69% 76.02% 298.74%

Table A.5: Percentile values of Java production and CSharp production for the CC metric
on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 54.0 86.0 170.0 3402.0

CSharp production CC 4.0 7.0 11.0 18.0 27.0 42.0 69.0 121.0 272.0 5822.0

Differences 0.0% 14.29% 18.18% 0.0% 3.85% 13.51% 27.78% 40.7% 60.0% 71.13%

Table A.6: Percentile values of Java production and CSharp production for the Branch-
points metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 104.0 1963.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 21.0 39.0 74.0 171.0 4349.0

Differences ˜ ˜ 0.0% 20.0% 33.33% 31.25% 44.44% 51.02% 64.42% 121.55%

77

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.7: Percentile values of Java production and CSharp production for the asserts
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 829.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 10.0 1149.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 38.6%

Table A.8: Percentile values of Java production and CSharp production for the Direct
asserts metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 933.0

CSharp production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2766.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 900.0% 196.46%

A.1.3 System level

Figure A.5: Lorenz plots between Java and CSharp production system.

78

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Figure A.6: Cumulative percentile plots between Java and CSharp production system.

Table A.9: Percentile values of Java production and CSharp production for the SLOC
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 43093.0 92674.0 163844.0 246038.0 335453.0 563063.0 839063.0 995766.0 1209227.0 1481603.0

CSharp production SLOC 44381.0 99098.0 194945.0 278093.0 442590.0 587560.0 691704.0 1069001.0 1689227.0 2154519.0

Differences 2.99% 6.93% 18.98% 13.03% 31.94% 4.35% 21.3% 7.35% 39.69% 45.42%

Table A.10: Percentile values of Java production and CSharp production for the CC metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 7899.0 18359.0 31072.0 50813.0 66128.0 101506.0 180293.0 217534.0 275706.0 334705.0

CSharp production CC 8582.0 19168.0 37055.0 52958.0 81631.0 114470.0 133994.0 218716.0 307757.0 454793.0

Differences 8.65% 4.41% 19.26% 4.22% 23.44% 12.77% 34.55% 0.54% 11.63% 35.88%

Table A.11: Percentile values of Java production and CSharp production for the Branch-
points metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 2414.0 6268.0 12021.0 18061.0 25915.0 35034.0 73326.0 97166.0 139875.0 187433.0

CSharp production Branchpoints 2800.0 7958.0 12701.0 20300.0 30834.0 40252.0 72772.0 102699.0 117813.0 243970.0

Differences 15.99% 26.96% 5.66% 12.4% 18.98% 14.89% 0.76% 5.69% 18.73% 30.16%

79

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.12: Percentile values of Java production and CSharp production for the asserts
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 2.0 3.0 8.0 30.0 100.0 421.0 1264.0 25081.0

CSharp production asserts 301.0 686.0 1676.0 2455.0 3567.0 5479.0 6907.0 10041.0 11276.0 21348.0

Differences ˜ ˜ 83700.0% 81733.33% 44487.5% 18163.33% 6807.0% 2285.04% 792.09% 17.49%

Table A.13: Percentile values of Java production and CSharp production for the Direct
asserts metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 19.0 169.0 205.0 1031.0 1801.0 3435.0 8323.0 15473.0 35964.0 86309.0

CSharp production Direct asserts 8.0 179.0 526.0 914.0 1875.0 2863.0 3830.0 7469.0 16522.0 52714.0

Differences 137.5% 5.92% 156.59% 12.8% 4.11% 19.98% 117.31% 107.16% 117.67% 63.73%

A.2 Java test - CSharp test

A.2.1 Unit level

Figure A.7: Lorenz plots between Java and CSharp test units.

Figure A.8: Cumulative percentile plots between Java and CSharp test units.

Table A.14: Percentile values of Java test and CSharp test for the SLOC metric on a Unit
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 1592.0

CSharp test SLOC 7.0 11.0 16.0 23.0 31.0 47.0 80.0 126.0 188.0 3605.0

Differences 75.0% 83.33% 100.0% 130.0% 158.33% 193.75% 300.0% 350.0% 300.0% 126.44%

80

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.15: Percentile values of Java test and CSharp test for the CC metric on a Unit
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 122.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 358.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 400.0% 1500.0% 766.67% 193.44%

Table A.16: Percentile values of Java test and CSharp test for the Branchpoints metric on
a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 121.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 25.0 357.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 1150.0% 195.04%

A.2.2 File level

Figure A.9: Lorenz plots between Java and CSharp test files.

81

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Figure A.10: Cumulative percentile plots between Java and CSharp test files.

Table A.17: Percentile values of Java test and CSharp test for the SLOC metric on a File
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 46.0 71.0 99.0 133.0 177.0 239.0 330.0 484.0 855.0 18933.0

CSharp test SLOC 53.0 86.0 126.0 178.0 253.0 367.0 558.0 901.0 1854.0 68502.0

Differences 15.22% 21.13% 27.27% 33.83% 42.94% 53.56% 69.09% 86.16% 116.84% 261.81%

Table A.18: Percentile values of Java test and CSharp test for the CC metric on a File
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 52.0 4488.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 21.0 42.0 123.0 2972.0

Differences 0.0% 0.0% 0.0% 0.0% 14.29% 9.09% 23.53% 55.56% 136.54% 51.01%

Table A.19: Percentile values of Java test and CSharp test for the Branchpoints metric on
a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 23.0 656.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 19.0 82.0 2828.0

Differences ˜ ˜ ˜ ˜ ˜ 0.0% 50.0% 111.11% 256.52% 331.1%

82

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.20: Percentile values of Java test and CSharp test for the asserts metric on a File
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 89.0 1529.0

CSharp test asserts 0.0 1.0 3.0 7.0 11.0 17.0 27.0 47.0 98.0 4498.0

Differences ˜ 0.0% 33.33% 0.0% 0.0% 0.0% 0.0% 4.44% 10.11% 194.18%

A.2.3 System level

Figure A.11: Lorenz plots between Java and CSharp test system.

83

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Figure A.12: Cumulative percentile plots between Java and CSharp test system.

Table A.21: Percentile values of Java test and CSharp test for the SLOC metric on a
System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 22930.0 56141.0 106772.0 155106.0 227658.0 306151.0 470474.0 822316.0 843011.0 915395.0

CSharp test SLOC 28175.0 64248.0 108472.0 204276.0 313855.0 437622.0 508226.0 636785.0 840121.0 1594573.0

Differences 22.87% 14.44% 1.59% 31.7% 37.86% 42.94% 8.02% 29.14% 0.34% 74.2%

Table A.22: Percentile values of Java test and CSharp test for the CC metric on a System
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1142.0 2749.0 6033.0 8748.0 12592.0 15173.0 36566.0 47309.0 66771.0 87887.0

CSharp test CC 1146.0 2592.0 4569.0 8364.0 12847.0 28037.0 40618.0 47865.0 71616.0 234164.0

Differences 0.35% 6.06% 32.04% 4.59% 2.03% 84.78% 11.08% 1.18% 7.26% 166.44%

Table A.23: Percentile values of Java test and CSharp test for the Branchpoints metric on
a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 245.0 563.0 1133.0 1780.0 2465.0 4401.0 7256.0 10829.0 18823.0 34532.0

CSharp test Branchpoints 256.0 760.0 1486.0 2359.0 3843.0 4963.0 8125.0 9188.0 48751.0 186983.0

Differences 4.49% 34.99% 31.16% 32.53% 55.9% 12.77% 11.98% 17.86% 159.0% 441.48%

84

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.24: Percentile values of Java test and CSharp test for the asserts metric on a
System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 1736.0 4697.0 8632.0 14063.0 21127.0 26800.0 49274.0 66636.0 92921.0 96968.0

CSharp test asserts 1609.0 4538.0 8011.0 15738.0 20400.0 29171.0 41071.0 50276.0 56122.0 85742.0

Differences 7.89% 3.5% 7.75% 11.91% 3.56% 8.85% 19.97% 32.54% 65.57% 13.09%

A.3 Java production - Java test

A.3.1 Unit level

Figure A.13: Lorenz plots between Java production and Java test production units.

Figure A.14: Lorenz plots between Java production and Java test production units.

Table A.25: Percentile values of Java production and Java test for the SLOC metric on a
Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 70.0 2238.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 1592.0

Differences 33.33% 100.0% 33.33% 11.11% 0.0% 6.25% 15.0% 28.57% 48.94% 40.58%

85

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.26: Percentile values of Java production and Java test for the CC metric on a Unit
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 776.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 122.0

Differences 0.0% 0.0% 0.0% 100.0% 100.0% 200.0% 400.0% 600.0% 400.0% 536.07%

Table A.27: Percentile values of Java production and Java test for the Branchpoints metric
on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 775.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 121.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 600.0% 540.5%

A.3.2 File level

Figure A.15: Lorenz plots between Java production and Java test production files.

86

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Figure A.16: Lorenz plots between Java production and Java test production files.

Table A.28: Percentile values of Java production and Java test for the SLOC metric on a
File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 103.0 142.0 197.0 283.0 434.0 805.0 9195.0

Java test SLOC 46.0 71.0 99.0 133.0 177.0 239.0 330.0 484.0 855.0 18933.0

Differences 58.62% 42.0% 35.62% 29.13% 24.65% 21.32% 16.61% 11.52% 6.21% 105.91%

Table A.29: Percentile values of Java production and Java test for the CC metric on a File
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 54.0 86.0 170.0 3402.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 52.0 4488.0

Differences 100.0% 300.0% 333.33% 260.0% 225.0% 236.36% 217.65% 218.52% 226.92% 31.92%

Table A.30: Percentile values of Java production and Java test for the Branchpoints metric
on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 104.0 1963.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 23.0 656.0

Differences ˜ ˜ ˜ ˜ ˜ 700.0% 575.0% 444.44% 352.17% 199.24%

87

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.31: Percentile values of Java production and Java test for the asserts metric on a
File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 829.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 89.0 1529.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 84.44%

A.3.3 System level

Figure A.17: Lorenz plots between Java production and Java test production systems.

88

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Figure A.18: Lorenz plots between Java production and Java test production systems.

Table A.32: Percentile values of Java production and Java test for the SLOC metric on a
System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 43093.0 92674.0 163844.0 246038.0 335453.0 563063.0 839063.0 995766.0 1209227.0 1481603.0

Java test SLOC 22930.0 56141.0 106772.0 155106.0 227658.0 306151.0 470474.0 822316.0 843011.0 915395.0

Differences 87.93% 65.07% 53.45% 58.63% 47.35% 83.92% 78.34% 21.09% 43.44% 61.85%

Table A.33: Percentile values of Java production and Java test for the CC metric on a
System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 7899.0 18359.0 31072.0 50813.0 66128.0 101506.0 180293.0 217534.0 275706.0 334705.0

Java test CC 1142.0 2749.0 6033.0 8748.0 12592.0 15173.0 36566.0 47309.0 66771.0 87887.0

Differences 591.68% 567.84% 415.03% 480.85% 425.16% 568.99% 393.06% 359.82% 312.91% 280.84%

Table A.34: Percentile values of Java production and Java test for the Branchpoints metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 2414.0 6268.0 12021.0 18061.0 25915.0 35034.0 73326.0 97166.0 139875.0 187433.0

Java test Branchpoints 245.0 563.0 1133.0 1780.0 2465.0 4401.0 7256.0 10829.0 18823.0 34532.0

Differences 885.31% 1013.32% 960.99% 914.66% 951.32% 696.05% 910.56% 797.28% 643.11% 442.78%

Table A.35: Percentile values of Java production and Java test for the asserts metric on a
System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 2.0 3.0 8.0 30.0 100.0 421.0 1264.0 25081.0

Java test asserts 1736.0 4697.0 8632.0 14063.0 21127.0 26800.0 49274.0 66636.0 92921.0 96968.0

Differences ˜ ˜ 431500.0% 468666.67% 263987.5% 89233.33% 49174.0% 15728.03% 7251.34% 286.62%

89

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

A.4 CSharp production - CSharp test

A.4.1 Unit level

Figure A.19: Lorenz plots between CSharp production and CSharp test production units.

Figure A.20: Lorenz plots between CSharp production and CSharp test production units.

Table A.36: Percentile values of CSharp production and CSharp test for the SLOC metric
on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

CSharp test SLOC 7.0 11.0 16.0 23.0 31.0 47.0 80.0 126.0 188.0 3605.0

Differences 133.33% 57.14% 60.0% 64.29% 72.22% 88.0% 135.29% 152.0% 108.89% 20.17%

Table A.37: Percentile values of CSharp production and CSharp test for the CC metric on
a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 358.0

Differences 0.0% 0.0% 0.0% 100.0% 200.0% 100.0% 20.0% 77.78% 62.5% 202.79%

90

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.38: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 1083.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 25.0 357.0

Differences ˜ ˜ ˜ ˜ ˜ 200.0% 25.0% 87.5% 66.67% 203.36%

A.4.2 File level

Figure A.21: Lorenz plots between CSharp production and CSharp test production Files.

91

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Figure A.22: Lorenz plots between CSharp production and CSharp test production Files.

Table A.39: Percentile values of CSharp production and CSharp test for the SLOC metric
on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 23.0 42.0 68.0 106.0 159.0 246.0 388.0 667.0 1417.0 36664.0

CSharp test SLOC 53.0 86.0 126.0 178.0 253.0 367.0 558.0 901.0 1854.0 68502.0

Differences 130.43% 104.76% 85.29% 67.92% 59.12% 49.19% 43.81% 35.08% 30.84% 86.84%

Table A.40: Percentile values of CSharp production and CSharp test for the CC metric on
a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 4.0 7.0 11.0 18.0 27.0 42.0 69.0 121.0 272.0 5822.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 21.0 42.0 123.0 2972.0

Differences 100.0% 250.0% 266.67% 260.0% 285.71% 250.0% 228.57% 188.1% 121.14% 95.9%

Table A.41: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 21.0 39.0 74.0 171.0 4349.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 19.0 82.0 2828.0

Differences ˜ ˜ ˜ ˜ 1100.0% 950.0% 550.0% 289.47% 108.54% 53.78%

92

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.42: Percentile values of CSharp production and CSharp test for the asserts metric
on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 10.0 1149.0

CSharp test asserts 0.0 1.0 3.0 7.0 11.0 17.0 27.0 47.0 98.0 4498.0

Differences ˜ ˜ ˜ ˜ ˜ 1600.0% 1250.0% 1075.0% 880.0% 291.47%

A.4.3 System level

Figure A.23: Lorenz plots between CSharp production and CSharp test production sys-
tems.

93

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Figure A.24: Lorenz plots between CSharp production and CSharp test production sys-
tems.

Table A.43: Percentile values of CSharp production and CSharp test for the SLOC metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 44381.0 99098.0 194945.0 278093.0 442590.0 587560.0 691704.0 1069001.0 1689227.0 2154519.0

CSharp test SLOC 28175.0 64248.0 108472.0 204276.0 313855.0 437622.0 508226.0 636785.0 840121.0 1594573.0

Differences 57.52% 54.24% 79.72% 36.14% 41.02% 34.26% 36.1% 67.87% 101.07% 35.12%

Table A.44: Percentile values of CSharp production and CSharp test for the CC metric on
a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 8582.0 19168.0 37055.0 52958.0 81631.0 114470.0 133994.0 218716.0 307757.0 454793.0

CSharp test CC 1146.0 2592.0 4569.0 8364.0 12847.0 28037.0 40618.0 47865.0 71616.0 234164.0

Differences 648.87% 639.51% 711.01% 533.17% 535.41% 308.28% 229.89% 356.94% 329.73% 94.22%

Table A.45: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 2800.0 7958.0 12701.0 20300.0 30834.0 40252.0 72772.0 102699.0 117813.0 243970.0

CSharp test Branchpoints 256.0 760.0 1486.0 2359.0 3843.0 4963.0 8125.0 9188.0 48751.0 186983.0

Differences 993.75% 947.11% 754.71% 760.53% 702.34% 711.04% 795.66% 1017.75% 141.66% 30.48%

94

APPENDIX A. COMPARATIVE ANALYSIS RESULTS

Table A.46: Percentile values of CSharp production and CSharp test for the asserts metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 301.0 686.0 1676.0 2455.0 3567.0 5479.0 6907.0 10041.0 11276.0 21348.0

CSharp test asserts 1609.0 4538.0 8011.0 15738.0 20400.0 29171.0 41071.0 50276.0 56122.0 85742.0

Differences 434.55% 561.52% 377.98% 541.06% 471.91% 432.41% 494.63% 400.71% 397.71% 301.64%

95

Appendix B

Validation: Comparative analysis

B.1 Java production - CSharp production

B.1.1 Unit level

SLOC

Table B.1: Percentile values of Java production and CSharp production for the SLOC
metric on a Unit level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 35.0 70.0 1760.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 3689.0

Differences 0.0% 133.33% 66.67% 55.56% 50.0% 47.06% 47.83% 42.86% 28.57% 109.6%

Table B.2: Percentile values of Java production and CSharp production for the SLOC
metric on a Unit level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 71.0 2062.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 3816.0

Differences 0.0% 133.33% 66.67% 55.56% 50.0% 47.06% 47.83% 38.89% 26.76% 85.06%

Table B.3: Percentile values of Java production and CSharp production for the SLOC
metric on a Unit level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 71.0 2062.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 91.0 4332.0

Differences 0.0% 133.33% 66.67% 55.56% 50.0% 47.06% 47.83% 38.89% 28.17% 110.09%

Table B.4: Percentile values of Java production and CSharp production for the SLOC
metric on a Unit level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 70.0 2739.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

Differences 0.0% 133.33% 66.67% 55.56% 50.0% 47.06% 47.83% 38.89% 28.57% 58.16%

96

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.5: Percentile values of Java production and CSharp production for the SLOC
metric on a Unit level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 24.0 36.0 72.0 2062.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

Differences 0.0% 133.33% 66.67% 55.56% 50.0% 47.06% 41.67% 38.89% 25.0% 110.09%

Table B.6: Percentile values of Java production and CSharp production for the SLOC
metric on a Unit level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 71.0 2062.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

Differences 0.0% 133.33% 66.67% 55.56% 50.0% 47.06% 47.83% 38.89% 26.76% 110.09%

Table B.7: Percentile values of Java production and CSharp production for the SLOC
metric on a Unit level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 70.0 1603.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

Differences 0.0% 133.33% 66.67% 55.56% 50.0% 47.06% 47.83% 38.89% 28.57% 170.24%

Table B.8: Differences between Java production and CSharp production for the SLOC
metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.0 133.33 66.67 55.56 50.0 47.06 47.83 42.86 28.57 109.60

1 0.0 133.33 66.67 55.56 50.0 47.06 47.83 38.89 26.76 85.06

2 0.0 133.33 66.67 55.56 50.0 47.06 47.83 38.89 28.17 110.09

3 0.0 133.33 66.67 55.56 50.0 47.06 47.83 38.89 28.57 58.16

4 0.0 133.33 66.67 55.56 50.0 47.06 41.67 38.89 25.00 110.09

5 0.0 133.33 66.67 55.56 50.0 47.06 47.83 38.89 26.76 110.09

6 0.0 133.33 66.67 55.56 50.0 47.06 47.83 38.89 28.57 170.24

Table B.9: Average differences between Java production and CSharp production for the
SLOC metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 0.0 133.33 66.67 55.56 50.0 47.06 46.95 39.46 27.49 107.62

97

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

CC

Table B.10: Percentile values of Java production and CSharp production for the CC metric
on a Unit level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 598.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

Differences 0.0% 0.0% 0.0% 0.0% 50.0% 33.33% 20.0% 28.57% 6.67% 81.27%

Table B.11: Percentile values of Java production and CSharp production for the CC metric
on a Unit level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 598.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

Differences 0.0% 0.0% 0.0% 0.0% 50.0% 33.33% 20.0% 28.57% 6.67% 81.27%

Table B.12: Percentile values of Java production and CSharp production for the CC metric
on a Unit level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 598.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 562.0

Differences 0.0% 0.0% 0.0% 0.0% 50.0% 33.33% 20.0% 28.57% 6.67% 6.41%

Table B.13: Percentile values of Java production and CSharp production for the CC metric
on a Unit level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 873.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 439.0

Differences 0.0% 0.0% 0.0% 0.0% 50.0% 33.33% 20.0% 28.57% 6.67% 98.86%

Table B.14: Percentile values of Java production and CSharp production for the CC metric
on a Unit level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 776.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 562.0

Differences 0.0% 0.0% 0.0% 0.0% 50.0% 33.33% 20.0% 28.57% 6.67% 38.08%

98

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.15: Percentile values of Java production and CSharp production for the CC metric
on a Unit level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 598.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

Differences 0.0% 0.0% 0.0% 0.0% 50.0% 33.33% 20.0% 28.57% 6.67% 81.27%

Table B.16: Percentile values of Java production and CSharp production for the CC metric
on a Unit level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 598.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 770.0

Differences 0.0% 0.0% 0.0% 0.0% 50.0% 33.33% 20.0% 28.57% 6.67% 28.76%

Table B.17: Differences between Java production and CSharp production for the CC metric
on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.0 0.0 0.0 0.0 50.0 33.33 20.0 28.57 6.67 81.27

1 0.0 0.0 0.0 0.0 50.0 33.33 20.0 28.57 6.67 81.27

2 0.0 0.0 0.0 0.0 50.0 33.33 20.0 28.57 6.67 6.41

3 0.0 0.0 0.0 0.0 50.0 33.33 20.0 28.57 6.67 98.86

4 0.0 0.0 0.0 0.0 50.0 33.33 20.0 28.57 6.67 38.08

5 0.0 0.0 0.0 0.0 50.0 33.33 20.0 28.57 6.67 81.27

6 0.0 0.0 0.0 0.0 50.0 33.33 20.0 28.57 6.67 28.76

Table B.18: Average differences between Java production and CSharp production for the
CC metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 0.0 0.0 0.0 0.0 50.0 33.33 20.0 28.57 6.67 59.42

Branchpoint

Table B.19: Percentile values of Java production and CSharp production for the Branch-
points metric on a Unit level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 775.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 1083.0

Differences ˜ ˜ ˜ 0.0% 100.0% 50.0% 25.0% 33.33% 7.14% 39.74%

99

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.20: Percentile values of Java production and CSharp production for the Branch-
points metric on a Unit level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 775.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 1083.0

Differences ˜ ˜ ˜ 0.0% 100.0% 50.0% 25.0% 33.33% 7.14% 39.74%

Table B.21: Percentile values of Java production and CSharp production for the Branch-
points metric on a Unit level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 775.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 438.0

Differences ˜ ˜ ˜ 0.0% 100.0% 50.0% 25.0% 33.33% 7.14% 76.94%

Table B.22: Percentile values of Java production and CSharp production for the Branch-
points metric on a Unit level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 468.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 443.0

Differences ˜ ˜ ˜ 0.0% 100.0% 50.0% 25.0% 33.33% 7.14% 5.64%

Table B.23: Percentile values of Java production and CSharp production for the Branch-
points metric on a Unit level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 872.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 1083.0

Differences ˜ ˜ ˜ 0.0% 100.0% 50.0% 25.0% 33.33% 7.14% 24.2%

Table B.24: Percentile values of Java production and CSharp production for the Branch-
points metric on a Unit level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 872.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 438.0

Differences ˜ ˜ ˜ 0.0% 100.0% 50.0% 25.0% 33.33% 7.14% 99.09%

Table B.25: Percentile values of Java production and CSharp production for the Branch-
points metric on a Unit level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 872.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 443.0

Differences ˜ ˜ ˜ 0.0% 100.0% 50.0% 25.0% 33.33% 7.14% 96.84%

100

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.26: Differences between Java production and CSharp production for the Branch-
points metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN 0.0 100.0 50.0 25.0 33.33 7.14 39.74

1 NaN NaN NaN 0.0 100.0 50.0 25.0 33.33 7.14 39.74

2 NaN NaN NaN 0.0 100.0 50.0 25.0 33.33 7.14 76.94

3 NaN NaN NaN 0.0 100.0 50.0 25.0 33.33 7.14 5.64

4 NaN NaN NaN 0.0 100.0 50.0 25.0 33.33 7.14 24.20

5 NaN NaN NaN 0.0 100.0 50.0 25.0 33.33 7.14 99.09

6 NaN NaN NaN 0.0 100.0 50.0 25.0 33.33 7.14 96.84

Table B.27: Average differences between Java production and CSharp production for the
Branchpoints metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN 0.0 100.0 50.0 25.0 33.33 7.14 54.6

B.1.2 File level

SLOC

Table B.28: Percentile values of Java production and CSharp production for the SLOC
metric on a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 103.0 142.0 197.0 284.0 435.0 820.0 7238.0

CSharp production SLOC 23.0 42.0 68.0 105.0 159.0 245.0 387.0 665.0 1438.0 36664.0

Differences 26.09% 19.05% 7.35% 1.94% 11.97% 24.37% 36.27% 52.87% 75.37% 406.55%

Table B.29: Percentile values of Java production and CSharp production for the SLOC
metric on a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 102.0 140.0 195.0 280.0 426.0 787.0 9195.0

CSharp production SLOC 23.0 42.0 68.0 105.0 159.0 246.0 388.0 666.0 1436.0 20861.0

Differences 26.09% 19.05% 7.35% 2.94% 13.57% 26.15% 38.57% 56.34% 82.47% 126.87%

Table B.30: Percentile values of Java production and CSharp production for the SLOC
metric on a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 103.0 142.0 197.0 284.0 435.0 800.0 7551.0

CSharp production SLOC 23.0 43.0 69.0 107.0 161.0 250.0 395.0 679.0 1465.0 31690.0

Differences 26.09% 16.28% 5.8% 3.88% 13.38% 26.9% 39.08% 56.09% 83.12% 319.68%

101

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.31: Percentile values of Java production and CSharp production for the SLOC
metric on a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 103.0 142.0 196.0 283.0 436.0 813.0 24990.0

CSharp production SLOC 23.0 43.0 69.0 107.0 163.0 253.0 400.0 686.0 1483.0 31690.0

Differences 26.09% 16.28% 5.8% 3.88% 14.79% 29.08% 41.34% 57.34% 82.41% 26.81%

Table B.32: Percentile values of Java production and CSharp production for the SLOC
metric on a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 74.0 103.0 142.0 199.0 285.0 438.0 811.0 7551.0

CSharp production SLOC 23.0 42.0 69.0 106.0 161.0 248.0 395.0 674.0 1474.0 36664.0

Differences 26.09% 19.05% 7.25% 2.91% 13.38% 24.62% 38.6% 53.88% 81.75% 385.55%

Table B.33: Percentile values of Java production and CSharp production for the SLOC
metric on a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 102.0 141.0 196.0 283.0 433.0 806.0 7125.0

CSharp production SLOC 23.0 42.0 68.0 105.0 159.0 245.0 391.0 669.0 1436.0 31690.0

Differences 26.09% 19.05% 7.35% 2.94% 12.77% 25.0% 38.16% 54.5% 78.16% 344.77%

Table B.34: Percentile values of Java production and CSharp production for the SLOC
metric on a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 103.0 141.0 197.0 283.0 435.0 798.0 9195.0

CSharp production SLOC 23.0 42.0 69.0 106.0 159.0 246.0 389.0 672.0 1440.0 28434.0

Differences 26.09% 19.05% 5.8% 2.91% 12.77% 24.87% 37.46% 54.48% 80.45% 209.23%

Table B.35: Differences between Java production and CSharp production for the SLOC
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 26.09 19.05 7.35 1.94 11.97 24.37 36.27 52.87 75.37 406.55

1 26.09 19.05 7.35 2.94 13.57 26.15 38.57 56.34 82.47 126.87

2 26.09 16.28 5.80 3.88 13.38 26.90 39.08 56.09 83.12 319.68

3 26.09 16.28 5.80 3.88 14.79 29.08 41.34 57.34 82.41 26.81

4 26.09 19.05 7.25 2.91 13.38 24.62 38.60 53.88 81.75 385.55

5 26.09 19.05 7.35 2.94 12.77 25.00 38.16 54.50 78.16 344.77

6 26.09 19.05 5.80 2.91 12.77 24.87 37.46 54.48 80.45 209.23

102

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.36: Average differences between Java production and CSharp production for the
SLOC metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 26.09 18.26 6.67 3.06 13.23 25.86 38.5 55.07 80.53 259.92

CC

Table B.37: Percentile values of Java production and CSharp production for the CC metric
on a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 55.0 87.0 172.0 2136.0

CSharp production CC 4.0 7.0 11.0 18.0 27.0 42.0 69.0 121.0 280.0 4221.0

Differences 0.0% 14.29% 18.18% 0.0% 3.85% 13.51% 25.45% 39.08% 62.79% 97.61%

Table B.38: Percentile values of Java production and CSharp production for the CC metric
on a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 55.0 87.0 168.0 5539.0

CSharp production CC 4.0 7.0 11.0 17.0 27.0 42.0 67.0 116.0 253.0 2884.0

Differences 0.0% 14.29% 18.18% 5.88% 3.85% 13.51% 21.82% 33.33% 50.6% 92.06%

Table B.39: Percentile values of Java production and CSharp production for the CC metric
on a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 54.0 85.0 166.0 2200.0

CSharp production CC 4.0 7.0 11.0 17.0 26.0 42.0 67.0 117.0 253.0 4872.0

Differences 0.0% 14.29% 18.18% 5.88% 0.0% 13.51% 24.07% 37.65% 52.41% 121.45%

Table B.40: Percentile values of Java production and CSharp production for the CC metric
on a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 5.0 8.0 13.0 19.0 26.0 38.0 56.0 88.0 172.0 2136.0

CSharp production CC 4.0 7.0 11.0 18.0 27.0 43.0 69.0 121.0 267.0 3297.0

Differences 25.0% 14.29% 18.18% 5.56% 3.85% 13.16% 23.21% 37.5% 55.23% 54.35%

Table B.41: Percentile values of Java production and CSharp production for the CC metric
on a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 55.0 88.0 174.0 2242.0

CSharp production CC 4.0 7.0 11.0 18.0 27.0 43.0 71.0 124.0 279.0 4221.0

Differences 0.0% 14.29% 18.18% 0.0% 3.85% 16.22% 29.09% 40.91% 60.34% 88.27%

103

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.42: Percentile values of Java production and CSharp production for the CC metric
on a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 54.0 86.0 169.0 5539.0

CSharp production CC 4.0 7.0 11.0 18.0 27.0 42.0 69.0 120.0 269.0 3991.0

Differences 0.0% 14.29% 18.18% 0.0% 3.85% 13.51% 27.78% 39.53% 59.17% 38.79%

Table B.43: Percentile values of Java production and CSharp production for the CC metric
on a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 55.0 86.0 168.0 3402.0

CSharp production CC 4.0 7.0 11.0 17.0 27.0 42.0 68.0 119.0 266.0 4872.0

Differences 0.0% 14.29% 18.18% 5.88% 3.85% 13.51% 23.64% 38.37% 58.33% 43.21%

Table B.44: Differences between Java production and CSharp production for the CC metric
on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.0 14.29 18.18 0.00 3.85 13.51 25.45 39.08 62.79 97.61

1 0.0 14.29 18.18 5.88 3.85 13.51 21.82 33.33 50.60 92.06

2 0.0 14.29 18.18 5.88 0.00 13.51 24.07 37.65 52.41 121.45

3 25.0 14.29 18.18 5.56 3.85 13.16 23.21 37.50 55.23 54.35

4 0.0 14.29 18.18 0.00 3.85 16.22 29.09 40.91 60.34 88.27

5 0.0 14.29 18.18 0.00 3.85 13.51 27.78 39.53 59.17 38.79

6 0.0 14.29 18.18 5.88 3.85 13.51 23.64 38.37 58.33 43.21

Table B.45: Average differences between Java production and CSharp production for the
CC metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 3.57 14.29 18.18 3.31 3.3 13.85 25.01 38.05 56.98 76.53

Branchpoints

Table B.46: Percentile values of Java production and CSharp production for the Branch-
points metric on a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 15.0 26.0 48.0 103.0 1822.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 22.0 39.0 75.0 172.0 4349.0

Differences ˜ ˜ 0.0% 20.0% 33.33% 46.67% 50.0% 56.25% 66.99% 138.69%

104

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.47: Percentile values of Java production and CSharp production for the Branch-
points metric on a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 48.0 104.0 1576.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 21.0 39.0 74.0 171.0 2298.0

Differences ˜ ˜ 0.0% 20.0% 33.33% 31.25% 44.44% 54.17% 64.42% 45.81%

Table B.48: Percentile values of Java production and CSharp production for the Branch-
points metric on a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 103.0 1652.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 21.0 39.0 74.0 167.0 2016.0

Differences ˜ ˜ 0.0% 20.0% 33.33% 31.25% 44.44% 51.02% 62.14% 22.03%

Table B.49: Percentile values of Java production and CSharp production for the Branch-
points metric on a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 104.0 1652.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 21.0 38.0 74.0 168.0 4349.0

Differences ˜ ˜ 0.0% 20.0% 33.33% 31.25% 40.74% 51.02% 61.54% 163.26%

Table B.50: Percentile values of Java production and CSharp production for the Branch-
points metric on a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 103.0 1797.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 22.0 40.0 77.0 183.0 2974.0

Differences ˜ ˜ 0.0% 20.0% 33.33% 37.5% 48.15% 57.14% 77.67% 65.5%

Table B.51: Percentile values of Java production and CSharp production for the Branch-
points metric on a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 106.0 1652.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 22.0 39.0 75.0 174.0 2974.0

Differences ˜ ˜ 0.0% 20.0% 33.33% 37.5% 44.44% 53.06% 64.15% 80.02%

Table B.52: Percentile values of Java production and CSharp production for the Branch-
points metric on a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 104.0 2953.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 21.0 40.0 76.0 178.0 4349.0

Differences ˜ ˜ 0.0% 20.0% 33.33% 31.25% 48.15% 55.1% 71.15% 47.27%

105

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.53: Differences between Java production and CSharp production for the Branch-
points metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN 0.0 20.0 33.33 46.67 50.00 56.25 66.99 138.69

1 NaN NaN 0.0 20.0 33.33 31.25 44.44 54.17 64.42 45.81

2 NaN NaN 0.0 20.0 33.33 31.25 44.44 51.02 62.14 22.03

3 NaN NaN 0.0 20.0 33.33 31.25 40.74 51.02 61.54 163.26

4 NaN NaN 0.0 20.0 33.33 37.50 48.15 57.14 77.67 65.50

5 NaN NaN 0.0 20.0 33.33 37.50 44.44 53.06 64.15 80.02

6 NaN NaN 0.0 20.0 33.33 31.25 48.15 55.10 71.15 47.27

Table B.54: Average differences between Java production and CSharp production for the
Branchpoints metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN 0.0 20.0 33.33 35.24 45.77 53.97 66.87 80.37

Asserts

Table B.55: Percentile values of Java production and CSharp production for the asserts
metric on a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 402.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 11.0 1149.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 185.82%

Table B.56: Percentile values of Java production and CSharp production for the asserts
metric on a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 714.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 1.0 3.0 10.0 572.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 24.83%

Table B.57: Percentile values of Java production and CSharp production for the asserts
metric on a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 829.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 11.0 1149.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 38.6%

106

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.58: Percentile values of Java production and CSharp production for the asserts
metric on a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 829.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 1.0 4.0 10.0 556.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 49.1%

Table B.59: Percentile values of Java production and CSharp production for the asserts
metric on a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1566.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 1.0 3.0 10.0 542.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 188.93%

Table B.60: Percentile values of Java production and CSharp production for the asserts
metric on a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1566.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 10.0 556.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 181.65%

Table B.61: Percentile values of Java production and CSharp production for the asserts
metric on a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1566.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 11.0 1149.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 36.29%

107

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.62: Differences between Java production and CSharp production for the asserts
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN NaN NaN NaN NaN NaN NaN 185.82

1 NaN NaN NaN NaN NaN NaN NaN NaN NaN 24.83

2 NaN NaN NaN NaN NaN NaN NaN NaN NaN 38.60

3 NaN NaN NaN NaN NaN NaN NaN NaN NaN 49.10

4 NaN NaN NaN NaN NaN NaN NaN NaN NaN 188.93

5 NaN NaN NaN NaN NaN NaN NaN NaN NaN 181.65

6 NaN NaN NaN NaN NaN NaN NaN NaN NaN 36.29

Table B.63: Average differences between Java production and CSharp production for the
asserts metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN NaN NaN NaN NaN NaN NaN 100.75

Direct asserts

Table B.64: Percentile values of Java production and CSharp production for the Direct
asserts metric on a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.0 837.0

CSharp production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 718.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 1000.0% 16.57%

Table B.65: Percentile values of Java production and CSharp production for the Direct
asserts metric on a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 845.0

CSharp production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 718.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 900.0% 17.69%

Table B.66: Percentile values of Java production and CSharp production for the Direct
asserts metric on a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 838.0

CSharp production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2766.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 900.0% 230.07%

108

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.67: Percentile values of Java production and CSharp production for the Direct
asserts metric on a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 1529.0

CSharp production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 718.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 900.0% 112.95%

Table B.68: Percentile values of Java production and CSharp production for the Direct
asserts metric on a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 838.0

CSharp production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1059.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 900.0% 26.37%

Table B.69: Percentile values of Java production and CSharp production for the Direct
asserts metric on a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 838.0

CSharp production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2766.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 900.0% 230.07%

Table B.70: Percentile values of Java production and CSharp production for the Direct
asserts metric on a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.0 845.0

CSharp production Direct asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1751.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 1000.0% 107.22%

Table B.71: Differences between Java production and CSharp production for the Direct
asserts metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN NaN NaN NaN NaN NaN 1000.0 16.57

1 NaN NaN NaN NaN NaN NaN NaN NaN 900.0 17.69

2 NaN NaN NaN NaN NaN NaN NaN NaN 900.0 230.07

3 NaN NaN NaN NaN NaN NaN NaN NaN 900.0 112.95

4 NaN NaN NaN NaN NaN NaN NaN NaN 900.0 26.37

5 NaN NaN NaN NaN NaN NaN NaN NaN 900.0 230.07

6 NaN NaN NaN NaN NaN NaN NaN NaN 1000.0 107.22

109

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.72: Average differences between Java production and CSharp production for the
Direct asserts metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN NaN NaN NaN NaN NaN 928.57 105.85

B.1.3 System level

SLOC

Table B.73: Percentile values of Java production and CSharp production for the SLOC
metric on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 48530.0 90483.0 165955.0 222630.0 304662.0 554478.0 603134.0 942367.0 1200297.0 1462250.0

CSharp production SLOC 50089.0 116915.0 199273.0 278304.0 504964.0 639537.0 1029293.0 1447269.0 1795303.0 2173399.0

Differences 3.21% 29.21% 20.08% 25.01% 65.75% 15.34% 70.66% 53.58% 49.57% 48.63%

Table B.74: Percentile values of Java production and CSharp production for the SLOC
metric on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 45078.0 92568.0 161981.0 248154.0 330314.0 563063.0 853485.0 1189979.0 1209227.0 1462250.0

CSharp production SLOC 54256.0 115467.0 235017.0 461164.0 587560.0 859273.0 1069001.0 1689227.0 1795303.0 2173399.0

Differences 20.36% 24.74% 45.09% 85.84% 77.88% 52.61% 25.25% 41.95% 48.47% 48.63%

Table B.75: Percentile values of Java production and CSharp production for the SLOC
metric on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 46337.0 92674.0 163844.0 241729.0 330314.0 442009.0 668992.0 942367.0 1108624.0 1462250.0

CSharp production SLOC 44539.0 116915.0 199091.0 326973.0 504964.0 629363.0 816256.0 1069001.0 1447269.0 2173399.0

Differences 4.04% 26.16% 21.51% 35.26% 52.87% 42.39% 22.01% 13.44% 30.55% 48.63%

Table B.76: Percentile values of Java production and CSharp production for the SLOC
metric on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 36868.0 75167.0 139723.0 212611.0 315657.0 442009.0 828862.0 853485.0 995766.0 1200297.0

CSharp production SLOC 48262.0 119002.0 194553.0 310173.0 504964.0 591154.0 859273.0 1069001.0 1795303.0 2154519.0

Differences 30.9% 58.32% 39.24% 45.89% 59.97% 33.74% 3.67% 25.25% 80.29% 79.5%

Table B.77: Percentile values of Java production and CSharp production for the SLOC
metric on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 53493.0 112230.0 195851.0 304662.0 437712.0 572573.0 828862.0 1189979.0 1462250.0 1481603.0

CSharp production SLOC 54256.0 123483.0 217392.0 369512.0 461164.0 611108.0 691704.0 1029293.0 1447269.0 1795303.0

Differences 1.43% 10.03% 11.0% 21.29% 5.36% 6.73% 19.83% 15.61% 1.04% 21.17%

110

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.78: Percentile values of Java production and CSharp production for the SLOC
metric on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 42901.0 92760.0 170010.0 246038.0 330314.0 668992.0 853485.0 995766.0 1189979.0 1481603.0

CSharp production SLOC 41028.0 98996.0 171138.0 235421.0 504964.0 610275.0 637991.0 816256.0 1689227.0 1689227.0

Differences 4.57% 6.72% 0.66% 4.51% 52.87% 9.62% 33.78% 21.99% 41.95% 14.01%

Table B.79: Percentile values of Java production and CSharp production for the SLOC
metric on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 43093.0 116701.0 199164.0 256137.0 423941.0 828862.0 942367.0 1200297.0 1462250.0 1481603.0

CSharp production SLOC 37864.0 86026.0 151184.0 217076.0 370296.0 535604.0 611108.0 816256.0 1795303.0 2154519.0

Differences 13.81% 35.66% 31.74% 17.99% 14.49% 54.75% 54.21% 47.05% 22.78% 45.42%

Table B.80: Differences between Java production and CSharp production for the SLOC
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 3.21 29.21 20.08 25.01 65.75 15.34 70.66 53.58 49.57 48.63

1 20.36 24.74 45.09 85.84 77.88 52.61 25.25 41.95 48.47 48.63

2 4.04 26.16 21.51 35.26 52.87 42.39 22.01 13.44 30.55 48.63

3 30.90 58.32 39.24 45.89 59.97 33.74 3.67 25.25 80.29 79.50

4 1.43 10.03 11.00 21.29 5.36 6.73 19.83 15.61 1.04 21.17

5 4.57 6.72 0.66 4.51 52.87 9.62 33.78 21.99 41.95 14.01

6 13.81 35.66 31.74 17.99 14.49 54.75 54.21 47.05 22.78 45.42

Table B.81: Average differences between Java production and CSharp production for the
SLOC metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 11.19 27.26 24.19 33.68 47.03 30.74 32.77 31.27 39.24 43.71

CC

Table B.82: Percentile values of Java production and CSharp production for the CC metric
on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 7899.0 16926.0 28142.0 37416.0 55967.0 76444.0 136336.0 195843.0 217534.0 218904.0

CSharp production CC 8575.0 17283.0 33388.0 50695.0 73594.0 85493.0 114470.0 201651.0 218716.0 416370.0

Differences 8.56% 2.11% 18.64% 35.49% 31.5% 11.84% 19.1% 2.97% 0.54% 90.21%

111

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.83: Percentile values of Java production and CSharp production for the CC metric
on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 6062.0 15324.0 24646.0 34991.0 50813.0 62108.0 104333.0 150545.0 180293.0 233887.0

CSharp production CC 8882.0 25065.0 34777.0 53346.0 81631.0 133038.0 201651.0 304054.0 307757.0 416370.0

Differences 46.52% 63.57% 41.11% 52.46% 60.65% 114.2% 93.28% 101.97% 70.7% 78.02%

Table B.84: Percentile values of Java production and CSharp production for the CC metric
on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 8017.0 18359.0 30802.0 40245.0 61038.0 77635.0 102332.0 197373.0 224999.0 275706.0

CSharp production CC 10238.0 25877.0 39938.0 52958.0 81631.0 106390.0 133994.0 169767.0 307757.0 416370.0

Differences 27.7% 40.95% 29.66% 31.59% 33.74% 37.04% 30.94% 16.26% 36.78% 51.02%

Table B.85: Percentile values of Java production and CSharp production for the CC metric
on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 7328.0 15325.0 27592.0 37416.0 51709.0 66128.0 77939.0 171903.0 224999.0 233887.0

CSharp production CC 8202.0 20214.0 39179.0 52958.0 83365.0 114470.0 132217.0 201651.0 218716.0 416370.0

Differences 11.93% 31.9% 41.99% 41.54% 61.22% 73.1% 69.64% 17.31% 2.87% 78.02%

Table B.86: Percentile values of Java production and CSharp production for the CC metric
on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 7474.0 18359.0 29886.0 51709.0 67040.0 136336.0 180293.0 217534.0 233887.0 332876.0

CSharp production CC 6466.0 15870.0 29067.0 44059.0 53346.0 83365.0 105532.0 133994.0 201651.0 416370.0

Differences 15.59% 15.68% 2.82% 17.36% 25.67% 63.54% 70.84% 62.35% 15.99% 25.08%

Table B.87: Percentile values of Java production and CSharp production for the CC metric
on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 9129.0 19918.0 47332.0 62108.0 76488.0 104333.0 180293.0 197373.0 233887.0 334705.0

CSharp production CC 11148.0 25591.0 43004.0 71250.0 118124.0 133038.0 169767.0 307757.0 346707.0 454793.0

Differences 22.12% 28.48% 10.06% 14.72% 54.43% 27.51% 6.2% 55.93% 48.24% 35.88%

Table B.88: Percentile values of Java production and CSharp production for the CC metric
on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 7060.0 15955.0 29886.0 40251.0 61332.0 76488.0 104333.0 195843.0 224999.0 332876.0

CSharp production CC 8649.0 18101.0 33441.0 44059.0 62999.0 105532.0 133038.0 146752.0 346707.0 346707.0

Differences 22.51% 13.45% 11.9% 9.46% 2.72% 37.97% 27.51% 33.45% 54.09% 4.16%

112

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.89: Differences between Java production and CSharp production for the CC metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 8.56 2.11 18.64 35.49 31.50 11.84 19.10 2.97 0.54 90.21

1 46.52 63.57 41.11 52.46 60.65 114.20 93.28 101.97 70.70 78.02

2 27.70 40.95 29.66 31.59 33.74 37.04 30.94 16.26 36.78 51.02

3 11.93 31.90 41.99 41.54 61.22 73.10 69.64 17.31 2.87 78.02

4 15.59 15.68 2.82 17.36 25.67 63.54 70.84 62.35 15.99 25.08

5 22.12 28.48 10.06 14.72 54.43 27.51 6.20 55.93 48.24 35.88

6 22.51 13.45 11.90 9.46 2.72 37.97 27.51 33.45 54.09 4.16

Table B.90: Average differences between Java production and CSharp production for the
CC metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 22.13 28.02 22.31 28.95 38.56 52.17 45.36 41.46 32.74 51.77

Branchpoints

Table B.91: Percentile values of Java production and CSharp production for the Branch-
points metric on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 2356.0 5638.0 9741.0 13528.0 18515.0 28930.0 32979.0 54178.0 73326.0 187433.0

CSharp production Branchpoints 2291.0 5021.0 10245.0 12931.0 18856.0 31281.0 40252.0 74556.0 88928.0 216200.0

Differences 2.84% 12.29% 5.17% 4.62% 1.84% 8.13% 22.05% 37.61% 21.28% 15.35%

Table B.92: Percentile values of Java production and CSharp production for the Branch-
points metric on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 2372.0 6052.0 11397.0 15531.0 20991.0 26548.0 54180.0 94075.0 139875.0 187433.0

CSharp production Branchpoints 2870.0 7068.0 12701.0 18583.0 31281.0 39314.0 66093.0 74556.0 112605.0 275225.0

Differences 20.99% 16.79% 11.44% 19.65% 49.02% 48.09% 21.99% 26.18% 24.22% 46.84%

Table B.93: Percentile values of Java production and CSharp production for the Branch-
points metric on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 2990.0 6011.0 11397.0 18446.0 25758.0 28939.0 38970.0 73326.0 97642.0 139875.0

CSharp production Branchpoints 3074.0 8242.0 12868.0 22088.0 31281.0 66093.0 75497.0 102699.0 112605.0 243970.0

Differences 2.81% 37.12% 12.91% 19.74% 21.44% 128.39% 93.73% 40.06% 15.32% 74.42%

113

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.94: Percentile values of Java production and CSharp production for the Branch-
points metric on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 3570.0 7347.0 14675.0 24140.0 28939.0 73326.0 94847.0 97642.0 142658.0 187433.0

CSharp production Branchpoints 2291.0 5482.0 10615.0 14817.0 22825.0 36087.0 53986.0 72089.0 75497.0 112605.0

Differences 55.83% 34.02% 38.25% 62.92% 26.79% 103.19% 75.69% 35.45% 88.96% 66.45%

Table B.95: Percentile values of Java production and CSharp production for the Branch-
points metric on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 2413.0 6268.0 10353.0 17949.0 25550.0 29472.0 35034.0 94075.0 97642.0 187433.0

CSharp production Branchpoints 3112.0 9210.0 13918.0 20687.0 36087.0 40252.0 74556.0 112605.0 117813.0 216200.0

Differences 28.97% 46.94% 34.43% 15.25% 41.24% 36.58% 112.81% 19.7% 20.66% 15.35%

Table B.96: Percentile values of Java production and CSharp production for the Branch-
points metric on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 1977.0 5762.0 8884.0 14675.0 21780.0 28939.0 35034.0 82654.0 97166.0 187433.0

CSharp production Branchpoints 2537.0 5183.0 10019.0 13918.0 20252.0 32052.0 53986.0 72089.0 75234.0 117813.0

Differences 28.33% 11.17% 12.78% 5.44% 7.54% 10.76% 54.1% 14.66% 29.15% 59.09%

Table B.97: Percentile values of Java production and CSharp production for the Branch-
points metric on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 2933.0 7166.0 12582.0 25550.0 26683.0 32979.0 63057.0 94075.0 142658.0 187433.0

CSharp production Branchpoints 3074.0 7523.0 12701.0 21965.0 39314.0 58162.0 74556.0 88928.0 112605.0 275225.0

Differences 4.81% 4.98% 0.95% 16.32% 47.34% 76.36% 18.24% 5.79% 26.69% 46.84%

Table B.98: Differences between Java production and CSharp production for the Branch-
points metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 2.84 12.29 5.17 4.62 1.84 8.13 22.05 37.61 21.28 15.35

1 20.99 16.79 11.44 19.65 49.02 48.09 21.99 26.18 24.22 46.84

2 2.81 37.12 12.91 19.74 21.44 128.39 93.73 40.06 15.32 74.42

3 55.83 34.02 38.25 62.92 26.79 103.19 75.69 35.45 88.96 66.45

4 28.97 46.94 34.43 15.25 41.24 36.58 112.81 19.70 20.66 15.35

5 28.33 11.17 12.78 5.44 7.54 10.76 54.10 14.66 29.15 59.09

6 4.81 4.98 0.95 16.32 47.34 76.36 18.24 5.79 26.69 46.84

Table B.99: Average differences between Java production and CSharp production for the
Branchpoints metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 20.65 23.33 16.56 20.56 27.89 58.79 56.94 25.64 32.33 46.33

114

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Asserts

Table B.100: Percentile values of Java production and CSharp production for the asserts
metric on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 2.0 7.0 39.0 89.0 175.0 309.0 1592.0

CSharp production asserts 281.0 664.0 1292.0 2445.0 3884.0 5555.0 7444.0 10771.0 14490.0 22815.0

Differences ˜ ˜ ˜ 122150.0% 55385.71% 14143.59% 8264.04% 6054.86% 4589.32% 1333.1%

Table B.101: Percentile values of Java production and CSharp production for the asserts
metric on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 3.0 5.0 11.0 48.0 119.0 992.0 2459.0 25081.0

CSharp production asserts 260.0 685.0 1733.0 2372.0 2990.0 4945.0 5701.0 9748.0 21348.0 21348.0

Differences ˜ ˜ 57666.67% 47340.0% 27081.82% 10202.08% 4690.76% 882.66% 768.16% 17.49%

Table B.102: Percentile values of Java production and CSharp production for the asserts
metric on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 2.0 3.0 10.0 46.0 119.0 492.0 24842.0

CSharp production asserts 317.0 730.0 1735.0 2445.0 3688.0 5587.0 6907.0 10041.0 10771.0 21348.0

Differences ˜ ˜ ˜ 122150.0% 122833.33% 55770.0% 14915.22% 8337.82% 2089.23% 16.37%

Table B.103: Percentile values of Java production and CSharp production for the asserts
metric on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 2.0 4.0 12.0 37.0 116.0 421.0 992.0 2459.0

CSharp production asserts 299.0 685.0 1541.0 2191.0 3091.0 4515.0 7444.0 11276.0 14490.0 22815.0

Differences ˜ ˜ 76950.0% 54675.0% 25658.33% 12102.7% 6317.24% 2578.38% 1360.69% 827.82%

Table B.104: Percentile values of Java production and CSharp production for the asserts
metric on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 3.0 5.0 12.0 61.0 119.0 2445.0 6948.0

CSharp production asserts 296.0 822.0 1734.0 2455.0 3688.0 5416.0 6907.0 10770.0 11033.0 22815.0

Differences ˜ ˜ ˜ 81733.33% 73660.0% 45033.33% 11222.95% 8950.42% 351.25% 228.37%

Table B.105: Percentile values of Java production and CSharp production for the asserts
metric on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 2.0 5.0 21.0 68.0 175.0 992.0 6948.0 24842.0

CSharp production asserts 341.0 934.0 2139.0 2913.0 3932.0 5701.0 7444.0 11276.0 14490.0 22815.0

Differences ˜ ˜ 106850.0% 58160.0% 18623.81% 8283.82% 4153.71% 1036.69% 108.55% 8.88%

115

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.106: Percentile values of Java production and CSharp production for the asserts
metric on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 3.0 3.0 5.0 13.0 46.0 421.0 24842.0

CSharp production asserts 231.0 377.0 917.0 1851.0 2372.0 3567.0 3932.0 5701.0 6092.0 10041.0

Differences ˜ ˜ ˜ 61600.0% 78966.67% 71240.0% 30146.15% 12293.48% 1347.03% 147.41%

Table B.107: Differences between Java production and CSharp production for the asserts
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN 122150.00 55385.71 14143.59 8264.04 6054.86 4589.32 1333.10

1 NaN NaN 57666.67 47340.00 27081.82 10202.08 4690.76 882.66 768.16 17.49

2 NaN NaN NaN 122150.00 122833.33 55770.00 14915.22 8337.82 2089.23 16.37

3 NaN NaN 76950.00 54675.00 25658.33 12102.70 6317.24 2578.38 1360.69 827.82

4 NaN NaN NaN 81733.33 73660.00 45033.33 11222.95 8950.42 351.25 228.37

5 NaN NaN 106850.00 58160.00 18623.81 8283.82 4153.71 1036.69 108.55 8.88

6 NaN NaN NaN 61600.00 78966.67 71240.00 30146.15 12293.48 1347.03 147.41

Table B.108: Average differences between Java production and CSharp production for the
asserts metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN 80488.89 78258.33 57458.52 30967.93 11387.15 5733.47 1516.32 368.49

Direct asserts

Table B.109: Percentile values of Java production and CSharp production for the Direct
asserts metric on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 19.0 95.0 313.0 1134.0 1837.0 2549.0 4872.0 14080.0 35744.0 86309.0

CSharp production Direct asserts 22.0 178.0 660.0 1555.0 2154.0 2863.0 4003.0 8241.0 16522.0 38551.0

Differences 15.79% 87.37% 110.86% 37.13% 17.26% 12.32% 21.71% 70.85% 116.34% 123.88%

Table B.110: Percentile values of Java production and CSharp production for the Direct
asserts metric on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 22.0 136.0 204.0 1038.0 2446.0 4492.0 13178.0 20304.0 35744.0 86309.0

CSharp production Direct asserts 41.0 202.0 801.0 1865.0 2766.0 3749.0 3830.0 8241.0 21436.0 52714.0

Differences 86.36% 48.53% 292.65% 79.67% 13.08% 19.82% 244.07% 146.38% 66.75% 63.73%

Table B.111: Percentile values of Java production and CSharp production for the Direct
asserts metric on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 38.0 169.0 280.0 1294.0 1974.0 4490.0 12168.0 21609.0 35964.0 77048.0

CSharp production Direct asserts 3.0 103.0 394.0 885.0 996.0 2863.0 3751.0 12767.0 21436.0 52714.0

Differences 1166.67% 64.08% 40.71% 46.21% 98.19% 56.83% 224.39% 69.26% 67.77% 46.16%

116

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.112: Percentile values of Java production and CSharp production for the Direct
asserts metric on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 13.0 169.0 373.0 1152.0 2333.0 6637.0 11945.0 31512.0 60947.0 86309.0

CSharp production Direct asserts 22.0 211.0 526.0 1002.0 1840.0 3802.0 4003.0 7469.0 15410.0 52714.0

Differences 69.23% 24.85% 41.02% 14.97% 26.79% 74.57% 198.4% 321.9% 295.5% 63.73%

Table B.113: Percentile values of Java production and CSharp production for the Direct
asserts metric on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 98.0 167.0 280.0 1101.0 2024.0 3260.0 8437.0 15473.0 31512.0 77048.0

CSharp production Direct asserts 8.0 105.0 519.0 1794.0 2009.0 3082.0 3802.0 7469.0 12767.0 44589.0

Differences 1125.0% 59.05% 85.36% 62.94% 0.75% 5.78% 121.91% 107.16% 146.82% 72.8%

Table B.114: Percentile values of Java production and CSharp production for the Direct
asserts metric on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 34.0 169.0 356.0 1152.0 2322.0 3260.0 6637.0 14364.0 35744.0 77048.0

CSharp production Direct asserts 7.0 296.0 821.0 885.0 1860.0 2017.0 3751.0 6669.0 11414.0 20761.0

Differences 385.71% 75.15% 130.62% 30.17% 24.84% 61.63% 76.94% 115.38% 213.16% 271.12%

Table B.115: Percentile values of Java production and CSharp production for the Direct
asserts metric on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Direct asserts 55.0 204.0 364.0 1408.0 3323.0 6936.0 14080.0 22898.0 60947.0 86309.0

CSharp production Direct asserts 0.0 107.0 220.0 801.0 1520.0 2089.0 2381.0 7469.0 11414.0 44589.0

Differences ˜ 90.65% 65.45% 75.78% 118.62% 232.02% 491.35% 206.57% 433.97% 93.57%

Table B.116: Differences between Java production and CSharp production for the Direct
asserts metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 15.79 87.37 110.86 37.13 17.26 12.32 21.71 70.85 116.34 123.88

1 86.36 48.53 292.65 79.67 13.08 19.82 244.07 146.38 66.75 63.73

2 1166.67 64.08 40.71 46.21 98.19 56.83 224.39 69.26 67.77 46.16

3 69.23 24.85 41.02 14.97 26.79 74.57 198.40 321.90 295.50 63.73

4 1125.00 59.05 85.36 62.94 0.75 5.78 121.91 107.16 146.82 72.80

5 385.71 75.15 130.62 30.17 24.84 61.63 76.94 115.38 213.16 271.12

6 NaN 90.65 65.45 75.78 118.62 232.02 491.35 206.57 433.97 93.57

Table B.117: Average differences between Java production and CSharp production for the
Direct asserts metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 474.79 64.24 109.52 49.55 42.79 66.14 196.97 148.21 191.47 105.0

117

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

B.2 Java test - CSharp test

B.2.1 Unit level

SLOC

Table B.118: Percentile values of Java test and CSharp test for the SLOC metric on a Unit
level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 1592.0

CSharp test SLOC 7.0 11.0 16.0 23.0 32.0 48.0 83.0 131.0 197.0 3605.0

Differences 75.0% 83.33% 100.0% 130.0% 166.67% 200.0% 315.0% 367.86% 319.15% 126.44%

Table B.119: Percentile values of Java test and CSharp test for the SLOC metric on a Unit
level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 1592.0

CSharp test SLOC 7.0 11.0 16.0 22.0 32.0 47.0 79.0 127.0 194.0 3605.0

Differences 75.0% 83.33% 100.0% 120.0% 166.67% 193.75% 295.0% 353.57% 312.77% 126.44%

Table B.120: Percentile values of Java test and CSharp test for the SLOC metric on a Unit
level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 1592.0

CSharp test SLOC 7.0 11.0 16.0 23.0 31.0 46.0 79.0 126.0 191.0 3605.0

Differences 75.0% 83.33% 100.0% 130.0% 158.33% 187.5% 295.0% 350.0% 306.38% 126.44%

Table B.121: Percentile values of Java test and CSharp test for the SLOC metric on a Unit
level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 48.0 1592.0

CSharp test SLOC 7.0 11.0 16.0 22.0 31.0 46.0 78.0 125.0 185.0 3605.0

Differences 75.0% 83.33% 100.0% 120.0% 158.33% 187.5% 290.0% 346.43% 285.42% 126.44%

Table B.122: Percentile values of Java test and CSharp test for the SLOC metric on a Unit
level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 1592.0

CSharp test SLOC 7.0 11.0 16.0 22.0 31.0 46.0 79.0 126.0 186.0 1661.0

Differences 75.0% 83.33% 100.0% 120.0% 158.33% 187.5% 295.0% 350.0% 295.74% 4.33%

118

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.123: Percentile values of Java test and CSharp test for the SLOC metric on a Unit
level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 962.0

CSharp test SLOC 7.0 11.0 16.0 23.0 32.0 48.0 82.0 130.0 195.0 15549.0

Differences 75.0% 83.33% 100.0% 130.0% 166.67% 200.0% 310.0% 364.29% 314.89% 1516.32%

Table B.124: Percentile values of Java test and CSharp test for the SLOC metric on a Unit
level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 29.0 48.0 1001.0

CSharp test SLOC 7.0 11.0 16.0 23.0 32.0 47.0 81.0 128.0 190.0 1587.0

Differences 75.0% 83.33% 100.0% 130.0% 166.67% 193.75% 305.0% 341.38% 295.83% 58.54%

Table B.125: Differences between Java test and CSharp test for the SLOC metric on a
Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 75.0 83.33 100.0 130.0 166.67 200.00 315.0 367.86 319.15 126.44

1 75.0 83.33 100.0 120.0 166.67 193.75 295.0 353.57 312.77 126.44

2 75.0 83.33 100.0 130.0 158.33 187.50 295.0 350.00 306.38 126.44

3 75.0 83.33 100.0 120.0 158.33 187.50 290.0 346.43 285.42 126.44

4 75.0 83.33 100.0 120.0 158.33 187.50 295.0 350.00 295.74 4.33

5 75.0 83.33 100.0 130.0 166.67 200.00 310.0 364.29 314.89 1516.32

6 75.0 83.33 100.0 130.0 166.67 193.75 305.0 341.38 295.83 58.54

Table B.126: Average differences between Java test and CSharp test for the SLOC metric
on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 75.0 83.33 100.0 125.71 163.1 192.86 300.71 353.36 304.31 297.85

CC

Table B.127: Percentile values of Java test and CSharp test for the CC metric on a Unit
level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 71.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 331.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 400.0% 1500.0% 766.67% 366.2%

119

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.128: Percentile values of Java test and CSharp test for the CC metric on a Unit
level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 111.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 358.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 400.0% 1500.0% 766.67% 222.52%

Table B.129: Percentile values of Java test and CSharp test for the CC metric on a Unit
level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 122.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 15.0 25.0 331.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 400.0% 1400.0% 733.33% 171.31%

Table B.130: Percentile values of Java test and CSharp test for the CC metric on a Unit
level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 122.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 25.0 358.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 400.0% 1500.0% 733.33% 193.44%

Table B.131: Percentile values of Java test and CSharp test for the CC metric on a Unit
level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 122.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 358.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 400.0% 1500.0% 766.67% 193.44%

Table B.132: Percentile values of Java test and CSharp test for the CC metric on a Unit
level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 106.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 331.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 400.0% 1500.0% 766.67% 212.26%

Table B.133: Percentile values of Java test and CSharp test for the CC metric on a Unit
level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 122.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 276.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 400.0% 1500.0% 766.67% 126.23%

120

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.134: Differences between Java test and CSharp test for the CC metric on a Unit
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.0 0.0 0.0 0.0 0.0 100.0 400.0 1500.0 766.67 366.20

1 0.0 0.0 0.0 0.0 0.0 100.0 400.0 1500.0 766.67 222.52

2 0.0 0.0 0.0 0.0 0.0 100.0 400.0 1400.0 733.33 171.31

3 0.0 0.0 0.0 0.0 0.0 100.0 400.0 1500.0 733.33 193.44

4 0.0 0.0 0.0 0.0 0.0 100.0 400.0 1500.0 766.67 193.44

5 0.0 0.0 0.0 0.0 0.0 100.0 400.0 1500.0 766.67 212.26

6 0.0 0.0 0.0 0.0 0.0 100.0 400.0 1500.0 766.67 126.23

Table B.135: Average differences between Java test and CSharp test for the CC metric on
a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 0.0 0.0 0.0 0.0 0.0 100.0 400.0 1485.71 757.14 212.2

Branchpoints

Table B.136: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Unit level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 110.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 25.0 357.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 1150.0% 224.55%

Table B.137: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Unit level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 70.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 24.0 357.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 1100.0% 410.0%

Table B.138: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Unit level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 80.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 25.0 275.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 1150.0% 243.75%

121

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.139: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Unit level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 105.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 25.0 357.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 1150.0% 240.0%

Table B.140: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Unit level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 110.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 25.0 269.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 1150.0% 144.55%

Table B.141: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Unit level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 121.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 14.0 24.0 357.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 1100.0% 195.04%

Table B.142: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Unit level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 121.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 25.0 357.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 1150.0% 195.04%

Table B.143: Differences between Java test and CSharp test for the Branchpoints metric
on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN NaN NaN NaN NaN NaN 1150.0 224.55

1 NaN NaN NaN NaN NaN NaN NaN NaN 1100.0 410.00

2 NaN NaN NaN NaN NaN NaN NaN NaN 1150.0 243.75

3 NaN NaN NaN NaN NaN NaN NaN NaN 1150.0 240.00

4 NaN NaN NaN NaN NaN NaN NaN NaN 1150.0 144.55

5 NaN NaN NaN NaN NaN NaN NaN NaN 1100.0 195.04

6 NaN NaN NaN NaN NaN NaN NaN NaN 1150.0 195.04

122

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.144: Average differences between Java test and CSharp test for the Branchpoints
metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN NaN NaN NaN NaN NaN 1135.71 236.13

B.2.2 File level

SLOC

Table B.145: Percentile values of Java test and CSharp test for the SLOC metric on a Files
level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 46.0 71.0 99.0 133.0 178.0 240.0 331.0 484.0 854.0 13430.0

CSharp test SLOC 53.0 86.0 126.0 179.0 254.0 367.0 555.0 902.0 1804.0 19117.0

Differences 15.22% 21.13% 27.27% 34.59% 42.7% 52.92% 67.67% 86.36% 111.24% 42.35%

Table B.146: Percentile values of Java test and CSharp test for the SLOC metric on a Files
level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 46.0 71.0 99.0 133.0 177.0 238.0 328.0 480.0 838.0 18933.0

CSharp test SLOC 52.0 85.0 125.0 176.0 249.0 362.0 549.0 872.0 1718.0 19117.0

Differences 13.04% 19.72% 26.26% 32.33% 40.68% 52.1% 67.38% 81.67% 105.01% 0.97%

Table B.147: Percentile values of Java test and CSharp test for the SLOC metric on a Files
level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 45.0 71.0 99.0 132.0 175.0 236.0 325.0 474.0 818.0 13430.0

CSharp test SLOC 53.0 88.0 129.0 182.0 259.0 375.0 574.0 926.0 2019.0 68502.0

Differences 17.78% 23.94% 30.3% 37.88% 48.0% 58.9% 76.62% 95.36% 146.82% 410.07%

Table B.148: Percentile values of Java test and CSharp test for the SLOC metric on a Files
level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 45.0 71.0 98.0 131.0 175.0 237.0 327.0 474.0 825.0 6728.0

CSharp test SLOC 53.0 86.0 126.0 179.0 253.0 367.0 563.0 917.0 1978.0 23666.0

Differences 17.78% 21.13% 28.57% 36.64% 44.57% 54.85% 72.17% 93.46% 139.76% 251.75%

Table B.149: Percentile values of Java test and CSharp test for the SLOC metric on a Files
level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 46.0 71.0 99.0 133.0 177.0 240.0 331.0 481.0 836.0 18933.0

CSharp test SLOC 52.0 86.0 126.0 178.0 252.0 368.0 562.0 901.0 1754.0 28079.0

Differences 13.04% 21.13% 27.27% 33.83% 42.37% 53.33% 69.79% 87.32% 109.81% 48.31%

123

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.150: Percentile values of Java test and CSharp test for the SLOC metric on a Files
level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 46.0 71.0 99.0 133.0 178.0 239.0 332.0 484.0 855.0 11505.0

CSharp test SLOC 53.0 87.0 128.0 181.0 258.0 377.0 581.0 949.0 1981.0 28079.0

Differences 15.22% 22.54% 29.29% 36.09% 44.94% 57.74% 75.0% 96.07% 131.7% 144.06%

Table B.151: Percentile values of Java test and CSharp test for the SLOC metric on a Files
level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 46.0 71.0 99.0 133.0 177.0 238.0 328.0 481.0 851.0 11505.0

CSharp test SLOC 53.0 86.0 127.0 179.0 254.0 372.0 569.0 919.0 1932.0 68502.0

Differences 15.22% 21.13% 28.28% 34.59% 43.5% 56.3% 73.48% 91.06% 127.03% 495.41%

Table B.152: Differences between Java test and CSharp test for the SLOC metric on a
Files level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 15.22 21.13 27.27 34.59 42.70 52.92 67.67 86.36 111.24 42.35

1 13.04 19.72 26.26 32.33 40.68 52.10 67.38 81.67 105.01 0.97

2 17.78 23.94 30.30 37.88 48.00 58.90 76.62 95.36 146.82 410.07

3 17.78 21.13 28.57 36.64 44.57 54.85 72.17 93.46 139.76 251.75

4 13.04 21.13 27.27 33.83 42.37 53.33 69.79 87.32 109.81 48.31

5 15.22 22.54 29.29 36.09 44.94 57.74 75.00 96.07 131.70 144.06

6 15.22 21.13 28.28 34.59 43.50 56.30 73.48 91.06 127.03 495.41

Table B.153: Average differences between Java test and CSharp test for the SLOC metric
on a Files level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 15.33 21.53 28.18 35.14 43.82 55.16 71.73 90.19 124.48 198.99

CC

Table B.154: Percentile values of Java test and CSharp test for the CC metric on a Files
level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 53.0 1906.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 21.0 43.0 127.0 2354.0

Differences 0.0% 0.0% 0.0% 0.0% 14.29% 9.09% 23.53% 59.26% 139.62% 23.5%

124

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.155: Percentile values of Java test and CSharp test for the CC metric on a Files
level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 28.0 54.0 4488.0

CSharp test CC 2.0 2.0 3.0 5.0 8.0 12.0 22.0 42.0 122.0 2868.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 9.09% 29.41% 50.0% 125.93% 56.49%

Table B.156: Percentile values of Java test and CSharp test for the CC metric on a Files
level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 2.0 2.0 3.0 5.0 7.0 11.0 17.0 27.0 53.0 3368.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 21.0 42.0 121.0 2868.0

Differences 0.0% 0.0% 0.0% 0.0% 0.0% 9.09% 23.53% 55.56% 128.3% 17.43%

Table B.157: Percentile values of Java test and CSharp test for the CC metric on a Files
level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 52.0 4488.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 20.0 40.0 118.0 2774.0

Differences 0.0% 0.0% 0.0% 0.0% 14.29% 9.09% 17.65% 48.15% 126.92% 61.79%

Table B.158: Percentile values of Java test and CSharp test for the CC metric on a Files
level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 2.0 2.0 3.0 5.0 7.0 11.0 17.0 27.0 52.0 908.0

CSharp test CC 2.0 2.0 3.0 5.0 8.0 13.0 22.0 44.0 133.0 2992.0

Differences 0.0% 0.0% 0.0% 0.0% 14.29% 18.18% 29.41% 62.96% 155.77% 229.52%

Table B.159: Percentile values of Java test and CSharp test for the CC metric on a Files
level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 53.0 1906.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 21.0 41.0 121.0 2972.0

Differences 0.0% 0.0% 0.0% 0.0% 14.29% 9.09% 23.53% 51.85% 128.3% 55.93%

Table B.160: Percentile values of Java test and CSharp test for the CC metric on a Files
level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 52.0 1626.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 21.0 43.0 121.0 2972.0

Differences 0.0% 0.0% 0.0% 0.0% 14.29% 9.09% 23.53% 59.26% 132.69% 82.78%

125

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.161: Differences between Java test and CSharp test for the CC metric on a Files
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.0 0.0 0.0 0.0 14.29 9.09 23.53 59.26 139.62 23.50

1 0.0 0.0 0.0 0.0 0.00 9.09 29.41 50.00 125.93 56.49

2 0.0 0.0 0.0 0.0 0.00 9.09 23.53 55.56 128.30 17.43

3 0.0 0.0 0.0 0.0 14.29 9.09 17.65 48.15 126.92 61.79

4 0.0 0.0 0.0 0.0 14.29 18.18 29.41 62.96 155.77 229.52

5 0.0 0.0 0.0 0.0 14.29 9.09 23.53 51.85 128.30 55.93

6 0.0 0.0 0.0 0.0 14.29 9.09 23.53 59.26 132.69 82.78

Table B.162: Average differences between Java test and CSharp test for the CC metric on
a Files level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 0.0 0.0 0.0 0.0 10.21 10.39 24.37 55.29 133.93 75.35

Branchpoints

Table B.163: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Files level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 24.0 501.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 18.0 81.0 2443.0

Differences ˜ ˜ ˜ ˜ ˜ 0.0% 50.0% 100.0% 237.5% 387.62%

Table B.164: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Files level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 24.0 618.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 17.0 70.0 2454.0

Differences ˜ ˜ ˜ ˜ ˜ 0.0% 50.0% 88.89% 191.67% 297.09%

Table B.165: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Files level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 22.0 656.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 19.0 85.0 2709.0

Differences ˜ ˜ ˜ ˜ ˜ 0.0% 50.0% 111.11% 286.36% 312.96%

126

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.166: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Files level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 23.0 501.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 19.0 84.0 2709.0

Differences ˜ ˜ ˜ ˜ ˜ 0.0% 50.0% 111.11% 265.22% 440.72%

Table B.167: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Files level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 23.0 501.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 19.0 82.0 2828.0

Differences ˜ ˜ ˜ ˜ ˜ 0.0% 50.0% 111.11% 256.52% 464.47%

Table B.168: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Files level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 24.0 618.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 18.0 77.0 2462.0

Differences ˜ ˜ ˜ ˜ ˜ 0.0% 50.0% 100.0% 220.83% 298.38%

Table B.169: Percentile values of Java test and CSharp test for the Branchpoints metric
on a Files level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 24.0 501.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 19.0 80.0 2462.0

Differences ˜ ˜ ˜ ˜ ˜ 0.0% 50.0% 111.11% 233.33% 391.42%

Table B.170: Differences between Java test and CSharp test for the Branchpoints metric
on a Files level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN NaN NaN 0.0 50.0 100.00 237.50 387.62

1 NaN NaN NaN NaN NaN 0.0 50.0 88.89 191.67 297.09

2 NaN NaN NaN NaN NaN 0.0 50.0 111.11 286.36 312.96

3 NaN NaN NaN NaN NaN 0.0 50.0 111.11 265.22 440.72

4 NaN NaN NaN NaN NaN 0.0 50.0 111.11 256.52 464.47

5 NaN NaN NaN NaN NaN 0.0 50.0 100.00 220.83 298.38

6 NaN NaN NaN NaN NaN 0.0 50.0 111.11 233.33 391.42

127

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.171: Average differences between Java test and CSharp test for the Branchpoints
metric on a Files level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN NaN NaN 0.0 50.0 104.76 241.63 370.38

Asserts

Table B.172: Percentile values of Java test and CSharp test for the asserts metric on a
Files level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 89.0 1529.0

CSharp test asserts 0.0 1.0 3.0 6.0 11.0 17.0 27.0 45.0 92.0 2227.0

Differences ˜ 0.0% 33.33% 16.67% 0.0% 0.0% 0.0% 0.0% 3.37% 45.65%

Table B.173: Percentile values of Java test and CSharp test for the asserts metric on a
Files level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 44.0 88.0 837.0

CSharp test asserts 0.0 1.0 4.0 7.0 11.0 18.0 27.0 47.0 101.0 2766.0

Differences ˜ 0.0% 0.0% 0.0% 0.0% 5.88% 0.0% 6.82% 14.77% 230.47%

Table B.174: Percentile values of Java test and CSharp test for the asserts metric on a
Files level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 88.0 961.0

CSharp test asserts 0.0 1.0 3.0 6.0 11.0 17.0 26.0 45.0 93.0 1742.0

Differences ˜ 0.0% 33.33% 16.67% 0.0% 0.0% 3.85% 0.0% 5.68% 81.27%

Table B.175: Percentile values of Java test and CSharp test for the asserts metric on a
Files level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 28.0 46.0 91.0 883.0

CSharp test asserts 0.0 1.0 3.0 6.0 11.0 17.0 27.0 48.0 104.0 4480.0

Differences ˜ 0.0% 33.33% 16.67% 0.0% 0.0% 3.7% 4.35% 14.29% 407.36%

Table B.176: Percentile values of Java test and CSharp test for the asserts metric on a
Files level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 89.0 961.0

CSharp test asserts 0.0 1.0 3.0 6.0 11.0 17.0 27.0 45.0 96.0 4498.0

Differences ˜ 0.0% 33.33% 16.67% 0.0% 0.0% 0.0% 0.0% 7.87% 368.05%

128

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.177: Percentile values of Java test and CSharp test for the asserts metric on a
Files level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 89.0 913.0

CSharp test asserts 0.0 1.0 3.0 7.0 11.0 17.0 27.0 48.0 103.0 4498.0

Differences ˜ 0.0% 33.33% 0.0% 0.0% 0.0% 0.0% 6.67% 15.73% 392.66%

Table B.178: Percentile values of Java test and CSharp test for the asserts metric on a
Files level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 46.0 91.0 933.0

CSharp test asserts 0.0 1.0 3.0 7.0 11.0 17.0 27.0 47.0 100.0 5430.0

Differences ˜ 0.0% 33.33% 0.0% 0.0% 0.0% 0.0% 2.17% 9.89% 481.99%

Table B.179: Differences between Java test and CSharp test for the asserts metric on a
Files level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN 0.0 33.33 16.67 0.0 0.00 0.00 0.00 3.37 45.65

1 NaN 0.0 0.00 0.00 0.0 5.88 0.00 6.82 14.77 230.47

2 NaN 0.0 33.33 16.67 0.0 0.00 3.85 0.00 5.68 81.27

3 NaN 0.0 33.33 16.67 0.0 0.00 3.70 4.35 14.29 407.36

4 NaN 0.0 33.33 16.67 0.0 0.00 0.00 0.00 7.87 368.05

5 NaN 0.0 33.33 0.00 0.0 0.00 0.00 6.67 15.73 392.66

6 NaN 0.0 33.33 0.00 0.0 0.00 0.00 2.17 9.89 481.99

Table B.180: Average differences between Java test and CSharp test for the asserts metric
on a Files level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN 0.0 28.57 9.53 0.0 0.84 1.08 2.86 10.23 286.78

B.2.3 System level

SLOC

Table B.181: Percentile values of Java test and CSharp test for the SLOC metric on a
System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 17046.0 51230.0 87374.0 148694.0 190001.0 225068.0 283342.0 350883.0 470474.0 924809.0

CSharp test SLOC 21429.0 33671.0 54826.0 91134.0 156472.0 236928.0 283954.0 383936.0 487409.0 487409.0

Differences 25.71% 52.15% 59.37% 63.16% 21.43% 5.27% 0.22% 9.42% 3.6% 89.74%

129

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.182: Percentile values of Java test and CSharp test for the SLOC metric on a
System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 19852.0 50077.0 113581.0 190001.0 306151.0 373606.0 544441.0 822316.0 843011.0 915395.0

CSharp test SLOC 27781.0 56057.0 88197.0 121224.0 215156.0 310596.0 487409.0 490118.0 840121.0 1319201.0

Differences 39.94% 11.94% 28.78% 56.74% 42.29% 20.29% 11.7% 67.78% 0.34% 44.11%

Table B.183: Percentile values of Java test and CSharp test for the SLOC metric on a
System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 25870.0 71330.0 149495.0 225068.0 246584.0 339474.0 470474.0 822316.0 832327.0 843011.0

CSharp test SLOC 34631.0 84071.0 154955.0 236928.0 381047.0 508226.0 626708.0 840121.0 1319201.0 1594573.0

Differences 33.87% 17.86% 3.65% 5.27% 54.53% 49.71% 33.21% 2.17% 58.5% 89.15%

Table B.184: Percentile values of Java test and CSharp test for the SLOC metric on a
System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 20616.0 43294.0 87374.0 127828.0 154072.0 225068.0 246584.0 373606.0 470474.0 844233.0

CSharp test SLOC 21558.0 49508.0 95582.0 183066.0 215156.0 313855.0 487409.0 606175.0 626708.0 840121.0

Differences 4.57% 14.35% 9.39% 43.21% 39.65% 39.45% 97.66% 62.25% 33.21% 0.49%

Table B.185: Percentile values of Java test and CSharp test for the SLOC metric on a
System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 29366.0 71032.0 157101.0 219578.0 283342.0 460638.0 544441.0 822316.0 844233.0 924809.0

CSharp test SLOC 30774.0 64388.0 119767.0 208162.0 310596.0 333902.0 487409.0 490118.0 840121.0 1319201.0

Differences 4.79% 10.32% 31.17% 5.48% 9.62% 37.96% 11.7% 67.78% 0.49% 42.65%

Table B.186: Percentile values of Java test and CSharp test for the SLOC metric on a
System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 19572.0 53530.0 87374.0 149495.0 225068.0 306151.0 373606.0 460638.0 843011.0 924809.0

CSharp test SLOC 28839.0 66616.0 108429.0 182619.0 236928.0 313855.0 383936.0 487409.0 606175.0 738055.0

Differences 47.35% 24.45% 24.1% 22.16% 5.27% 2.52% 2.76% 5.81% 39.07% 25.3%

Table B.187: Percentile values of Java test and CSharp test for the SLOC metric on a
System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test SLOC 27153.0 74458.0 122130.0 155106.0 219578.0 373606.0 470474.0 822316.0 832327.0 915395.0

CSharp test SLOC 20422.0 38757.0 59540.0 95820.0 141163.0 208162.0 250779.0 381047.0 437622.0 840121.0

Differences 32.96% 92.11% 105.12% 61.87% 55.55% 79.48% 87.61% 115.8% 90.19% 8.96%

130

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.188: Differences between Java test and CSharp test for the SLOC metric on a
System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 25.71 52.15 59.37 63.16 21.43 5.27 0.22 9.42 3.60 89.74

1 39.94 11.94 28.78 56.74 42.29 20.29 11.70 67.78 0.34 44.11

2 33.87 17.86 3.65 5.27 54.53 49.71 33.21 2.17 58.50 89.15

3 4.57 14.35 9.39 43.21 39.65 39.45 97.66 62.25 33.21 0.49

4 4.79 10.32 31.17 5.48 9.62 37.96 11.70 67.78 0.49 42.65

5 47.35 24.45 24.10 22.16 5.27 2.52 2.76 5.81 39.07 25.30

6 32.96 92.11 105.12 61.87 55.55 79.48 87.61 115.80 90.19 8.96

Table B.189: Average differences between Java test and CSharp test for the SLOC metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 27.03 31.88 37.37 36.84 32.62 33.53 34.98 47.29 32.2 42.91

CC

Table B.190: Percentile values of Java test and CSharp test for the CC metric on a System
level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 955.0 2262.0 4390.0 6953.0 8148.0 10234.0 12956.0 16859.0 29820.0 45021.0

CSharp test CC 1020.0 2166.0 4278.0 7950.0 20711.0 28037.0 31757.0 40618.0 58190.0 58190.0

Differences 6.81% 4.43% 2.62% 14.34% 154.19% 173.96% 145.11% 140.93% 95.14% 29.25%

Table B.191: Percentile values of Java test and CSharp test for the CC metric on a System
level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1183.0 3300.0 6953.0 10183.0 12956.0 21862.0 47795.0 66771.0 81549.0 104533.0

CSharp test CC 1004.0 2118.0 3154.0 5826.0 8364.0 12807.0 12924.0 28037.0 32836.0 71616.0

Differences 17.83% 55.81% 120.45% 74.79% 54.9% 70.7% 269.82% 138.15% 148.35% 45.96%

Table B.192: Percentile values of Java test and CSharp test for the CC metric on a System
level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1097.0 2060.0 5861.0 8972.0 12592.0 13015.0 21862.0 36566.0 47309.0 66771.0

CSharp test CC 704.0 1831.0 2592.0 3753.0 6801.0 12034.0 28037.0 29675.0 32836.0 71616.0

Differences 55.82% 12.51% 126.12% 139.06% 85.15% 8.15% 28.25% 23.22% 44.08% 7.26%

131

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.193: Percentile values of Java test and CSharp test for the CC metric on a System
level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 799.0 1954.0 3305.0 5861.0 8748.0 10234.0 12806.0 14084.0 21690.0 87887.0

CSharp test CC 1060.0 2118.0 4278.0 8944.0 12924.0 28037.0 40618.0 40618.0 50091.0 58190.0

Differences 32.67% 8.39% 29.44% 52.6% 47.74% 173.96% 217.18% 188.4% 130.94% 51.03%

Table B.194: Percentile values of Java test and CSharp test for the CC metric on a System
level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 939.0 2749.0 4390.0 8017.0 12592.0 13015.0 16859.0 36566.0 45021.0 66771.0

CSharp test CC 1146.0 2574.0 5069.0 8746.0 12794.0 12924.0 28037.0 32836.0 58190.0 80217.0

Differences 22.04% 6.8% 15.47% 9.09% 1.6% 0.7% 66.3% 11.36% 29.25% 20.14%

Table B.195: Percentile values of Java test and CSharp test for the CC metric on a System
level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 1121.0 3088.0 6798.0 8999.0 13602.0 22495.0 29820.0 47309.0 66771.0 104533.0

CSharp test CC 1020.0 2008.0 3591.0 8314.0 10999.0 12847.0 31757.0 40618.0 57269.0 71616.0

Differences 9.9% 53.78% 89.31% 8.24% 23.67% 75.1% 6.5% 16.47% 16.59% 45.96%

Table B.196: Percentile values of Java test and CSharp test for the CC metric on a System
level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test CC 616.0 1452.0 2262.0 3099.0 5768.0 6953.0 9397.0 12806.0 16779.0 66771.0

CSharp test CC 1054.0 2166.0 3659.0 5923.0 10374.0 12924.0 28037.0 32836.0 71616.0 234164.0

Differences 71.1% 49.17% 61.76% 91.13% 79.85% 85.88% 198.36% 156.41% 326.82% 250.7%

Table B.197: Differences between Java test and CSharp test for the CC metric on a System
level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 6.81 4.43 2.62 14.34 154.19 173.96 145.11 140.93 95.14 29.25

1 17.83 55.81 120.45 74.79 54.90 70.70 269.82 138.15 148.35 45.96

2 55.82 12.51 126.12 139.06 85.15 8.15 28.25 23.22 44.08 7.26

3 32.67 8.39 29.44 52.60 47.74 173.96 217.18 188.40 130.94 51.03

4 22.04 6.80 15.47 9.09 1.60 0.70 66.30 11.36 29.25 20.14

5 9.90 53.78 89.31 8.24 23.67 75.10 6.50 16.47 16.59 45.96

6 71.10 49.17 61.76 91.13 79.85 85.88 198.36 156.41 326.82 250.70

132

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.198: Average differences between Java test and CSharp test for the CC metric on
a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 30.88 27.27 63.6 55.61 63.87 84.06 133.07 96.42 113.02 64.33

Branchpoints

Table B.199: Percentile values of Java test and CSharp test for the Branchpoints metric
on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 283.0 581.0 893.0 1600.0 2465.0 3722.0 4401.0 7256.0 11207.0 33025.0

CSharp test Branchpoints 289.0 968.0 2259.0 2759.0 4763.0 5508.0 8974.0 9188.0 53057.0 186983.0

Differences 2.12% 66.61% 152.97% 72.44% 93.23% 47.98% 103.91% 26.63% 373.43% 466.19%

Table B.200: Percentile values of Java test and CSharp test for the Branchpoints metric
on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 165.0 413.0 660.0 1299.0 1818.0 2100.0 3458.0 5271.0 10829.0 18823.0

CSharp test Branchpoints 411.0 1244.0 2298.0 2759.0 4494.0 6509.0 9188.0 34603.0 53057.0 186983.0

Differences 149.09% 201.21% 248.18% 112.39% 147.19% 209.95% 165.7% 556.48% 389.95% 893.38%

Table B.201: Percentile values of Java test and CSharp test for the Branchpoints metric
on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 235.0 660.0 1356.0 1584.0 2134.0 3458.0 3707.0 7256.0 11207.0 33025.0

CSharp test Branchpoints 285.0 632.0 1278.0 2266.0 4494.0 7598.0 9188.0 20622.0 31078.0 186983.0

Differences 21.28% 4.43% 6.1% 43.06% 110.59% 119.72% 147.86% 184.21% 177.31% 466.19%

Table B.202: Percentile values of Java test and CSharp test for the Branchpoints metric
on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 272.0 557.0 990.0 1818.0 3707.0 3722.0 5487.0 8826.0 11185.0 18823.0

CSharp test Branchpoints 236.0 439.0 929.0 1486.0 2298.0 3843.0 4763.0 6509.0 9128.0 9188.0

Differences 15.25% 26.88% 6.57% 22.34% 61.31% 3.25% 15.2% 35.6% 22.54% 104.87%

Table B.203: Percentile values of Java test and CSharp test for the Branchpoints metric
on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 195.0 473.0 730.0 1356.0 1818.0 2391.0 2465.0 5271.0 7256.0 12527.0

CSharp test Branchpoints 268.0 789.0 1486.0 2259.0 2617.0 4494.0 5596.0 8125.0 31078.0 53057.0

Differences 37.44% 66.81% 103.56% 66.59% 43.95% 87.95% 127.02% 54.15% 328.31% 323.54%

133

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.204: Percentile values of Java test and CSharp test for the Branchpoints metric
on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 245.0 637.0 1388.0 3164.0 4841.0 6321.0 8826.0 12527.0 33025.0 34157.0

CSharp test Branchpoints 280.0 789.0 1604.0 2407.0 4494.0 7598.0 8974.0 9188.0 20622.0 48751.0

Differences 14.29% 23.86% 15.56% 31.45% 7.72% 20.2% 1.68% 36.34% 60.14% 42.73%

Table B.205: Percentile values of Java test and CSharp test for the Branchpoints metric
on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test Branchpoints 211.0 581.0 1299.0 1824.0 3707.0 4401.0 5487.0 7256.0 10829.0 33025.0

CSharp test Branchpoints 289.0 789.0 1912.0 2298.0 3843.0 4963.0 8125.0 9128.0 9188.0 31078.0

Differences 36.97% 35.8% 47.19% 25.99% 3.67% 12.77% 48.08% 25.8% 17.86% 6.26%

Table B.206: Differences between Java test and CSharp test for the Branchpoints metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 2.12 66.61 152.97 72.44 93.23 47.98 103.91 26.63 373.43 466.19

1 149.09 201.21 248.18 112.39 147.19 209.95 165.70 556.48 389.95 893.38

2 21.28 4.43 6.10 43.06 110.59 119.72 147.86 184.21 177.31 466.19

3 15.25 26.88 6.57 22.34 61.31 3.25 15.20 35.60 22.54 104.87

4 37.44 66.81 103.56 66.59 43.95 87.95 127.02 54.15 328.31 323.54

5 14.29 23.86 15.56 31.45 7.72 20.20 1.68 36.34 60.14 42.73

6 36.97 35.80 47.19 25.99 3.67 12.77 48.08 25.80 17.86 6.26

Table B.207: Average differences between Java test and CSharp test for the Branchpoints
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 39.49 60.8 82.88 53.47 66.81 71.69 87.06 131.32 195.65 329.02

Asserts

Table B.208: Percentile values of Java test and CSharp test for the asserts metric on a
System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 1600.0 4071.0 7950.0 14063.0 24411.0 39744.0 49274.0 90070.0 92921.0 96968.0

CSharp test asserts 1544.0 3910.0 5754.0 9398.0 16725.0 41071.0 41071.0 44926.0 49336.0 58844.0

Differences 3.63% 4.12% 38.16% 49.64% 45.96% 3.34% 19.97% 100.49% 88.34% 64.79%

134

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.209: Percentile values of Java test and CSharp test for the asserts metric on a
System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 1600.0 4382.0 7545.0 10084.0 17628.0 26800.0 36823.0 39744.0 90070.0 103755.0

CSharp test asserts 1417.0 3910.0 6477.0 14135.0 21865.0 25297.0 29171.0 41071.0 49336.0 58844.0

Differences 12.91% 12.07% 16.49% 40.17% 24.04% 5.94% 26.23% 3.34% 82.56% 76.32%

Table B.210: Percentile values of Java test and CSharp test for the asserts metric on a
System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 1156.0 3774.0 5608.0 9230.0 14856.0 19858.0 23731.0 36768.0 49274.0 92921.0

CSharp test asserts 2286.0 5698.0 11654.0 18674.0 29171.0 41071.0 45135.0 52477.0 58053.0 85742.0

Differences 97.75% 50.98% 107.81% 102.32% 96.36% 106.82% 90.19% 42.72% 17.82% 8.37%

Table B.211: Percentile values of Java test and CSharp test for the asserts metric on a
System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 2099.0 5804.0 12410.0 21127.0 30006.0 49274.0 66636.0 90070.0 92921.0 103755.0

CSharp test asserts 1362.0 3910.0 8627.0 16725.0 20400.0 22725.0 33885.0 50276.0 58053.0 85742.0

Differences 54.11% 48.44% 43.85% 26.32% 47.09% 116.83% 96.65% 79.15% 60.06% 21.01%

Table B.212: Percentile values of Java test and CSharp test for the asserts metric on a
System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 1851.0 4815.0 7950.0 12410.0 19858.0 26800.0 41968.0 53607.0 92921.0 96968.0

CSharp test asserts 1609.0 4606.0 8196.0 16725.0 22725.0 41071.0 44926.0 49336.0 58844.0 85742.0

Differences 15.04% 4.54% 3.09% 34.77% 14.44% 53.25% 7.05% 8.66% 57.91% 13.09%

Table B.213: Percentile values of Java test and CSharp test for the asserts metric on a
System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 2241.0 5074.0 8838.0 17834.0 26585.0 39744.0 53607.0 66636.0 90070.0 103755.0

CSharp test asserts 1548.0 3834.0 7143.0 11654.0 18674.0 20400.0 49336.0 50276.0 58844.0 58844.0

Differences 44.77% 32.34% 23.73% 53.03% 42.36% 94.82% 8.66% 32.54% 53.07% 76.32%

Table B.214: Percentile values of Java test and CSharp test for the asserts metric on a
System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java test asserts 2021.0 5466.0 8913.0 12691.0 20576.0 24680.0 36823.0 41968.0 53607.0 90070.0

CSharp test asserts 2286.0 5115.0 8011.0 12653.0 20400.0 28192.0 34168.0 45135.0 50276.0 56122.0

Differences 13.11% 6.86% 11.26% 0.3% 0.86% 14.23% 7.77% 7.55% 6.63% 60.49%

135

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.215: Differences between Java test and CSharp test for the asserts metric on a
System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 3.63 4.12 38.16 49.64 45.96 3.34 19.97 100.49 88.34 64.79

1 12.91 12.07 16.49 40.17 24.04 5.94 26.23 3.34 82.56 76.32

2 97.75 50.98 107.81 102.32 96.36 106.82 90.19 42.72 17.82 8.37

3 54.11 48.44 43.85 26.32 47.09 116.83 96.65 79.15 60.06 21.01

4 15.04 4.54 3.09 34.77 14.44 53.25 7.05 8.66 57.91 13.09

5 44.77 32.34 23.73 53.03 42.36 94.82 8.66 32.54 53.07 76.32

6 13.11 6.86 11.26 0.30 0.86 14.23 7.77 7.55 6.63 60.49

Table B.216: Average differences between Java test and CSharp test for the asserts metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 34.47 22.76 34.91 43.79 38.73 56.46 36.65 39.21 52.34 45.77

B.3 Java production - Java test

B.3.1 Unit level

SLOC

Table B.217: Percentile values of Java production and Java test for the SLOC metric on a
Unit level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 70.0 2062.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 1001.0

Differences 33.33% 100.0% 33.33% 11.11% 0.0% 6.25% 15.0% 28.57% 48.94% 105.99%

Table B.218: Percentile values of Java production and Java test for the SLOC metric on a
Unit level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 71.0 1760.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 1001.0

Differences 33.33% 100.0% 33.33% 11.11% 0.0% 6.25% 15.0% 28.57% 51.06% 75.82%

Table B.219: Percentile values of Java production and Java test for the SLOC metric on a
Unit level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 70.0 2238.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 46.0 962.0

Differences 33.33% 100.0% 33.33% 11.11% 0.0% 6.25% 15.0% 28.57% 52.17% 132.64%

136

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.220: Percentile values of Java production and Java test for the SLOC metric on a
Unit level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 70.0 2238.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 29.0 48.0 1012.0

Differences 33.33% 100.0% 33.33% 11.11% 0.0% 6.25% 15.0% 24.14% 45.83% 121.15%

Table B.221: Percentile values of Java production and Java test for the SLOC metric on a
Unit level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 71.0 2062.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 15.0 20.0 28.0 46.0 1001.0

Differences 33.33% 100.0% 33.33% 11.11% 0.0% 13.33% 15.0% 28.57% 54.35% 105.99%

Table B.222: Percentile values of Java production and Java test for the SLOC metric on a
Unit level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 71.0 2238.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 47.0 1592.0

Differences 33.33% 100.0% 33.33% 11.11% 0.0% 6.25% 15.0% 28.57% 51.06% 40.58%

Table B.223: Percentile values of Java production and Java test for the SLOC metric on a
Unit level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 3.0 3.0 6.0 9.0 12.0 17.0 23.0 36.0 70.0 2739.0

Java test SLOC 4.0 6.0 8.0 10.0 12.0 16.0 20.0 28.0 48.0 1012.0

Differences 33.33% 100.0% 33.33% 11.11% 0.0% 6.25% 15.0% 28.57% 45.83% 170.65%

Table B.224: Differences between Java production and Java test for the SLOC metric on
a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 33.33 100.0 33.33 11.11 0.0 6.25 15.0 28.57 48.94 105.99

1 33.33 100.0 33.33 11.11 0.0 6.25 15.0 28.57 51.06 75.82

2 33.33 100.0 33.33 11.11 0.0 6.25 15.0 28.57 52.17 132.64

3 33.33 100.0 33.33 11.11 0.0 6.25 15.0 24.14 45.83 121.15

4 33.33 100.0 33.33 11.11 0.0 13.33 15.0 28.57 54.35 105.99

5 33.33 100.0 33.33 11.11 0.0 6.25 15.0 28.57 51.06 40.58

6 33.33 100.0 33.33 11.11 0.0 6.25 15.0 28.57 45.83 170.65

137

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.225: Average differences between Java production and Java test for the SLOC
metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 33.33 100.0 33.33 11.11 0.0 7.26 15.0 27.94 49.89 107.55

CC

Table B.226: Percentile values of Java production and Java test for the CC metric on a
Unit level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 776.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 111.0

Differences 0.0% 0.0% 0.0% 100.0% 100.0% 200.0% 400.0% 600.0% 400.0% 599.1%

Table B.227: Percentile values of Java production and Java test for the CC metric on a
Unit level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 776.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 75.0

Differences 0.0% 0.0% 0.0% 100.0% 100.0% 200.0% 400.0% 600.0% 400.0% 934.67%

Table B.228: Percentile values of Java production and Java test for the CC metric on a
Unit level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 598.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 122.0

Differences 0.0% 0.0% 0.0% 100.0% 100.0% 200.0% 400.0% 600.0% 400.0% 390.16%

Table B.229: Percentile values of Java production and Java test for the CC metric on a
Unit level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 873.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 106.0

Differences 0.0% 0.0% 0.0% 100.0% 100.0% 200.0% 400.0% 600.0% 400.0% 723.58%

Table B.230: Percentile values of Java production and Java test for the CC metric on a
Unit level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 598.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 81.0

Differences 0.0% 0.0% 0.0% 100.0% 100.0% 200.0% 400.0% 600.0% 400.0% 638.27%

138

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.231: Percentile values of Java production and Java test for the CC metric on a
Unit level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 873.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 122.0

Differences 0.0% 0.0% 0.0% 100.0% 100.0% 200.0% 400.0% 600.0% 400.0% 615.57%

Table B.232: Percentile values of Java production and Java test for the CC metric on a
Unit level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 1.0 1.0 1.0 2.0 2.0 3.0 5.0 7.0 15.0 873.0

Java test CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 111.0

Differences 0.0% 0.0% 0.0% 100.0% 100.0% 200.0% 400.0% 600.0% 400.0% 686.49%

Table B.233: Differences between Java production and Java test for the CC metric on a
Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.0 0.0 0.0 100.0 100.0 200.0 400.0 600.0 400.0 599.10

1 0.0 0.0 0.0 100.0 100.0 200.0 400.0 600.0 400.0 934.67

2 0.0 0.0 0.0 100.0 100.0 200.0 400.0 600.0 400.0 390.16

3 0.0 0.0 0.0 100.0 100.0 200.0 400.0 600.0 400.0 723.58

4 0.0 0.0 0.0 100.0 100.0 200.0 400.0 600.0 400.0 638.27

5 0.0 0.0 0.0 100.0 100.0 200.0 400.0 600.0 400.0 615.57

6 0.0 0.0 0.0 100.0 100.0 200.0 400.0 600.0 400.0 686.49

Table B.234: Average differences between Java production and Java test for the CC metric
on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 0.0 0.0 0.0 100.0 100.0 200.0 400.0 600.0 400.0 655.41

Branchpoints

Table B.235: Percentile values of Java production and Java test for the Branchpoints metric
on a Unit level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 570.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 105.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 600.0% 442.86%

139

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.236: Percentile values of Java production and Java test for the Branchpoints metric
on a Unit level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 375.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 121.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 600.0% 209.92%

Table B.237: Percentile values of Java production and Java test for the Branchpoints metric
on a Unit level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 872.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 79.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 600.0% 1003.8%

Table B.238: Percentile values of Java production and Java test for the Branchpoints metric
on a Unit level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 872.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 121.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 600.0% 620.66%

Table B.239: Percentile values of Java production and Java test for the Branchpoints metric
on a Unit level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 706.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 79.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 600.0% 793.67%

Table B.240: Percentile values of Java production and Java test for the Branchpoints metric
on a Unit level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 706.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 105.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 600.0% 572.38%

140

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.241: Percentile values of Java production and Java test for the Branchpoints metric
on a Unit level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 0.0 1.0 1.0 2.0 4.0 6.0 14.0 775.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 110.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 600.0% 604.55%

Table B.242: Differences between Java production and Java test for the Branchpoints
metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN NaN NaN NaN NaN NaN 600.0 442.86

1 NaN NaN NaN NaN NaN NaN NaN NaN 600.0 209.92

2 NaN NaN NaN NaN NaN NaN NaN NaN 600.0 1003.80

3 NaN NaN NaN NaN NaN NaN NaN NaN 600.0 620.66

4 NaN NaN NaN NaN NaN NaN NaN NaN 600.0 793.67

5 NaN NaN NaN NaN NaN NaN NaN NaN 600.0 572.38

6 NaN NaN NaN NaN NaN NaN NaN NaN 600.0 604.55

Table B.243: Average differences between Java production and Java test for the Branch-
points metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN NaN NaN NaN NaN NaN 600.0 606.83

B.3.2 File level

SLOC

Table B.244: Percentile values of Java production and Java test for the SLOC metric on a
File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 103.0 141.0 196.0 281.0 429.0 794.0 7238.0

Java test SLOC 45.0 71.0 99.0 132.0 176.0 238.0 327.0 476.0 836.0 18933.0

Differences 55.17% 42.0% 35.62% 28.16% 24.82% 21.43% 16.37% 10.96% 5.29% 161.58%

Table B.245: Percentile values of Java production and Java test for the SLOC metric on a
File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 103.0 142.0 198.0 286.0 436.0 804.0 7125.0

Java test SLOC 46.0 71.0 99.0 132.0 176.0 236.0 328.0 478.0 850.0 11505.0

Differences 58.62% 42.0% 35.62% 28.16% 23.94% 19.19% 14.69% 9.63% 5.72% 61.47%

141

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.246: Percentile values of Java production and Java test for the SLOC metric on a
File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 74.0 103.0 143.0 199.0 286.0 441.0 817.0 24990.0

Java test SLOC 46.0 71.0 99.0 133.0 177.0 240.0 332.0 481.0 836.0 11505.0

Differences 58.62% 42.0% 33.78% 29.13% 23.78% 20.6% 16.08% 9.07% 2.33% 117.21%

Table B.247: Percentile values of Java production and Java test for the SLOC metric on a
File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 102.0 141.0 196.0 281.0 434.0 805.0 9195.0

Java test SLOC 46.0 71.0 99.0 133.0 178.0 242.0 335.0 497.0 899.0 18933.0

Differences 58.62% 42.0% 35.62% 30.39% 26.24% 23.47% 19.22% 14.52% 11.68% 105.91%

Table B.248: Percentile values of Java production and Java test for the SLOC metric on a
File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 74.0 103.0 143.0 199.0 288.0 446.0 824.0 9195.0

Java test SLOC 45.0 71.0 99.0 132.0 176.0 235.0 325.0 476.0 824.0 11505.0

Differences 55.17% 42.0% 33.78% 28.16% 23.08% 18.09% 12.85% 6.73% 0.0% 25.12%

Table B.249: Percentile values of Java production and Java test for the SLOC metric on a
File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 74.0 103.0 143.0 199.0 286.0 440.0 821.0 7125.0

Java test SLOC 46.0 71.0 99.0 133.0 177.0 239.0 330.0 485.0 849.0 18933.0

Differences 58.62% 42.0% 33.78% 29.13% 23.78% 20.1% 15.38% 10.23% 3.41% 165.73%

Table B.250: Percentile values of Java production and Java test for the SLOC metric on a
File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 29.0 50.0 73.0 102.0 141.0 196.0 280.0 428.0 786.0 7238.0

Java test SLOC 45.0 71.0 98.0 131.0 175.0 234.0 319.0 472.0 811.0 6728.0

Differences 55.17% 42.0% 34.25% 28.43% 24.11% 19.39% 13.93% 10.28% 3.18% 7.58%

142

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.251: Differences between Java production and Java test for the SLOC metric on
a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 55.17 42.0 35.62 28.16 24.82 21.43 16.37 10.96 5.29 161.58

1 58.62 42.0 35.62 28.16 23.94 19.19 14.69 9.63 5.72 61.47

2 58.62 42.0 33.78 29.13 23.78 20.60 16.08 9.07 2.33 117.21

3 58.62 42.0 35.62 30.39 26.24 23.47 19.22 14.52 11.68 105.91

4 55.17 42.0 33.78 28.16 23.08 18.09 12.85 6.73 0.00 25.12

5 58.62 42.0 33.78 29.13 23.78 20.10 15.38 10.23 3.41 165.73

6 55.17 42.0 34.25 28.43 24.11 19.39 13.93 10.28 3.18 7.58

Table B.252: Average differences between Java production and Java test for the SLOC
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 57.14 42.0 34.64 28.79 24.25 20.32 15.5 10.2 4.52 92.09

CC

Table B.253: Percentile values of Java production and Java test for the CC metric on a
File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 54.0 86.0 169.0 2136.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 53.0 4488.0

Differences 100.0% 300.0% 333.33% 260.0% 225.0% 236.36% 217.65% 218.52% 218.87% 110.11%

Table B.254: Percentile values of Java production and Java test for the CC metric on a
File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 54.0 86.0 167.0 2136.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 52.0 3368.0

Differences 100.0% 300.0% 333.33% 260.0% 225.0% 236.36% 217.65% 218.52% 221.15% 57.68%

Table B.255: Percentile values of Java production and Java test for the CC metric on a
File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 54.0 86.0 171.0 3402.0

Java test CC 2.0 2.0 3.0 5.0 7.0 11.0 17.0 27.0 52.0 1626.0

Differences 100.0% 300.0% 333.33% 260.0% 271.43% 236.36% 217.65% 218.52% 228.85% 109.23%

143

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.256: Percentile values of Java production and Java test for the CC metric on a
File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 5.0 8.0 13.0 18.0 26.0 37.0 54.0 86.0 168.0 2240.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 53.0 908.0

Differences 150.0% 300.0% 333.33% 260.0% 225.0% 236.36% 217.65% 218.52% 216.98% 146.7%

Table B.257: Percentile values of Java production and Java test for the CC metric on a
File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 54.0 85.0 165.0 2240.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 28.0 54.0 1446.0

Differences 100.0% 300.0% 333.33% 260.0% 225.0% 236.36% 217.65% 203.57% 205.56% 54.91%

Table B.258: Percentile values of Java production and Java test for the CC metric on a
File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 54.0 87.0 172.0 3402.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 53.0 4488.0

Differences 100.0% 300.0% 333.33% 260.0% 225.0% 236.36% 217.65% 222.22% 224.53% 31.92%

Table B.259: Percentile values of Java production and Java test for the CC metric on a
File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 4.0 8.0 13.0 18.0 26.0 37.0 55.0 86.0 171.0 5539.0

Java test CC 2.0 2.0 3.0 5.0 8.0 11.0 17.0 27.0 52.0 3368.0

Differences 100.0% 300.0% 333.33% 260.0% 225.0% 236.36% 223.53% 218.52% 228.85% 64.46%

Table B.260: Differences between Java production and Java test for the CC metric on a
File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 100.0 300.0 333.33 260.0 225.00 236.36 217.65 218.52 218.87 110.11

1 100.0 300.0 333.33 260.0 225.00 236.36 217.65 218.52 221.15 57.68

2 100.0 300.0 333.33 260.0 271.43 236.36 217.65 218.52 228.85 109.23

3 150.0 300.0 333.33 260.0 225.00 236.36 217.65 218.52 216.98 146.70

4 100.0 300.0 333.33 260.0 225.00 236.36 217.65 203.57 205.56 54.91

5 100.0 300.0 333.33 260.0 225.00 236.36 217.65 222.22 224.53 31.92

6 100.0 300.0 333.33 260.0 225.00 236.36 223.53 218.52 228.85 64.46

144

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.261: Average differences between Java production and Java test for the CC metric
on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 107.14 300.0 333.33 260.0 231.63 236.36 218.49 216.91 220.68 82.14

Branchpoints

Table B.262: Percentile values of Java production and Java test for the Branchpoints metric
on a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 48.0 104.0 2953.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 22.0 618.0

Differences ˜ ˜ ˜ ˜ ˜ 700.0% 575.0% 433.33% 372.73% 377.83%

Table B.263: Percentile values of Java production and Java test for the Branchpoints metric
on a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 106.0 2953.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 24.0 656.0

Differences ˜ ˜ ˜ ˜ ˜ 700.0% 575.0% 444.44% 341.67% 350.15%

Table B.264: Percentile values of Java production and Java test for the Branchpoints metric
on a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 107.0 1963.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 24.0 488.0

Differences ˜ ˜ ˜ ˜ ˜ 700.0% 575.0% 444.44% 345.83% 302.25%

Table B.265: Percentile values of Java production and Java test for the Branchpoints metric
on a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 15.0 27.0 48.0 103.0 1576.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 22.0 656.0

Differences ˜ ˜ ˜ ˜ ˜ 650.0% 575.0% 433.33% 368.18% 140.24%

Table B.266: Percentile values of Java production and Java test for the Branchpoints metric
on a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 105.0 1652.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 24.0 488.0

Differences ˜ ˜ ˜ ˜ ˜ 700.0% 575.0% 444.44% 337.5% 238.52%

145

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.267: Percentile values of Java production and Java test for the Branchpoints metric
on a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 105.0 1822.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 23.0 392.0

Differences ˜ ˜ ˜ ˜ ˜ 700.0% 575.0% 444.44% 356.52% 364.8%

Table B.268: Percentile values of Java production and Java test for the Branchpoints metric
on a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 0.0 0.0 2.0 5.0 9.0 16.0 27.0 49.0 102.0 1652.0

Java test Branchpoints 0.0 0.0 0.0 0.0 0.0 2.0 4.0 9.0 24.0 488.0

Differences ˜ ˜ ˜ ˜ ˜ 700.0% 575.0% 444.44% 325.0% 238.52%

Table B.269: Differences between Java production and Java test for the Branchpoints
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN NaN NaN 700.0 575.0 433.33 372.73 377.83

1 NaN NaN NaN NaN NaN 700.0 575.0 444.44 341.67 350.15

2 NaN NaN NaN NaN NaN 700.0 575.0 444.44 345.83 302.25

3 NaN NaN NaN NaN NaN 650.0 575.0 433.33 368.18 140.24

4 NaN NaN NaN NaN NaN 700.0 575.0 444.44 337.50 238.52

5 NaN NaN NaN NaN NaN 700.0 575.0 444.44 356.52 364.80

6 NaN NaN NaN NaN NaN 700.0 575.0 444.44 325.00 238.52

Table B.270: Average differences between Java production and Java test for the Branch-
points metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN NaN NaN 692.86 575.0 441.27 349.63 287.47

Asserts

Table B.271: Percentile values of Java production and Java test for the asserts metric on
a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 714.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 87.0 883.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 23.67%

146

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.272: Percentile values of Java production and Java test for the asserts metric on
a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1566.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 90.0 933.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 67.85%

Table B.273: Percentile values of Java production and Java test for the asserts metric on
a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 714.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 28.0 46.0 90.0 1529.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 114.15%

Table B.274: Percentile values of Java production and Java test for the asserts metric on
a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1566.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 18.0 28.0 47.0 91.0 961.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 62.96%

Table B.275: Percentile values of Java production and Java test for the asserts metric on
a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 829.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 90.0 961.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 15.92%

Table B.276: Percentile values of Java production and Java test for the asserts metric on
a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 714.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 45.0 88.0 1529.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 114.15%

147

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.277: Percentile values of Java production and Java test for the asserts metric on
a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 829.0

Java test asserts 0.0 1.0 4.0 7.0 11.0 18.0 28.0 46.0 89.0 961.0

Differences ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 15.92%

Table B.278: Differences between Java production and Java test for the asserts metric on
a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN NaN NaN NaN NaN NaN NaN 23.67

1 NaN NaN NaN NaN NaN NaN NaN NaN NaN 67.85

2 NaN NaN NaN NaN NaN NaN NaN NaN NaN 114.15

3 NaN NaN NaN NaN NaN NaN NaN NaN NaN 62.96

4 NaN NaN NaN NaN NaN NaN NaN NaN NaN 15.92

5 NaN NaN NaN NaN NaN NaN NaN NaN NaN 114.15

6 NaN NaN NaN NaN NaN NaN NaN NaN NaN 15.92

Table B.279: Average differences between Java production and Java test for the asserts
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN NaN NaN NaN NaN NaN NaN 59.23

B.3.3 System level

SLOC

Table B.280: Percentile values of Java production and Java test for the SLOC metric on a
System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 47839.0 115557.0 167567.0 309931.0 554478.0 668992.0 839063.0 942367.0 1200297.0 1481603.0

Java test SLOC 15514.0 38995.0 79875.0 135591.0 171621.0 243947.0 246584.0 373606.0 544441.0 924809.0

Differences 208.36% 196.34% 109.79% 128.58% 223.08% 174.24% 240.27% 152.24% 120.46% 60.21%

Table B.281: Percentile values of Java production and Java test for the SLOC metric on a
System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 57360.0 144952.0 233402.0 309931.0 558695.0 828862.0 995766.0 1189979.0 1462250.0 1481603.0

Java test SLOC 21878.0 52035.0 85757.0 135603.0 190001.0 246056.0 306151.0 460638.0 544441.0 822316.0

Differences 162.18% 178.57% 172.17% 128.56% 194.05% 236.86% 225.25% 158.33% 168.58% 80.17%

148

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.282: Percentile values of Java production and Java test for the SLOC metric on a
System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 42752.0 92568.0 187277.0 249696.0 330314.0 558695.0 668992.0 942367.0 1200297.0 1481603.0

Java test SLOC 30294.0 71032.0 149495.0 190001.0 254543.0 544441.0 832327.0 843011.0 844233.0 924809.0

Differences 41.12% 30.32% 25.27% 31.42% 29.77% 2.62% 24.42% 11.79% 42.18% 60.21%

Table B.283: Percentile values of Java production and Java test for the SLOC metric on a
System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 50856.0 112230.0 195851.0 248154.0 437712.0 668992.0 942367.0 1108624.0 1200297.0 1481603.0

Java test SLOC 32593.0 83906.0 155106.0 246056.0 339474.0 460638.0 544441.0 832327.0 843011.0 924809.0

Differences 56.03% 33.76% 26.27% 0.85% 28.94% 45.23% 73.09% 33.2% 42.38% 60.21%

Table B.284: Percentile values of Java production and Java test for the SLOC metric on a
System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 42901.0 86084.0 129307.0 187277.0 248154.0 423941.0 761771.0 906480.0 1189979.0 1481603.0

Java test SLOC 29366.0 62244.0 117138.0 155106.0 225068.0 339474.0 373606.0 470474.0 843011.0 915395.0

Differences 46.09% 38.3% 10.39% 20.74% 10.26% 24.88% 103.9% 92.67% 41.16% 61.85%

Table B.285: Percentile values of Java production and Java test for the SLOC metric on a
System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 43014.0 92674.0 153206.0 246038.0 335453.0 554478.0 828862.0 1108624.0 1209227.0 1481603.0

Java test SLOC 28882.0 71330.0 127828.0 184947.0 283342.0 460638.0 544441.0 822316.0 844233.0 924809.0

Differences 48.93% 29.92% 19.85% 33.03% 18.39% 20.37% 52.24% 34.82% 43.23% 60.21%

Table B.286: Percentile values of Java production and Java test for the SLOC metric on a
System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production SLOC 37737.0 76428.0 134430.0 202745.0 249696.0 437712.0 603134.0 853485.0 1108624.0 1200297.0

Java test SLOC 22523.0 53980.0 95892.0 149495.0 219578.0 283342.0 339474.0 470474.0 843011.0 844233.0

Differences 67.55% 41.59% 40.19% 35.62% 13.72% 54.48% 77.67% 81.41% 31.51% 42.18%

Table B.287: Differences between Java production and Java test for the SLOC metric on
a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 208.36 196.34 109.79 128.58 223.08 174.24 240.27 152.24 120.46 60.21

1 162.18 178.57 172.17 128.56 194.05 236.86 225.25 158.33 168.58 80.17

2 41.12 30.32 25.27 31.42 29.77 2.62 24.42 11.79 42.18 60.21

3 56.03 33.76 26.27 0.85 28.94 45.23 73.09 33.20 42.38 60.21

4 46.09 38.30 10.39 20.74 10.26 24.88 103.90 92.67 41.16 61.85

5 48.93 29.92 19.85 33.03 18.39 20.37 52.24 34.82 43.23 60.21

6 67.55 41.59 40.19 35.62 13.72 54.48 77.67 81.41 31.51 42.18

149

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.288: Average differences between Java production and Java test for the SLOC
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 90.04 78.4 57.7 54.11 74.03 79.81 113.83 80.64 69.93 60.72

CC

Table B.289: Percentile values of Java production and Java test for the CC metric on a
System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 9300.0 18672.0 29846.0 50813.0 66128.0 90449.0 150545.0 217534.0 224999.0 332876.0

Java test CC 1009.0 2262.0 4390.0 6953.0 8748.0 10656.0 16779.0 36566.0 47795.0 47795.0

Differences 821.7% 725.46% 579.86% 630.81% 655.92% 748.81% 797.22% 494.91% 370.76% 596.47%

Table B.290: Percentile values of Java production and Java test for the CC metric on a
System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 12138.0 27697.0 50813.0 63211.0 77939.0 150545.0 197373.0 218904.0 275706.0 332876.0

Java test CC 1097.0 2147.0 3930.0 8017.0 12592.0 16779.0 36566.0 45021.0 87887.0 104533.0

Differences 1006.47% 1190.03% 1192.95% 688.46% 518.96% 797.22% 439.77% 386.23% 213.71% 218.44%

Table B.291: Percentile values of Java production and Java test for the CC metric on a
System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 7131.0 16926.0 29486.0 40245.0 61038.0 77900.0 195843.0 217534.0 218904.0 332876.0

Java test CC 958.0 2731.0 5768.0 9397.0 15173.0 21862.0 36566.0 45021.0 47795.0 81549.0

Differences 644.36% 519.77% 411.2% 328.27% 302.28% 256.33% 435.59% 383.18% 358.01% 308.19%

Table B.292: Percentile values of Java production and Java test for the CC metric on a
System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 10246.0 21295.0 38110.0 62108.0 77635.0 136336.0 197373.0 217534.0 275706.0 332876.0

Java test CC 1094.0 2894.0 4315.0 7727.0 10656.0 13602.0 36566.0 47309.0 47795.0 87887.0

Differences 836.56% 635.83% 783.2% 703.78% 628.56% 902.32% 439.77% 359.82% 476.85% 278.75%

Table B.293: Percentile values of Java production and Java test for the CC metric on a
System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 6050.0 15355.0 26843.0 38110.0 60119.0 77635.0 104333.0 180293.0 217534.0 233887.0

Java test CC 1094.0 2462.0 4390.0 8999.0 12301.0 16859.0 26453.0 45021.0 66771.0 87887.0

Differences 453.02% 523.68% 511.46% 323.49% 388.73% 360.5% 294.41% 300.46% 225.79% 166.12%

150

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.294: Percentile values of Java production and Java test for the CC metric on a
System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 7022.0 18199.0 35235.0 67040.0 101122.0 171903.0 197373.0 233887.0 275706.0 332876.0

Java test CC 1305.0 3986.0 8148.0 10656.0 13015.0 16859.0 29820.0 45021.0 47309.0 104533.0

Differences 438.08% 356.57% 332.44% 529.13% 676.97% 919.65% 561.88% 419.51% 482.78% 218.44%

Table B.295: Percentile values of Java production and Java test for the CC metric on a
System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production CC 6492.0 14446.0 27592.0 35235.0 51658.0 67040.0 101506.0 150545.0 224999.0 332876.0

Java test CC 952.0 1926.0 4298.0 6403.0 9323.0 13602.0 22495.0 29820.0 47309.0 104533.0

Differences 581.93% 650.05% 541.97% 450.29% 454.09% 392.87% 351.24% 404.85% 375.59% 218.44%

Table B.296: Differences between Java production and Java test for the CC metric on a
System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 821.70 725.46 579.86 630.81 655.92 748.81 797.22 494.91 370.76 596.47

1 1006.47 1190.03 1192.95 688.46 518.96 797.22 439.77 386.23 213.71 218.44

2 644.36 519.77 411.20 328.27 302.28 256.33 435.59 383.18 358.01 308.19

3 836.56 635.83 783.20 703.78 628.56 902.32 439.77 359.82 476.85 278.75

4 453.02 523.68 511.46 323.49 388.73 360.50 294.41 300.46 225.79 166.12

5 438.08 356.57 332.44 529.13 676.97 919.65 561.88 419.51 482.78 218.44

6 581.93 650.05 541.97 450.29 454.09 392.87 351.24 404.85 375.59 218.44

Table B.297: Average differences between Java production and Java test for the CC metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 683.16 657.34 621.87 522.03 517.93 625.39 474.27 392.71 357.64 286.41

Branchpoints

Table B.298: Percentile values of Java production and Java test for the Branchpoints metric
on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 2411.0 5717.0 9741.0 15903.0 25550.0 35034.0 54178.0 94075.0 142658.0 187433.0

Java test Branchpoints 262.0 676.0 1388.0 1818.0 3164.0 4401.0 5487.0 8881.0 18823.0 34532.0

Differences 820.23% 745.71% 601.8% 774.75% 707.52% 696.05% 887.39% 959.28% 657.89% 442.78%

Table B.299: Percentile values of Java production and Java test for the Branchpoints metric
on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 1987.0 5762.0 10353.0 15531.0 22035.0 31578.0 54178.0 63057.0 82654.0 159284.0

Java test Branchpoints 215.0 537.0 1133.0 1485.0 1818.0 2100.0 3722.0 3722.0 5932.0 11185.0

Differences 824.19% 973.0% 813.77% 945.86% 1112.05% 1403.71% 1355.62% 1594.17% 1293.36% 1324.09%

151

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.300: Percentile values of Java production and Java test for the Branchpoints metric
on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 3030.0 6516.0 12387.0 17463.0 25758.0 31850.0 73326.0 94847.0 97642.0 187433.0

Java test Branchpoints 246.0 557.0 1036.0 1584.0 2134.0 3707.0 4841.0 7256.0 8826.0 18823.0

Differences 1131.71% 1069.84% 1095.66% 1002.46% 1107.03% 759.19% 1414.69% 1207.15% 1006.3% 895.77%

Table B.301: Percentile values of Java production and Java test for the Branchpoints metric
on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 3323.0 7247.0 12021.0 25782.0 29472.0 54178.0 82654.0 97166.0 98948.0 187433.0

Java test Branchpoints 326.0 819.0 1356.0 1818.0 3458.0 4401.0 5932.0 8826.0 11185.0 34532.0

Differences 919.33% 784.86% 786.5% 1318.15% 752.28% 1131.04% 1293.36% 1000.91% 784.65% 442.78%

Table B.302: Percentile values of Java production and Java test for the Branchpoints metric
on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 2632.0 6955.0 15186.0 23017.0 27169.0 48609.0 82654.0 97166.0 98948.0 187433.0

Java test Branchpoints 221.0 487.0 741.0 1375.0 2111.0 3458.0 3722.0 7256.0 8826.0 34157.0

Differences 1090.95% 1328.13% 1949.39% 1573.96% 1187.02% 1305.7% 2120.69% 1239.11% 1021.1% 448.74%

Table B.303: Percentile values of Java production and Java test for the Branchpoints metric
on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 3042.0 6268.0 12387.0 17275.0 25758.0 32979.0 54178.0 63057.0 142658.0 187433.0

Java test Branchpoints 211.0 493.0 843.0 1353.0 1780.0 2100.0 4841.0 10829.0 11207.0 34532.0

Differences 1341.71% 1171.4% 1369.4% 1176.79% 1347.08% 1470.43% 1019.15% 482.3% 1172.94% 442.78%

Table B.304: Percentile values of Java production and Java test for the Branchpoints metric
on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production Branchpoints 2414.0 6386.0 12021.0 18061.0 29472.0 35034.0 73326.0 97642.0 142658.0 187433.0

Java test Branchpoints 246.0 730.0 1353.0 1987.0 2673.0 5347.0 7256.0 8826.0 8881.0 34532.0

Differences 881.3% 774.79% 788.47% 808.96% 1002.58% 555.21% 910.56% 1006.3% 1506.33% 442.78%

Table B.305: Differences between Java production and Java test for the Branchpoints
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 820.23 745.71 601.80 774.75 707.52 696.05 887.39 959.28 657.89 442.78

1 824.19 973.00 813.77 945.86 1112.05 1403.71 1355.62 1594.17 1293.36 1324.09

2 1131.71 1069.84 1095.66 1002.46 1107.03 759.19 1414.69 1207.15 1006.30 895.77

3 919.33 784.86 786.50 1318.15 752.28 1131.04 1293.36 1000.91 784.65 442.78

4 1090.95 1328.13 1949.39 1573.96 1187.02 1305.70 2120.69 1239.11 1021.10 448.74

5 1341.71 1171.40 1369.40 1176.79 1347.08 1470.43 1019.15 482.30 1172.94 442.78

6 881.30 774.79 788.47 808.96 1002.58 555.21 910.56 1006.30 1506.33 442.78

152

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.306: Average differences between Java production and Java test for the Branch-
points metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 1001.35 978.25 1057.86 1085.85 1030.79 1045.9 1285.92 1069.89 1063.22 634.25

Asserts

Table B.307: Percentile values of Java production and Java test for the asserts metric on
a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 2.0 3.0 5.0 13.0 56.0 358.0 992.0 6948.0

Java test asserts 987.0 2643.0 5466.0 9230.0 14492.0 18737.0 23316.0 26800.0 49274.0 49274.0

Differences ˜ ˜ 273200.0% 307566.67% 289740.0% 144030.77% 41535.71% 7386.03% 4867.14% 609.18%

Table B.308: Percentile values of Java production and Java test for the asserts metric on
a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 2.0 4.0 10.0 30.0 88.0 992.0 2359.0 25081.0

Java test asserts 2361.0 6956.0 14856.0 21127.0 36823.0 49274.0 66636.0 90070.0 92921.0 103755.0

Differences ˜ ˜ 742700.0% 528075.0% 368130.0% 164146.67% 75622.73% 8979.64% 3839.0% 313.68%

Table B.309: Percentile values of Java production and Java test for the asserts metric on
a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 3.0 5.0 27.0 100.0 175.0 469.0 1264.0 24842.0

Java test asserts 2518.0 5230.0 13852.0 20576.0 36768.0 49274.0 66636.0 92921.0 96129.0 103755.0

Differences ˜ ˜ 461633.33% 411420.0% 136077.78% 49174.0% 37977.71% 19712.58% 7505.14% 317.66%

Table B.310: Percentile values of Java production and Java test for the asserts metric on
a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 3.0 4.0 9.0 26.0 119.0 358.0 992.0 24842.0

Java test asserts 1796.0 4470.0 8632.0 17628.0 21127.0 26800.0 41968.0 53607.0 66636.0 103755.0

Differences ˜ ˜ 287633.33% 440600.0% 234644.44% 102976.92% 35167.23% 14874.02% 6617.34% 317.66%

Table B.311: Percentile values of Java production and Java test for the asserts metric on
a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 2.0 4.0 9.0 37.0 267.0 492.0 2459.0 24842.0

Java test asserts 2361.0 5644.0 9022.0 14856.0 19858.0 49274.0 66636.0 90070.0 92921.0 96129.0

Differences ˜ ˜ 451000.0% 371300.0% 220544.44% 133072.97% 24857.3% 18206.91% 3678.81% 286.96%

Table B.312: Percentile values of Java production and Java test for the asserts metric on
a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 0.0 2.0 3.0 9.0 12.0 49.0 358.0 2459.0

Java test asserts 883.0 2467.0 4781.0 8838.0 11358.0 14492.0 19858.0 26585.0 90070.0 90070.0

Differences ˜ ˜ ˜ 441800.0% 378500.0% 160922.22% 165383.33% 54155.1% 25059.22% 3562.87%

153

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.313: Percentile values of Java production and Java test for the asserts metric on
a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Java production asserts 0.0 0.0 2.0 3.0 7.0 14.0 89.0 492.0 1592.0 25081.0

Java test asserts 2038.0 5173.0 8838.0 12828.0 18670.0 23731.0 36823.0 49274.0 90070.0 103755.0

Differences ˜ ˜ 441800.0% 427500.0% 266614.29% 169407.14% 41274.16% 9915.04% 5557.66% 313.68%

Table B.314: Differences between Java production and Java test for the asserts metric on
a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN 273200.00 307566.67 289740.00 144030.77 41535.71 7386.03 4867.14 609.18

1 NaN NaN 742700.00 528075.00 368130.00 164146.67 75622.73 8979.64 3839.00 313.68

2 NaN NaN 461633.33 411420.00 136077.78 49174.00 37977.71 19712.58 7505.14 317.66

3 NaN NaN 287633.33 440600.00 234644.44 102976.92 35167.23 14874.02 6617.34 317.66

4 NaN NaN 451000.00 371300.00 220544.44 133072.97 24857.30 18206.91 3678.81 286.96

5 NaN NaN NaN 441800.00 378500.00 160922.22 165383.33 54155.10 25059.22 3562.87

6 NaN NaN 441800.00 427500.00 266614.29 169407.14 41274.16 9915.04 5557.66 313.68

Table B.315: Average differences between Java production and Java test for the asserts
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN 442994.44 418323.1 270607.28 131961.53 60259.74 19032.76 8160.62 817.38

B.4 CSharp production - CSharp test

B.4.1 Unit level

SLOC

Table B.316: Percentile values of CSharp production and CSharp test for the SLOC metric
on a Unit level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

CSharp test SLOC 7.0 11.0 16.0 23.0 32.0 47.0 80.0 128.0 193.0 1511.0

Differences 133.33% 57.14% 60.0% 64.29% 77.78% 88.0% 135.29% 156.0% 114.44% 186.7%

Table B.317: Percentile values of CSharp production and CSharp test for the SLOC metric
on a Unit level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 91.0 4332.0

CSharp test SLOC 7.0 11.0 16.0 23.0 32.0 47.0 80.0 127.0 191.0 15549.0

Differences 133.33% 57.14% 60.0% 64.29% 77.78% 88.0% 135.29% 154.0% 109.89% 258.93%

154

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.318: Percentile values of CSharp production and CSharp test for the SLOC metric
on a Unit level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

CSharp test SLOC 7.0 11.0 16.0 22.0 31.0 46.0 79.0 127.0 187.0 15549.0

Differences 133.33% 57.14% 60.0% 57.14% 72.22% 84.0% 132.35% 154.0% 107.78% 258.93%

Table B.319: Percentile values of CSharp production and CSharp test for the SLOC metric
on a Unit level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 91.0 4332.0

CSharp test SLOC 7.0 11.0 16.0 23.0 32.0 47.0 80.0 128.0 189.0 1587.0

Differences 133.33% 57.14% 60.0% 64.29% 77.78% 88.0% 135.29% 156.0% 107.69% 172.97%

Table B.320: Percentile values of CSharp production and CSharp test for the SLOC metric
on a Unit level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 89.0 3816.0

CSharp test SLOC 7.0 11.0 16.0 22.0 31.0 46.0 79.0 126.0 186.0 1661.0

Differences 133.33% 57.14% 60.0% 57.14% 72.22% 84.0% 132.35% 152.0% 108.99% 129.74%

Table B.321: Percentile values of CSharp production and CSharp test for the SLOC metric
on a Unit level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 89.0 3689.0

CSharp test SLOC 7.0 11.0 16.0 22.0 31.0 46.0 78.0 126.0 186.0 1587.0

Differences 133.33% 57.14% 60.0% 57.14% 72.22% 84.0% 129.41% 152.0% 108.99% 132.45%

Table B.322: Percentile values of CSharp production and CSharp test for the SLOC metric
on a Unit level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 3.0 7.0 10.0 14.0 18.0 25.0 34.0 50.0 90.0 4332.0

CSharp test SLOC 7.0 11.0 16.0 23.0 32.0 47.0 80.0 127.0 190.0 3605.0

Differences 133.33% 57.14% 60.0% 64.29% 77.78% 88.0% 135.29% 154.0% 111.11% 20.17%

155

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.323: Differences between CSharp production and CSharp test for the SLOC metric
on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 133.33 57.14 60.0 64.29 77.78 88.0 135.29 156.0 114.44 186.70

1 133.33 57.14 60.0 64.29 77.78 88.0 135.29 154.0 109.89 258.93

2 133.33 57.14 60.0 57.14 72.22 84.0 132.35 154.0 107.78 258.93

3 133.33 57.14 60.0 64.29 77.78 88.0 135.29 156.0 107.69 172.97

4 133.33 57.14 60.0 57.14 72.22 84.0 132.35 152.0 108.99 129.74

5 133.33 57.14 60.0 57.14 72.22 84.0 129.41 152.0 108.99 132.45

6 133.33 57.14 60.0 64.29 77.78 88.0 135.29 154.0 111.11 20.17

Table B.324: Average differences between CSharp production and CSharp test for the
SLOC metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 133.33 57.14 60.0 61.23 75.4 86.29 133.61 154.0 109.84 165.7

CC

Table B.325: Percentile values of CSharp production and CSharp test for the CC metric
on a Unit level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 331.0

Differences 0.0% 0.0% 0.0% 100.0% 200.0% 100.0% 20.0% 77.78% 62.5% 227.49%

Table B.326: Percentile values of CSharp production and CSharp test for the CC metric
on a Unit level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 304.0

Differences 0.0% 0.0% 0.0% 100.0% 200.0% 100.0% 20.0% 77.78% 62.5% 256.58%

Table B.327: Percentile values of CSharp production and CSharp test for the CC metric
on a Unit level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 15.0 26.0 331.0

Differences 0.0% 0.0% 0.0% 100.0% 200.0% 100.0% 20.0% 66.67% 62.5% 227.49%

156

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.328: Percentile values of CSharp production and CSharp test for the CC metric
on a Unit level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 331.0

Differences 0.0% 0.0% 0.0% 100.0% 200.0% 100.0% 20.0% 77.78% 62.5% 227.49%

Table B.329: Percentile values of CSharp production and CSharp test for the CC metric
on a Unit level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 25.0 331.0

Differences 0.0% 0.0% 0.0% 100.0% 200.0% 100.0% 20.0% 77.78% 56.25% 227.49%

Table B.330: Percentile values of CSharp production and CSharp test for the CC metric
on a Unit level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 770.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 304.0

Differences 0.0% 0.0% 0.0% 100.0% 200.0% 100.0% 20.0% 77.78% 62.5% 153.29%

Table B.331: Percentile values of CSharp production and CSharp test for the CC metric
on a Unit level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 1.0 1.0 1.0 2.0 3.0 4.0 6.0 9.0 16.0 1084.0

CSharp test CC 1.0 1.0 1.0 1.0 1.0 2.0 5.0 16.0 26.0 358.0

Differences 0.0% 0.0% 0.0% 100.0% 200.0% 100.0% 20.0% 77.78% 62.5% 202.79%

Table B.332: Differences between CSharp production and CSharp test for the CC metric
on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.0 0.0 0.0 100.0 200.0 100.0 20.0 77.78 62.50 227.49

1 0.0 0.0 0.0 100.0 200.0 100.0 20.0 77.78 62.50 256.58

2 0.0 0.0 0.0 100.0 200.0 100.0 20.0 66.67 62.50 227.49

3 0.0 0.0 0.0 100.0 200.0 100.0 20.0 77.78 62.50 227.49

4 0.0 0.0 0.0 100.0 200.0 100.0 20.0 77.78 56.25 227.49

5 0.0 0.0 0.0 100.0 200.0 100.0 20.0 77.78 62.50 153.29

6 0.0 0.0 0.0 100.0 200.0 100.0 20.0 77.78 62.50 202.79

157

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.333: Average differences between CSharp production and CSharp test for the CC
metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 0.0 0.0 0.0 100.0 200.0 100.0 20.0 76.19 61.61 217.52

Branchpoints

Table B.334: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a Unit level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 443.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 14.0 24.0 275.0

Differences ˜ ˜ ˜ ˜ ˜ 200.0% 25.0% 75.0% 60.0% 61.09%

Table B.335: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a Unit level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 1083.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 5.0 15.0 25.0 303.0

Differences ˜ ˜ ˜ ˜ ˜ 200.0% 0.0% 87.5% 66.67% 257.43%

Table B.336: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a Unit level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 769.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 24.0 293.0

Differences ˜ ˜ ˜ ˜ ˜ 200.0% 25.0% 87.5% 60.0% 162.46%

Table B.337: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a Unit level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 1083.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 24.0 357.0

Differences ˜ ˜ ˜ ˜ ˜ 200.0% 25.0% 87.5% 60.0% 203.36%

Table B.338: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a Unit level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 1083.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 25.0 279.0

Differences ˜ ˜ ˜ ˜ ˜ 200.0% 25.0% 87.5% 66.67% 288.17%

158

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.339: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a Unit level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 1083.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 25.0 279.0

Differences ˜ ˜ ˜ ˜ ˜ 200.0% 25.0% 87.5% 66.67% 288.17%

Table B.340: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a Unit level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 0.0 1.0 2.0 3.0 5.0 8.0 15.0 438.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 0.0 1.0 4.0 15.0 25.0 357.0

Differences ˜ ˜ ˜ ˜ ˜ 200.0% 25.0% 87.5% 66.67% 22.69%

Table B.341: Differences between CSharp production and CSharp test for the Branchpoints
metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN NaN NaN 200.0 25.0 75.0 60.00 61.09

1 NaN NaN NaN NaN NaN 200.0 0.0 87.5 66.67 257.43

2 NaN NaN NaN NaN NaN 200.0 25.0 87.5 60.00 162.46

3 NaN NaN NaN NaN NaN 200.0 25.0 87.5 60.00 203.36

4 NaN NaN NaN NaN NaN 200.0 25.0 87.5 66.67 288.17

5 NaN NaN NaN NaN NaN 200.0 25.0 87.5 66.67 288.17

6 NaN NaN NaN NaN NaN 200.0 25.0 87.5 66.67 22.69

Table B.342: Average differences between CSharp production and CSharp test for the
Branchpoints metric on a Unit level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN NaN NaN 200.0 21.43 85.71 63.81 183.34

B.4.2 File level

SLOC

Table B.343: Percentile values of CSharp production and CSharp test for the SLOC metric
on a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 23.0 42.0 69.0 106.0 159.0 246.0 390.0 667.0 1440.0 36664.0

CSharp test SLOC 53.0 86.0 125.0 177.0 249.0 362.0 543.0 877.0 1845.0 28079.0

Differences 130.43% 104.76% 81.16% 66.98% 56.6% 47.15% 39.23% 31.48% 28.12% 30.57%

159

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.344: Percentile values of CSharp production and CSharp test for the SLOC metric
on a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 23.0 42.0 69.0 106.0 160.0 247.0 392.0 674.0 1437.0 36664.0

CSharp test SLOC 52.0 86.0 125.0 177.0 250.0 363.0 546.0 888.0 1782.0 23314.0

Differences 126.09% 104.76% 81.16% 66.98% 56.25% 46.96% 39.29% 31.75% 24.01% 57.26%

Table B.345: Percentile values of CSharp production and CSharp test for the SLOC metric
on a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 23.0 42.0 69.0 106.0 160.0 248.0 391.0 672.0 1432.0 36664.0

CSharp test SLOC 53.0 87.0 127.0 180.0 255.0 372.0 569.0 929.0 1918.0 68502.0

Differences 130.43% 107.14% 84.06% 69.81% 59.38% 50.0% 45.52% 38.24% 33.94% 86.84%

Table B.346: Percentile values of CSharp production and CSharp test for the SLOC metric
on a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 23.0 42.0 68.0 105.0 158.0 244.0 382.0 654.0 1346.0 31690.0

CSharp test SLOC 53.0 86.0 126.0 178.0 253.0 366.0 552.0 878.0 1803.0 68502.0

Differences 130.43% 104.76% 85.29% 69.52% 60.13% 50.0% 44.5% 34.25% 33.95% 116.16%

Table B.347: Percentile values of CSharp production and CSharp test for the SLOC metric
on a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 23.0 42.0 68.0 105.0 159.0 245.0 387.0 661.0 1410.0 28434.0

CSharp test SLOC 53.0 86.0 126.0 179.0 254.0 367.0 566.0 892.0 1855.0 23666.0

Differences 130.43% 104.76% 85.29% 70.48% 59.75% 49.8% 46.25% 34.95% 31.56% 20.15%

Table B.348: Percentile values of CSharp production and CSharp test for the SLOC metric
on a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 23.0 42.0 68.0 105.0 159.0 245.0 385.0 654.0 1411.0 31690.0

CSharp test SLOC 53.0 86.0 126.0 178.0 250.0 363.0 552.0 885.0 1769.0 23666.0

Differences 130.43% 104.76% 85.29% 69.52% 57.23% 48.16% 43.38% 35.32% 25.37% 33.91%

Table B.349: Percentile values of CSharp production and CSharp test for the SLOC metric
on a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 23.0 42.0 68.0 105.0 159.0 244.0 384.0 656.0 1368.0 20861.0

CSharp test SLOC 53.0 86.0 126.0 179.0 254.0 370.0 567.0 912.0 1845.0 23666.0

Differences 130.43% 104.76% 85.29% 70.48% 59.75% 51.64% 47.66% 39.02% 34.87% 13.45%

160

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.350: Differences between CSharp production and CSharp test for the SLOC metric
on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 130.43 104.76 81.16 66.98 56.60 47.15 39.23 31.48 28.12 30.57

1 126.09 104.76 81.16 66.98 56.25 46.96 39.29 31.75 24.01 57.26

2 130.43 107.14 84.06 69.81 59.38 50.00 45.52 38.24 33.94 86.84

3 130.43 104.76 85.29 69.52 60.13 50.00 44.50 34.25 33.95 116.16

4 130.43 104.76 85.29 70.48 59.75 49.80 46.25 34.95 31.56 20.15

5 130.43 104.76 85.29 69.52 57.23 48.16 43.38 35.32 25.37 33.91

6 130.43 104.76 85.29 70.48 59.75 51.64 47.66 39.02 34.87 13.45

Table B.351: Average differences between CSharp production and CSharp test for the
SLOC metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 129.81 105.1 83.93 69.11 58.44 49.1 43.69 35.0 30.26 51.19

CC

Table B.352: Percentile values of CSharp production and CSharp test for the CC metric
on a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 4.0 7.0 11.0 17.0 27.0 42.0 69.0 121.0 271.0 3991.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 21.0 40.0 119.0 2354.0

Differences 100.0% 250.0% 266.67% 240.0% 285.71% 250.0% 228.57% 202.5% 127.73% 69.54%

Table B.353: Percentile values of CSharp production and CSharp test for the CC metric
on a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 4.0 7.0 11.0 17.0 27.0 42.0 68.0 118.0 256.0 5822.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 21.0 40.0 110.0 2774.0

Differences 100.0% 250.0% 266.67% 240.0% 285.71% 250.0% 223.81% 195.0% 132.73% 109.88%

Table B.354: Percentile values of CSharp production and CSharp test for the CC metric
on a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 4.0 7.0 11.0 18.0 27.0 43.0 70.0 123.0 278.0 5822.0

CSharp test CC 2.0 2.0 3.0 5.0 8.0 12.0 22.0 43.0 125.0 2992.0

Differences 100.0% 250.0% 266.67% 260.0% 237.5% 258.33% 218.18% 186.05% 122.4% 94.59%

161

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.355: Percentile values of CSharp production and CSharp test for the CC metric
on a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 4.0 7.0 11.0 17.0 26.0 42.0 68.0 117.0 254.0 4872.0

CSharp test CC 2.0 2.0 3.0 5.0 8.0 12.0 22.0 45.0 142.0 2972.0

Differences 100.0% 250.0% 266.67% 240.0% 225.0% 250.0% 209.09% 160.0% 78.87% 63.93%

Table B.356: Percentile values of CSharp production and CSharp test for the CC metric
on a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 4.0 7.0 11.0 18.0 27.0 43.0 70.0 123.0 282.0 4872.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 21.0 40.0 121.0 2354.0

Differences 100.0% 250.0% 266.67% 260.0% 285.71% 258.33% 233.33% 207.5% 133.06% 106.97%

Table B.357: Percentile values of CSharp production and CSharp test for the CC metric
on a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 4.0 7.0 11.0 18.0 27.0 43.0 70.0 121.0 278.0 3297.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 21.0 42.0 124.0 2972.0

Differences 100.0% 250.0% 266.67% 260.0% 285.71% 258.33% 233.33% 188.1% 124.19% 10.94%

Table B.358: Percentile values of CSharp production and CSharp test for the CC metric
on a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 4.0 7.0 11.0 18.0 27.0 43.0 70.0 123.0 279.0 5822.0

CSharp test CC 2.0 2.0 3.0 5.0 7.0 12.0 22.0 44.0 130.0 2765.0

Differences 100.0% 250.0% 266.67% 260.0% 285.71% 258.33% 218.18% 179.55% 114.62% 110.56%

Table B.359: Differences between CSharp production and CSharp test for the CC metric
on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 100.0 250.0 266.67 240.0 285.71 250.00 228.57 202.50 127.73 69.54

1 100.0 250.0 266.67 240.0 285.71 250.00 223.81 195.00 132.73 109.88

2 100.0 250.0 266.67 260.0 237.50 258.33 218.18 186.05 122.40 94.59

3 100.0 250.0 266.67 240.0 225.00 250.00 209.09 160.00 78.87 63.93

4 100.0 250.0 266.67 260.0 285.71 258.33 233.33 207.50 133.06 106.97

5 100.0 250.0 266.67 260.0 285.71 258.33 233.33 188.10 124.19 10.94

6 100.0 250.0 266.67 260.0 285.71 258.33 218.18 179.55 114.62 110.56

Table B.360: Average differences between CSharp production and CSharp test for the CC
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 100.0 250.0 266.67 251.43 270.15 254.76 223.5 188.39 119.09 80.92

162

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Branchpoints

Table B.361: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 11.0 21.0 38.0 73.0 165.0 2408.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 18.0 85.0 2828.0

Differences ˜ ˜ ˜ ˜ 1000.0% 950.0% 533.33% 305.56% 94.12% 17.44%

Table B.362: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 22.0 39.0 75.0 167.0 2408.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 19.0 80.0 2443.0

Differences ˜ ˜ ˜ ˜ 1100.0% 1000.0% 550.0% 294.74% 108.75% 1.45%

Table B.363: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 21.0 40.0 76.0 180.0 2974.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 3.0 7.0 22.0 99.0 2828.0

Differences ˜ ˜ ˜ ˜ 1100.0% 600.0% 471.43% 245.45% 81.82% 5.16%

Table B.364: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 21.0 39.0 75.0 173.0 2974.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 19.0 91.0 2709.0

Differences ˜ ˜ ˜ ˜ 1100.0% 950.0% 550.0% 294.74% 90.11% 9.78%

Table B.365: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 11.0 21.0 39.0 74.0 165.0 1881.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 17.0 74.0 2828.0

Differences ˜ ˜ ˜ ˜ 1000.0% 950.0% 550.0% 335.29% 122.97% 50.35%

Table B.366: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 21.0 39.0 75.0 170.0 4349.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 2.0 6.0 20.0 92.0 2454.0

Differences ˜ ˜ ˜ ˜ 1100.0% 950.0% 550.0% 275.0% 84.78% 77.22%

163

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.367: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 0.0 0.0 2.0 6.0 12.0 22.0 39.0 75.0 169.0 2016.0

CSharp test Branchpoints 0.0 0.0 0.0 0.0 1.0 3.0 7.0 20.0 88.0 2709.0

Differences ˜ ˜ ˜ ˜ 1100.0% 633.33% 457.14% 275.0% 92.05% 34.38%

Table B.368: Differences between CSharp production and CSharp test for the Branchpoints
metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN NaN 1000.0 950.00 533.33 305.56 94.12 17.44

1 NaN NaN NaN NaN 1100.0 1000.00 550.00 294.74 108.75 1.45

2 NaN NaN NaN NaN 1100.0 600.00 471.43 245.45 81.82 5.16

3 NaN NaN NaN NaN 1100.0 950.00 550.00 294.74 90.11 9.78

4 NaN NaN NaN NaN 1000.0 950.00 550.00 335.29 122.97 50.35

5 NaN NaN NaN NaN 1100.0 950.00 550.00 275.00 84.78 77.22

6 NaN NaN NaN NaN 1100.0 633.33 457.14 275.00 92.05 34.38

Table B.369: Average differences between CSharp production and CSharp test for the
Branchpoints metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN NaN 1071.43 861.9 523.13 289.4 96.37 27.97

Asserts

Table B.370: Percentile values of CSharp production and CSharp test for the asserts metric
on a File level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 10.0 1149.0

CSharp test asserts 0.0 1.0 3.0 6.0 11.0 17.0 26.0 47.0 99.0 4498.0

Differences ˜ ˜ ˜ ˜ ˜ 1600.0% 1200.0% 1075.0% 890.0% 291.47%

Table B.371: Percentile values of CSharp production and CSharp test for the asserts metric
on a File level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 1.0 3.0 9.0 552.0

CSharp test asserts 0.0 1.0 3.0 7.0 11.0 18.0 27.0 47.0 102.0 5430.0

Differences ˜ ˜ ˜ ˜ ˜ 1700.0% 2600.0% 1466.67% 1033.33% 883.7%

164

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.372: Percentile values of CSharp production and CSharp test for the asserts metric
on a File level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 1.0 4.0 10.0 537.0

CSharp test asserts 0.0 1.0 4.0 7.0 11.0 18.0 27.0 49.0 103.0 5430.0

Differences ˜ ˜ ˜ ˜ ˜ 1700.0% 2600.0% 1125.0% 930.0% 911.17%

Table B.373: Percentile values of CSharp production and CSharp test for the asserts metric
on a File level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 10.0 572.0

CSharp test asserts 0.0 1.0 3.0 7.0 11.0 17.0 26.0 45.0 95.0 2567.0

Differences ˜ ˜ ˜ ˜ ˜ 1600.0% 1200.0% 1025.0% 850.0% 348.78%

Table B.374: Percentile values of CSharp production and CSharp test for the asserts metric
on a File level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 1.0 4.0 10.0 1149.0

CSharp test asserts 0.0 1.0 4.0 7.0 11.0 17.0 27.0 47.0 96.0 4498.0

Differences ˜ ˜ ˜ ˜ ˜ 1600.0% 2600.0% 1075.0% 860.0% 291.47%

Table B.375: Percentile values of CSharp production and CSharp test for the asserts metric
on a File level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 1.0 3.0 10.0 540.0

CSharp test asserts 0.0 1.0 3.0 6.0 11.0 17.0 27.0 46.0 96.0 2821.0

Differences ˜ ˜ ˜ ˜ ˜ 1600.0% 2600.0% 1433.33% 860.0% 422.41%

Table B.376: Percentile values of CSharp production and CSharp test for the asserts metric
on a File level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 10.0 1149.0

CSharp test asserts 0.0 1.0 3.0 7.0 11.0 18.0 27.0 46.0 98.0 5430.0

Differences ˜ ˜ ˜ ˜ ˜ 1700.0% 1250.0% 1050.0% 880.0% 372.58%

165

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.377: Differences between CSharp production and CSharp test for the asserts metric
on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 NaN NaN NaN NaN NaN 1600.0 1200.0 1075.00 890.00 291.47

1 NaN NaN NaN NaN NaN 1700.0 2600.0 1466.67 1033.33 883.70

2 NaN NaN NaN NaN NaN 1700.0 2600.0 1125.00 930.00 911.17

3 NaN NaN NaN NaN NaN 1600.0 1200.0 1025.00 850.00 348.78

4 NaN NaN NaN NaN NaN 1600.0 2600.0 1075.00 860.00 291.47

5 NaN NaN NaN NaN NaN 1600.0 2600.0 1433.33 860.00 422.41

6 NaN NaN NaN NaN NaN 1700.0 1250.0 1050.00 880.00 372.58

Table B.378: Average differences between CSharp production and CSharp test for the
asserts metric on a File level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) NaN NaN NaN NaN NaN 1642.86 2007.14 1178.57 900.48 503.08

B.4.3 System level

SLOC

Table B.379: Percentile values of CSharp production and CSharp test for the SLOC metric
on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 37910.0 79494.0 155310.0 215676.0 370024.0 587560.0 816256.0 1029293.0 1689227.0 2173399.0

CSharp test SLOC 30741.0 59540.0 100911.0 156472.0 250779.0 437622.0 487409.0 606175.0 738055.0 1319201.0

Differences 23.32% 33.51% 53.91% 37.84% 47.55% 34.26% 67.47% 69.8% 128.88% 64.75%

Table B.380: Percentile values of CSharp production and CSharp test for the SLOC metric
on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 49418.0 139230.0 243882.0 402973.0 504964.0 639537.0 816256.0 1447269.0 1795303.0 2173399.0

CSharp test SLOC 28157.0 76196.0 141163.0 208162.0 310596.0 487409.0 571050.0 606175.0 636785.0 1594573.0

Differences 75.51% 82.73% 72.77% 93.59% 62.58% 31.21% 42.94% 138.75% 181.93% 36.3%

Table B.381: Percentile values of CSharp production and CSharp test for the SLOC metric
on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 31388.0 62586.0 116915.0 194553.0 215676.0 370024.0 442590.0 535604.0 591154.0 1447269.0

CSharp test SLOC 32646.0 94604.0 154955.0 215156.0 333902.0 487409.0 508226.0 840121.0 1319201.0 1594573.0

Differences 4.01% 51.16% 32.54% 10.59% 54.82% 31.72% 14.83% 56.85% 123.16% 10.18%

166

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.382: Percentile values of CSharp production and CSharp test for the SLOC metric
on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 45721.0 99098.0 195216.0 262954.0 559216.0 691704.0 859273.0 1069001.0 1689227.0 1795303.0

CSharp test SLOC 28157.0 65230.0 108472.0 250779.0 333866.0 437622.0 571050.0 626708.0 840121.0 1319201.0

Differences 62.38% 51.92% 79.97% 4.85% 67.5% 58.06% 50.47% 70.57% 101.07% 36.09%

Table B.383: Percentile values of CSharp production and CSharp test for the SLOC metric
on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 34992.0 82256.0 155310.0 202641.0 278093.0 433541.0 559216.0 637991.0 1689227.0 2173399.0

CSharp test SLOC 29209.0 69328.0 149935.0 208162.0 333902.0 487409.0 606175.0 636785.0 1319201.0 1319201.0

Differences 19.8% 18.65% 3.58% 2.72% 20.07% 12.43% 8.4% 0.19% 28.05% 64.75%

Table B.384: Percentile values of CSharp production and CSharp test for the SLOC metric
on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 55949.0 151184.0 235017.0 369512.0 559216.0 637991.0 816256.0 1689227.0 1795303.0 2173399.0

CSharp test SLOC 21158.0 33671.0 63029.0 121224.0 182619.0 239989.0 313855.0 383936.0 508226.0 636785.0

Differences 164.43% 349.0% 272.87% 204.82% 206.22% 165.84% 160.07% 339.98% 253.25% 241.31%

Table B.385: Percentile values of CSharp production and CSharp test for the SLOC metric
on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production SLOC 47061.0 105346.0 194945.0 268948.0 458235.0 637991.0 1029293.0 1689227.0 1795303.0 2173399.0

CSharp test SLOC 28175.0 56057.0 100625.0 150091.0 236928.0 381047.0 487409.0 606175.0 626708.0 636785.0

Differences 67.03% 87.93% 93.73% 79.19% 93.41% 67.43% 111.18% 178.67% 186.47% 241.31%

Table B.386: Differences between CSharp production and CSharp test for the SLOC metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 23.32 33.51 53.91 37.84 47.55 34.26 67.47 69.80 128.88 64.75

1 75.51 82.73 72.77 93.59 62.58 31.21 42.94 138.75 181.93 36.30

2 4.01 51.16 32.54 10.59 54.82 31.72 14.83 56.85 123.16 10.18

3 62.38 51.92 79.97 4.85 67.50 58.06 50.47 70.57 101.07 36.09

4 19.80 18.65 3.58 2.72 20.07 12.43 8.40 0.19 28.05 64.75

5 164.43 349.00 272.87 204.82 206.22 165.84 160.07 339.98 253.25 241.31

6 67.03 87.93 93.73 79.19 93.41 67.43 111.18 178.67 186.47 241.31

Table B.387: Average differences between CSharp production and CSharp test for the
SLOC metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 59.5 96.41 87.05 61.94 78.88 57.28 65.05 122.12 143.26 99.24

167

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

CC

Table B.388: Percentile values of CSharp production and CSharp test for the CC metric
on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 10008.0 20198.0 39510.0 61448.0 83365.0 133038.0 169767.0 304054.0 307757.0 454793.0

CSharp test CC 1162.0 2592.0 5069.0 12034.0 28037.0 31757.0 32836.0 50091.0 71616.0 234164.0

Differences 761.27% 679.24% 679.44% 410.62% 197.34% 318.92% 417.01% 507.0% 329.73% 94.22%

Table B.389: Percentile values of CSharp production and CSharp test for the CC metric
on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 7541.0 15870.0 30529.0 44253.0 62999.0 81631.0 114755.0 134646.0 146752.0 307757.0

CSharp test CC 1350.0 3479.0 5826.0 10999.0 22240.0 29675.0 47865.0 58190.0 80217.0 234164.0

Differences 458.59% 356.17% 424.01% 302.34% 183.27% 175.08% 139.75% 131.39% 82.94% 31.43%

Table B.390: Percentile values of CSharp production and CSharp test for the CC metric
on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 10509.0 33098.0 53346.0 83365.0 114470.0 133038.0 218716.0 307757.0 346707.0 454793.0

CSharp test CC 1152.0 3050.0 5923.0 8997.0 12847.0 28037.0 31757.0 40618.0 47865.0 58190.0

Differences 812.24% 985.18% 800.66% 826.59% 791.03% 374.51% 588.72% 657.69% 624.34% 681.57%

Table B.391: Percentile values of CSharp production and CSharp test for the CC metric
on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 9392.0 23500.0 45131.0 78180.0 103390.0 132217.0 218716.0 307757.0 346707.0 454793.0

CSharp test CC 1350.0 2630.0 7950.0 10999.0 28037.0 29675.0 47865.0 57269.0 71616.0 234164.0

Differences 595.7% 793.54% 467.69% 610.79% 268.76% 345.55% 356.94% 437.39% 384.12% 94.22%

Table B.392: Percentile values of CSharp production and CSharp test for the CC metric
on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 8549.0 19130.0 37502.0 52958.0 76389.0 105532.0 118124.0 132217.0 218716.0 416370.0

CSharp test CC 1156.0 2592.0 6113.0 12034.0 12883.0 29675.0 47865.0 71616.0 80217.0 234164.0

Differences 639.53% 638.04% 513.48% 340.07% 492.94% 255.63% 146.79% 84.62% 172.66% 77.81%

Table B.393: Percentile values of CSharp production and CSharp test for the CC metric
on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 8641.0 20198.0 32897.0 39938.0 65541.0 103390.0 133994.0 218716.0 304054.0 307757.0

CSharp test CC 1054.0 1906.0 3221.0 10374.0 12924.0 40618.0 47865.0 50091.0 57269.0 57269.0

Differences 719.83% 959.71% 921.33% 284.98% 407.13% 154.54% 179.94% 336.64% 430.92% 437.39%

168

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.394: Percentile values of CSharp production and CSharp test for the CC metric
on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production CC 8202.0 16829.0 33098.0 59152.0 103390.0 114755.0 146752.0 218716.0 307757.0 454793.0

CSharp test CC 1540.0 3067.0 8364.0 12794.0 22240.0 29675.0 31757.0 57269.0 80217.0 234164.0

Differences 432.6% 448.71% 295.72% 362.34% 364.88% 286.71% 362.11% 281.91% 283.66% 94.22%

Table B.395: Differences between CSharp production and CSharp test for the CC metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 761.27 679.24 679.44 410.62 197.34 318.92 417.01 507.00 329.73 94.22

1 458.59 356.17 424.01 302.34 183.27 175.08 139.75 131.39 82.94 31.43

2 812.24 985.18 800.66 826.59 791.03 374.51 588.72 657.69 624.34 681.57

3 595.70 793.54 467.69 610.79 268.76 345.55 356.94 437.39 384.12 94.22

4 639.53 638.04 513.48 340.07 492.94 255.63 146.79 84.62 172.66 77.81

5 719.83 959.71 921.33 284.98 407.13 154.54 179.94 336.64 430.92 437.39

6 432.60 448.71 295.72 362.34 364.88 286.71 362.11 281.91 283.66 94.22

Table B.396: Average differences between CSharp production and CSharp test for the CC
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 631.39 694.37 586.05 448.25 386.48 272.99 313.04 348.09 329.77 215.84

Branchpoints

Table B.397: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 3094.0 9110.0 13918.0 21965.0 37220.0 65801.0 72772.0 88928.0 112605.0 216200.0

CSharp test Branchpoints 196.0 674.0 1404.0 2336.0 2759.0 5508.0 7598.0 20622.0 31078.0 53057.0

Differences 1478.57% 1251.63% 891.31% 840.28% 1249.04% 1094.64% 857.78% 331.23% 262.33% 307.49%

Table B.398: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 2030.0 5482.0 11089.0 18583.0 28130.0 37220.0 65801.0 72772.0 117813.0 275225.0

CSharp test Branchpoints 314.0 851.0 1505.0 2298.0 2774.0 4269.0 4963.0 9128.0 53057.0 186983.0

Differences 546.5% 544.18% 636.81% 708.66% 914.06% 771.87% 1225.83% 697.24% 122.05% 47.19%

Table B.399: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 2626.0 8053.0 11813.0 17250.0 26293.0 40252.0 66093.0 74556.0 112605.0 112605.0

CSharp test Branchpoints 243.0 721.0 1486.0 2359.0 2774.0 4377.0 7598.0 9128.0 31078.0 186983.0

Differences 980.66% 1016.92% 694.95% 631.24% 847.84% 819.63% 769.87% 716.78% 262.33% 66.05%

169

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.400: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 2360.0 6980.0 11112.0 18583.0 30834.0 39314.0 58162.0 74556.0 117813.0 243970.0

CSharp test Branchpoints 219.0 687.0 1915.0 3801.0 4494.0 7598.0 8974.0 48751.0 53057.0 186983.0

Differences 977.63% 916.01% 480.26% 388.9% 586.11% 417.43% 548.12% 52.93% 122.05% 30.48%

Table B.401: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 3112.0 10209.0 16459.0 26293.0 37430.0 69993.0 102699.0 112605.0 216200.0 275225.0

CSharp test Branchpoints 363.0 804.0 1960.0 2617.0 3286.0 4763.0 6509.0 8974.0 9188.0 53057.0

Differences 757.3% 1169.78% 739.74% 904.7% 1039.07% 1369.52% 1477.8% 1154.79% 2253.07% 418.73%

Table B.402: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 2460.0 5021.0 9110.0 11813.0 18856.0 22825.0 46383.0 75234.0 75497.0 112605.0

CSharp test Branchpoints 236.0 521.0 1410.0 2298.0 2795.0 4963.0 9128.0 31078.0 48751.0 186983.0

Differences 942.37% 863.72% 546.1% 414.06% 574.63% 359.9% 408.14% 142.08% 54.86% 66.05%

Table B.403: Percentile values of CSharp production and CSharp test for the Branchpoints
metric on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production Branchpoints 3193.0 10782.0 18583.0 26293.0 36087.0 66093.0 75234.0 112605.0 117813.0 216200.0

CSharp test Branchpoints 289.0 1163.0 2336.0 3801.0 4963.0 9188.0 9188.0 31078.0 53057.0 186983.0

Differences 1004.84% 827.09% 695.51% 591.74% 627.12% 619.34% 718.83% 262.33% 122.05% 15.63%

Table B.404: Differences between CSharp production and CSharp test for the Branchpoints
metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1478.57 1251.63 891.31 840.28 1249.04 1094.64 857.78 331.23 262.33 307.49

1 546.50 544.18 636.81 708.66 914.06 771.87 1225.83 697.24 122.05 47.19

2 980.66 1016.92 694.95 631.24 847.84 819.63 769.87 716.78 262.33 66.05

3 977.63 916.01 480.26 388.90 586.11 417.43 548.12 52.93 122.05 30.48

4 757.30 1169.78 739.74 904.70 1039.07 1369.52 1477.80 1154.79 2253.07 418.73

5 942.37 863.72 546.10 414.06 574.63 359.90 408.14 142.08 54.86 66.05

6 1004.84 827.09 695.51 591.74 627.12 619.34 718.83 262.33 122.05 15.63

Table B.405: Average differences between CSharp production and CSharp test for the
Branchpoints metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 955.41 941.33 669.24 639.94 833.98 778.9 858.05 479.63 456.96 135.95

170

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Asserts

Table B.406: Percentile values of CSharp production and CSharp test for the asserts metric
on a System level. (0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 301.0 802.0 1734.0 2455.0 2899.0 4945.0 5587.0 6092.0 9748.0 14490.0

CSharp test asserts 2286.0 6191.0 10818.0 18323.0 22725.0 34168.0 41071.0 52477.0 52477.0 85742.0

Differences 659.47% 671.95% 523.88% 646.35% 683.89% 590.96% 635.12% 761.41% 438.34% 491.73%

Table B.407: Percentile values of CSharp production and CSharp test for the asserts metric
on a System level. (1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 306.0 685.0 1367.0 2598.0 3688.0 5587.0 7444.0 11033.0 14490.0 14490.0

CSharp test asserts 1593.0 4627.0 7143.0 15832.0 22725.0 41071.0 44926.0 49336.0 58844.0 58844.0

Differences 420.59% 575.47% 422.53% 509.39% 516.19% 635.12% 503.52% 347.17% 306.1% 306.1%

Table B.408: Percentile values of CSharp production and CSharp test for the asserts metric
on a System level. (2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 333.0 871.0 2071.0 2598.0 3794.0 5587.0 6907.0 10770.0 11276.0 22815.0

CSharp test asserts 1803.0 5223.0 7763.0 15832.0 20418.0 33885.0 49336.0 52477.0 58844.0 85742.0

Differences 441.44% 499.66% 274.84% 509.39% 438.17% 506.5% 614.29% 387.25% 421.85% 275.81%

Table B.409: Percentile values of CSharp production and CSharp test for the asserts metric
on a System level. (3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 306.0 685.0 1415.0 2598.0 3688.0 5479.0 7444.0 10041.0 21348.0 22815.0

CSharp test asserts 2113.0 4792.0 8011.0 12653.0 22725.0 25297.0 45135.0 50276.0 52477.0 58053.0

Differences 590.52% 599.56% 466.15% 387.03% 516.19% 361.71% 506.33% 400.71% 145.82% 154.45%

Table B.410: Percentile values of CSharp production and CSharp test for the asserts metric
on a System level. (4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 299.0 589.0 1550.0 2191.0 2640.0 3688.0 4945.0 5701.0 11033.0 11276.0

CSharp test asserts 1319.0 3820.0 6340.0 10471.0 15738.0 21865.0 29162.0 41071.0 45135.0 58844.0

Differences 341.14% 548.56% 309.03% 377.91% 496.14% 492.87% 489.73% 620.42% 309.09% 421.85%

Table B.411: Percentile values of CSharp production and CSharp test for the asserts metric
on a System level. (5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 299.0 654.0 1676.0 2372.0 2836.0 3929.0 5587.0 6907.0 8667.0 11033.0

CSharp test asserts 1622.0 4627.0 7763.0 18674.0 19682.0 41071.0 41071.0 45135.0 58844.0 58844.0

Differences 442.47% 607.49% 363.19% 687.27% 594.01% 945.33% 635.12% 553.47% 578.94% 433.35%

171

APPENDIX B. VALIDATION: COMPARATIVE ANALYSIS

Table B.412: Percentile values of CSharp production and CSharp test for the asserts metric
on a System level. (6)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CSharp production asserts 308.0 685.0 1401.0 2372.0 2655.0 3932.0 5685.0 8667.0 10041.0 10771.0

CSharp test asserts 1600.0 4626.0 8595.0 14135.0 18674.0 29171.0 41071.0 45135.0 50276.0 50276.0

Differences 419.48% 575.33% 513.49% 495.91% 603.35% 641.89% 622.45% 420.77% 400.71% 366.77%

Table B.413: Differences between CSharp production and CSharp test for the asserts metric
on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 659.47 671.95 523.88 646.35 683.89 590.96 635.12 761.41 438.34 491.73

1 420.59 575.47 422.53 509.39 516.19 635.12 503.52 347.17 306.10 306.10

2 441.44 499.66 274.84 509.39 438.17 506.50 614.29 387.25 421.85 275.81

3 590.52 599.56 466.15 387.03 516.19 361.71 506.33 400.71 145.82 154.45

4 341.14 548.56 309.03 377.91 496.14 492.87 489.73 620.42 309.09 421.85

5 442.47 607.49 363.19 687.27 594.01 945.33 635.12 553.47 578.94 433.35

6 419.48 575.33 513.49 495.91 603.35 641.89 622.45 420.77 400.71 366.77

Table B.414: Average differences between CSharp production and CSharp test for the
asserts metric on a System level.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average differences (%) 473.59 582.57 410.44 516.18 549.71 596.34 572.37 498.74 371.55 350.01

172

Appendix C

Validation: correlation analysis

C.1 File level

Table C.1: Pearson correlation for Java files between test code metrics and simple metrics
(0)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.034366 -0.040753 -0.047207 -0.006777 0.421776

assert/CC -0.005814 -0.012632 -0.008306 -0.003526 0.410259

Unverified Branchpoints 0.790399 0.873348 0.983178 0.066209 0.000410

Unverified CC 0.908789 0.982586 0.880500 0.073411 -0.000377

Table C.2: Coefficient of determination for Java files between test code metrics and simple
metrics (0)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.001181 0.001661 0.002228 0.000046 1.778948e-01

assert/CC 0.000034 0.000160 0.000069 0.000012 1.683126e-01

Unverified Branchpoints 0.624730 0.762736 0.966640 0.004384 1.684562e-07

Unverified CC 0.825898 0.965476 0.775280 0.005389 1.420383e-07

Table C.3: Pearson correlation for Java files between test code metrics (0)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.830189 -0.070112 -0.087660

assert/CC 0.830189 1.000000 -0.031201 -0.049863

Unverified Branchpoints -0.070112 -0.031201 1.000000 0.890380

Unverified CC -0.087660 -0.049863 0.890380 1.000000

173

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.4: Coefficient of determination for Java files between test code metrics (0)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.689214 0.004916 0.007684

assert/CC 0.689214 1.000000 0.000974 0.002486

Unverified Branchpoints 0.004916 0.000974 1.000000 0.792777

Unverified CC 0.007684 0.002486 0.792777 1.000000

Table C.5: Pearson correlation for Java files between test code metrics and simple metrics
(1)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.030740 -0.039252 -0.048599 -0.008685 0.432416

assert/CC -0.005588 -0.012563 -0.007951 -0.004383 0.394058

Unverified Branchpoints 0.777166 0.854189 0.979227 0.029480 -0.006238

Unverified CC 0.905075 0.979854 0.861148 0.041413 -0.006972

Table C.6: Coefficient of determination for Java files between test code metrics and simple
metrics (1)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.000945 0.001541 0.002362 0.000075 0.186983

assert/CC 0.000031 0.000158 0.000063 0.000019 0.155282

Unverified Branchpoints 0.603986 0.729638 0.958885 0.000869 0.000039

Unverified CC 0.819161 0.960113 0.741576 0.001715 0.000049

Table C.7: Pearson correlation for Java files between test code metrics (1)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.843222 -0.073701 -0.090729

assert/CC 0.843222 1.000000 -0.033122 -0.052314

Unverified Branchpoints -0.073701 -0.033122 1.000000 0.873684

Unverified CC -0.090729 -0.052314 0.873684 1.000000

Table C.8: Coefficient of determination for Java files between test code metrics (1)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.711023 0.005432 0.008232

assert/CC 0.711023 1.000000 0.001097 0.002737

Unverified Branchpoints 0.005432 0.001097 1.000000 0.763323

Unverified CC 0.008232 0.002737 0.763323 1.000000

174

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.9: Pearson correlation for Java files between test code metrics and simple metrics
(2)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.034764 -0.042572 -0.048708 -0.006595 0.435203

assert/CC -0.005690 -0.013679 -0.008497 -0.003465 0.399828

Unverified Branchpoints 0.812188 0.893786 0.978867 0.050224 0.000827

Unverified CC 0.895335 0.977714 0.904187 0.055745 0.000969

Table C.10: Coefficient of determination for Java files between test code metrics and simple
metrics (2)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.001209 0.001812 0.002373 0.000043 1.894015e-01

assert/CC 0.000032 0.000187 0.000072 0.000012 1.598625e-01

Unverified Branchpoints 0.659650 0.798853 0.958180 0.002522 6.843540e-07

Unverified CC 0.801625 0.955925 0.817555 0.003108 9.387215e-07

Table C.11: Pearson correlation for Java files between test code metrics (2)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.824981 -0.072939 -0.096182

assert/CC 0.824981 1.000000 -0.033021 -0.055274

Unverified Branchpoints -0.072939 -0.033021 1.000000 0.916796

Unverified CC -0.096182 -0.055274 0.916796 1.000000

Table C.12: Coefficient of determination for Java files between test code metrics (2)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.680593 0.005320 0.009251

assert/CC 0.680593 1.000000 0.001090 0.003055

Unverified Branchpoints 0.005320 0.001090 1.000000 0.840515

Unverified CC 0.009251 0.003055 0.840515 1.000000

Table C.13: Pearson correlation for Java files between test code metrics and simple metrics
(3)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.028628 -0.037034 -0.045226 -0.007851 0.480206

assert/CC -0.005053 -0.013097 -0.008359 -0.004639 0.430885

Unverified Branchpoints 0.821859 0.905387 0.982248 0.078720 -0.004786

Unverified CC 0.899737 0.980004 0.915078 0.086130 -0.005897

175

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.14: Coefficient of determination for Java files between test code metrics and simple
metrics (3)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.000820 0.001372 0.002045 0.000062 0.230598

assert/CC 0.000026 0.000172 0.000070 0.000022 0.185662

Unverified Branchpoints 0.675452 0.819726 0.964812 0.006197 0.000023

Unverified CC 0.809527 0.960407 0.837369 0.007418 0.000035

Table C.15: Pearson correlation for Java files between test code metrics (3)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.817542 -0.067472 -0.089037

assert/CC 0.817542 1.000000 -0.034004 -0.057026

Unverified Branchpoints -0.067472 -0.034004 1.000000 0.926114

Unverified CC -0.089037 -0.057026 0.926114 1.000000

Table C.16: Coefficient of determination for Java files between test code metrics (3)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.668375 0.004553 0.007927

assert/CC 0.668375 1.000000 0.001156 0.003252

Unverified Branchpoints 0.004553 0.001156 1.000000 0.857686

Unverified CC 0.007927 0.003252 0.857686 1.000000

Table C.17: Pearson correlation for Java files between test code metrics and simple metrics
(4)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.033294 -0.040358 -0.048531 -0.008898 0.413793

assert/CC -0.006198 -0.013121 -0.008386 -0.004718 0.402670

Unverified Branchpoints 0.776161 0.862889 0.980963 0.056967 0.000060

Unverified CC 0.904088 0.980718 0.870440 0.061356 -0.000910

Table C.18: Coefficient of determination for Java files between test code metrics and simple
metrics (4)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.001108 0.001629 0.002355 0.000079 1.712244e-01

assert/CC 0.000038 0.000172 0.000070 0.000022 1.621435e-01

Unverified Branchpoints 0.602427 0.744578 0.962288 0.003245 3.651520e-09

Unverified CC 0.817376 0.961808 0.757666 0.003765 8.274940e-07

176

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.19: Pearson correlation for Java files between test code metrics (4)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.839248 -0.073163 -0.092370

assert/CC 0.839248 1.000000 -0.033842 -0.054332

Unverified Branchpoints -0.073163 -0.033842 1.000000 0.881479

Unverified CC -0.092370 -0.054332 0.881479 1.000000

Table C.20: Coefficient of determination for Java files between test code metrics (4)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.704338 0.005353 0.008532

assert/CC 0.704338 1.000000 0.001145 0.002952

Unverified Branchpoints 0.005353 0.001145 1.000000 0.777006

Unverified CC 0.008532 0.002952 0.777006 1.000000

Table C.21: Pearson correlation for Java files between test code metrics and simple metrics
(5)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.031908 -0.038344 -0.047574 -0.006907 0.430436

assert/CC -0.005418 -0.012556 -0.007971 -0.003741 0.408237

Unverified Branchpoints 0.773321 0.863497 0.980410 0.049519 0.000009

Unverified CC 0.898297 0.980373 0.870150 0.057746 -0.001558

Table C.22: Coefficient of determination for Java files between test code metrics and simple
metrics (5)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.001018 0.001470 0.002263 0.000048 1.852752e-01

assert/CC 0.000029 0.000158 0.000064 0.000014 1.666575e-01

Unverified Branchpoints 0.598026 0.745627 0.961204 0.002452 7.862357e-11

Unverified CC 0.806938 0.961131 0.757160 0.003335 2.426879e-06

Table C.23: Pearson correlation for Java files between test code metrics (5)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.793789 -0.071078 -0.088721

assert/CC 0.793789 1.000000 -0.033332 -0.053330

Unverified Branchpoints -0.071078 -0.033332 1.000000 0.882213

Unverified CC -0.088721 -0.053330 0.882213 1.000000

177

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.24: Coefficient of determination for Java files between test code metrics (5)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.630101 0.005052 0.007871

assert/CC 0.630101 1.000000 0.001111 0.002844

Unverified Branchpoints 0.005052 0.001111 1.000000 0.778299

Unverified CC 0.007871 0.002844 0.778299 1.000000

Table C.25: Pearson correlation for Java files between test code metrics and simple metrics
(6)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.031936 -0.040251 -0.047722 -0.006929 0.416513

assert/CC -0.005644 -0.012469 -0.007770 -0.003505 0.387996

Unverified Branchpoints 0.769264 0.855289 0.977331 0.061315 0.002930

Unverified CC 0.900173 0.978704 0.862631 0.067192 0.003262

Table C.26: Coefficient of determination for Java files between test code metrics and simple
metrics (6)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.001020 0.001620 0.002277 0.000048 0.173483

assert/CC 0.000032 0.000155 0.000060 0.000012 0.150541

Unverified Branchpoints 0.591767 0.731518 0.955176 0.003760 0.000009

Unverified CC 0.810312 0.957861 0.744132 0.004515 0.000011

Table C.27: Pearson correlation for Java files between test code metrics (6)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.833203 -0.072740 -0.090404

assert/CC 0.833203 1.000000 -0.032488 -0.051466

Unverified Branchpoints -0.072740 -0.032488 1.000000 0.875755

Unverified CC -0.090404 -0.051466 0.875755 1.000000

Table C.28: Coefficient of determination for Java files between test code metrics (6)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.694228 0.005291 0.008173

assert/CC 0.694228 1.000000 0.001055 0.002649

Unverified Branchpoints 0.005291 0.001055 1.000000 0.766947

Unverified CC 0.008173 0.002649 0.766947 1.000000

178

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.29: Average Pearson correlations for Java files between test code metrics.

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.032234 -0.039795 -0.047652 -0.007520 0.432906

assert/CC -0.005629 -0.012874 -0.008177 -0.003996 0.404848

Unverified Branchpoints 0.788623 0.872626 0.980318 0.056062 -0.000970

Unverified CC 0.901642 0.979993 0.880591 0.063285 -0.001640

Table C.30: Average Coefficient of determination for Java files between test code metrics.

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.001043 0.001586 0.002272 0.000057 0.187837

assert/CC 0.000032 0.000166 0.000067 0.000016 0.164066

Unverified Branchpoints 0.622291 0.761811 0.961026 0.003347 0.000010

Unverified CC 0.812977 0.960389 0.775820 0.004178 0.000014

Table C.31: Average Pearson correlations for Java files between test code metrics and
simple metrics.

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.826025 -0.071601 -0.090729

assert/CC 0.826025 1.000000 -0.033001 -0.053372

Unverified Branchpoints -0.071601 -0.033001 1.000000 0.892346

Unverified CC -0.090729 -0.053372 0.892346 1.000000

Table C.32: Average Coefficient of determination for Java files between test code metrics
and simple metrics.

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.682553 0.005131 0.008239

assert/CC 0.682553 1.000000 0.001090 0.002854

Unverified Branchpoints 0.005131 0.001090 1.000000 0.796650

Unverified CC 0.008239 0.002854 0.796650 1.000000

C.1.1 CSharp

Table C.33: Pearson correlation for CSharp files between test code metrics and simple
metrics. (0)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.027429 -0.032701 -0.034488 -0.005547 0.553363

assert/CC 0.002312 -0.006410 -0.002187 0.003962 0.564186

Unverified Branchpoints 0.786995 0.904734 0.992554 0.192116 0.009807

Unverified CC 0.915754 0.993366 0.905289 0.258957 0.005494

179

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.34: Coefficient of determination for CSharp files between test code metrics and
simple metrics. (0)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.000752 0.001069 0.001189 0.000031 0.306211

assert/CC 0.000005 0.000041 0.000005 0.000016 0.318306

Unverified Branchpoints 0.619362 0.818543 0.985164 0.036909 0.000096

Unverified CC 0.838606 0.986776 0.819548 0.067059 0.000030

Table C.35: Pearson correlation for CSharp files between test code metrics (0)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.870804 -0.049418 -0.062306

assert/CC 0.870804 1.000000 -0.018674 -0.031423

Unverified Branchpoints -0.049418 -0.018674 1.000000 0.910537

Unverified CC -0.062306 -0.031423 0.910537 1.000000

Table C.36: Coefficient of determination for CSharp files between test code metrics (0)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.758300 0.002442 0.003882

assert/CC 0.758300 1.000000 0.000349 0.000987

Unverified Branchpoints 0.002442 0.000349 1.000000 0.829078

Unverified CC 0.003882 0.000987 0.829078 1.000000

Table C.37: Pearson correlation for CSharp files between test code metrics and simple
metrics. (1)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.030322 -0.036347 -0.039015 -0.005475 0.414035

assert/CC 0.002699 -0.007781 -0.002567 0.005252 0.466891

Unverified Branchpoints 0.820761 0.919115 0.992227 0.201611 0.010197

Unverified CC 0.917335 0.993015 0.920128 0.280894 0.005613

Table C.38: Coefficient of determination for CSharp files between test code metrics and
simple metrics. (1)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.000919 0.001321 0.001522 0.000030 0.171425

assert/CC 0.000007 0.000061 0.000007 0.000028 0.217987

Unverified Branchpoints 0.673648 0.844773 0.984514 0.040647 0.000104

Unverified CC 0.841503 0.986079 0.846636 0.078901 0.000032

180

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.39: Pearson correlation for CSharp files between test code metrics (1)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.799964 -0.055974 -0.070202

assert/CC 0.799964 1.000000 -0.023005 -0.039001

Unverified Branchpoints -0.055974 -0.023005 1.000000 0.925567

Unverified CC -0.070202 -0.039001 0.925567 1.000000

Table C.40: Coefficient of determination for CSharp files between test code metrics (1)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.639943 0.003133 0.004928

assert/CC 0.639943 1.000000 0.000529 0.001521

Unverified Branchpoints 0.003133 0.000529 1.000000 0.856675

Unverified CC 0.004928 0.001521 0.856675 1.000000

Table C.41: Pearson correlation for CSharp files between test code metrics and simple
metrics. (2)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.026198 -0.033029 -0.036827 -0.005292 0.406636

assert/CC 0.003909 -0.007154 -0.001930 0.005200 0.478461

Unverified Branchpoints 0.785628 0.898987 0.992579 0.199619 0.010858

Unverified CC 0.921483 0.993580 0.899366 0.309171 0.006224

Table C.42: Coefficient of determination for CSharp files between test code metrics and
simple metrics. (2)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.000686 0.001091 0.001356 0.000028 0.165353

assert/CC 0.000015 0.000051 0.000004 0.000027 0.228925

Unverified Branchpoints 0.617211 0.808178 0.985214 0.039848 0.000118

Unverified CC 0.849130 0.987202 0.808859 0.095587 0.000039

Table C.43: Pearson correlation for CSharp files between test code metrics (2)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.784727 -0.052995 -0.065351

assert/CC 0.784727 1.000000 -0.023040 -0.038230

Unverified Branchpoints -0.052995 -0.023040 1.000000 0.904521

Unverified CC -0.065351 -0.038230 0.904521 1.000000

181

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.44: Coefficient of determination for CSharp files between test code metrics (2)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.615797 0.002808 0.004271

assert/CC 0.615797 1.000000 0.000531 0.001462

Unverified Branchpoints 0.002808 0.000531 1.000000 0.818158

Unverified CC 0.004271 0.001462 0.818158 1.000000

Table C.45: Pearson correlation for CSharp files between test code metrics and simple
metrics. (3)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.021756 -0.031350 -0.035006 -0.005251 0.558953

assert/CC 0.003714 -0.006282 -0.002251 0.003133 0.572144

Unverified Branchpoints 0.772680 0.894778 0.992615 0.227070 0.009926

Unverified CC 0.921655 0.994015 0.893933 0.348290 0.004549

Table C.46: Coefficient of determination for CSharp files between test code metrics and
simple metrics. (3)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.000473 0.000983 0.001225 0.000028 0.312429

assert/CC 0.000014 0.000039 0.000005 0.000010 0.327348

Unverified Branchpoints 0.597034 0.800627 0.985285 0.051561 0.000099

Unverified CC 0.849448 0.988067 0.799117 0.121306 0.000021

Table C.47: Pearson correlation for CSharp files between test code metrics (3)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.868863 -0.050211 -0.059490

assert/CC 0.868863 1.000000 -0.018910 -0.030341

Unverified Branchpoints -0.050211 -0.018910 1.000000 0.899542

Unverified CC -0.059490 -0.030341 0.899542 1.000000

Table C.48: Coefficient of determination for CSharp files between test code metrics (3)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.754922 0.002521 0.003539

assert/CC 0.754922 1.000000 0.000358 0.000921

Unverified Branchpoints 0.002521 0.000358 1.000000 0.809176

Unverified CC 0.003539 0.000921 0.809176 1.000000

182

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.49: Pearson correlation for CSharp files between test code metrics and simple
metrics. (4)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.030922 -0.039165 -0.040795 -0.006296 0.443030

assert/CC 0.003061 -0.008009 -0.002841 0.004860 0.493449

Unverified Branchpoints 0.810335 0.914959 0.992110 0.210186 0.011288

Unverified CC 0.909481 0.993030 0.916000 0.296815 0.006830

Table C.50: Coefficient of determination for CSharp files between test code metrics and
simple metrics. (4)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.000956 0.001534 0.001664 0.000040 0.196275

assert/CC 0.000009 0.000064 0.000008 0.000024 0.243492

Unverified Branchpoints 0.656642 0.837151 0.984282 0.044178 0.000127

Unverified CC 0.827156 0.986108 0.839056 0.088099 0.000047

Table C.51: Pearson correlation for CSharp files between test code metrics (4)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.840258 -0.058009 -0.072009

assert/CC 0.840258 1.000000 -0.022449 -0.037794

Unverified Branchpoints -0.058009 -0.022449 1.000000 0.921406

Unverified CC -0.072009 -0.037794 0.921406 1.000000

Table C.52: Coefficient of determination for CSharp files between test code metrics (4)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.706033 0.003365 0.005185

assert/CC 0.706033 1.000000 0.000504 0.001428

Unverified Branchpoints 0.003365 0.000504 1.000000 0.848990

Unverified CC 0.005185 0.001428 0.848990 1.000000

Table C.53: Pearson correlation for CSharp files between test code metrics and simple
metrics. (5)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.023527 -0.033656 -0.035652 -0.005354 0.548935

assert/CC 0.003896 -0.006424 -0.002056 0.003562 0.563718

Unverified Branchpoints 0.795254 0.897713 0.991541 0.201198 0.011137

Unverified CC 0.927887 0.993080 0.897013 0.307160 0.005828

183

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.54: Coefficient of determination for CSharp files between test code metrics and
simple metrics. (5)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.000554 0.001133 0.001271 0.000029 0.301329

assert/CC 0.000015 0.000041 0.000004 0.000013 0.317779

Unverified Branchpoints 0.632429 0.805888 0.983153 0.040481 0.000124

Unverified CC 0.860974 0.986208 0.804632 0.094348 0.000034

Table C.55: Pearson correlation for CSharp files between test code metrics (5)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.880118 -0.051279 -0.061934

assert/CC 0.880118 1.000000 -0.019756 -0.032073

Unverified Branchpoints -0.051279 -0.019756 1.000000 0.903391

Unverified CC -0.061934 -0.032073 0.903391 1.000000

Table C.56: Coefficient of determination for CSharp files between test code metrics (5)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.774607 0.002630 0.003836

assert/CC 0.774607 1.000000 0.000390 0.001029

Unverified Branchpoints 0.002630 0.000390 1.000000 0.816115

Unverified CC 0.003836 0.001029 0.816115 1.000000

Table C.57: Pearson correlation for CSharp files between test code metrics and simple
metrics. (6)

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.027084 -0.034926 -0.038554 -0.006465 0.434301

assert/CC 0.003361 -0.006856 -0.002252 0.003367 0.484514

Unverified Branchpoints 0.776303 0.896872 0.992369 0.242699 0.016936

Unverified CC 0.924859 0.993806 0.896145 0.369794 0.010805

Table C.58: Coefficient of determination for CSharp files between test code metrics and
simple metrics. (6)

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.000734 0.001220 0.001486 0.000042 0.188617

assert/CC 0.000011 0.000047 0.000005 0.000011 0.234754

Unverified Branchpoints 0.602647 0.804379 0.984797 0.058903 0.000287

Unverified CC 0.855363 0.987650 0.803076 0.136748 0.000117

184

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.59: Pearson correlation for CSharp files between test code metrics (6)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.827612 -0.055506 -0.066374

assert/CC 0.827612 1.000000 -0.021266 -0.034358

Unverified Branchpoints -0.055506 -0.021266 1.000000 0.901790

Unverified CC -0.066374 -0.034358 0.901790 1.000000

Table C.60: Coefficient of determination for CSharp files between test code metrics (6)

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.684942 0.003081 0.004406

assert/CC 0.684942 1.000000 0.000452 0.001180

Unverified Branchpoints 0.003081 0.000452 1.000000 0.813226

Unverified CC 0.004406 0.001180 0.813226 1.000000

Table C.61: Average Pearson correlations for CSharp files between test code metrics.

SLOC CC Branchpoints asserts Direct asserts

assert/branch -0.026748 -0.034453 -0.037191 -0.005668 0.479893

assert/CC 0.003279 -0.006988 -0.002298 0.004191 0.517623

Unverified Branchpoints 0.792565 0.903880 0.992285 0.210643 0.011450

Unverified CC 0.919779 0.993413 0.903982 0.310155 0.006478

Table C.62: Average Coefficient of determination for CSharp files between test code met-
rics.

SLOC CC Branchpoints asserts Direct asserts

assert/branch 0.000725 0.001193 0.001388 0.000032 0.234520

assert/CC 0.000011 0.000049 0.000005 0.000018 0.269799

Unverified Branchpoints 0.628425 0.817077 0.984630 0.044647 0.000136

Unverified CC 0.846026 0.986870 0.817275 0.097435 0.000045

Table C.63: Average Pearson correlations for CSharp files between test code metrics and
simple metrics.

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.838907 -0.053342 -0.065381

assert/CC 0.838907 1.000000 -0.021014 -0.034746

Unverified Branchpoints -0.053342 -0.021014 1.000000 0.909536

Unverified CC -0.065381 -0.034746 0.909536 1.000000

185

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.64: Average Coefficient of determination for CSharp files between test code metrics
and simple metrics.

assert/branch assert/CC Unverified Branchpoints Unverified CC

assert/branch 1.000000 0.704935 0.002854 0.004292

assert/CC 0.704935 1.000000 0.000445 0.001218

Unverified Branchpoints 0.002854 0.000445 1.000000 0.827345

Unverified CC 0.004292 0.001218 0.827345 1.000000

C.2 System level

C.2.1 Java

Table C.65: Pearson correlation for Java systems between test code metrics and simple
metrics (0)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.123278 0.025515 -0.125482 -0.138161 -0.012191 0.051350 0.122692

assert/CC -0.085243 0.078954 -0.087352 -0.096904 0.029357 0.118049 0.199347

Unverified Branchpoints 0.803334 0.339058 0.849539 0.917456 0.159497 0.308106 0.156246

Unverified CC 0.963943 0.619041 0.981341 0.975442 0.327045 0.591610 0.458105

test/prod -0.026704 0.002286 -0.025543 -0.022721 -0.006611 -0.017951 -0.015071

Table C.66: Coefficient of determination for Java systems between test code metrics and
simple metrics (0)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.015198 0.000651 0.015746 0.019089 0.000149 0.002637 0.015053

assert/CC 0.007266 0.006234 0.007630 0.009390 0.000862 0.013936 0.039739

Unverified Branchpoints 0.645345 0.114960 0.721717 0.841725 0.025439 0.094929 0.024413

Unverified CC 0.929186 0.383212 0.963030 0.951486 0.106958 0.350002 0.209860

test/prod 0.000713 0.000005 0.000652 0.000516 0.000044 0.000322 0.000227

Table C.67: Pearson correlation for Java systems between test code metrics (0)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.870042 -0.194022 -0.171895 -0.043408

assert/CC 0.870042 1.000000 -0.184265 -0.147366 -0.047763

Unverified Branchpoints -0.194022 -0.184265 1.000000 0.924671 -0.019938

Unverified CC -0.171895 -0.147366 0.924671 1.000000 -0.025262

test/prod -0.043408 -0.047763 -0.019938 -0.025262 1.000000

Table C.68: Coefficient of determination for Java systems between test code metrics (0)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.756973 0.037645 0.029548 0.001884

assert/CC 0.756973 1.000000 0.033954 0.021717 0.002281

Unverified Branchpoints 0.037645 0.033954 1.000000 0.855017 0.000398

Unverified CC 0.029548 0.021717 0.855017 1.000000 0.000638

test/prod 0.001884 0.002281 0.000398 0.000638 1.000000

186

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.69: Pearson correlation for Java systems between test code metrics and simple
metrics (1)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.157780 -0.009145 -0.161131 -0.169988 -0.054703 0.010983 0.087815

assert/CC -0.129695 0.025202 -0.132517 -0.142994 -0.052677 0.055197 0.139505

Unverified Branchpoints 0.822897 0.337187 0.861424 0.941891 0.179956 0.326825 0.158060

Unverified CC 0.971970 0.609437 0.985749 0.984503 0.280521 0.609156 0.471711

test/prod -0.036356 0.004712 -0.034568 -0.030017 -0.012603 -0.024851 -0.020896

Table C.70: Coefficient of determination for Java systems between test code metrics and
simple metrics (1)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.024895 0.000084 0.025963 0.028896 0.002992 0.000121 0.007711

assert/CC 0.016821 0.000635 0.017561 0.020447 0.002775 0.003047 0.019462

Unverified Branchpoints 0.677159 0.113695 0.742051 0.887158 0.032384 0.106815 0.024983

Unverified CC 0.944725 0.371413 0.971702 0.969246 0.078692 0.371071 0.222511

test/prod 0.001322 0.000022 0.001195 0.000901 0.000159 0.000618 0.000437

Table C.71: Pearson correlation for Java systems between test code metrics (1)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.899021 -0.208259 -0.198532 -0.047165

assert/CC 0.899021 1.000000 -0.198493 -0.177559 -0.065002

Unverified Branchpoints -0.208259 -0.198493 1.000000 0.928014 -0.026310

Unverified CC -0.198532 -0.177559 0.928014 1.000000 -0.034142

test/prod -0.047165 -0.065002 -0.026310 -0.034142 1.000000

Table C.72: Coefficient of determination for Java systems between test code metrics (1)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.808239 0.043372 0.039415 0.002225

assert/CC 0.808239 1.000000 0.039399 0.031527 0.004225

Unverified Branchpoints 0.043372 0.039399 1.000000 0.861209 0.000692

Unverified CC 0.039415 0.031527 0.861209 1.000000 0.001166

test/prod 0.002225 0.004225 0.000692 0.001166 1.000000

Table C.73: Pearson correlation for Java systems between test code metrics and simple
metrics (2)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.176828 -0.001195 -0.180316 -0.181782 -0.024066 0.023303 0.104639

assert/CC -0.147529 0.062600 -0.153067 -0.158803 0.003909 0.097135 0.192757

Unverified Branchpoints 0.867626 0.233797 0.907612 0.957597 0.113551 0.204600 0.073063

Unverified CC 0.971115 0.449622 0.987134 0.980162 0.227532 0.422451 0.292229

test/prod -0.091090 0.144236 -0.095930 -0.104378 0.010955 0.107875 0.090194

187

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.74: Coefficient of determination for Java systems between test code metrics and
simple metrics (2)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.031268 0.000001 0.032514 0.033045 0.000579 0.000543 0.010949

assert/CC 0.021765 0.003919 0.023430 0.025219 0.000015 0.009435 0.037155

Unverified Branchpoints 0.752774 0.054661 0.823759 0.916991 0.012894 0.041861 0.005338

Unverified CC 0.943065 0.202160 0.974433 0.960717 0.051771 0.178465 0.085398

test/prod 0.008297 0.020804 0.009203 0.010895 0.000120 0.011637 0.008135

Table C.75: Pearson correlation for Java systems between test code metrics (2)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.880600 -0.212403 -0.210781 0.375059

assert/CC 0.880600 1.000000 -0.214088 -0.197414 0.356762

Unverified Branchpoints -0.212403 -0.214088 1.000000 0.954303 -0.133055

Unverified CC -0.210781 -0.197414 0.954303 1.000000 -0.118292

test/prod 0.375059 0.356762 -0.133055 -0.118292 1.000000

Table C.76: Coefficient of determination for Java systems between test code metrics (2)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.775457 0.045115 0.044429 0.140669

assert/CC 0.775457 1.000000 0.045834 0.038972 0.127279

Unverified Branchpoints 0.045115 0.045834 1.000000 0.910693 0.017704

Unverified CC 0.044429 0.038972 0.910693 1.000000 0.013993

test/prod 0.140669 0.127279 0.017704 0.013993 1.000000

Table C.77: Pearson correlation for Java systems between test code metrics and simple
metrics (3)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.143860 0.019520 -0.147030 -0.153751 -0.027437 0.024166 0.067170

assert/CC -0.103875 0.083890 -0.108451 -0.118645 0.002617 0.099705 0.149948

Unverified Branchpoints 0.827791 0.165306 0.866884 0.930940 0.154735 0.157617 0.092776

Unverified CC 0.965847 0.458933 0.981963 0.990294 0.298694 0.453915 0.391495

test/prod -0.038271 0.001960 -0.036488 -0.031608 -0.009398 -0.025746 -0.022039

Table C.78: Coefficient of determination for Java systems between test code metrics and
simple metrics (3)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.020696 0.000381 0.021618 0.023639 0.000753 0.000584 0.004512

assert/CC 0.010790 0.007038 0.011762 0.014077 0.000007 0.009941 0.022484

Unverified Branchpoints 0.685238 0.027326 0.751488 0.866650 0.023943 0.024843 0.008607

Unverified CC 0.932861 0.210619 0.964251 0.980682 0.089218 0.206039 0.153268

test/prod 0.001465 0.000004 0.001331 0.000999 0.000088 0.000663 0.000486

188

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.79: Pearson correlation for Java systems between test code metrics (3)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.843818 -0.185168 -0.178343 -0.045749

assert/CC 0.843818 1.000000 -0.179395 -0.154386 -0.076097

Unverified Branchpoints -0.185168 -0.179395 1.000000 0.940439 -0.026675

Unverified CC -0.178343 -0.154386 0.940439 1.000000 -0.035453

test/prod -0.045749 -0.076097 -0.026675 -0.035453 1.000000

Table C.80: Coefficient of determination for Java systems between test code metrics (3)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.712028 0.034287 0.031806 0.002093

assert/CC 0.712028 1.000000 0.032183 0.023835 0.005791

Unverified Branchpoints 0.034287 0.032183 1.000000 0.884425 0.000712

Unverified CC 0.031806 0.023835 0.884425 1.000000 0.001257

test/prod 0.002093 0.005791 0.000712 0.001257 1.000000

Table C.81: Pearson correlation for Java systems between test code metrics and simple
metrics (4)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.195239 -0.012602 -0.192240 -0.179996 -0.088068 0.034648 0.183385

assert/CC -0.199286 0.007262 -0.195424 -0.179464 -0.094862 0.076700 0.261738

Unverified Branchpoints 0.925625 0.301090 0.961465 0.995034 0.126844 0.281714 0.077050

Unverified CC 0.983780 0.413947 0.996576 0.972414 0.171486 0.372102 0.135606

test/prod -0.069406 0.127509 -0.068286 -0.064611 -0.009551 0.033479 0.043420

Table C.82: Coefficient of determination for Java systems between test code metrics and
simple metrics (4)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.038118 0.000159 0.036956 0.032398 0.007756 0.001201 0.033630

assert/CC 0.039715 0.000053 0.038191 0.032207 0.008999 0.005883 0.068507

Unverified Branchpoints 0.856781 0.090655 0.924414 0.990093 0.016090 0.079363 0.005937

Unverified CC 0.967823 0.171352 0.993163 0.945590 0.029407 0.138460 0.018389

test/prod 0.004817 0.016259 0.004663 0.004175 0.000091 0.001121 0.001885

Table C.83: Pearson correlation for Java systems between test code metrics (4)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.879420 -0.191880 -0.210594 0.144835

assert/CC 0.879420 1.000000 -0.199897 -0.220449 0.136679

Unverified Branchpoints -0.191880 -0.199897 1.000000 0.969326 -0.068226

Unverified CC -0.210594 -0.220449 0.969326 1.000000 -0.072977

test/prod 0.144835 0.136679 -0.068226 -0.072977 1.000000

189

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.84: Coefficient of determination for Java systems between test code metrics (4)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.773380 0.036818 0.044350 0.020977

assert/CC 0.773380 1.000000 0.039959 0.048598 0.018681

Unverified Branchpoints 0.036818 0.039959 1.000000 0.939593 0.004655

Unverified CC 0.044350 0.048598 0.939593 1.000000 0.005326

test/prod 0.020977 0.018681 0.004655 0.005326 1.000000

Table C.85: Pearson correlation for Java systems between test code metrics and simple
metrics (5)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.128973 0.017608 -0.132995 -0.144730 -0.004043 0.051534 0.130731

assert/CC -0.117516 0.035874 -0.121733 -0.130958 0.021785 0.083768 0.172885

Unverified Branchpoints 0.838713 0.257423 0.890296 0.963434 0.105319 0.246766 0.114297

Unverified CC 0.970095 0.518017 0.988248 0.982637 0.261327 0.515327 0.383361

test/prod -0.031843 0.009839 -0.030602 -0.026423 -0.005558 -0.021542 -0.019057

Table C.86: Coefficient of determination for Java systems between test code metrics and
simple metrics (5)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.016634 0.000310 0.017688 0.020947 0.000016 0.002656 0.017091

assert/CC 0.013810 0.001287 0.014819 0.017150 0.000475 0.007017 0.029889

Unverified Branchpoints 0.703439 0.066267 0.792627 0.928205 0.011092 0.060893 0.013064

Unverified CC 0.941085 0.268341 0.976634 0.965576 0.068292 0.265562 0.146966

test/prod 0.001014 0.000097 0.000937 0.000698 0.000031 0.000464 0.000363

Table C.87: Pearson correlation for Java systems between test code metrics (5)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.892861 -0.173826 -0.167152 -0.041351

assert/CC 0.892861 1.000000 -0.173089 -0.162485 -0.058167

Unverified Branchpoints -0.173826 -0.173089 1.000000 0.942240 -0.023164

Unverified CC -0.167152 -0.162485 0.942240 1.000000 -0.029682

test/prod -0.041351 -0.058167 -0.023164 -0.029682 1.000000

Table C.88: Coefficient of determination for Java systems between test code metrics (5)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.797201 0.030215 0.027940 0.001710

assert/CC 0.797201 1.000000 0.029960 0.026401 0.003383

Unverified Branchpoints 0.030215 0.029960 1.000000 0.887816 0.000537

Unverified CC 0.027940 0.026401 0.887816 1.000000 0.000881

test/prod 0.001710 0.003383 0.000537 0.000881 1.000000

190

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.89: Pearson correlation for Java systems between test code metrics and simple
metrics (6)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.149475 0.072069 -0.151430 -0.157073 -0.024492 0.094615 0.155283

assert/CC -0.130445 0.128051 -0.133340 -0.138860 0.004321 0.159250 0.226744

Unverified Branchpoints 0.840340 0.214325 0.891428 0.959512 0.163951 0.204789 0.108870

Unverified CC 0.968282 0.471865 0.987245 0.971608 0.305940 0.439707 0.341212

test/prod -0.028431 0.013660 -0.026980 -0.023344 -0.006292 -0.017297 -0.014970

Table C.90: Coefficient of determination for Java systems between test code metrics and
simple metrics (6)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.022343 0.005194 0.022931 0.024672 0.000600 0.008952 0.024113

assert/CC 0.017016 0.016397 0.017780 0.019282 0.000019 0.025361 0.051413

Unverified Branchpoints 0.706171 0.045935 0.794644 0.920664 0.026880 0.041939 0.011853

Unverified CC 0.937570 0.222656 0.974653 0.944022 0.093600 0.193342 0.116426

test/prod 0.000808 0.000187 0.000728 0.000545 0.000040 0.000299 0.000224

Table C.91: Pearson correlation for Java systems between test code metrics (6)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.865744 -0.193429 -0.191171 -0.040961

assert/CC 0.865744 1.000000 -0.195745 -0.184688 -0.046130

Unverified Branchpoints -0.193429 -0.195745 1.000000 0.939253 -0.020757

Unverified CC -0.191171 -0.184688 0.939253 1.000000 -0.026301

test/prod -0.040961 -0.046130 -0.020757 -0.026301 1.000000

Table C.92: Coefficient of determination for Java systems between test code metrics (6)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.749513 0.037415 0.036546 0.001678

assert/CC 0.749513 1.000000 0.038316 0.034110 0.002128

Unverified Branchpoints 0.037415 0.038316 1.000000 0.882197 0.000431

Unverified CC 0.036546 0.034110 0.882197 1.000000 0.000692

test/prod 0.001678 0.002128 0.000431 0.000692 1.000000

Table C.93: Average Pearson correlations for Java systems between test code metrics.

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.153634 0.015967 -0.155803 -0.160783 -0.033571 0.041514 0.121674

assert/CC -0.130513 0.060262 -0.133126 -0.138090 -0.012221 0.098543 0.191846

test/prod -0.046014 0.043457 -0.045485 -0.043300 -0.005580 0.004853 0.005940

Unverified Branchpoints 0.846618 0.264026 0.889807 0.952266 0.143408 0.247202 0.111480

Unverified CC 0.970719 0.505837 0.986894 0.979580 0.267506 0.486324 0.353388

191

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.94: Average Coefficient of determination for Java systems between test code met-
rics.

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.024164 0.000969 0.024774 0.026098 0.001835 0.002385 0.016151

assert/CC 0.018169 0.005080 0.018739 0.019682 0.001879 0.010660 0.038378

test/prod 0.002634 0.005340 0.002673 0.002676 0.000082 0.002161 0.001680

Unverified Branchpoints 0.718130 0.073357 0.792957 0.907355 0.021246 0.064378 0.013456

Unverified CC 0.942331 0.261393 0.973981 0.959617 0.073991 0.243277 0.136117

Table C.95: Average Pearson correlations for Java systems between test code metrics and
simple metrics.

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.875929 -0.194141 -0.189781 0.043037

assert/CC 0.875929 1.000000 -0.192139 -0.177764 0.028612

test/prod 0.043037 0.028612 -0.045446 -0.048873 1.000000

Unverified Branchpoints -0.194141 -0.192139 1.000000 0.942607 -0.045446

Unverified CC -0.189781 -0.177764 0.942607 1.000000 -0.048873

Table C.96: Average Coefficient of determination for Java systems between test code met-
rics and simple metrics.

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.767542 0.037838 0.036291 0.024462

assert/CC 0.767542 1.000000 0.037086 0.032166 0.023396

test/prod 0.024462 0.023396 0.003590 0.003422 1.000000

Unverified Branchpoints 0.037838 0.037086 1.000000 0.888707 0.003590

Unverified CC 0.036291 0.032166 0.888707 1.000000 0.003422

C.2.2 CSharp

Table C.97: Pearson correlation for CSharp systems between test code metrics and simple
metrics (0)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.064379 0.079515 -0.065895 -0.073712 -0.044274 0.146857 0.252945

assert/CC -0.037973 0.053591 -0.039797 -0.042581 -0.021671 0.114070 0.195761

Unverified Branchpoints 0.928394 0.498630 0.937649 0.989378 0.811422 0.318258 0.178447

Unverified CC 0.989840 0.640416 0.994785 0.973724 0.877642 0.493722 0.310425

test/prod -0.063111 0.097345 -0.062121 -0.068022 -0.053718 0.096887 0.075662

Table C.98: Coefficient of determination for CSharp systems between test code metrics
and simple metrics (0)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.004145 0.006323 0.004342 0.005434 0.001960 0.021567 0.063981

assert/CC 0.001442 0.002872 0.001584 0.001813 0.000470 0.013012 0.038323

Unverified Branchpoints 0.861916 0.248632 0.879185 0.978869 0.658406 0.101288 0.031843

Unverified CC 0.979783 0.410132 0.989597 0.948138 0.770256 0.243762 0.096364

test/prod 0.003983 0.009476 0.003859 0.004627 0.002886 0.009387 0.005725

192

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.99: Pearson correlation for CSharp systems between test code metrics (0)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.907802 -0.096235 -0.093966 0.152286

assert/CC 0.907802 1.000000 -0.060960 -0.059539 0.116628

Unverified Branchpoints -0.096235 -0.060960 1.000000 0.955333 -0.077235

Unverified CC -0.093966 -0.059539 0.955333 1.000000 -0.072859

test/prod 0.152286 0.116628 -0.077235 -0.072859 1.000000

Table C.100: Coefficient of determination for CSharp systems between test code metrics
(0)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.824105 0.009261 0.008830 0.023191

assert/CC 0.824105 1.000000 0.003716 0.003545 0.013602

Unverified Branchpoints 0.009261 0.003716 1.000000 0.912661 0.005965

Unverified CC 0.008830 0.003545 0.912661 1.000000 0.005308

test/prod 0.023191 0.013602 0.005965 0.005308 1.000000

Table C.101: Pearson correlation for CSharp systems between test code metrics and simple
metrics (1)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.060646 0.041295 -0.064690 -0.065292 -0.032952 0.133478 0.236736

assert/CC -0.034897 0.040419 -0.038581 -0.036359 -0.011062 0.129785 0.227050

Unverified Branchpoints 0.932090 0.731818 0.937852 0.985634 0.896262 0.480721 0.159275

Unverified CC 0.992583 0.813425 0.995697 0.975704 0.942679 0.635152 0.306114

test/prod 0.005304 0.261186 0.005600 -0.022824 0.038489 0.319548 0.262201

Table C.102: Coefficient of determination for CSharp systems between test code metrics
and simple metrics (1)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.003678 0.001705 0.004185 0.004263 0.001086 0.017816 0.056044

assert/CC 0.001218 0.001634 0.001489 0.001322 0.000122 0.016844 0.051552

Unverified Branchpoints 0.868792 0.535558 0.879565 0.971475 0.803286 0.231093 0.025369

Unverified CC 0.985221 0.661661 0.991413 0.951999 0.888644 0.403418 0.093706

test/prod 0.000028 0.068218 0.000031 0.000521 0.001481 0.102111 0.068749

Table C.103: Pearson correlation for CSharp systems between test code metrics (1)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.922406 -0.087910 -0.086167 0.486754

assert/CC 0.922406 1.000000 -0.056942 -0.057556 0.378490

Unverified Branchpoints -0.087910 -0.056942 1.000000 0.956637 -0.052810

Unverified CC -0.086167 -0.057556 0.956637 1.000000 -0.017883

test/prod 0.486754 0.378490 -0.052810 -0.017883 1.000000

193

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.104: Coefficient of determination for CSharp systems between test code metrics
(1)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.850834 0.007728 0.007425 0.236929

assert/CC 0.850834 1.000000 0.003242 0.003313 0.143255

Unverified Branchpoints 0.007728 0.003242 1.000000 0.915155 0.002789

Unverified CC 0.007425 0.003313 0.915155 1.000000 0.000320

test/prod 0.236929 0.143255 0.002789 0.000320 1.000000

Table C.105: Pearson correlation for CSharp systems between test code metrics and simple
metrics (2)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.065471 0.152310 -0.068592 -0.077281 -0.010512 0.219211 0.267947

assert/CC -0.032485 0.206402 -0.037037 -0.043963 0.037848 0.310651 0.379370

Unverified Branchpoints 0.881984 0.442846 0.892302 0.973005 0.760740 0.308122 0.239092

Unverified CC 0.990197 0.683607 0.994099 0.968609 0.891107 0.568596 0.475774

test/prod -0.061725 0.091221 -0.060993 -0.066906 -0.037405 0.098759 0.091240

Table C.106: Coefficient of determination for CSharp systems between test code metrics
and simple metrics (2)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.004286 0.023198 0.004705 0.005972 0.000111 0.048053 0.071796

assert/CC 0.001055 0.042602 0.001372 0.001933 0.001432 0.096504 0.143921

Unverified Branchpoints 0.777896 0.196113 0.796202 0.946739 0.578726 0.094939 0.057165

Unverified CC 0.980491 0.467318 0.988233 0.938203 0.794072 0.323301 0.226360

test/prod 0.003810 0.008321 0.003720 0.004476 0.001399 0.009753 0.008325

Table C.107: Pearson correlation for CSharp systems between test code metrics (2)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.913526 -0.121190 -0.105012 0.258097

assert/CC 0.913526 1.000000 -0.104292 -0.084404 0.260472

Unverified Branchpoints -0.121190 -0.104292 1.000000 0.924565 -0.086188

Unverified CC -0.105012 -0.084404 0.924565 1.000000 -0.076402

test/prod 0.258097 0.260472 -0.086188 -0.076402 1.000000

Table C.108: Coefficient of determination for CSharp systems between test code metrics
(2)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.834530 0.014687 0.011028 0.066614

assert/CC 0.834530 1.000000 0.010877 0.007124 0.067846

Unverified Branchpoints 0.014687 0.010877 1.000000 0.854820 0.007428

Unverified CC 0.011028 0.007124 0.854820 1.000000 0.005837

test/prod 0.066614 0.067846 0.007428 0.005837 1.000000

194

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.109: Pearson correlation for CSharp systems between test code metrics and simple
metrics (3)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.069686 0.062023 -0.070985 -0.071195 -0.044781 0.132298 0.218468

assert/CC -0.040702 0.063719 -0.041953 -0.040008 -0.018668 0.135797 0.215581

Unverified Branchpoints 0.919977 0.535214 0.937644 0.988228 0.794037 0.360582 0.222191

Unverified CC 0.992245 0.661199 0.996743 0.968125 0.913550 0.509740 0.353322

test/prod -0.055130 0.110226 -0.053827 -0.057327 -0.037592 0.128100 0.099130

Table C.110: Coefficient of determination for CSharp systems between test code metrics
and simple metrics (3)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.004856 0.003847 0.005039 0.005069 0.002005 0.017503 0.047728

assert/CC 0.001657 0.004060 0.001760 0.001601 0.000349 0.018441 0.046475

Unverified Branchpoints 0.846357 0.286454 0.879176 0.976595 0.630494 0.130019 0.049369

Unverified CC 0.984551 0.437185 0.993497 0.937266 0.834574 0.259835 0.124837

test/prod 0.003039 0.012150 0.002897 0.003286 0.001413 0.016410 0.009827

Table C.111: Pearson correlation for CSharp systems between test code metrics (3)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.911547 -0.088406 -0.089375 0.237190

assert/CC 0.911547 1.000000 -0.056966 -0.058284 0.179744

Unverified Branchpoints -0.088406 -0.056966 1.000000 0.951769 -0.067484

Unverified CC -0.089375 -0.058284 0.951769 1.000000 -0.063708

test/prod 0.237190 0.179744 -0.067484 -0.063708 1.000000

Table C.112: Coefficient of determination for CSharp systems between test code metrics
(3)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.830917 0.007816 0.007988 0.056259

assert/CC 0.830917 1.000000 0.003245 0.003397 0.032308

Unverified Branchpoints 0.007816 0.003245 1.000000 0.905865 0.004554

Unverified CC 0.007988 0.003397 0.905865 1.000000 0.004059

test/prod 0.056259 0.032308 0.004554 0.004059 1.000000

Table C.113: Pearson correlation for CSharp systems between test code metrics and simple
metrics (4)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.071533 0.017202 -0.072667 -0.071970 -0.060783 0.088003 0.203443

assert/CC -0.051575 0.046872 -0.052805 -0.055901 -0.033584 0.156533 0.305426

Unverified Branchpoints 0.958686 0.779633 0.965867 0.994964 0.905779 0.587618 0.244928

Unverified CC 0.996033 0.832409 0.998517 0.986388 0.936876 0.694641 0.388798

test/prod -0.029252 0.080972 -0.030571 -0.028661 -0.016299 0.099580 0.076769

195

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.114: Coefficient of determination for CSharp systems between test code metrics
and simple metrics (4)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.005117 0.000296 0.005280 0.005180 0.003695 0.007745 0.041389

assert/CC 0.002660 0.002197 0.002788 0.003125 0.001128 0.024503 0.093285

Unverified Branchpoints 0.919079 0.607828 0.932899 0.989953 0.820435 0.345294 0.059990

Unverified CC 0.992081 0.692906 0.997036 0.972962 0.877737 0.482526 0.151164

test/prod 0.000856 0.006557 0.000935 0.000821 0.000266 0.009916 0.005893

Table C.115: Pearson correlation for CSharp systems between test code metrics (4)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.949012 -0.086536 -0.086812 0.250550

assert/CC 0.949012 1.000000 -0.080569 -0.072630 0.263138

Unverified Branchpoints -0.086536 -0.080569 1.000000 0.975246 -0.034507

Unverified CC -0.086812 -0.072630 0.975246 1.000000 -0.035988

test/prod 0.250550 0.263138 -0.034507 -0.035988 1.000000

Table C.116: Coefficient of determination for CSharp systems between test code metrics
(4)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.900623 0.007489 0.007536 0.062775

assert/CC 0.900623 1.000000 0.006491 0.005275 0.069242

Unverified Branchpoints 0.007489 0.006491 1.000000 0.951105 0.001191

Unverified CC 0.007536 0.005275 0.951105 1.000000 0.001295

test/prod 0.062775 0.069242 0.001191 0.001295 1.000000

Table C.117: Pearson correlation for CSharp systems between test code metrics and simple
metrics (5)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.037600 0.146023 -0.040310 -0.052257 0.008530 0.216902 0.265160

assert/CC -0.015096 0.118229 -0.018063 -0.024674 0.023848 0.189049 0.226531

Unverified Branchpoints 0.891324 0.506617 0.896220 0.972992 0.786465 0.331434 0.231582

Unverified CC 0.987374 0.697261 0.990905 0.975740 0.878795 0.548557 0.435054

test/prod -0.040165 0.130769 -0.038086 -0.044867 -0.018821 0.131318 0.111481

Table C.118: Coefficient of determination for CSharp systems between test code metrics
and simple metrics (5)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.001414 0.021323 0.001625 0.002731 0.000073 0.047047 0.070310

assert/CC 0.000228 0.013978 0.000326 0.000609 0.000569 0.035739 0.051316

Unverified Branchpoints 0.794458 0.256661 0.803209 0.946713 0.618528 0.109849 0.053630

Unverified CC 0.974907 0.486173 0.981893 0.952068 0.772281 0.300915 0.189272

test/prod 0.001613 0.017101 0.001451 0.002013 0.000354 0.017244 0.012428

196

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.119: Pearson correlation for CSharp systems between test code metrics (5)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.918123 -0.087975 -0.081472 0.228073

assert/CC 0.918123 1.000000 -0.054551 -0.049904 0.168054

Unverified Branchpoints -0.087975 -0.054551 1.000000 0.932552 -0.064424

Unverified CC -0.081472 -0.049904 0.932552 1.000000 -0.058206

test/prod 0.228073 0.168054 -0.064424 -0.058206 1.000000

Table C.120: Coefficient of determination for CSharp systems between test code metrics
(5)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.842950 0.007740 0.006638 0.052017

assert/CC 0.842950 1.000000 0.002976 0.002490 0.028242

Unverified Branchpoints 0.007740 0.002976 1.000000 0.869654 0.004150

Unverified CC 0.006638 0.002490 0.869654 1.000000 0.003388

test/prod 0.052017 0.028242 0.004150 0.003388 1.000000

Table C.121: Pearson correlation for CSharp systems between test code metrics and simple
metrics (6)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.078209 0.076775 -0.079628 -0.094641 -0.061712 0.116561 0.163318

assert/CC -0.047859 0.121586 -0.047657 -0.057727 -0.029607 0.192765 0.254443

Unverified Branchpoints 0.934894 0.430179 0.934066 0.974770 0.819070 0.341483 0.330874

Unverified CC 0.994693 0.597047 0.995997 0.969292 0.924206 0.527092 0.488299

test/prod -0.069502 0.202370 -0.066867 -0.088491 -0.046684 0.175462 0.111212

Table C.122: Coefficient of determination for CSharp systems between test code metrics
and simple metrics (6)

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.006117 0.005894 0.006341 0.008957 0.003808 0.013586 0.026673

assert/CC 0.002290 0.014783 0.002271 0.003332 0.000877 0.037158 0.064741

Unverified Branchpoints 0.874028 0.185054 0.872480 0.950176 0.670876 0.116611 0.109478

Unverified CC 0.989414 0.356465 0.992011 0.939527 0.854157 0.277826 0.238436

test/prod 0.004830 0.040954 0.004471 0.007831 0.002179 0.030787 0.012368

Table C.123: Pearson correlation for CSharp systems between test code metrics (6)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.918666 -0.129541 -0.101624 0.448888

assert/CC 0.918666 1.000000 -0.109931 -0.077301 0.462855

Unverified Branchpoints -0.129541 -0.109931 1.000000 0.951598 -0.116694

Unverified CC -0.101624 -0.077301 0.951598 1.000000 -0.082625

test/prod 0.448888 0.462855 -0.116694 -0.082625 1.000000

197

APPENDIX C. VALIDATION: CORRELATION ANALYSIS

Table C.124: Coefficient of determination for CSharp systems between test code metrics
(6)

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.843948 0.016781 0.010327 0.201501

assert/CC 0.843948 1.000000 0.012085 0.005975 0.214235

Unverified Branchpoints 0.016781 0.012085 1.000000 0.905538 0.013617

Unverified CC 0.010327 0.005975 0.905538 1.000000 0.006827

test/prod 0.201501 0.214235 0.013617 0.006827 1.000000

Table C.125: Average Pearson correlations for CSharp systems between test code metrics.

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch -0.063932 0.082163 -0.066110 -0.072335 -0.035212 0.150473 0.229716

assert/CC -0.037227 0.092974 -0.039413 -0.043030 -0.007557 0.175521 0.257737

test/prod -0.044797 0.139156 -0.043838 -0.053871 -0.024576 0.149951 0.118242

Unverified Branchpoints 0.921050 0.560705 0.928800 0.982710 0.824825 0.389745 0.229484

Unverified CC 0.991852 0.703623 0.995249 0.973940 0.909265 0.568214 0.393969

Table C.126: Average Coefficient of determination for CSharp systems between test code
metrics.

SLOC prod SLOC test CC prod Branchpoints prod asserts prod asserts test Direct asserts

assert/branch 0.004230 0.008941 0.004502 0.005372 0.001820 0.024760 0.053989

assert/CC 0.001507 0.011732 0.001656 0.001962 0.000707 0.034600 0.069945

test/prod 0.002594 0.023254 0.002481 0.003368 0.001426 0.027944 0.017616

Unverified Branchpoints 0.848932 0.330900 0.863245 0.965788 0.682964 0.161299 0.055263

Unverified CC 0.983778 0.501691 0.990526 0.948595 0.827389 0.327369 0.160020

Table C.127: Average Pearson correlations for CSharp systems between test code metrics
and simple metrics.

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.920155 -0.099685 -0.092061 0.294548

assert/CC 0.920155 1.000000 -0.074887 -0.065660 0.261340

test/prod 0.294548 0.261340 -0.071335 -0.058238 1.000000

Unverified Branchpoints -0.099685 -0.074887 1.000000 0.949671 -0.071335

Unverified CC -0.092061 -0.065660 0.949671 1.000000 -0.058238

Table C.128: Average Coefficient of determination for CSharp systems between test code
metrics and simple metrics.

assert/branch assert/CC Unverified Branchpoints Unverified CC test/prod

assert/branch 1.000000 0.846844 0.010214 0.008539 0.099898

assert/CC 0.846844 1.000000 0.006090 0.004446 0.081247

test/prod 0.099898 0.081247 0.005671 0.003862 1.000000

Unverified Branchpoints 0.010214 0.006090 1.000000 0.902114 0.005671

Unverified CC 0.008539 0.004446 0.902114 1.000000 0.003862

198

	Introduction
	Problem statement
	Research questions
	Research method
	Contributions

	Background
	Terminology
	Metrics
	SIG Tools

	Statistics
	Skewness & Kurtosis

	Threshold benchmarking
	Alves method
	Baggen method

	Related work
	Athanasiou’s test code quality model
	SIG Test code quality model

	Dataset description
	Introduction
	Method
	Dataset preparation
	Querying
	Filtering

	Frequencies
	Sample data points
	Unit level
	File level
	System level

	Analysis
	Under-representation
	Potential threats to validity

	Conclusion

	Exploratory data analysis
	Introduction
	Research method
	Hypothesis
	Results
	Unit level
	File level
	System level

	Analysis
	Interesting values
	Distributions

	Conclusion

	Comparative analysis
	Introduction
	Hypotheses
	Method
	Java - CSharp production code compared
	Production
	Test code

	Production and test code compared
	Java
	CSharp

	Conclusion
	Threats to validity

	Correlation analysis
	Introduction
	Hypotheses
	Method
	Results: File metrics
	Java
	CSharp

	Analysis: File metrics
	Results: System metrics
	Java
	CSharp

	Analysis: System metrics
	Conclusion
	Threats to validity

	Threshold analysis
	Introduction
	Method
	Risk profiles Assert/Branch & Assert/CC metrics
	Assert/branch
	Assert/CC
	Analysis

	Risk profiles Assert/Branch & Assert/CC metrics for filtered files
	Assert/branch
	Assert/CC
	Analysis

	 Risk profiles Unverified Branchpoints & Unverified CC
	Unverified Branchpoints
	Unverified CC
	Analysis

	 Risk profiles Unverified Branchpoints & Unverified CC Filtered
	Unverified CC
	Analysis

	Thresholds for Assert/Branch & Assert/CC metrics
	Assert/branch
	Assert/CC
	Analysis

	Thresholds for unverified branchpoints and unverified CC.
	Unverified branchpoints
	unverified CC
	Analysis

	Thresholds for unverified branchpoints and unverified CC. (filtered)
	Unverified Branchpoints
	Unverified CC
	Analysis

	Thresholds for Test:production code ratio metric
	Analysis

	Conclusion
	Threats to validity

	Validation
	Comparative Analysis
	Conclusion

	Correlation Analysis
	Conclusion

	Threshold study
	Projects
	Metrics
	Star scores

	Conclusion
	Future work

	Bibliography
	Appendix Comparative analysis results
	Java production - CSharp production
	Unit level
	File level
	System level

	Java test - CSharp test
	Unit level
	File level
	System level

	Java production - Java test
	Unit level
	File level
	System level

	CSharp production - CSharp test
	Unit level
	File level
	System level

	Appendix Validation: Comparative analysis
	Java production - CSharp production
	Unit level
	File level
	System level

	Java test - CSharp test
	Unit level
	File level
	System level

	Java production - Java test
	Unit level
	File level
	System level

	CSharp production - CSharp test
	Unit level
	File level
	System level

	Appendix Validation: correlation analysis
	File level
	CSharp

	System level
	Java
	CSharp

