
Graph-Based Querying
On top of the Entity Framework

Omar Pakker
omarpakker+uva@gmail.com

January 13, 2015, 106 pages

Supervisor: Jurgen J. Vinju
Host organisation: University of Amsterdam, http://www.uva.nl/en/home

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Master Software Engineering
http://www.software-engineering-amsterdam.nl

mailto:omarpakker+uva@gmail.com
http://www.uva.nl/en/home
http://www.software-engineering-amsterdam.nl

Contents

Abstract 4

1 Motivation 5
1.1 Problem . 5
1.2 Existing Solutions . 5
1.3 Problems with the Existing Solutions . 5

1.3.1 Problems with OODBMS’ . 5
1.3.2 Problems with ORMs . 5

1.4 Solution . 6
1.5 Solution Evaluation . 7
1.6 Contribution . 7

2 Background 9
2.1 Relational Databases . 9
2.2 Object/Relational Impedance Mismatch . 9
2.3 Object-Oriented Databases . 9
2.4 Object-Relational Mapping Frameworks . 10
2.5 Graphs & the application in Graph-Based Querying 10
2.6 Cognitive Dimensions . 10
2.7 Query Performance . 11

2.7.1 Table size, length & amount . 11
2.7.2 Amount of relations . 12
2.7.3 Amount of queries & round-trips . 12
2.7.4 Vendor data provider implementation . 13
2.7.5 Object-to-Table mapping . 13
2.7.6 Garbage Collection . 13
2.7.7 Pre-fetching . 13
2.7.8 Entity Framework . 13
2.7.9 Hardware . 14
2.7.10 Software . 15

3 Related Work 16
3.1 Graph Matching & Rewriting . 16
3.2 Other Query Languages . 16

3.2.1 Query by Example (QBE) . 16
3.2.2 SciQL . 17
3.2.3 LINQ . 17
3.2.4 XPath . 17
3.2.5 JXPath . 17
3.2.6 XQuery . 18
3.2.7 Triple Graph Grammars . 18

4 Implementation Specifications 19
4.1 Features . 19

1

4.1.1 Feature Differences . 19
4.1.2 Supported Relations . 20

4.2 The new Graph-Based Querying Implementation . 21
4.2.1 Graph-Based Querying . 21
4.2.2 Performance Testing Framework . 21
4.2.3 Model Definitions . 24

5 Quality of the Graph-Based Querying Syntax 27
5.1 Hypotheses . 27
5.2 Test Method . 28

5.2.1 Cognitive Dimensions . 28
5.2.2 Code Snippet Selection . 29

5.3 Analysis . 32
5.3.1 Direct association . 33
5.3.2 Associations on subtypes . 35
5.3.3 Northwind (direct associations) . 38

5.4 Conclusion . 38
5.5 Threats to Validity . 38

6 Performance 39
6.1 Hypotheses . 39
6.2 Test Setup . 40

6.2.1 Test Data . 40
6.2.2 System Specifications . 43
6.2.3 Timer Specifications . 44
6.2.4 Databases . 44
6.2.5 Measurement Method . 44
6.2.6 Test Groups . 45

6.3 Analysis . 45
6.3.1 Inheritance only . 45
6.3.2 Associations on Subtypes . 49

6.4 Conclusion . 51
6.5 Threats to Validity . 52

7 Conclusions & Future Work 53
7.1 Conclusions . 53
7.2 Future Work . 54

7.2.1 Implementation Method . 54
7.2.2 Additional Functionality . 54
7.2.3 Graph Operations . 54
7.2.4 Query Construction . 54
7.2.5 Entity Framework’s Future . 54

8 Acknowledgements 55

Bibliography 56

Appendix A Measurement Results 60
A.1 No associations on sub-types . 60

A.1.1 Inheritance 3 . 60
A.1.2 Inheritance 4 . 63
A.1.3 Inheritance 5 . 66
A.1.4 Inheritance 6 . 69

A.2 Associations on sub-types . 72
A.2.1 Inheritance 3 . 72
A.2.2 Inheritance 4 . 80

2

A.2.3 Inheritance 5 . 88
A.2.4 Inheritance 6 . 96

A.3 Northwind . 104

3

Abstract

Background - Requesting complex structures of related data from relational databases that do not
have a single object defined in the object model of your ORM often requires numerous data requests
to the ORM (and thus database), the use of code that represents SQL, or in the worst case, actual
SQL code. As such, you run into the relational model within your program code which is one of things
the ORM was supposed to prevent.
Purpose - The purpose of this thesis was to investigate graphs as a possible solution to representing
these complex data structures and using those to faster retrieve the data and provide developers with
a way to define what to retrieve without coming into contact with the relational model.
Method - We compare the performance of it against the Entity Framework using two types of timers
and across different databases and we compare the syntax using Cognitive Dimensions to evaluate
which is easier to read and understand.
Results - We found that Graph-Based Querying can outperform the Entity Framework and that the
syntax is easier to understand.
Conclusions - We conclude that we can still improve on the way we communicate with relational
databases from an OO language and that Graph-Based Querying can be a possible solution as it both
improves performance and improves the readability of the code.

4

Chapter 1

Motivation

1.1 Problem
The original relational model as defined by Codd is a widely used model in database systems. The
biggest issue with the relational model and modern object-oriented languages is the object/relational
mismatch, otherwise referred to as the impedance mismatch [Car96, IBNW09]. To solve this problem
several solutions have been developed/pursued over the years but the integration and use of the
relational model within general-purpose programming languages is a complex problem and existing
solutions such as ORMs often incur a performance overhead.

1.2 Existing Solutions
To solve the Object/Relational mismatch, several solutions such as Object-Oriented databases and
Object-Relational mappers are currently available. Object-Oriented databases were researched to
great extent during the 1980’s as one of the solutions to the object/relational impedance mismatch
but they never surpassed the use of relational databases. The other solution to the object/relational
mismatch was the use of Object-Relational mappers. An Object-Relational Mapper sits between the
relational database and the program code and wraps the database types and relations into objects; it
functions as a translation layer between the program code and the database.

1.3 Problems with the Existing Solutions

1.3.1 Problems with OODBMS’
With an OODBMS you will need to request each object type, after which relations can be accessed
through the objects. This would require some code that represents a select (ie. db.TypeAObjects.Get(index))
after which the relations point directly to the related object. Furthermore, an OODMBS is bound to
the programming language it is designed for whereas a RDBMS is not. This introduces the problem
where old data can not easily be migrated to a new program if this is implemented in a different
programming language nor easily shared between different applications (ie. a web interface in PHP
for clients and a management application in C++ for the employees).

1.3.2 Problems with ORMs
Data retrieval with an ORM is behind the scenes a bit more complex than with an OODBMS. You
are required to request the objects like you would in an OODBMS but once you want to access a
relation, a new query has to be executed on the database to retrieve the data associated with this
relation. This results in n queries for n relations and thus greatly impacts program performance, or
the programmer is required to write code that represents a SQL query to retrieve all the relations in
advance.

5

Listing 1.1: Entity Framework code for the retrieval of data in Figure 1.1
dbContext.OSet.Where(o => o.Id == SelectEntityId)

.Include(‘‘E00’’);

dbContext.OSet.Where(o => o.Id == SelectEntityId)
.Join(dbContext.E00Set, o => o.Id, e00 => e00.O_Id, (o, e00) => e00)
.Join(dbContext.A00Set.OfType<A10>(), e00 => e00.Id, a10 => a10.E00_Id, (e00, a10) =>

a10)
.Join(dbContext.B00Set, a10 => a10.Id, b00 => b00.A10_Id, (a10, b00) => b00);

To illustrate what this code could look like, we try to retrieve the red objects/relations of the dataset
shown in Figure 1.1.

Figure 1.1: Retrieval of objects O, related object E00, its related A00 object, and for A10 (A00
sub-type) its related B00 object

As seen in [Mer11], the C# Entity Framework code used to retrieve this data represents SQL join
and where statements (see Listing 1.1).

In Chapter 2 we go into more detail of both Object-Oriented databases and Object-Relational
mappers.

1.4 Solution
This is where Graph-Based Querying (GBQ) comes in. Graph-Based Querying is the use of graphs
to query for data from a database. Graph-Based Querying attempts to solve the problem of writing
code that represents a SQL query and decreasing the amount of queries that need to be executed on

6

Listing 1.2: GBQ code for the retrieval of data in Figure 1.1
new SqlGraphShape(dbContext)

.Edge<O>(x => x.E00Set)

.Edge<E00>(x => x.A00Set)

.Edge<A10>(x => x.B00Set)

.Load<O>(o => o.Id == SelectEntityId);

the database to increase execution performance as well as improving code readability. We do this by
using graphs to define the relations between the objects you want to retrieve from the database. The
programmer defines a graph query and GBQ builds and executes a query to retrieve the data from
the database.

To illustrate this, we try to retrieve the same data as before (see Figure 1.1) but now we write the
code that you would need with GBQ as opposed to the Entity Framework. This code can bee seen in
Listing 1.2. As we only need to know the objects and relations that are involved in the data we want
to retrieve, we can greatly simplify the code required. As relations in a database are always made
using a primary and foreign key, we can infer this information thus simplifying the code. Furthermore,
as we no longer require the programmer to supply database fields for the data retrieval statement, we
also eliminate the need for code that represents a SQL query.

Since this graph query also defines all the objects and relations that are involved in the data request
at once, we can construct a query and execute this in a single round-trip to the database. This allows
us to greatly increase the performance of the data retrieval when compared to the Entity Framework
snippet (see Listing 1.1).

1.5 Solution Evaluation
To determine the performance benefits of Graph-Based Querying and the advantages and disadvan-
tages of the syntax when compared to the Entity Framework, we created two experiments to answer
the following questions:

1. Can Graph-Based Querying provide us with faster data retrieval?

2. Can the Graph-Based Querying syntax simplify code creation and maintainability?

To answer the first question we measure the performance of the Entity Framework against Graph-
Based Querying using two timers; one for wall clock time and one for CPU time. The wall clock
timer supplies us with the total duration of building, executing and constructing the objects for the
database query. The CPU timer provides us with information on how long the Entity Framework and
Graph-Based Querying take to construct the query and process the results.
The second question requires a way to compare different syntaxes against each other and what the
impact of the syntax is on how a developer writes and reads code using that syntax. For this we
use the Cognitive Dimensions framework as described by Green [BBC+01, T. 96]. This framework
allows for the comparison of notational systems and information artefacts using several dimensions.
These dimensions provide a way to discuss the differences and cognitive impact using broad terms. As
such, this framework has been used, among other things, to compare diagrams [KBB02] and interfaces
[Gol09]. We argue about the advantages and disadvantages of each syntax using several code snippets
written with Graph-Based Querying and the Entity Framework.

1.6 Contribution
• Verification of the results found in the article by M. de Jonge [Mer11].

We replicate the tests of the article by recreating the query structures, datasets and populations

7

used in the article.

• Demonstration of the impact of Graph-Based Querying on different databases.
The article only tests on Sql Server. We expand on this by demonstrating the performance gains
of Graph-Based Querying over the standard Entity Framework code on different databases in
addition to Sql Server.

• Syntax comparison using the Cognitive Dimensions framework.
With use of the cognitive dimensions framework we argue about the advantages and disadvan-
tages of Graph-Based Querying code versus Entity Framework code.

• Demonstration of the feasibility of Graph-Based Querying for the retrieval of complex data struc-
tures.
With the different tests we demonstrate when Graph-Based Querying performs better than the
Entity Framework and when Graph-Based Querying becomes a feasible addition to the Entity
Framework.

• A code base for further development and testing.
The base for this project was created by M. de Jonge (see [Mer11]). It has been extended with
support for a large amount of the features that can be found in the models that can be created
with the Entity Framework, as well as the addition of support for other databases. We describe
this in more detail in Chapter 4.
The code will be made available for further testing and development. The following projects
can be expected to be part of the code:

– Performance measurement framework project.

– General graph shape project (base for different implementations).

– Graph-Based Querying implementation for the Entity Framework.

– Project that defines the models and tests used for the measurements in this thesis.

– A project for each database that configures the connection to the different databases.

– Unit and functional tests for the general graph project and Entity Framework graph project.

8

Chapter 2

Background

2.1 Relational Databases
The relational model was first created by E.F. Codd [E.F69, E.F70]. Relational databases have a
general programming interface; SQL [SQL]. Any programming language that can make connections to
databases can execute the same SQL command and the database will be able to execute that command.
However, as relational databases are not bound to a specific programming language and designed
around the relational model, it suffers from the object/relational impedance mismatch problem. This
problem is the set of problems encountered when mapping tables to objects and vice versa. To solve
this, programmers utilize Object-Relational Mappers to deal with the object/relational mismatch.

2.2 Object/Relational Impedance Mismatch
The object/relational (impedance) mismatch is the set of problems encountered when mapping tables
to objects and vice versa. The different data types in the relational database and the OO language
is one of these problems. One example is the lack of by-reference (pointers) types in the relational
model, while OO languages rely on by-reference types. Another example is the string collation: in the
relational model string collation is defined with the column type beforehand, whereas in OO languages
collation is often only used as an argument when comparing or sorting strings. In addition, relational
databases do not support OO concepts such as encapsulation, accessibility (access modifiers), poly-
morphism, etc (see [IBNW09]).
Object-Relational mapping frameworks attempt to solve these mismatch problems by functioning as
a translation layer between objects and the relational model.

2.3 Object-Oriented Databases
Object-Oriented databases have been considered as a possible alternative to relational databases in
OO environments. In the 1980’s OODBMS’s were researched but they never managed to replace
relational databases. Several factors for this are described by Carey [Car96].
In an Object-Oriented database, data is represented as objects as opposed to tables. The advantages
of this is that the object-relational mismatch does not exist with this type of database. Furthermore,
accessing data can be faster when compared to relational databases as objects can be retrieved directly;
the objects directly reference the related object. In relational databases this requires a lookup in the
target table. One of the disadvantages of when compared to a relational database is that an OODBMS
is bound to a specific programming language and that data can not easily be shared between or
migrated to applications written in a different programming language.

9

2.4 Object-Relational Mapping Frameworks
Object-Relational mapping frameworks are used as a translation layer between relational databases
and the objects in a programming language. ORMs are another solution to the object/relational
mismatch problem; the ORM hides the relational model and supplies the programmer with an object
model instead. This simplifies development for the programmers by allowing the ORM to instantiate
the corresponding objects and persisting the changes to the corresponding fields in the database.
However, as seen in the Entity Framework snippet shown before (1.1), the programmer may still be
required to write code that represents a SQL statement (the ’Join’ statement used in the snippet is a
prime example) and thus has to understand the relational model and SQL and often use it or write
code that looks a lot like SQL instead of programming in idiomatic OO. Furthermore, the efficiency
of the translation layer is unpredictable and can greatly differ for each ORM implementation.
As measured by P. van Zyl [Zyl06] we can see that a rather large overhead can be added by an ORM
in several operations when compared to an OODBMS. However, he also concludes that in a few cases,
the ORM did not perform slower. We describe several factors that impact performance in Section 2.7.
We show that Graph-Based Querying can further increase performance.

Entity Framework The Entity Framework [Mic13] is an object-relational mapper for the .NET
Framework. The Entity Framework was developed by Microsoft but the source-code has been publicly
available since July 2012. The Entity Framework provides tools to create an abstract model on top of
your relational model which maps objects to your database tables and cells and vice versa. It provides
two APIs to make data request against the model; Entity SQL and LINQ-to-Entities [Atu07, Vij08].
The model can be created using code or a visual designer.
In Graph-Based Querying, we extract the mapping information from this model to construct the
required queries for the defined graph.

2.5 Graphs & the application in Graph-Based Querying
A graph consists of nodes (vertices) that are connected by lines (edges). In computer science graphs
serve several purposes, one of which is the representation of related data. In this case the objects are
the vertices and the relations to other objects are the edges. For more in-depth information about
graphs, we suggest the graph theory book by Diestel [Die12].
Graph Based Querying utilizes graphs for the representation of data to simplify how the programmer
defines what data he wants to retrieve. In short, Graph-Based Querying constructs queries from graph
shapes that consist of objects that represent database data.
Figure 2.1 shows the graph that defines the data for the code in Listing 1.1. To make graph creation
as easy as possible, inheritance relations are inferred by Graph-Based Querying. In Graph-Based
Querying the developer only needs to define a shape with edges from O to E00, E00 to A00 and A10
to B00.
Figure 2.2 shows the dependencies between our Graph-Based Querying implementation, the devel-
oper’s program, the Entity Framework and the database.

2.6 Cognitive Dimensions
As mentioned before in Section 1, we utilize the Cognitive Dimensions framework to argue about the
code written with Graph-Based Querying and the Entity Framework to determine whether one has
advantages or disadvantages over the other.
The Cognitive Dimensions framework [BBC+01] was created to assist with the qualitative evaluation
of the design of notational systems and information artefacts. It focusses on design decisions and the
trade-offs that occur between decisions.
To evaluate whether the code written with Graph-Based Querying is an improvement over the code
written with the Entity Framework or not, we use these cognitive dimensions to weigh code snippets
of both against each other. With the dimensions we discuss why the Graph-Based Querying snippets

10

Figure 2.1: Graph representation of data. The circles are nodes/vertices and the lines are the edges.

are, or are not, easier to understand and maintain and how usable the new syntax is when compared
to the Entity Framework.

2.7 Query Performance
The performance of queries and program execution can be influenced by several different factors.
In this section we describe numerous factors that can influence the measured time and how this
impacts the tests we perform to measure the performance difference between the Entity Framework
and Graph-Based Querying. A few of these can be found in [Jer10].

2.7.1 Table size, length & amount
Larger tables or multiple tables require more time to be read from disk as well as more time to be
transformed into objects by the ORM when compared to smaller or less tables.
As such, different table sizes can impact the measured time. To prevent this we use the same basic
field types for each table:

• Id : int

• DataField : string (NVARCHAR (MAX))

Note that foreign key fields may be present if there is a relation.

The table length also impacts the measured time and therefore we define several database popula-
tions to measure the impact this has on Graph-Based Querying and the Entity Framework. In the
comparative analysis only results from the same population are compared.

11

Figure 2.2: The dependencies between the developers’ program, Graph-Based Querying, the Entity
Framework and the database.

The amount of tables can also impact the measured time. To eliminate this, we test Graph-Based
Querying and the Entity Framework against each other only on the same dataset. We created several
datasets with an increasing amount of tables to evaluate the impact on each.

2.7.2 Amount of relations
Queries that have a greater amount of relations require the database to not only load a larger amount
of tables, it also requires the database to perform a search to find the related entry. Both of these
impact the measured time. The measured time increase caused by the searches grows with the length
of the table and the amount of relations involved.
As we mentioned before, we ensure that our tables are the same length. This leaves the amount
of relations as the only impact on the search time. To prevent the searches from impacting the
comparison between Graph-Based Querying and the Entity Framework, we only compare datasets
that have the same relations.
To measure the impact of more relations on the measured time we do test datasets with more relations.
However, the smaller set is only compared to the bigger set queried with the same method; either
Graph-Based Querying or the Entity Framework.

2.7.3 Amount of queries & round-trips
The amount of queries you need to execute to retrieve the requested data impacts the time the database
needs to return the results. In case of the Entity Framework, each statement can be regarded as a
query; each statement results in a query to the database. This not only increases the amount of
queries to the database but also the amount of round-trips; each statement has to generate the SQL

12

code, open a connection and materialize the objects from the returned data.
By creating a graph that defines all the associations the developer wants to retrieve, we attempt to
decrease the amount of queries we need to execute as well as decrease the amount of round-trips. This
is one of the main areas in which Graph-Based Querying improves performance.

2.7.4 Vendor data provider implementation
Vendor specific implementations of the data providers can influence the times we measure for Graph-
Based Querying and the Entity Framework. It may well be possible for a specific vendor to implement
the data provider in such a way that the queries generated for the Entity Framework are more efficient
than the ones we generate with Graph-based Querying. As the data provider implementation is made
for a specific database, it would allow for the use of advanced functionality in the database (ie. PL/SQL
for Oracle or Transact-SQL for Sql Server). With Graph-Based Querying we generate queries that
conform to the SQL standard and as such do not use database specific optimizations.
To investigate whether a data provider influences the Entity Framework performance when compared
to Graph-Based Querying, we test both Graph-Based Querying and the Entity Framework against
several different databases using their specific data providers.

2.7.5 Object-to-Table mapping
Mappings in an ORM describe how relational data is exposed to objects and how the objects are
stored in tables. To make sure the data the user updates and object and retrieves the object from the
database, the mapping must return the updated information. To prevent the wrong results an ORM
must verify that the mappings are valid and that the mappings round-trip the data; the retrieval of
data after it has been updated should return the correct data. As we can see in paper [BJP+13]
this is a complex problem and in one of their cases the measured time dropped from 8 hours for full
mapping compilation to 50 seconds with incremental compilation.
As Graph-Based Querying uses the mapping information from the Entity Framework, it suffers the
same performance impact when the mappings are validated and therefore this does not impact the
performance measurement comparison.

2.7.6 Garbage Collection
Garbage collection releases memory that has been used by objects that are no longer referenced. To do
so, the collector can halt the running program to clean up these unused objects. This halt in program
execution can impact the total time we measure during our tests. For this purpose we disable garbage
collection while the tests are running and instead run the garbage collector before and after each test
to prevent it from influencing our results.

2.7.7 Pre-fetching
Pre-fetching is the process of loading data from disk in advance. While pre-fetching is also a func-
tionality you can find within Windows, this is disabled on our system and as such we only deal with
pre-fetching functionality implemented in the database software.
Sql Server implements a pre-fetching system [Cra08, Fab12] which can impact our measurements as
the population we use grows. As the queries we create differ from the queries the Entity Framework
creates, the results may change once the pre-fetching is enabled. Pre-fetching is enabled when Sql
Server’s query plan assumes that the amount of rows that need to be analysed exceeds a certain
threshold.

2.7.8 Entity Framework
As we use the Entity Framework, we also have to consider the overhead that the Entity Framework
can add. An article by Microsoft ([Mic14e]) mentions several factors that influence the performance
of the Entity Framework:

13

• Cold vs. Warm Query Execution
As we can see in the article, the first query execution, or cold query, the Entity Framework
has to load and validate the model. This increases the measured time. To prevent this from
influencing our measurements, we execute the queries a few times before we start measuring.

• Caching
The Entity Framework caches data on several levels; the metadata cache which is build with
the first query, the query plan cache which stores the generated database commands if a query
is executed more than once and the object cache which keeps track of objects that have been
retrieved with a DbContext instance (also known as the first-level cache).
As we mentioned before, we execute the queries several times before we start measuring. As
such, the metadata and query plan caches are constructed and used thus do not impact the
measured times.
Each test uses a new DbContext instance and as such, the object cache is always clear for each
new test.

• Auto-compiled Queries
Before a query can be executed against the database it must go through a few steps. Query
compilation is one of these. Subsequent calls with the same query allow the Entity Framework
to use the cached plan and as such it can skip the plan compiler. The article mentions several
conditions that may cause the plan to be recompiled. Our tests do not trigger any of these
conditions and as such this does not impact our measurements.

• NoTracking Queries
NoTracking basically disables the object cache and as such it may give a performance increase
in read-only scenarios that do not request the same entity several times. When requesting the
same entity several times, NoTracking makes it impossible to skip object materialization by
using the object cache. In our tests we do not use the NoTracking functionality so all tests are
impacted equally.

• Query Execution Options
The Entity Framework support different way to construct queries. Of the options we could use
we dropped the ones that do not also materialize the objects (i.e. EntityCommand queries;
can be seen as a SQL query over the objects as opposed to over the tables) as this would skew
the measurements in favour of the Entity Framework since Graph-Based Querying materializes
objects. We also dropped the query methods that require SQL code (i.e. Store and SQL
Queries). As we mentioned before, all our models utilize the DbContext and as such we also
drop the queries that utilize the ObjectContext. The last two methods are Entity SQL and
LINQ. As Entity SQL is similar to actual SQL but instead over entities, we also drop this as we
want to use the Entity Framework in the most Object-Oriented way. This leaves us with the
LINQ implementation.

• Loading Related Entities
The Entity Framework can lazily load related objects or eagerly. If we where to use lazy loading
for the Entity Framework we would give Graph-Based Querying an unfair advantage as the
Entity Framework would need to make many more round-trips to the database when we use
lazy loading as opposed to eager loading. As such we use eager loading. This creates a fair
timing comparison as Graph-Based Querying also eagerly loads the requested data.

2.7.9 Hardware
The hardware can also impact the measured results. To minimize the differences in measured times
we run the tests on the same system. However, the parts within the system can still impact the
measured wall clock times:

• Disk I/O; the speed in which data is read from disk can change.

• CPU; cache clearing, buffer resets or throttling can influence the measurements.

14

• North- & Southbridge; the rate at which the bridges transfer data from disk to memory to the
CPU can fluctuate.

To decrease the impact of the disk, we use an SSD to prevent seek time from impacting our
measurements. While the SSD does not read in constant speed for everything, it does not need to
move a reader head to the other side of the drive to read data thus the I/O impact is decreased.
CPU throttling has been disable to prevent this from impacting our wall clock measurements and the
program is locked to a single core to prevent cache clearing and buffer resets caused by core switching
to lessen the impact on our wall clock time.
We can not lessen the impact of the North- and Southbridge in our measurements.

2.7.10 Software
Other software running on the same system can also influence the measured wall clock time. While
shutting down the majority of applications already decreases the load on the system, operating system
crucial processes can not be terminated and can interrupt the thread.
To decrease the occurrences of this and thus the impact on the measurements, we give our process a
higher priority than the other processes. The database processes are run normally.

15

Chapter 3

Related Work

In this chapter we describe several pieces of work that relate to data querying, as well as the use of
graphs for this purpose. We first look at previous work in the area of graph matching and rewriting,
followed by several different query languages that have been developed over the years.

We provide a short summary of each piece of work and how Graph-Based Querying makes use of
the ideas of some of these approaches and how it is positioned in relation to this work.

3.1 Graph Matching & Rewriting
Previous research has been done in the usage of graphs for database programming. P.J. Rodgers
designed an experimental visual database language (Spider) aimed at programmers [P.J97]. While
this visual language makes the creation of complex data requests easy, the problem with this imple-
mentation is that there is no way to utilize this from within a programming language.
Another approach to work with graph transformations on relational databases was proposed by Varró
[Var05]. This approach relies on the use of views in the database. The database views are used to
define the matching patterns for the graph transformation. Such a view contains all the successful
matchings for the rule. Inner joins are then used to handle the graph matching. The problem with
this approach is that it requires the developer to define all the graphs as database views in advance.
This requires the developer to access the database to create a new graph.
Graph-Based Querying sits between these approaches. Instead of defining a new language, it is imple-
mented in an existing programming language. The graphs are defined through code, thereby allowing
programmers to write the graph within their application as opposed to in the database. It also creates
the queries for these graphs during runtime, as ORMs do for objects. This allows for programmers to
create any type of graph they need without requiring access to the database to add new views.

3.2 Other Query Languages

3.2.1 Query by Example (QBE)
QBE is, like SQL, a language for querying relational data. It differs from SQL in that it is a graphical
query language as opposed to a text-based query language. It was developed around the same time as
SQL, during the 1970s, at IBM’s Laboratory Research Center [Zlo77]. As a visual language it allows
relatively inexperienced users to create simple queries without prior knowledge of query languages.
However, QBE becomes less useful and has problems as the complexity of queries increase and it is
less complete; it does not support universal or existential quantification [OW93].
With Graph-Based Querying we attempt to allow inexperienced users to create queries for complex
data structures without prior knowledge of query languages. And as we mentioned before, by imple-
menting it as a library the developer does not need to learn a visual language and can work within
their application to define the data they want to retrieve.

16

3.2.2 SciQL
SciQL is a query language based on SQL, originally designed for scientific systems [Ker11]. It extends
SQL with arrays as a first class type. A key innovation of this is the extension of SQL:2003 with
structural grouping in addition to value based grouping. I.e., fixed sized and unbounded groups based
on explicit relationships between their dimension attributes.
The main drawbacks of the approach SciQL uses is that it requires special implementation into
the database and that there is no database that supports this by default. Furthermore, it focusses
specifically on how to handle and work with array data, leaving the problem of retrieving large amounts
of related information. SciQL provides no mechanics to more easily retrieve complex structures of
related data. If we were to create a SQL extension such as SciQL, we would also need to expand
existing ORMs to work on it. However, this would mean we still need to write code that represents
this SQL extension, which brings us back where we started.
Because extensions to the SQL language such as SciQL are still bound to the relational model, these
are not able to solve this problem.

3.2.3 LINQ
LINQ, which stands for Language INtegrated Query, is a set of features that brings powerful query
capabilities to C# and Visual Basic. It can be extended to potentially support any type of data by
the way of so called Data Providers. The default assemblies contain support for operating on .NET
Framework collections, SQL Server databases, ADO.NET Datasets and XML documents.
Syntactically LINQ in a way represents SQL with its SELECT, WHERE, ORDERBY, etc. Even
more so when you write the LINQ queries in the comprehension syntax, but in contrast to SQL,
it will not even compile when the LINQ query is invalid thus saving you from run-time execution
problems as you would have with SQL. Also, because LINQ is integrated into C# and Visual Basic,
the programmer can work with a language he is familiar with so there is no need to learn a separate
language. However, because it still represents SQL statements, it does not simplify the way in which
you construct large complex data structures as you have to deal with the same keywords and same
way of looking at data as with SQL; in a relational manner.

3.2.4 XPath
XPath is a language created to define (parts of) an XML document and utilizes path expressions to
navigate the XML document. XPath became a W3C recommendation at November the 16th, 1999.
XPath works in a hierarchical manner and path expressions can be written in forms that match specific
sub-paths in the hierarchy. It however does not support extensive query-like options such as joins and
as such, data can not be filtered nor joined where needed. XPath is therefore more of a hierarchical
selection language than a query language. While this language does allow you to easily define paths
to retrieve data from, it does not retrieve the data of objects along the path. You can retrieve all the
data by using several paths but this does not decrease the amount of statements you would need to
write to retrieve the data and can not optimize the calls as one.
XPath forms the basis for query languages such as XQuery.

3.2.5 JXPath
JXPath is an interpreter of XPath written in Java [Apa]. It applies XPath expressions to graphs of
objects. Just as with XPath, JXPath has no problem selecting paths or matching sub-paths in a data
structure. It also supports the creation of objects within that data structure. However, just as XPath
suffers from this problem, it does not support the retrieval of object along the path expression. It only
retrieves the object(s) at the end of the path expression. Because of this, while it is possible to define
paths relatively easy, it is not possible to retrieve all the data in the path using a single expression.

17

3.2.6 XQuery
XQuery is the language to query XML files and is build on XPath expressions [W3C]. It shares
the same data model as XPath and supports the same functions and operations as XPath. XQuery
became a W3C recommendation at January the 23rd, 2007.
XQuery is to XML as SQL is to databases. Because of this, XQuery forms no improvement over SQL
in the construction of queries for complex data structures. While the path expressions it inherits
from XPath are flexible and therefore allow for matching on sub-paths as well, the queries over these
path expressions (also known as FLWOR-expressions) are analogous to SQLs SELECT, FROM and
WHERE.

3.2.7 Triple Graph Grammars
Triple Graph Grammars are a technique to define the relation between two different models in a
declarative way. TGGs have been around since the mid 1990’s and has been used with a main focus
on model-to-model transformations. TGGs are compiled into a forward and backward graph transla-
tion (bi-directional) that take a source or target graph as input and create the corresponding target
or source graph as output. Because the relation between two models can not only be defined but also
made operational, this bi-directional conversion is possible. This could even be used to synchronize
and maintain correspondence between two models.

While TGGs have been around for a while, they still suffer from several fundamental problems
that are still unsolved. 1) Most published approaches either use inefficient graph grammar parsing or
backtracking algorithms or rely on not very well-defined constraints of processed TGGs. 2) Negative
application conditions are either excluded or in such a way that it destroys the fundamental TGG
properties. 3) No appropriate means for modularization, refinement and re-use of TGGs. These
problems are further described by Schürr [Sch08] and Klar [Kla07].

Graph Based Querying represents the forward transformation part of TGGs. It transforms a de-
fined graph (the source model) into a query (the target model) to be executed on the database. The
implementation we created here does not support the backward (query to graph) transformation.
Because of this relation to TGGs, problems 1 and 3 play a role in Graph-Based Querying as well.
Problem 1 can result in the generation of inefficient queries, leading to degraded performance. For
instance, if paths A->B->Z and A->B->C->D->Z are defined within Graph-Based Querying and the
Zs of the latter path are a subset of the first, it would be inefficient to build and execute a query for
the second path.
Problem 3 can prevent the re-use and extension of graphs. With Graph-Based Querying the graphs
can only be re-used if the object model is the same. If either association fields or classes differ, are
renamed or removed, Graph-Based Querying graphs can not be re-used if the graph uses any of these
fields or classes.

18

Chapter 4

Implementation Specifications

In this chapter we describe the changes to Graph-Based Querying as implemented in [Mer11]. We
describe how the solution is set up and how we attempt to improve query performance, as well as
what additional relations and model functionality we support and how we match up to the relations
supported by the Entity Framework.
We also describe how the models for our tests are defined and how we take the measurements for our
tests.

4.1 Features
This implementation of Graph-Based Querying is based on the version by Merijn de Jonge [Mer11]
and relies on the Entity Framework (also see Figure 2.2) for the mapping information. The original
implementation does not support all the different features you can use in a model defined with the
Entity Framework. This can result in run-time problems if you use a model that is not created for use
with GBQ in mind. As such, our implementation attempts to support more of the features you can
find in an Entity Framework model. While this may degrade the overall performance of Graph-Based
Querying as more processing needs to be done, it will allow for better compatibility with the models
that can be created with the Entity Framework.

4.1.1 Feature Differences
In this section we take a look at the different mapping features supported by the Entity Framework
models, Graph-Based Querying as implemented in [Mer11] and Graph-Based Querying as imple-
mented for this thesis. In table 4.1 we compare the different mapping features that are supported by
the different GBQ versions and the Entity Framework.

We compare database functionality that can be represented in Entity Framework models and the
ability for each to retrieve the data for such a model; we check the support for composite keys, entity
splitting, the association and inheritance types, as well as the ability to map fields of the database to
differently named entity fields (ie. mapping the database column ‘dbo.MyObjects.MyObjectsId’ to
the property ‘MyObject.Id’ instead of ‘MyObjects.MyObjectsId’).
We also check whether each correctly links the loaded objects together using the correct object prop-
erties (so called ‘navigation’ properties in the Entity Framework). These properties should hold the
correct object(s); the objects that are associated with the current object. This allows the developer
easy access to the related objects without the need to somehow link them together manually using
keys. More information about mapping can be found on MSDN [Mic14c].
Lastly, we check what filtering options are available to specify what to retrieve from the database.

As mentioned before, we compare the support for different association types. The Entity Framework
supports two forms of associations:

19

1. Foreign Key Exposed; the foreign key is present in the entity and mapped to the entity

2. Independent; the foreign key is not present in the entity and mapped to the association itself
hence the only relational information present in the entities is the primary key.

Foreign Key Exposed associations were introduced in Entity Framework 4. It is up to the developer
to weigh the pros and cons of the associations to decide which one to use for a given situation.

We also look at the inheritance types. The Entity Framework supports three forms of inheritance:

1. Table per Type; each type has its own table. Subtypes only contain newly introduced fields
thus inner joins to base type tables are required to construct the whole object

2. Table per Hierarchy; all types are store in a single table and a special ‘discriminator’ column is
used to get the type

3. Table per Concrete Class; each non-abstract class gets its own table with all fields from its base
types included in the table.

As with the association types, it is up to the developer to weigh the pros and cons and decide on the
best type to use for a given situation.

Complications of the old implementation

When we look at table 4.1 we can see that the original version of Graph-Based Querying on which this
research builds, supports a minimum of features. It does not support entities with composite keys,
mapping several objects to the same table (entity splitting) nor the ability to map database fields
to entity fields with a different name. The measured performance improvements when compared to
standard Entity Framework queries may well be caused by the omission of these features.
For example, the Entity Framework has to look up the database fields that correspond to an object
property to construct a proper SQL query, whereas the Graph-Based Querying implementation builds
a query from the object properties directly. While this is faster, it can yield invalid results and cause
run-time problems; any database field name that does not exactly match the object property name
will cause the query to fail.
Furthermore, it relies on foreign key associations, which means that your objects will always include
additional relational information; the foreign keys.

New implementation

The new implementation of Graph-Based Querying attempts to support as much of the Entity Frame-
work as possible to allow for the full range of Entity Framework usage scenarios, with the added benefit
of Graph-Based Querying. This is so that the developer is not limited in the functionality of the En-
tity Framework he can use by Graph-Based Querying. The inclusion of most Entity Framework
functionality will also show whether or not Graph-Based Querying still performs better than the En-
tity Framework for the retrieval of complex data structures when it supports most of the models that
can be created with the Entity Framework. A possible trade-off introduced here is full-range support
vs. performance.
We support the use of composite keys, entity splitting, independent associations and differing field
names. As such, this implementation does not suffer from the run-time problems we see with the old
implementation.

4.1.2 Supported Relations
In addition to the mapping features we also take a look at the different relational types that may be
present in a database and the ability of both Graph-Based Querying versions and the Entity Frame-
work to process these relations. The relations and support for each can be seen in table 4.2.

20

As stated earlier, the Entity Framework supports two forms of associations. While most of the
relation types can be represented in either a Foreign Key Exposed association or an Independent
association, some can not. The relations that can not be represented as a Foreign Key Exposed
association, do not work with the first version of Graph-Based Querying due to the lack of support
for Independent associations. As a result, models with either Optional-to-Optional or Many-to-Many
relations would not work.
The new version supports loading of all the relations currently present in the Entity Framework using
either Independent associations or Foreign Key Exposed associations.

4.2 The new Graph-Based Querying Implementation
In this section we shortly describe the two main parts of our project; the Graph-Based Querying
implementation and how we implemented the code to take our measurements.

4.2.1 Graph-Based Querying
This project is the library that developers reference in their project, together with the Entity Frame-
work, to use Graph-Based Querying. It exposes a single class that can be used define graph queries.
The graph is defined with calls to the Edge function of this class (see Listing 4.1). In contrast to the
original implementation, this implementation uses the mapping information from the Entity Frame-
work to retrieve the appropriate database tables and fields, which is how this version is able to support
a wider range of Entity Framework model functionality.
We access this information by using the MetadataWorkspace object of the Entity Framework. This
object contains information about the Common Language Runtime objects (the objects in your code),
the conceptual objects (the objects as defined in the Entity Framework model), the storage objects
(the object in the database) and how these are related to each other. With this information we are
able to retrieve the conceptual object for a given Common Language Runtime object, which in turn
we can use to retrieve the storage object which contains the information about what database tables
and fields are used in this object.
With this information we can now transform the Common Language Runtime objects involved in a
graph query to the appropriate database query to retrieve those objects.

When the developer calls the Load() function on the graph query it constructs the required database
request on its own, bypassing the Entity Framework query generation, and materializes the returned
data into objects. These objects are then attached back to the Entity Framework so the Entity
Framework can then be used for further operations and change tracking.
Constructing the queries outside of the Entity Framework supplies us with the possibility to create
batch requests allowing us to decrease the amount of round-trips to the database, which improves the
performance of data retrieval.

We also construct different queries for the retrieval of inheritance structures. The Entity Framework
makes use of UNION to include the different sub-types. However, the use of UNION requires a
definition for each column present on the different sub-types, setting them to NULL for types that
don’t actually have that column, or the UNION drops the fields that are not defined on the first
select query of the UNION. Afterwards it joins the resulting set with the base class. In Graph-Based
Querying we directly use a JOIN on the sub-types instead so we do not have to check NULL values
and define empty columns.

4.2.2 Performance Testing Framework
To perform the measurements to compare Graph-Based Querying and the Entity Framework, we
created a performance testing framework project that defines the basis for tests and aggregating the
results and a project that references this project and implements the actual tests for the different
data sets. This framework is used in our performance experiment (6).

21

Listing 4.1: Edge functions used to define the graph shape
public GraphShape<TEntity> Edge<TFrom>(Expression<Func<TFrom, TEntity>> edge)

where TFrom : TEntity
{

return Edge<TFrom, Func<TFrom, TEntity>>(edge, edge.Body);
}

public GraphShape<TEntity> Edge<TFrom>(Expression<Func<TFrom, IEnumerable<TEntity>>> edge)
where TFrom : TEntity

{
var expression = edge.Body as UnaryExpression;
if (expression != null)
{

if (edge.Body.NodeType != ExpressionType.Convert)
{

var msg = String.Format(
"Edge expression ’{0}’ is invalid: the lambda expression has an

unsupported format.", edge);
throw new Exception(msg);

}
return Edge<TFrom, Func<TFrom, IEnumerable<TEntity>>>(edge, expression.Operand);

}
return Edge<TFrom, Func<TFrom, IEnumerable<TEntity>>>(edge, edge.Body);

}

private GraphShape<TEntity> Edge<TFrom, T>(Expression<T> edge, Expression body)
where TFrom : TEntity

{
var mExpr = body as MemberExpression;
if (mExpr == null || !(mExpr.Expression is ParameterExpression))
{

var msg = String.Format("Edge expression ’{0}’ is invalid: it should have the form
’A => A.B’", edge);

throw new Exception(msg);
}

var propInfo = mExpr.Member as PropertyInfo;
if (propInfo != null)
{

_edges.Add(new Edge<TFrom>(propInfo));
}

return this;
}

22

Listing 4.2: Minimalistic implementation of a test used for our measurements
protected override void Setup()
{

//Initialize the DbContext. The context is the Unit of Work and the Repository of the
Entity Framework model.

DbContext = new ModelContext();
}

protected override int DoTest()
{

//Define the query/statement to execute and measure here (EF and GBQ snippets we
describe later go here).

var allMyObjects = DbContext.MyObjects.ToList();
return allMyObjects.Count;

}

protected override void Cleanup()
{

//Dispose of the DbContext
DbContext.Dispose();
DbContext = null;

}

Listing 4.3: Changing the applications’ affinity and priority
//Prevent process from changing cores
var currentProcess = Process.GetCurrentProcess();
currentProcess.ProcessorAffinity = new IntPtr(Settings.ProgramSettings.Affinity);
currentProcess.PriorityClass = ProcessPriorityClass.High;
//Prevent normal threads from blocking this thread
Thread.CurrentThread.Priority = ThreadPriority.Highest;

We did not use the test framework that was created for the original implementation [Mer11] as this
did not use the high precision timer, nor did it time the test process itself, resulting in the inability
to exclude the test process from the measured wall clock time.

A basic test implementation can be seen in Listing 4.2. The DoTest() functions contains the actual
test that should be performed. It is possible to exclude the Setup() and Cleanup() functions in the
test implementation but in our case, we respectively initialize and dispose of the DbContext in these
two functions.

As we mentioned in 2, to decrease the impact of different processes and core switches on our
measurements, we lock our process to a single core and increase its priority. How we do this can be
seen in Listing 4.3.

We also mentioned that the Garbage Collector can interrupt the process. As such we disable the
collector and run it manually before and after a test. Listing 4.4 shows how we run the garbage
collector in our test framework. We call GC.Collect() twice in RunGC() as the collector may bring
objects back to life if the object has a finalizer (destructor) that still needed to be run. The second
call to collect cleans these objects.

With the optimizations taken care of, our test framework runs and measures the tests using two
different timers. One for the CPU time (the time the thread itself is running) and one for the real
time that the tests need to execute and receive the results form the database. For the latter it uses
the system’s high resolution timer if one is available. The implementation of the run function that

23

Listing 4.4: We run the collector before and after the test run
private void RunGC()
{

GC.Collect(GC.MaxGeneration, GCCollectionMode.Forced);
GC.WaitForPendingFinalizers();
GC.Collect(GC.MaxGeneration, GCCollectionMode.Forced);

}

public void Run(TimeSpan minimumRunTime)
{

var oldLatency = GCSettings.LatencyMode;
GCSettings.LatencyMode = GCLatencyMode.SustainedLowLatency;

foreach (var test in Tests)
{

RunGC();
var result = test.Run(IgnoreRunResults, minimumRunTime);
RunGC();

}

GCSettings.LatencyMode = oldLatency;
}

takes the measurements and stores the results can be seen in Listing 4.5. By decreasing the impact
of the process on the measured real time and separately measuring the time the process is running,
we can more precisely see the time that is actually spend on the database (real time - cpu/thread time).

It is possible for the framework to ignore the results of a test and as mentioned in chapter 2, we
use this to run the tests a few times to allow the Entity Framework to build the metadata cache etc.
Any exceptions that occur are always collected and stored.

We use the results of these measurements in our result graphs A.

4.2.3 Model Definitions
The models that we use for the tests are based on the models as seen in [Mer11]. This allows us to
do a relative comparison on the performance difference we measure between the Entity Framework
and Graph-Based Querying and the relative performance difference as measured in [Mer11]. As we
also test on different databases, we instead used the Code-First [Mic14a] approach as opposed to the
Model-First [Mic14b] approach. The reason for this is that the EDMX model stores database specific
information, preventing a model created for Sql Server to work on, for instance, PostgreSql. Code-
First generates this information at run-time, allowing the model to execute on different databases.
The impact on performance for this change is only present for the first execution. As we already run
the tests several times without measuring, this does not influence our results.

24

Listing 4.5: Test run implementation. Shows how the timers are used to measure the time and how
the results of a run are calculated
internal int Run(bool ignoreResults, TimeSpan minimumRunTime)
{

TotalRunsCount++; //How many times this test has run

int result = 0;

try
{

int subSteps = 0;
var sw = new Stopwatch(); //Real time stopwatch. High precision.
var esw = new ExecutionStopwatch(); //CPU/Thread time stopwatch. 15ms minimum.
esw.Start();

while (esw.Elapsed < minimumRunTime)
{

subSteps++;

Setup();

sw.Start();
result ^= DoTest();
sw.Stop();

Cleanup();
}

esw.Stop();

if (!ignoreResults)
{

var duration = new TimeSpan(sw.Elapsed.Ticks / subSteps);
var threadDuration = new TimeSpan(esw.Elapsed.Ticks / subSteps);
_testResults.Add(new TestResults(TotalRunsCount, duration, threadDuration));

}
}
catch (Exception e)
{

_failedRuns.Add(new TestFailure(TotalRunsCount, e.Message,
e.AggregateInnerExceptionMessages()));

result = -1;
}

return result;
}

25

T
ab

le
4.
1:

C
om

pa
ri
so
n
of

su
pp

or
te
d
fe
at
ur
es

in
E
F
,G

B
Q

1
an

d
G
B
Q

2
A
p
p
li
ca
ti
on

/
Fe

at
u
re

C
om

p
os
-

it
e

K
ey
s

A
ss
oc
ia
ti
on

s
In
h
er
it
an

ce
F
ie
ld

n
am

e
ch
an

ge

N
av
ig
at
io
n

P
ro
p
er
ti
es

F
il
te
ri
n
g

O
p
ti
on

s
E
nt
it
y

S
p
li
tt
in
g

E
nt
it
y

Fr
am

ew
or
k

Y
es

In
de
pe

nd
en
t
&

Fo
re
ig
n
K
ey

E
xp

os
ed

T
ab

le
pe

r
H
ie
ra
rc
hy
,T

ab
le

pe
r

T
yp

e
&

T
ab

le
pe

r
C
on

cr
et
e
C
la
ss

Y
es

Y
es

LI
N
Q

Y
es

G
B
Q

1
N
o

Fo
re
ig
n
K
ey

E
xp

os
ed

T
ab

le
-p
er
-T

yp
e

N
o

Y
es

P
ri
m
ar
y

K
ey

on
ly

N
o

G
B
Q

2
Y
es

In
de
pe

nd
en
t
&

Fo
re
ig
n
K
ey

E
xp

os
ed

T
ab

le
-p
er
-T

yp
e

Y
es

Y
es

‘W
he
re
’

on
ly

Y
es

T
ab

le
4.
2:

C
om

pa
ri
so
n
of

su
pp

or
te
d
re
la
ti
on

s
in

E
F
,G

B
Q

1
an

d
G
B
Q

2
A
p
p
li
ca
ti
on

/
R
el
at
io
n

M
an

y-
to
-

M
an

y*
M
an

y-
to
-M

an
y,

L
in
k
E
nt
it
y*

*
O
n
e-
to
-O

n
e

O
n
e-
to
-

O
p
ti
on

al
O
p
ti
on

al
-t
o-

O
p
ti
on

al
*

O
n
e-
to
-M

an
y

O
p
ti
on

al
-t
o-

M
an

y
E
nt
it
y

Fr
am

ew
or
k

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

G
B
Q

1
N
o

Fo
re
ig
n
K
ey

A
ss
oc
ia
ti
on

on
ly

Fo
re
ig
n
K
ey

A
ss
oc
ia
ti
on

on
ly

Fo
re
ig
n
K
ey

A
ss
oc
ia
ti
on

on
ly

N
o

Fo
re
ig
n
K
ey

A
ss
oc
ia
ti
on

on
ly

Fo
re
ig
n
K
ey

A
ss
oc
ia
ti
on

on
ly

G
B
Q

2
Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

*:
In
de
pe

nd
en
t
A
ss
oc
ia
ti
on

on
ly
.
T
hi
s
re
la
ti
on

do
es

no
t
su
pp

or
t
ex
po

si
ng

fo
re
ig
n
ke
ys
.

**
:
C
an

on
ly

be
us
ed

in
an

In
de
pe

nd
en
t
A
ss
oc
ia
ti
on

w
he
n
th
e
lin

k
en
ti
ty

ha
s
a
su
rr
og
at
e
pr
im

ar
y
ke
y.

26

Chapter 5

Quality of the Graph-Based Querying
Syntax

Even if a solution performs great, if the syntax is hard to use or extremely confusing, the solution
may eventually be unusable because it can not be understood or used without a lot of effort.
For this reason we asked the question mentioned in chapter 1:

• Can the Graph-Based Querying syntax simplify code creation and maintainability?

In this chapter we try to answer this question. As mentioned in chapter 1, we use the cognitive
dimensions framework to argue about different code snippets written with Graph-Based Querying
and the Entity Framework.

5.1 Hypotheses
When we observed the statements we write to retrieve related objects with the Entity Framework we
noticed that direct relations and relations on sub-types required different statements to retrieve the
data. The main difference we observed was that directly related objects can be retrieved with a single
statement.

We also observed that the Entity Framework code used in [Mer11] uses the ‘Join’ function and
the ‘Include’ function that relies on string based paths. The Entity Framework also supplies other
functions to perform the same functionality. For the ‘Include’, there is a strongly-typed alternative
and instead of the ‘Join’ we can use ‘SelectMany’. As we are joining related objects on primary and
foreign key and not unrelated objects on some random fields, ‘SelectMany’ can be used. The resulting
SQL is the same for this situation.
In this thesis we use these different functions.

As a result of these observations we created the following hypotheses to answer the question above:

1. Entity Framework code as used in [Mer11] is harder to understand than Entity Framework code
as used in this thesis.

2. Entity Framework code as used in [Mer11] is more error-prone than Entity Framework code as
used in this thesis.

3. Graph-Based Querying code is not easier nor harder to understand and maintain than Entity
Framework code when retrieving directly related objects.

4. Graph-Based Querying code is easier to understand and maintain Entity Framework code when
inheritance is part of the objects to be retrieved.

With this analysis we attempt to verify these hypotheses.

27

Entity Framework code as used in [Mer11] is harder to understand than Entity Frame-
work code as used in this thesis
The ‘Join’ statement that is used in [Mer11] represents the relational JOIN and as such, requires

knowledge of the relational model. The developer is required to define the set that needs to be joined
as well as the keys to join on (as we are joining related objects, this always is the primary key on one
end and the foreign key on the other). We expect that the ‘SelectMany’ statement we use makes it
easier for the developer to understand the code as the information required to construct the join is
inferred by this statement.

Entity Framework code as used in [Mer11] is more error-prone than Entity Framework
code as used in this thesis
The ‘Include’ statement that is used in [Mer11] relies on string based paths. These are not checked

at compile time and mistakes are only discovered at run-time. As such we expect that the strongly
typed ‘Include’ statement we use decreases the chances of making a mistake.

Graph-Based Querying code is not harder to understand and maintain than Entity
Framework code when retrieving directly related objects
As directly related objects can be included in a single statement in the Entity Framework we expect

that Graph-Based Querying will not provide much in terms of improvements to nor any decline in
the readability and maintainability of the code.

Graph-Based Querying code is easier to understand and maintain Entity Framework
code when inheritance is part of the objects to be retrieved
Using the ‘Join’ statement requires knowledge of the relational model and requires the developer to

know the whole join path to retrieve data from relations on subtypes. The ‘SelectMany’ statement does
not require this knowledge but still needs extra information to properly retrieve sub-type relations; the
developer has to use the ‘OfType’ statement to select the proper sub-type. In Graph-Based Querying
the developer only needs to define the start and end of a relation on object level. To do this the
developer does not need to know the relational model and can define all relations at once. We expect
that this makes the code written with GBQ easier to understand and maintain.

5.2 Test Method
In this section we describe the different Cognitive Dimensions and provide a short description as well
as the snippets we use in our comparison.

5.2.1 Cognitive Dimensions
To be able to say something about the code written with the Entity Framework and Graph-Based
Querying, we utilize the Cognitive Dimensions Framework [BBC+01]. From this framework we select
a few dimensions and argue about how those apply to certain code snippets. The framework currently
consists of 14 dimensions but is gradually expanding.
We use the following subset:

• Viscosity: Resistance to Change Many user actions are required to accomplish one goal. This
can be repetition of the same action or an action that requires follow-up actions.

• Visibility: Ability to View Components Easily The system reduces visibility by hiding informa-
tion using encapsulation.

• Hidden Dependencies: Important Links between Entities Are Not Visible If one entity sites
another, which sites a third, changing the value of the third entity may have unexpected results;
important links are not visible.

• Role-Expressiveness: The Purpose of an Entity Is Readily Inferred The notation makes it easy
to discover why the programmer built the structure in a particular way.

28

• Error-Proneness: The Notation Invites Mistakes and the System Gives Little Protection Certain
notations invite errors. Preventing those errors can solve this problem.

• Abstraction: Types and Availability of Abstraction Mechanisms Systems that allow many ab-
stractions are potentially difficult to learn.

• Closeness of Mapping: Closeness of Representation to Domain How close the notation relates
to the entities it describes. The Entity Framework is an ORM framework that maps Object-
Oriented language to the relational model of a database. As such, we look at how close it is
able to map to the Object-Oriented domain.

• Consistency: Similar Semantics Are Expressed in Similar Syntactic Forms Similar information
is not obscured by different representations to prevent compromising usability.

• Diffuseness: Verbosity of Language A notation can be to long-winded or occupy a large piece
of working space.

• Hard Mental Operations: High Demand on Cognitive Resources A notation can make things
complex or difficult to work out in your head.

• Provisionality: Degree of Commitment to Actions or Marks The degree of commitment to actions
or marks. Is there a hard constraint on the order of doing things or not?

• Progressive Evaluation: Work-to-Date Can Be Checked at Any Time The user can stop in the
middle to check work so far, find out how much progress has been made or what stage the work
is in.

We excluded the following dimensions:

• Premature Commitment: Constraints on the Order of Doing Things Ie. being forced to declare
identifiers too soon.
We do not include this dimension as both the Entity Framework and Graph-Based Querying
require the existence of a database and a model that maps to the database to function. The
commitment to this model needs to be made in both cases so there is no difference between the
two.

• Secondary Notation: Extra Information in Means Other Than Formal Syntax Support for sec-
ondary (non-formal) notations that can be used however the user likes (ie. comments).
As both the Entity Framework and GBQ use C#, the developer can use the same type of sec-
ondary (non-formal) notation (ie. comments, indentation, etc.). There is no difference between
the two for this dimension thus this dimension is not included. The Entity Framework does
support different (formal) notations but these are different abstractions of the same function-
ality and are covered by the dimension ‘Abstraction: Types and Availability of Abstraction
Mechanisms’.

5.2.2 Code Snippet Selection
As we mentioned with the hypotheses, we observed that directly related objects and relations on
sub-types require different statements to retrieve the data. For this reason we select a snippet that
retrieves directly related objects and a snippet that retrieves relations on sub-types.
For each we include a snippet for the Entity Framework and Graph-Based Querying. As our Entity
Framework code differs from the Entity Framework code used in [Mer11] (in notation only! Function-
ality is the same) we also include those. As such we end up with 3 snippets that we compare against
each other; the Entity Framework code as in [Mer11], Entity Framework code as used in this thesis
and Graph-Based Querying code.
We also include snippets for data retrieval on the Northwind database to demonstrate the usage on a
more realistic dataset as well.

29

Direct association

The following snippets retrieve an object ‘O’ and its related ‘E00’ objects.
These snippets are taken from the performance tests that we used to compare the Entity Framework
and Graph-Based Querying.

Entity Framework as in [Mer11]

DbContext
.OSet
.Include("E00s")
.Where(o => o.Id == SomeIndex)
.ToList();

Entity Framework

DbContext
.OSet
.Where(o => o.Id == SomeIndex)
.Include(o => o.E00s)
.ToList();

Graph-Based Querying

new SqlGraphShape(DbContext)
.Edge<O>(o => o.E00s)
.Load<O>(o => o.Id == SomeIndex);

Associations on subtypes

The following snippets retrieve an ‘O’ object and its related ‘E00’ objects with its related ‘A00’
objects. If the ‘A00’ object is the ‘A10’ sub-type, it retrieves its related ‘B00’ objects. If the ‘A00’
object is the ‘A11’ sub-type, it retrieves its related ‘C00’ objects. If the ‘A00’ object is the ‘A12’
sub-type, it retrieves its related ‘D00’ objects.
These snippets are taken from the performance tests with the most associations on sub-types.

Entity Framework as in [Mer11]

DbContext
.OSet
.Include("E00s.A00s")
.Where(x => x.Id == SomeIndex)
.ToList();

DbContext
.OSet
.Where(o => o.Id == SomeIndex)
.Join(DbContext.E00Set, o => o.Id, e00 => e00.O.Id, (o, e00) => e00)
.Join(DbContext.A00Set.OfType<A10>(), e00 => e00.Id, a10 => a10.E00.Id, (e00, a10) =>

a10)
.Join(DbContext.B00Set, a10 => a10.Id, b00 => b00.A10.Id, (a10, b00) => b00)

30

.ToList();

DbContext
.OSet
.Where(o => o.Id == SomeIndex)
.Join(DbContext.E00Set, o => o.Id, e00 => e00.O.Id, (o, e00) => e00)
.Join(DbContext.A00Set.OfType<A11>(), e00 => e00.Id, a11 => a11.E00.Id, (e00, a11) =>

a11)
.Join(DbContext.C00Set, a11 => a11.Id, c00 => c00.A11.Id, (a11, c00) => c00)
.ToList();

DbContext
.OSet
.Where(o => o.Id == SomeIndex)
.Join(DbContext.E00Set, o => o.Id, e00 => e00.O.Id, (o, e00) => e00)
.Join(DbContext.A00Set.OfType<A12>(), e00 => e00.Id, a12 => a12.E00.Id, (e00, a12) =>

a12)
.Join(DbContext.D00Set, a12 => a12.Id, d00 => d00.A12.Id, (a12, d00) => d00)
.ToList();

Entity Framework

DbContext
.OSet
.Where(o => o.Id == SomeIndex)
.Include(o => o.E00s.Select(e => e.A00s))
.ToList();

DbContext
.OSet
.Where(o => o.Id == SomeIndex)
.SelectMany(o => o.E00s)
.SelectMany(e => e.A00s).OfType<Inh6_Assoc3_A10>()
.SelectMany(a => a.B00s)
.ToList();

DbContext
.OSet
.Where(o => o.Id == SomeIndex)
.SelectMany(o => o.E00s)
.SelectMany(e => e.A00s).OfType<Inh6_Assoc3_A11>()
.SelectMany(a => a.C00s)
.ToList();

DbContext
.OSet
.Where(o => o.Id == SomeIndex)
.SelectMany(o => o.E00s)
.SelectMany(e => e.A00s).OfType<Inh6_Assoc3_A12>()
.SelectMany(a => a.D00s)
.ToList();

Graph-Based Querying

new SqlGraphShape(DbContext)

31

.Edge<O>(o => o.E00s)

.Edge<E00>(e => e.A00s)

.Edge<A10>(a => a.B00s)

.Edge<A11>(a => a.C00s)

.Edge<A12>(a => a.D00s)

.Load<O>(o => o.Id == SomeIndex);

Northwind (direct associations)

The following snippets retrieve a ‘Customer’ object and its related ‘Demographics’ and ‘Orders’ ob-
jects. From the ‘Orders’ also retrieve the ‘Order_Details’ and ‘Shippers’ objects. Lastly, we also
retrieve the related ‘Products’ objects for each ‘Order_Details’ object.

Entity Framework as in [Mer11]

Context
.Customers
.Include("CustomerDemographics")
.Include("Orders.Order_Details.Products")
.Include("Orders.Shippers")
.Where(c => c.CustomerID == "FRANK")
.ToList();

Entity Framework

Context
.Customers
.Where(c => c.CustomerID == "FRANK")
.Include(c => c.CustomerDemographics)
.Include(c => c.Orders.Select(o => o.Order_Details.Select(od => od.Products)))
.Include(c => c.Orders.Select(o => o.Shippers))
.ToList();

Graph-Based Querying

new SqlGraphShape(Context)
.Edge<Customers>(c => c.Orders)
.Edge<Customers>(c => c.CustomerDemographics)
.Edge<Orders>(o => o.Order_Details)
.Edge<Orders>(o => o.Shippers)
.Edge<Order_Details>(od => od.Products);
.Load<Customers>(c => c.CustomerID == "FRANK");

5.3 Analysis
In this section we analyse the snippets we selected previously using the cognitive dimensions frame-
work.

32

5.3.1 Direct association
In this sub-section we analyse the snippets selected in section 5.2.2 using the selected cognitive di-
mensions.

Viscosity: Resistance to Change The ‘Include’ statement of the Entity Framework used in
[Mer11] requires a string as the parameter to define which directly related entity to retrieve. When
we refactor the related ‘E00’ entity name, this string will not be updated by the refactoring tools and
instead requires manual editing by the developer. The amount of actions required increases for each
use of ‘Include’.
The ‘Include’ statement in the second Entity Framework snippet does not rely on string based paths
and instead is strongly typed. It uses lambda expressions that use the fields as declared in the class.
As such, the include paths defined here are changed during refactoring and do not require manual
labour.
In Graph-Based Querying, related entities are defined by edges using lambda expressions. These
expressions use the fields as declared in the class and when this field is refactored, the lambda ex-
pressions are refactored automatically as well. Refactoring would no longer require manual actions
afterwards.
We can conclude that the Entity Framework snippet as used in [Mer11] is not easily changed and that
the second Entity Framework snippet as well as the Graph-Based Querying snippet provide benefits.
We can also see that the second Entity Framework snippet and Graph-Based Querying both use
strongly typed code to define the relations and that neither has a clear advantage over the other for
this dimension.

Visibility: Ability to View Components Easily For directly associated entities, the code re-
quired for either, shows which entities are involved and the visibility for all snippets is about equal.
The only benefit the second Entity Framework snippet and Graph-Based Querying have is that the
appropriate field can easily be navigated to within the IDE using ‘Go To Definition’ which helps with
the ability to view components further down in the system.
As such, the second Entity Framework snippet and the Graph-Based Querying snippet improve the
ability to view components when compared to the first Entity Framework snippet but neither provides
a benefit over the other for this dimension.

Hidden Dependencies: Important Links between Entities Are Not Visible In the first
Entity Framework snippet you can see an include to ‘E00s’. You can however not directly see what
this references to; you need to know the type of ‘OSet’. Furthermore, if the property was changed,
the code would only crash during run-time. You can not see the dependecy between the include and
the property.
The second Entity Framework snippet already provides some improvement as the includes are strongly
typed. You still can not see directly what the type is of the object with property ‘E00s’ but because
it is strongly typed, you are able to see the dependency between the include and the property. If the
property changes, the code can not compile.
In the Graph-Based Querying snippet you can see that in the edge declaration, a property ‘E00s’ on
objects of type ‘O’ is meant. Both the type and the property can be seen at a glance. As with the
second Entity Framework snippet, if the property was changed, the Graph-Based Querying snippet
would fail to compile thus showing you a dependency between the edge declaration and the property.
We conclude that the first Entity Framework hides important dependencies that can result in errors
during program execution and that the second Entity Framework snippet as well as the Graph-Based
Querying snippet are improvements by exposing this dependency.

Role-Expressiveness: The Purpose of an Entity Is Readily Inferred In all snippets we can
easily see what the purpose is of the statements. In both Entity Framework snippets we can see that
we attempt to retrieve something from the database from ‘OSet’ and that we must include the ‘E00s’
and only retrieve when the ‘Id’ of the objects in OSet is equal to a certain value.
In the Graph-Based Querying snippet we can see that we are defining a graph with an edge from type

33

‘O’ on property ‘E00s’ and that we only want to load when the ‘Id’ of the ‘O’ objects is equal to a
certain value.
In all cases we can not readily infer the type of the ‘E00s’ include but with the second Entity Framework
snippet and the Graph-Based Querying snippet we could easily use the IDE tools to find out. We can
not do this with the string used in the first Entity Framework snippet.

Error-Proneness: The Notation Invites Mistakes and the System Gives Little Protection
The ‘Include’ statement from the first Entity Framework snippet is sensitive to errors because it utilizes
a string value to define the property path to load. This value has to be typed in by the developer and
is prone to spelling errors or other naming mistakes. Furthermore, the developer does not know that
something is wrong until the program is running; only when the program is running and the statement
is executed the Entity Framework will figure out the string is invalid and throw and exception.
Because the second Entity Framework and the Graph-Based Querying snippet use lambda expressions,
non-existent fields can never be entered, auto-completion can help the developer filling in the field
name and syntax errors are detected at compile-time as opposed to runtime.
As such we conclude that the second Entity Framework snippet and the Graph-Based Querying
snippet are improvements but that neither improves over the other for this dimension.

Abstraction: Types and Availability of Abstraction Mechanisms The Entity Framework
supports different methods you can use to load data. EntitySql, which is string based and therefore
not type-safe and Linq-to-Sql as used in the above snippet. The latter supports a different notation
as well. This gives the developer three different forms to retrieve data with. Without knowledge of
any, the developer needs to investigate three possible ways to write code. In addition within a single
notational form there are different statements that can perform the same functionality (as seen in the
two Entity Framework snippets). This further increases the difficulty of learning the system.
With Graph-Based Querying there is only a single syntax in which you can write code to retrieve
data thus allowing the developer to skip the step in which he has to decide what syntax to use.
We conclude that while Graph-Based Querying provides less abstractions to retrieve data, it is easier
to understand because the developer does not need to invest time and effort in figuring out the different
abstractions.

Closeness of Mapping: Closeness of Representation to Domain When comparing the Entity
Framework code snippets against that of Graph-Based Querying, we can see that the snippets still
represent the relational model. You can see the Context as the database itself, OSet as the table,
Include as an INNER JOIN and the Where as a WHERE.
Instead of representing a relational model, Graph-Based Querying represents a graph and is therefore
not closely mapped to the Object-Oriented model either.
Is this a problem? Part of an ORM is the separation of the relational world and the object-oriented
world. Graph-Based Querying makes the separation of the relational model more prominent but in
the process represents a graph. However, we think this should make it easier for developers without
knowledge of the relational model to write code to retrieve data.

Consistency: Similar Semantics Are Expressed in Similar Syntactic Forms For these
snippets the semantics for both Entity Framework snippets and the Graph-Based Querying snippet
do not change when you want to retrieve another directly related item. For the Entity Framework
you add another Include, for Graph-Based Querying you add another Edge.
Things change for the Entity Framework when you want to retrieve another directly related entity
when that entity is instead related to E00. In Graph-Based Querying the code stays the same; you
just add an Edge for E00. For the Entity Framework, you do not add another include. In the first
snippet you would need to change the E00 include to ‘Include(“E00.Related”)’. For the second snippet
you would need to append ‘.Select(e => e.Related)’ to the include of E00.
As such we conclude that Graph-Based Querying makes it easier to write code as the semantics do
not change depending on the situation.

34

Diffuseness: Verbosity of Language The first Entity Framework snippet takes up the least
amount of space (in character count), followed by the second Entity Framework snippet (+5 charac-
ters), followed by the Graph-Based Querying snippet (+7 more characters).
The second Entity Framework snippet and the Graph-Based Querying snippet are more diffuse but
in our opinion none of the snippets are more or less verbose than the other. Each snippet contains
the least amount of code necessary to function. We conclude that if as little code as possible is a
must, Graph-Based Querying would not be an option. However, we also conclude that this small of
a difference most likely will not impact the time needed to read the code.

Hard Mental Operations: High Demand on Cognitive Resources Neither of these snippets
require the developer to thing about nested structures, only about directly related entities. Graph-
Based Querying has no benefit over the Entity Framework snippets when we look at how difficult it
is to work out the required code. We conclude that for directly related objects, this dimension does
not change between the snippets.

Provisionality: Degree of Commitment to Actions or Marks All snippets are written as a
single statement and all require the developer to define what to include before loading the data. The
only difference is that the Entity Framework can define filters separately from loading, whereas GBQ
takes a filter in the load statement. This means that the developer is unable to set up a filter before
loading the graph. It can not be changed or expanded later on. This makes Graph-Based Querying
a little less flexible in the order in which you can do things.
Because Graph-Based Querying requires you to have a filter at the moment you load, we conclude
that Graph-Based Querying requires more commitment.

Progressive Evaluation: Work-to-Date Can Be Checked at Any Time In the Entity Frame-
work snippets the developer is able to check the result of each part of the statement. The set itself,
the set with include, and the set with include and filter. In Graph-Based Querying the developer
needs to define at least one edge before he can test the result and this edge needs to be connected to
the type requested when calling ‘Load’.
We conclude that this can make it harder to check your work with Graph-Based Querying. While
this does not directly impact the ease in which you understand the code itself, it can impact the ease
in which you test each step to detect any possible problems.

5.3.2 Associations on subtypes
In this sub-section we analyse the snippets selected in section 5.2.2 using the selected cognitive di-
mensions.

Viscosity: Resistance to Change The problems as described in the previous section still apply
for the snippets shown here. In addition, if we want to adapt the Where expression for the Entity
Framework, we would have to do so in four places in those snippets. Graph-Based Querying requires
only one change.
We conclude that because the filter is contained in one spot, Graph-Based Querying is easier to
maintain. The developer doe not need to check for duplications in other locations.

Visibility: Ability to View Components Easily In the first Entity Framework snippet we have
to analyse each Join sequence to be able to tell what is or is not included in the result. The Join
sequences do tell us more about how the objects are included; what key we join on and what entity
set the objects are pulled from. However, it is not easy to see what base set the next join uses unless
you are familiar with the function.
With the second Entity Framework it is easier to see what is included from where and what the
execution chain is. Ie. we can see that from O we select the E00s, of which we select the A00s, of
which we only take the ones of type A10, of which we select the B00s.
With Graph-Based Querying we can immediately spot which object have and edge in our graph and

35

thus which objects are loaded. We can not see what the complete path would be as we can with the
second Entity Framework snippet. For that we need to look at all the edge definitions and mentally
make the connections between them. In the design for Graph-Based Querying we regard the extra
information we can see in the Joins as irrelevant as a join on related objects is always the same; foreign
key on one side, primary key on the other.
While Graph-Based Querying sacrifices some openness and customizability, we conclude that this
makes it more clear and easier to use by hiding information that is not important in the Object-
Oriented world (such as primary- and foreign keys and datasets).

Hidden Dependencies: Important Links between Entities Are Not Visible In addition to
what was mentioned before, Graph-Based Querying internally creates paths for the different edges
to join all the types together. While the developer can infer this information from the edges he
defines, this information is not exposed. The Entity Framework does not hide this information. On
the contrary, in the Entity Framework snippets the developer is required to define how the types link
together. While this does make the dependencies visible, it also implies that the developer needs to
define code that can be inferred and would not necessarily require developer input.
One could argue that the inheritance dependency is an important link between types but this link
can be seen in the class hierarchy, hence we regard this not important in this context.
We conclude that Graph-Based Querying hides links between entities but that these links are not
important to the developer in this context. As such we conclude that the Graph-Based Querying code
is easier to maintain as the developer does not need to concern himself with information that can be
inferred.

Role-Expressiveness: The Purpose of an Entity Is Readily Inferred The join statements
in the first Entity Framework snippet do not instantly convey how and what they are joining. The
developer needs properly look at the parameters to see what properties are used for the join and which
object is used to continue with after the join.
In the second snippet it is easy to see the purpose of the select statements and it is easy to see that
the next continues with the objects selected in the preceding select.
In the Graph-Based Querying snippet the developer can instantly see what types are included and
what properties are used to retrieve related objects.
In none of the snippets we can infer what the types the properties are. But because Graph-Based
Querying clearly shows the types used for the ‘from’ end of an edge and what properties the relations
are on, we argue that Graph-Based Querying code makes it easier to discover which types certain
properties are on and makes it easier to understand.

Error-Proneness: The Notation Invites Mistakes and the System Gives Little Protection
With the first Entity Framework snippet the developer has to define on which keys to join and
has to make sure these are valid. Especially when the underlying data model changes and key
relations change, the developer may have to correct the join statements. Failure to do so may result
in unexpected behaviour later on.
The second Entity Framework snippet creates the required join connections using the appropriate fields
thus preventing the developer from joining on the wrong fields. However, to load all the relations
on sub-types it still requires multiple statements in which the filter is duplicated for each statement.
Failing to change the filter at all used locations can result in unexpected behaviour.
Graph-Based Querying automatically creates the required join connections and can retrieve all the
relations on sub-types within a single statement thus no code duplication is present.
We conclude that while the second Entity Framework snippet is already an improvement, Graph-Based
Querying further decreases the chances of errors in the code, making it easier to maintain.

Abstraction: Types and Availability of Abstraction Mechanisms These snippets do not
affect this dimension in a different way. The Entity Framework still has three different ways in which
a developer can write code and Graph-Based Querying still maintains the single syntax.

36

Closeness of Mapping: Closeness of Representation to Domain As stated in the previous
section, the Entity Framework still represents the relational model. In the snippets for sub-type
associations this is even more visible as each of the four statements can be seen as a query to the
database.
While an Edge in Graph-Based Querying is eventually some join at database level, on code level it
represents a connection between node A and node B as seen in graphs. We argue that hiding the
relational model from the Object-Oriented world makes it easier to use and understand.
While we use a graph representation in return, relations between objects in the Object-Oriented world
can already be looked at as a graph and as such we conclude that this more closely represents the way
in which a developer looks at object relations in an Object-Oriented world than the relational model.

Consistency: Similar Semantics Are Expressed in Similar Syntactic Forms In the first
Entity Framework snippet we use two functions to join and load related data; ‘Include’ and ‘Join’.
In the second snippet these are the ‘Include’ and ‘SelectMany’. This means that for the retrieval
of directly related objects we use a different construct than we do for the retrieval of relations on
sub-types. To accomplish similar things we are required to do different things.
In Graph-Based Querying each of these relations is defined as an Edge and it does not matter if this
is on a base-type or on a subtype. You define the from type and define what field the edge is on.
We conclude that this makes it easier to read and to maintain the code written with Graph-Based
Querying. The developer can do the similar things in the same way.

Diffuseness: Verbosity of Language The joins in the first Entity Framework snippet require a
lot of information to function. While the second snippet already improves on this, it still requires
complete paths for the retrieval of relations on sub-types.
With Graph-Based Querying we infer as much information as possible thus allowing for a shorter and
more concise notation. While we do sacrifice customizability in terms of what you can join on, when
retrieving related objects this is always the foreign key on one side and the primary key on the other
so we see this as a non-issue.
As such, we conclude that the shorter and more concise notation we have with Graph-Based Querying
makes it easier to read and write code.

Hard Mental Operations: High Demand on Cognitive Resources The first Entity Frame-
work snippet uses joins and these require knowledge of the underlying relational model to create the
proper join sequence. To be able to do so the developer needs to ask himself several questions such
as; what is my primary key?, what is the foreign key?, are my foreign keys exposed to the object or
do I need to access the key through a relation?).
The second snippet already decrease the amount of mental operations by eliminating the need to ask
those questions. The ‘SelectMany’ function that is used in this snippet infers the information it needs
to construct a proper join. To retrieve relations on sub-types the developer still needs to keep the
whole path in mind to construct the correct statement.
As with the second Entity Framework snippet, Graph-Based Querying requires no knowledge of the
underlying relational model and therefore the developer does not need to worry about any questions
that relate to information from the relational model. Graph-Based Querying further decreases the
mental load as the developer defines edges on a in- to out-type basis; the path in between is inferred.
We conclude that Graph-Based Querying requires less hard mental operations by inferring as much
as possible, making it easy to read and write complex graph queries.

Provisionality: Degree of Commitment to Actions or Marks The Entity Framework state-
ments can be executed in an arbitrary order but the statement itself has to form the complete path
for the objects. The developer can not change the order of the functions in the statements.
In Graph-Based Querying there is still only a single statement for which the same applies as mentioned
in the previous section. As opposed to the Entity Framework snippets, with Graph-Based Querying
it does not matter in which order you declare the edges. As long as all the nodes are somehow con-
nected to the type requested in ‘Load’, they will be loaded. This makes it easy to expand or change

37

the defined graphs at a later moment. The developer can add, remove and change edge declarations
without invalidating the next edge declarations.
We conclude that this dynamic structure makes it easy to maintain the code as the developer is not
constrained to a specific order.

Progressive Evaluation: Work-to-Date Can Be Checked at Any Time As described earlier,
in the Entity Framework snippet the developer is able to check the result of each part of the statement.
In addition, the Entity Framework snippets use several statements to retrieve all the data. Each of
these can also be tested in parts.
For Graph-Based Querying the same still applies and as such the conclusion for this dimension does
not differ.

5.3.3 Northwind (direct associations)
All entities in the Northwind dataset are directly related. There is no inheritance present in this
dataset and therefore all the observations and conclusions mentioned in section 5.3.1 apply here as
well. The snippets we showed in section 5.2.2 are only included to demonstrate the usage of Graph-
Based Querying and the Entity Framework on a more realistic dataset as opposed to the test datasets.

5.4 Conclusion
From our analysis we can conclude that the Entity Framework code as used in [Mer11] has its prob-
lems. When compared to the Entity Framework code as we wrote it we conclude that it is easier
to make mistakes in this code and that the code requires more effort to understand. As such, we
conclude that hypotheses 1 and 2 can be regarded as valid.

From our analysis we can also conclude that the Entity Framework snippet we use and the Graph-
Based Querying snippet do not differ to much from each other when querying directly related objects.
Only when a developer attempts to learn to write code in either the Entity Framework or Graph-
Based Querying we concluded that Graph-Based Querying makes it easier as it only supports a single
notational form. As such, we regard hypothesis 3 as valid.
When we look at the analysis for relations on sub-types, there are a few things in which Graph-Based
Querying is lacking when compared to the Entity Framework (such as progressive evaluation). In
our opinion these are of lesser importance than the benefits Graph-Based Querying brings and that
these do not negatively impact the readability and the ease in which the developer understands the
Graph-Based Querying code. We therefore conclude that hypothesis 4 can be regarded as valid as
well.

5.5 Threats to Validity
While the cognitive dimensions framework provides a way to compare different notations and informa-
tion artefacts, it is possible that in real world usage opinions differ. As seen in [KBB02], the empirical
study does not conform to the cognitive dimensions analysis.
In our case it is possible that a developers’ familiarity with the Entity Framework may influence the
ease in which he analyses Entity Framework code. This could make it easier for him to understand
Entity Framework code as opposed to Graph-Based Querying code which he may never have seen
before.

38

Chapter 6

Performance

In this chapter we try to answer the question:

• Can the Graph-Based Querying syntax simplify code creation and maintainability?

We set up several tests to investigate what the difference in performance is between Graph-Based
Querying and the Entity Framework.

6.1 Hypotheses
We observed that directly related objects can be retrieved with the Entity Framework in a single
statement. We also observed that with relations on sub-types, a new statement is required to retrieve
those object. As each sub-type relation requires a new statement, the resulting code will require
n-statements for n-(sub-type) relations.

As mentioned in Chapter 4, we attempted to support more of the variants of models that can be
created with the Entity Framework. As such, more processing is performed in this version when
compared to the version created in [Mer11]. We expect that this impacts the overall performance of
Graph-Based Querying.

We also observed that in [Mer11], the tests specifically retrieve the concrete types and that this
outperforms selecting the set itself. We expect that with the developments of the Entity Framework,
this is no longer the case.

Based on these observations we created the following hypotheses:

1. Graph-Based Querying queries perform as good as the standard Entity Framework queries when
retrieving directly related objects.

2. Graph-Based Querying queries perform better than the Entity Framework when inheritance is
part of the object structure to be retrieved.

3. The performance gap between Entity Framework and Graph-Based Querying is less than mea-
sured in [Mer11].

4. Specifically selecting the concrete types from a set for retrieval in the Entity Framework performs
worse than selecting the set itself.

With the tests as defined in section 6.2 we attempt to verify these hypotheses.

Graph-Based Querying queries perform as good as the standard Entity Framework
queries when retrieving directly related objects
Directly related objects can be retrieved with the Entity Framework with a single statement using

the ‘Include’ function. For this reason we expect that Graph-Based Querying will be able to execute

39

the statement as fast as the Entity Framework. To test this hypothesis we created datasets that do
not have relations on sub-types.

Graph-Based Querying queries perform better than the Entity Framework when inher-
itance is part of the object structure to be retrieved
If related objects are not defined on the base type but on sub-types, the Entity Framework ‘Include’

statement can not be used and the developer needs to write ‘SelectMany’ statements instead (as seen
in the snippets in 5). In addition, for every subtype relation a new sequence of those statements is
needed. In Graph-Based Querying the developer defines all the relations to load and the shape is
transformed as a whole instead of separately for each sub-type relation. We expect this to result in
an increase in performance over the Entity Framework as it decreases the amount of round-trips and
allows for the database to perform optimizations on the whole query structure.

The performance gap between Entity Framework and Graph-Based Querying is less than
measured in [Mer11]
This implementation of Graph-Based Querying attempts to support most of the functionality

present in the Entity Framework. Due to this, we expect that the relative performance increase
of Graph-Based Querying as seen in [Mer11] is decreased. This hypothesis indicates the trade-off
between support for all database models and worse performance or higher performance and limited
support for different models.

Specifically selecting the concrete types from a set for retrieval in the Entity Framework
performs worse than selecting the set itself
In [Mer11], specifically selecting the concrete types in a set (using ‘OfType’) resulted in faster data

retrieval than just selecting the set itself. While doing this improves performance, it also results in an
‘OfType’ statement for each concrete type and the query would no longer be valid when new concrete
types are added. Improvements to the Entity Framework have made it so that this should no longer
the case and that selecting the set itself results in better performance.

6.2 Test Setup
In this section we describe the datasets, system and timers used to measure the performance of Graph-
Based Querying and the Entity Framework.
For a more detailed description of the code behind the test implementation and how and when the
timers are executed, read Chapter 4, Section 4.2.2.

6.2.1 Test Data
Datasets

The data models used to test the performance of Graph-Based Querying is the same as used in [Mer11]
to replicate the findings of the article.
We also add the Northwind [Mic11] dataset to include a more realistic dataset as opposed to the
datasets used in [Mer11] to demonstrate the code with a real-world based setting. However, due
to the lack of inheritance relations in this dataset, we expect that Graph-Based Querying does not
perform at its full potential.

The datasets consist of an ‘O’ type with a One-to-Many relation to several ‘E’ types. These ‘E’
types form an inheritance tree where all basetypes are abstract and have 2 subtypes. Only the leaf
’E’ types can be instantiated 6.1. The tests with this structure are called Inh3, Inh4, Inh5 and Inh6.
These tests focus on hypothesis 1.

In addition to the above, we have tests where the ‘E00’ type has a relation with the ‘A00’ type
6.2. This ‘A00’ type is abstract and has 3 concrete subtypes. each of these subtypes can have an

40

Figure 6.1: O to E association and E inheritance structure

additional relation 6.3, 6.4, 6.5. These tests are named ‘InhX, Assoc 1’ , ‘InhX, Assoc 2’ and ‘InhX,
Assoc 3’ respectively. These tests focus on hypothesis 2.

The measured results for these datasets for Graph-Based Querying and the Entity Framework are
compared with the results in [Mer11] and the relative difference between the two is used to verify
hypothesis 3.

Population

The populations used for these datasets is the same as used in [Mer11] as well. Table 6.1 describes the
populations that were used for the datasets. The relations between the type populations is described
in 6.2.1.

Figure 6.2: E00 to A00 association

41

Figure 6.3: A00 structure for Assoc1 tests

Figure 6.4: A00 structure for Assoc2 tests

42

Figure 6.5: A00 structure for Assoc3 tests

Table 6.1: Populations
Population O E A B C D
1 100 100 75 5 5 5
2 200 200 75 5 5 5
3 300 300 75 5 5 5
4 400 400 75 5 5 5
5 500 500 75 5 5 5
6 600 600 75 5 5 5
7 700 700 75 5 5 5
8 800 800 75 5 5 5
9 900 900 75 5 5 5
10 1000 1000 75 5 5 5

• Each O has 1 E, where each next E is one of the different concrete subtypes.

• Each E has x As, where each next A is one of the 3 concrete subtypes.

• Each A10 (A, subtype 1) has x Bs.

• Each A11 (A, subtype 2) has x Cs.

• Each A12 (A, subtype 3) has x Ds.

6.2.2 System Specifications
All tests have been executed on the same system so measurements are not influenced by the specifi-
cations of different systems. The system specifications are as follows:

• nVidia GeForce GTX670

• Intel i7 3770K @3.5GHz

• 16GB DDR3 RAM

• Crucial M4 SSD

43

• Windows 8.1 Update 1

To prevent other processes from interrupting the tests and thus increasing the measured time by
including time spend executing other processes, the process is run in high priority. Furthermore, it is
locked to a specific core to prevent slow-downs caused by core switching and CPU buffer resets.
Garbage Collection is set to SustainedLowLatency to prevent blocking garbage collections. Instead,
garbage collection is run before and after each test to prevent the garbage collector from occasionally
increasing the measured time and skewing the results.

6.2.3 Timer Specifications
As mentioned in 2, we measure the time it takes from executing the retrieval statement until the
database returns the data and the objects are returned. To differentiate between time spend execut-
ing code and waiting for the database, the tests have been measured with 2 different timers.

The first timer uses the high resolution timer of the system to measure the real time taken to
execute the code, run the queries and retrieve the results. It includes the time the program is waiting
for the database to return the results. The high resolution timer is accurate within 292 nanoseconds.

A second timer is used to measure the time the CPU spends running the program. This timer does
not measure the time it takes for the queries to be executed, nor the time for the database to return
the data. In other words, it only measures the time the program/thread is actually running and not
waiting for an external process or thread. This timer is accurate within 15 milliseconds.

6.2.4 Databases
The Entity Framework requires a data provider to be able to communicate with the database. These
data providers are responsible for connecting and interacting with the database. While there are more
generic data providers for ODBC and OLE DB, specialized providers are assumed to perform better
and allow for optimizations for their specific database. For this reason, we test Graph-Based Querying
on several different databases for which there are Entity Framework data providers. The tests were
run on several databases to investigate whether or not the data providers for the databases influence
the performance of the Entity Framework in relation to Graph-Based Querying.

Table 6.2: Database selection overview
Database Storage Type EF Data Provider
SQL Server (LocalDb V12) Row & Column with limitations [Mic14d] Microsoft
MySQL 5.6 Row MySql Connector/Net
PostgreSQL 9.3.4 Row Npgsql

6.2.5 Measurement Method
To prevent measurement errors caused by the low precision of the thread timer, tests are executed
several times and the measured duration overall is then divided by the amount of runs (each test is
run as many times as needed to create a thread run-time of at least 500 milliseconds). The resulting
value is then used as the result for this single benchmark. In turn, each benchmark is run several
times and all the benchmark results together are used to create the graphs in appendix A.
We use the median value instead of the average, as extreme values can greatly impact the average.
The median instead represents a value that occurs most often.
While you can see the absolute time on the graphs, we are less interested in the absolute time.
Instead, we are interested in the relative time difference between the Entity Framework and Graph-
Based Querying.

44

6.2.6 Test Groups
The test group set-up we use differs slightly from the one used in [Mer11]. In the article it defines
‘EFSingleQuery’, ‘EFMultiQuery’ and ‘GraphBasedQuerying’. As the ‘EFSingleQuery’ is unable to
work for the models with associations on sub-types (it is impossible to retrieve this data with the Entity
Framework in a single statement), measuring the performance for this has no real use. Instead we
define the categories ‘EF’ and ‘GBQ’ for the ‘EFMultiQuery’ and ‘GraphBasedQuerying’ respectively.
The article also uses several statements that specify the retrieval of concrete types instead of a single
statement for the data set. As we said before, for that Entity Framework version that resulted in the
best performance. To see if this performs better than just specifying the database set, we introduced
the ‘EF Concretes’ category in which we specifically retrieve the concrete types instead. This is to
validate hypothesis 4.

6.3 Analysis
In this section we discuss the measurements we took for the same datasets as defined in [Mer11]. For
each test we provide a reference to the related figures in the appendix, as well as an in-line represen-
tative result for the given test.
The appendix contains the result graphs for each test A.

6.3.1 Inheritance only

100 200 300 400 500 600 700 800 900 1,000

1

2

3

4

Population

T
im

e
(m

s)

Inh3 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF EF Concretes

45

100 200 300 400 500 600 700 800 900 1,000

0

20

40

60

80

100

120

Population

T
im

e
(m

s)

Inh6 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF EF Concretes

100 200 300 400 500 600 700 800 900 1,000

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Population

T
im

e
(m

s)

Inh3 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

46

100 200 300 400 500 600 700 800 900 1,000
0

5

10

15

20

Population

T
im

e
(m

s)

Inh6 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

100 200 300 400 500 600 700 800 900 1,000

0

20

40

60

80

100

120

Population

T
im

e
(m

s)

Inh6 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF EF Concretes

When we look at the result graphs (Appendix Figures A.1.1, A.1.2, A.1.3, A.1.4) and the lines
representing Sql Server, we can see that specifically retrieving concrete types is the slowest way to
retrieve these object for most of our datasets (see for example Figure 6.3.1). Only at Inheritance 6 we
can see that the measured real time for both the standard and concrete types query become equal (see

47

Figure 6.3.1). This means that for even larger inheritance trees it may become feasible to specifically
request the concrete types, however this can potentially result in a very large amount of code as a
retrieval statement is needed for each concrete type. In our case, the Inheritance 6 dataset has 32
concrete types and as such has 32 statements to retrieve them all.
While specifically retrieving the concrete types and the standard query begin to perform equally with
the larger trees, we can see that Graph-Based Querying is continuously able to query the data in the
fastest way possible. Even for the Inheritance 6 tree we can see that it still outperforms the Entity
Framework.
When we look at the CPU timing graphs for the same tests (Appendix Figures A.1.1, A.1.2, A.1.3,
A.1.4), we can see that Graph-Based Querying and the Entity Framework spend about the same time
executing their code (see for example Figure 6.3.1). The test that specifically requests the concrete
types spends more time executing because each concrete type has its own statement to execute.

When we take a look at the lines for PostgreSql in the same graphs, we can see that it deviates
from the Sql Server results. While the CPU time graphs show us approximately equal times for
Graph-Based Querying and the Entity Framework for the smaller inheritance trees (see Figure 6.3.1),
we can see that the Entity Framework statement becomes slower in relation to Graph-Based Query-
ing when the inheritance tree grows (see Figure 6.3.1). The PostgreSql data provider spends more
and more time constructing the queries for the larger the inheritance trees and becomes slower than
Graph-Based Querying in the process.
The total time measurements for PostgreSql show the most difference when compared to the results
from Sql Server. While the concrete tests still perform the worst (see for example Figure 6.3.1), in
PostgreSql the concrete and standard Entity Framework statement do not eventually perform as fast
as the other when the inheritance tree grows (see Figure 6.3.1). In addition, the Entity Framework
statement actually performs faster than Graph-Based Querying on PostgreSql for the Inheritance 3
tree (see Figure 6.3.1). For the larger inheritance trees Graph-Based Querying performs faster. This
means that for small inheritance trees, Graph-Based Querying has no performance benefit over the
Entity Framework when used with PostgreSql.

100 200 300 400 500 600 700 800 900 1,000

0

10

20

30

40

50

60

70

Population

T
im

e
(m

s)

Inh3 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

With MySql we can see that, as with Sql Server, Graph-Based Querying is the fastest for the data

48

retrieval (Appendix Figures A.1.1, A.1.2, A.1.3, A.1.4). We can also see that specifically requesting
the concrete types when using the Entity Framework is actually faster on MySql than the standard
Entity Framework statement and by a rather large amount (see Figure 6.3.1). This is the opposite of
what we observed with Sql Server and PostgreSql.
The CPU times for MySql show that the Entity Framework runs for a much longer time when
compared to the CPU times for Sql Server and PostgreSql. This shows that the MySql data provider
has a much larger impact on the total time for the Entity Framework than the data providers for Sql
Server and PostgreSql. As Graph-Based Querying does not use the data providers to construct the
queries, the measured time gap between Graph-Based Querying and the Entity Framework becomes
greater the slower the data provider is. This indicates that a more optimized data provider may be
able to decrease the time of the Entity Framework and make the Entity Framework more suitable for
smaller inheritance trees, as we can already in part see with PostgreSql.
What we also see with MySql is a gap in the results; the Inheritance 6 tree could not be retrieved with
Graph-Based Querying and as such there is no line in the graph for Graph-Based Querying on MySql.
The problem we encountered with Graph-Based Querying on MySql is that MySql employs a JOIN
statement limit (61 JOIN statements maximum). We reach this limit with the query we generate with
our implementation for the Inheritance 6 tree and thus the query does not execute. As the Entity
Framework generates queries with UNION statements it does not reach this limit for our datasets
and still returns valid results. This shows that the current implementation method of Graph-Based
Querying, which constructs queries with JOIN statements instead, can fail if the database employs a
limit. As such, the effectiveness is currently dependent on the database that is being used.

6.3.2 Associations on Subtypes

100 200 300 400 500 600 700 800 900 1,000

10

15

20

25

Population

T
im

e
(m

s)

Inh3Assoc1 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

49

100 200 300 400 500 600 700 800 900 1,000

6

7

8

9

10

11

Population

T
im

e
(m

s)

Inh4Assoc1 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

Datasets that have associations on sub-types are what Graph-Based Querying was designed for. If we
look at the graphs for these results (Appendix Figures A.2.1, A.2.1, A.2.1, A.2.2, A.2.2, A.2.2, A.2.3,
A.2.3, A.2.3, A.2.4, A.2.4, A.2.4) and look at the lines for PostgreSql, we can see that the larger the
inheritance tree, the faster Graph-Based Querying is compared to the Entity Framework with the ex-
ception of the Inheritance 3 tree (see Figure 6.3.2). As we also saw in the inheritance only test results,
PostgreSql is able to perform faster than Graph-Based Querying for this inheritance tree. However,
since we now deal with associations on subtypes, this only applies to the smaller populations. Because
Graph-Based Querying sends the request for all the data at once, it allows the database to work with
the queries as a whole whereas the Entity Framework sends the requests for each sub-type association
separately. The database does not process all the queries at the same time and can not optimize the
queries or loaded data, resulting in a longer execution time. It is also important to note that once
pre-fetching is enabled in Sql Server, it does so later for Graph-Based Querying. This shows that the
queries we create, while retrieving the same rows, are not analysed by Sql Server as exceeding the
threshold at the same time as for the Entity Framework. We can also see that when pre-fetching is
enabled, Graph-Based Querying can perform slower than the Entity Framework.
The CPU time for all these tests (Appendix Figures A.2.1, A.2.1, A.2.1, A.2.2, A.2.2, A.2.2, A.2.3,
A.2.3, A.2.3, A.2.4, A.2.4, A.2.4) show similar results both for SqlServer and PostgreSql (see for ex-
ample Figure 6.3.2). Graph-Based Querying spends more time constructing a query but because it
construct everything at once, it can send and retrieve the data faster. This is why it performs better
once associations on subtypes are present in the dataset. With the Entity Framework, each of these
associations require a separate statement which results in several round-trips to the database which
increases the total time.

50

100 200 300 400 500 600 700 800 900 1,000

0

500

1,000

1,500

2,000

2,500

Population

T
im

e
(m

s)

Inh4Assoc1 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

While we can already see some improvements over Sql Server and PostgreSql, when we look at
the lines for MySql we can see that Graph-Based Querying has an enormous performance increase
over the Entity Framework. For the smallest population for the Inh3Assoc1 dataset the time the
Entity Framework needs to retrieve all the data almost reaches three-hundred milliseconds and for
Inh4Assoc1 this is almost half a second where this is just around twelve milliseconds on Sql Server and
PostgreSql (see Figure 6.3.2). This shows the impact of the data provider on the overall performance
of the Entity Framework even better. The pattern MySql shows in these graphs is the same as
PostgreSql; Graph-Based Querying is able to retrieve the data for all the populations in a constant
time across populations whereas the Entity Framework becomes slower with each larger population.
When we look at the CPU time for MySql we can see that Graph-Based Querying is able to execute
in a constant time for each of the populations. This pattern can be seen on Sql Server and PostgreSql
as well. The CPU time for the Entity Framework on MySql does not show the same pattern. For
MySql we can see that the Entity Framework is slower than Graph-Based Querying but for Sql Server
and PostgreSql it is faster (see for example Figure 6.3.2). This again shows that the data provider
implementation impacts the performance of the Entity Framework.
The gaps we see for the Inheritance 6 datasets have the same cause as mentioned before; the MySql
join limit.

6.4 Conclusion
We investigated the potential of Graph-Based Querying and created an implementation of Graph-
Based Querying for the Entity Framework and compared its performance against the Entity Frame-
work itself and the results found by M. de Jonge [Mer11]. As seen in the results discussed in the
previous section, the limitations of a database can influence the value of Graph-Based Querying as it
may prevent it from functioning. We also see that it still performs better than the Entity Framework
for the data structures it was designed for; inheritance trees with relations on sub-types.

When we check our first hypothesis against the results 6.3.1, we can see that it mostly validated.

51

Graph-Based Querying is only slower for the retrieval of directly related entities when used on Post-
greSql and the Inheritance 3 dataset. For the other sets it performs as well as the Entity Framework
or better. Important to note is that when we look at the results for MySql, we can see that MySql is
unable to execute the queries we construct for the Inheritance 6 dataset and that limitations of the
database affect the use of the current implementation of Graph-Based Querying.
The second hypothesis is mostly valid as well. The results show 6.3.2 again that only PostgreSql with
the Inheritance 3 dataset is able to outperform Graph-Based Querying but now only on the smallest
populations. For MySql we can see that Graph-Based Querying greatly increases the performance
but as noted before, it does not function on MySql once the constructed query exceeds 61 joins. This
limit currently prevents Graph-Based Querying from functioning on MySql with datasets such as the
Inheritance 6 dataset.

When we look at the measurement graphs, we can see that the relative performance increase over
the Entity Framework is less then measured in the original article [Mer11] when we use Sql Server,
which confirms hypothesis 3, as those tests were also run on Sql Server.
If we look at the results for PostgreSql as well, we can still see that the performance increase is less
and that sometimes the Entity Framework performs better instead. When we look at the results for
MySql we can see that the relative performance increase of Graph-Based Querying over MySql is
much greater than what was measured in [Mer11].

Lastly, the graphs show that even now, specifically selecting the concrete types for retrieval can
still outperform selecting the set itself. On Sql Server we can see that as the population grows or the
inheritance tree grows, specifically selecting the concrete types for retrieval eventually outperforms
selecting the set itself. We can also see that the database itself can impact this; with MySql we can
see immediately that specifically selecting the concrete types outperforms selecting the set itself. As
such, hypothesis 4 turns out to be invalid. This also indicates that there is still room for improvement
in the query construction for the retrieval of Table-per-Type hierarchies.

6.5 Threats to Validity
As we mentioned before, the data providers for the Entity Framework impact the overall time of the
Entity Framework. As such, the measurements of the Entity Framework can change when the vendor
of a specific data provider creates a new version.
We also mentioned that Graph-Based Querying improves performance by decreasing the amount of
round-trips. As such, manually constructed queries may still be able to outperform Graph-Based
Querying but this would require knowledge of and working with the relational model and SQL code,
which is what we already attempted to avoid with an ORM in the first place.

52

Chapter 7

Conclusions & Future Work

7.1 Conclusions
Based on our experiments (5, 6) we can answer the questions that we established at the start of this
document (1.5):

1. Can Graph-Based Querying provide us with faster data retrieval?

2. Can the Graph-Based Querying syntax simplify code creation and maintainability?

Can Graph-Based Querying provide us with faster data retrieval?
The short answer: Yes. The long answer: It depends.

In our analysis for associations on sub-types (6.3.2) we can see that Graph-Based Querying outper-
forms the Entity Framework on all databases on which it can execute but one; only on PostgreSQL
with the smallest dataset and population the Entity Framework is able to outperform Graph-Based
Querying. For the datasets that Graph-Based Querying was designed for, we therefore conclude it
does provide us with faster data retrieval.
Note that we say ‘on which it can execute’ because limitations in the database can actually prevent
Graph-Based Querying from functioning at all. As we state in the experiment conclusions (6.4), it
does not function on MySQL for the larger datasets due to limitations of the database.

When we look at retrieval of data with direct associations only (6.3.1), we can see that again only
on PostgreSQL and with the smallest dataset (all populations) the Entity Framework outperforms
Graph-Based Querying. Note that as we mentioned before, limitations of the database prevent the
largest datasets from functioning on MySQL.
For the other cases, Graph-Based Querying performs as well as or better than the Entity Framework.
For this reason we conclude that with data that does not have associations on sub-types, Graph-Based
Querying can only provide us with faster data retrieval for data with direct associations if the dataset
contains a lot of objects.

Can the Graph-Based Querying syntax simplify code creation and maintainability?
As we concluded in the experiment (5.4), we argue that the Graph-Based Querying code used for the
retrieval of objects with associations on sub-types (5.3.2) does simplify code creation and maintain-
ability.
We also conclude that the code for the retrieval of objects with direct associations (5.3.1) can provide
the same benefits but only if the developer does not know how to use the Entity Framework or Graph-
Based Querying and has to learn one or the other. For this reason we conclude that this question can
be answered with a ‘yes’ but that the knowledge of the developer can influence the validity of this
conclusion (also see the experiments’ ‘Threats to Validity’ (5.5)).

53

7.2 Future Work

7.2.1 Implementation Method
In this project Graph-Based Querying was created as an extension on the Entity Framework and
available as a separate library. Further improvements in performance may be possible by utilizing
internal information and functions of the Entity Framework to speed up SQL building and attaching
to the database- or object context (ie. the ShaperFactory). However, this would mean that we need
to either use reflection to access these internal functions, or embedding Graph-Based Querying into
the Entity Framework.
It would also be an option to make Graph-Based Querying independent of the Entity Framework so
the Entity Framework is no longer required if you just want to use Graph-Based Querying. However,
since Graph-Based Querying uses ORM information from the Entity Framework, this separation would
mean that it needs to implement ORM functionality itself.

7.2.2 Additional Functionality
The current implementation has no support for self-referencing entities. Graph-Based Querying could
make loading self-referencing entities easier as well by implementing support for this. Right now, with
the Entity Framework, a join is required for each self-referencing entity level you want to retrieve.
It also lacks support for Table per Hierarchy and Table per Concrete Class inheritance structures. To
further expand the support of Entity Framework features this could be implemented.

7.2.3 Graph Operations
Since Graph-Based Querying builds on the idea of utilizing graphs as a way to query data, supporting
graph operations such as transitive closure would be another way to further increase the value of
Graph-Based Querying.

7.2.4 Query Construction
The current implementation of Graph-Based Querying constructs ANSI compliant SQL queries. As
databases are not necessarily compatible with ANSI queries (be it completely incompatible or that
it requires configuration changes to allow ANSI queries), Graph-Based Querying may be unable to
execute the query. Out-of-the-box compatibility with different databases can further be improved by
using the DbExpression API present in the Entity Framework and passing the resulting expression
tree to the data provider to create the SQL query.

7.2.5 Entity Framework’s Future
Entity Framework 7 is in development and is completely redesigned from the ground up. This may
increase the performance of the Entity Framework greatly when compared to the older versions which
all have been build on the same code base. When Entity Framework 7 is released it should be
checked whether or not it performs better than Graph-Based Querying. If it does, Graph-Based
Querying could be recreated on Entity Framework 7 (as it stands now, chances are that the current
implementation method is not compatible with EF7).
Entity Framework 7 should also support non-relational databases so testing Graph-Based Querying
over different database types is another interesting aspect that could be tested with Entity Framework
7.

54

Chapter 8

Acknowledgements

I would like to thank the teachers of the University of Amsterdam for the informative past year and
interesting courses.

I’d also like to thank Jurgen Vinju for the time he spend guiding me with this thesis and for helping
me improve my writing skills little by little.

Lastly I’d like to thank Merijn de Jonge for supplying me with his code and for answering some of
my questions during the process of understanding said code.

55

Bibliography

[Apa] Apache Commons. JXPath. URL: http://commons.apache.org/proper/
commons-jxpath/users-guide.html.

[Atu07] Atul Adya and José A. Blakeley and Sergey Melnik and S. Muralidhar. Anatomy of the
ADO.NET Entity Framework. In In SIGMOD’07, 2007.

[BBC+01] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G. Kadoda, M. S. Kutar,
M. Loomes, C. L. Nehaniv, M. Petre, C. Roast, C. Roe, A. Wong, and R. M. Young.
Cognitive Dimensions of Notations: Design Tools for Cognitive Technology. 2001. URL:
http://www.springerlink.com/content/hrj8lgkhaq96v904.

[BJP+13] Philip A. Bernstein, Marie Jacob, Jorge Perez, Guillem Rull, and James F. Terwilliger.
Incremental mapping compilation in an object-to-relational mapping system (extended ver-
sion). Technical Report MSR-TR-2013-45, June 2013. URL: http://research.microsoft.
com/apps/pubs/default.aspx?id=191107.

[Car96] Carey, Michael J. and DeWitt, David J. Of Objects and Databases: A Decade of Turmoil.
In Proceedings of the 22th International Conference on Very Large Data Bases, VLDB
’96, pages 3–14, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc. URL:
http://dl.acm.org/citation.cfm?id=645922.673465.

[Cra08] Craig Freedman. Random Prefetching. MSDN, 10 2008. URL: http://blogs.msdn.com/
b/craigfr/archive/2008/10/07/random-prefetching.aspx.

[Die12] Diestel, Reinhard. Graph Theory, 4th Edition., volume 173 ofGraduate texts in mathematics.
Springer, 2012.

[E.F69] E.F. Codd. Derivability, Redundancy, and Consistency of Relations Stored in Large Data
Banks. 1969.

[E.F70] E.F. Codd. A Relational Model of Data for Large Shared Data Banks. In Communications
of the ACM, volume 13, pages 377–387. ACM, June 1970. doi:10.1145/362384.362685.

[Fab12] Fabiano Amorim. SQL Server Prefetch and Query Performance. Sim-
ple Talk, 5 2012. URL: https://www.simple-talk.com/sql/performance/
sql-server-prefetch-and-query-performance/.

[Gol09] Gene Golovchinsky. Cognitive dimensions analysis of interfaces for information seeking.
CoRR, abs/0908.3523, 2009.

[IBNW09] C. Ireland, D. Bowers, M. Newton, and K. Waugh. A classification of object-relational
impedance mismatch. In Advances in Databases, Knowledge, and Data Applications, 2009.
DBKDA ’09. First International Conference on, pages 36–43, March 2009. doi:10.1109/
DBKDA.2009.11.

[Jer10] Jeroen Back. Theory and experimental evaluation of object-relational mapping optimization
techniques. Master’s thesis, University of Amsterdam, January 2010.

56

http://commons.apache.org/proper/commons-jxpath/users-guide.html
http://commons.apache.org/proper/commons-jxpath/users-guide.html
http://www.springerlink.com/content/hrj8lgkhaq96v904
http://research.microsoft.com/apps/pubs/default.aspx?id=191107
http://research.microsoft.com/apps/pubs/default.aspx?id=191107
http://dl.acm.org/citation.cfm?id=645922.673465
http://blogs.msdn.com/b/craigfr/archive/2008/10/07/random-prefetching.aspx
http://blogs.msdn.com/b/craigfr/archive/2008/10/07/random-prefetching.aspx
http://dx.doi.org/10.1145/362384.362685
https://www.simple-talk.com/sql/performance/sql-server-prefetch-and-query-performance/
https://www.simple-talk.com/sql/performance/sql-server-prefetch-and-query-performance/
http://dx.doi.org/10.1109/DBKDA.2009.11
http://dx.doi.org/10.1109/DBKDA.2009.11

[KBB02] Maria Kutar, Carol Britton, and Trevor Barker. A comparison of empirical study and
cognitive dimensions analysis in the evaluation of UML diagrams. In J. Kuljis, L. Baldwin,
and R. Scoble, editors, Proceedings of the 14th Workshop of the Psychology of Programming
Interest Group, pages 1–14, June 2002. URL: http://www.ppig.org/papers/14th-kutar.
pdf.

[Ker11] Kersten, M. and Zhang, Y. and Ivanova, M. and Nes, N. SciQL, a Query Language for Sci-
ence Applications. In Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases,
AD ’11, pages 1–12, New York, NY, USA, 2011. ACM. doi:10.1145/1966895.1966896.

[Kla07] Klar, Felix and Königs, Alexander and Schürr, Andy. Model Transformation in the Large. In
Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ESEC-
FSE ’07, pages 285–294, New York, NY, USA, 2007. ACM. doi:10.1145/1287624.1287664.

[Mer11] Merijn de Jonge. Improving Entity Framework Query Performance Using Graph-
Based Querying. 2011. URL: http://www.codeproject.com/Articles/247254/
Improving-Entity-Framework-Query-Performance-Using.

[Mic11] Microsoft. Northwind Db. CodePlex, 2011. URL: https://northwinddatabase.codeplex.
com/.

[Mic13] Microsoft. Entity Framework. CodePlex, 2013. URL: https://entityframework.
codeplex.com/.

[Mic14a] Microsoft. Entity Framework Code First. MSDN, 2014. URL: http://msdn.microsoft.
com/en-us/data/jj193542.

[Mic14b] Microsoft. Entity Framework Model First. MSDN, 2014. URL: http://msdn.microsoft.
com/en-us/data/jj205424.

[Mic14c] Microsoft. Modeling and Mapping. MSDN, 2014. URL: http://msdn.microsoft.com/
en-us/library/vstudio/bb896343%28v=vs.100%29.aspx.

[Mic14d] Microsoft. MSDN - Sql Server Column Store. MSDN, 2014. URL: http://msdn.microsoft.
com/en-us/library/gg492088.aspx.

[Mic14e] Microsoft. Performance Considerations for Entity Framework 4, 5, and 6. May 2014. URL:
http://msdn.microsoft.com/en-US/data/hh949853.

[OW93] G. Ozsoyoglu and H. Wang. Example-based graphical database query languages. Computer,
26(5):25–38, May 1993. doi:10.1109/2.211893.

[P.J97] P.J. Rodgers and P.J.H. King. A Graph-Rewriting Visual Language for Database Pro-
gramming. Journal of Visual Languages & Computing, 8(5–6):641–674, 1997. doi:
10.1006/jvlc.1997.0033.

[Sch08] Schürr, Andy and Klar, Felix. 15 Years of Triple Graph Grammars. In Proceedings of the
4th International Conference on Graph Transformations, ICGT ’08, pages 411–425, Berlin,
Heidelberg, 2008. Springer-Verlag. doi:10.1007/978-3-540-87405-8_28.

[SQL] ISO/IEC 9075. URL: http://www.iso.org/iso/home/search.htm?qt=9075&sort=rel&
type=simple&published=on.

[T. 96] T. R. G. Green and M. Petre. Usability Analysis of Visual Programming Environments:
a ‘cognitive dimensions’ framework. JOURNAL OF VISUAL LANGUAGES AND COM-
PUTING, 7:131–174, 1996.

[Var05] Varró, Gergely and Friedl, Katalin and Varró, Dániel. Graph Transformation in Relational
Databases. Electron. Notes Theor. Comput. Sci., 127(1):167–180, March 2005. doi:10.
1016/j.entcs.2004.12.034.

57

http://www.ppig.org/papers/14th-kutar.pdf
http://www.ppig.org/papers/14th-kutar.pdf
http://dx.doi.org/10.1145/1966895.1966896
http://dx.doi.org/10.1145/1287624.1287664
http://www.codeproject.com/Articles/247254/Improving-Entity-Framework-Query-Performance-Using
http://www.codeproject.com/Articles/247254/Improving-Entity-Framework-Query-Performance-Using
https://northwinddatabase.codeplex.com/
https://northwinddatabase.codeplex.com/
https://entityframework.codeplex.com/
https://entityframework.codeplex.com/
http://msdn.microsoft.com/en-us/data/jj193542
http://msdn.microsoft.com/en-us/data/jj193542
http://msdn.microsoft.com/en-us/data/jj205424
http://msdn.microsoft.com/en-us/data/jj205424
http://msdn.microsoft.com/en-us/library/vstudio/bb896343%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb896343%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/gg492088.aspx
http://msdn.microsoft.com/en-us/library/gg492088.aspx
http://msdn.microsoft.com/en-US/data/hh949853
http://dx.doi.org/10.1109/2.211893
http://dx.doi.org/10.1006/jvlc.1997.0033
http://dx.doi.org/10.1006/jvlc.1997.0033
http://dx.doi.org/10.1007/978-3-540-87405-8_28
http://www.iso.org/iso/home/search.htm?qt=9075&sort=rel&type=simple&published=on
http://www.iso.org/iso/home/search.htm?qt=9075&sort=rel&type=simple&published=on
http://dx.doi.org/10.1016/j.entcs.2004.12.034
http://dx.doi.org/10.1016/j.entcs.2004.12.034

[Vij08] Vijay P. Mehta. Pro LINQ Object Relational Mapping with C#. Apress, July 2008.

[W3C] W3C. XQuery. URL: http://www.w3.org/standards/xml/query.

[Zlo77] M. M. Zloof. Query-by-example: A data base language. IBM Syst. J., 16(4):324–343,
December 1977. URL: http://dx.doi.org/10.1147/sj.164.0324, doi:10.1147/sj.164.
0324.

[Zyl06] Zyl, Pieter van and Kourie, Derrick G. and Boake, Andrew. Comparing the Performance of
Object Databases and ORM Tools. In Proceedings of the 2006 Annual Research Conference
of the South African Institute of Computer Scientists and Information Technologists on
IT Research in Developing Countries, SAICSIT ’06, pages 1–11, Republic of South Africa,
2006. South African Institute for Computer Scientists and Information Technologists. doi:
10.1145/1216262.1216263.

58

http://www.w3.org/standards/xml/query
http://dx.doi.org/10.1147/sj.164.0324
http://dx.doi.org/10.1147/sj.164.0324
http://dx.doi.org/10.1147/sj.164.0324
http://dx.doi.org/10.1145/1216262.1216263
http://dx.doi.org/10.1145/1216262.1216263

List of Figures

1.1 Retrieval of objects O, related object E00, its related A00 object, and for A10 (A00
sub-type) its related B00 object . 6

2.1 Graph representation of data. The circles are nodes/vertices and the lines are the edges. 11
2.2 The dependencies between the developers’ program, Graph-Based Querying, the Entity

Framework and the database. 12

6.1 O to E association and E inheritance structure . 41
6.2 E00 to A00 association . 41
6.3 A00 structure for Assoc1 tests . 42
6.4 A00 structure for Assoc2 tests . 42
6.5 A00 structure for Assoc3 tests . 43

List of Tables

4.1 Comparison of supported features in EF, GBQ 1 and GBQ 2 26
4.2 Comparison of supported relations in EF, GBQ 1 and GBQ 2 26

6.1 Populations . 43
6.2 Database selection overview . 44

59

Appendix A

Measurement Results

A.1 No associations on sub-types

A.1.1 Inheritance 3

100 200 300 400 500 600 700 800 900 1000

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Population

T
im

e
(m

s)

Inh3 GBQ Real Time per Database

Sql Server MySql PostgreSql

60

100 200 300 400 500 600 700 800 900 1,000

0

10

20

30

40

50

60

70

Population

T
im

e
(m

s)

Inh3 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

100 200 300 400 500 600 700 800 900 1000

0.4

0.6

0.8

1

1.2

Population

T
im

e
(m

s)

Inh3 GBQ CPU Time per Database

Sql Server MySql PostgreSql

61

100 200 300 400 500 600 700 800 900 1,000

1

2

3

4

Population

T
im

e
(m

s)

Inh3 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF EF Concretes

100 200 300 400 500 600 700 800 900 1,000

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Population

T
im

e
(m

s)

Inh3 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

62

A.1.2 Inheritance 4

100 200 300 400 500 600 700 800 900 1000

1

1.5

2

2.5

3

Population

T
im

e
(m

s)

Inh4 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Population

T
im

e
(m

s)

Inh4 GBQ CPU Time per Database

Sql Server MySql PostgreSql

63

100 200 300 400 500 600 700 800 900 1,000

0

20

40

60

80

100

120

140

160

Population

T
im

e
(m

s)

Inh4 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

100 200 300 400 500 600 700 800 900 1,000
0

2

4

6

8

10

12

Population

T
im

e
(m

s)

Inh4 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF EF Concretes

64

100 200 300 400 500 600 700 800 900 1,000

0.5

1

1.5

2

2.5

3

3.5

4

Population

T
im

e
(m

s)

Inh4 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

65

A.1.3 Inheritance 5

100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

6

7

8

Population

T
im

e
(m

s)

Inh5 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000

1

1.5

2

2.5

Population

T
im

e
(m

s)

Inh5 GBQ CPU Time per Database

Sql Server MySql PostgreSql

66

100 200 300 400 500 600 700 800 900 1,000

0

50

100

150

200

250

300

350

400

Population

T
im

e
(m

s)

Inh5 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

100 200 300 400 500 600 700 800 900 1,000

0

5

10

15

20

25

30

35

Population

T
im

e
(m

s)

Inh5 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF EF Concretes

67

100 200 300 400 500 600 700 800 900 1,000

1

2

3

4

5

6

7

8

Population

T
im

e
(m

s)

Inh5 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

68

A.1.4 Inheritance 6

100 200 300 400 500 600 700 800 900 1000

2

4

6

8

10

12

14

16

18

Population

T
im

e
(m

s)

Inh6 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000

1.5

2

2.5

3

3.5

4

Population

T
im

e
(m

s)

Inh6 GBQ CPU Time per Database

Sql Server MySql PostgreSql

69

100 200 300 400 500 600 700 800 900 1,000

0

200

400

600

800

1,000

1,200

Population

T
im

e
(m

s)

Inh6 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

100 200 300 400 500 600 700 800 900 1,000

0

20

40

60

80

100

120

Population

T
im

e
(m

s)

Inh6 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF EF Concretes

70

100 200 300 400 500 600 700 800 900 1,000
0

5

10

15

20

Population

T
im

e
(m

s)

Inh6 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF EF Concretes

71

A.2 Associations on sub-types

A.2.1 Inheritance 3
Assoc 1

100 200 300 400 500 600 700 800 900 1000

8

9

10

11

12

13

14

15

16

Population

T
im

e
(m

s)

Inh3Assoc1 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000

8

10

12

14

16

Population

T
im

e
(m

s)

Inh3Assoc1 GBQ CPU Time per Database

Sql Server MySql PostgreSql

72

100 200 300 400 500 600 700 800 900 1,000

0

500

1,000

1,500

2,000

2,500

Population

T
im

e
(m

s)

Inh3Assoc1 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

10

15

20

25

Population

T
im

e
(m

s)

Inh3Assoc1 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

73

100 200 300 400 500 600 700 800 900 1,000

5

6

7

8

9

10

11

12

Population

T
im

e
(m

s)

Inh3Assoc1 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

Assoc 2

100 200 300 400 500 600 700 800 900 1000
12

14

16

18

20

22

24

Population

T
im

e
(m

s)

Inh3Assoc2 GBQ Real Time per Database

Sql Server MySql PostgreSql

74

100 200 300 400 500 600 700 800 900 1,000

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Population

T
im

e
(m

s)

Inh3Assoc2 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1000
8

10

12

14

16

18

20

22

24

Population

T
im

e
(m

s)

Inh3Assoc2 GBQ CPU Time per Database

Sql Server MySql PostgreSql

75

100 200 300 400 500 600 700 800 900 1,000
10

15

20

25

30

Population

T
im

e
(m

s)

Inh3Assoc2 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

8

10

12

14

16

Population

T
im

e
(m

s)

Inh3Assoc2 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

76

Assoc 3

100 200 300 400 500 600 700 800 900 1000

20

25

30

35

Population

T
im

e
(m

s)

Inh3Assoc3 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000

14

16

18

20

22

24

26

Population

T
im

e
(m

s)

Inh3Assoc3 GBQ CPU Time per Database

Sql Server MySql PostgreSql

77

100 200 300 400 500 600 700 800 900 1,000

0

1,000

2,000

3,000

4,000

Population

T
im

e
(m

s)

Inh3Assoc3 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

15

20

25

30

35

Population

T
im

e
(m

s)

Inh3Assoc3 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

78

100 200 300 400 500 600 700 800 900 1,000
10

12

14

16

18

20

22

Population

T
im

e
(m

s)

Inh3Assoc3 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

79

A.2.2 Inheritance 4
Assoc 1

100 200 300 400 500 600 700 800 900 1000
8

9

10

11

12

13

14

15

Population

T
im

e
(m

s)

Inh4Assoc1 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000

7

8

9

10

11

12

Population

T
im

e
(m

s)

Inh4Assoc1 GBQ CPU Time per Database

Sql Server MySql PostgreSql

80

100 200 300 400 500 600 700 800 900 1,000

0

500

1,000

1,500

2,000

2,500

Population

T
im

e
(m

s)

Inh4Assoc1 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

10

15

20

25

30

Population

T
im

e
(m

s)

Inh4Assoc1 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

81

100 200 300 400 500 600 700 800 900 1,000

6

7

8

9

10

11

Population

T
im

e
(m

s)

Inh4Assoc1 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

Assoc 2

100 200 300 400 500 600 700 800 900 1000
12

14

16

18

20

22

24

Population

T
im

e
(m

s)

Inh4Assoc2 GBQ Real Time per Database

Sql Server MySql PostgreSql

82

100 200 300 400 500 600 700 800 900 1,000

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Population

T
im

e
(m

s)

Inh4Assoc2 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1000

10

12

14

16

18

Population

T
im

e
(m

s)

Inh4Assoc2 GBQ CPU Time per Database

Sql Server MySql PostgreSql

83

100 200 300 400 500 600 700 800 900 1,000

15

20

25

30

35

Population

T
im

e
(m

s)

Inh4Assoc2 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

8

10

12

14

16

Population

T
im

e
(m

s)

Inh4Assoc2 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

84

Assoc 3

100 200 300 400 500 600 700 800 900 1000

20

25

30

35

Population

T
im

e
(m

s)

Inh4Assoc3 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000
12

14

16

18

20

22

24

26

Population

T
im

e
(m

s)

Inh4Assoc3 GBQ CPU Time per Database

Sql Server MySql PostgreSql

85

100 200 300 400 500 600 700 800 900 1,000

0

1,000

2,000

3,000

4,000

Population

T
im

e
(m

s)

Inh4Assoc3 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000
15

20

25

30

35

40

45

Population

T
im

e
(m

s)

Inh4Assoc3 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

86

100 200 300 400 500 600 700 800 900 1,000
10

12

14

16

18

20

22

Population

T
im

e
(m

s)

Inh4Assoc3 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

87

A.2.3 Inheritance 5
Assoc 1

100 200 300 400 500 600 700 800 900 1000
8

10

12

14

16

18

Population

T
im

e
(m

s)

Inh5Assoc1 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000
7

8

9

10

11

12

13

14

Population

T
im

e
(m

s)

Inh5Assoc1 GBQ CPU Time per Database

Sql Server MySql PostgreSql

88

100 200 300 400 500 600 700 800 900 1,000

0

500

1,000

1,500

2,000

2,500

3,000

Population

T
im

e
(m

s)

Inh5Assoc1 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

10

20

30

40

50

Population

T
im

e
(m

s)

Inh5Assoc1 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

89

100 200 300 400 500 600 700 800 900 1,000

6

7

8

9

10

11

12

Population

T
im

e
(m

s)

Inh5Assoc1 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

Assoc 2

100 200 300 400 500 600 700 800 900 1000

14

16

18

20

22

24

26

Population

T
im

e
(m

s)

Inh5Assoc2 GBQ Real Time per Database

Sql Server MySql PostgreSql

90

100 200 300 400 500 600 700 800 900 1,000

0

1,000

2,000

3,000

4,000

Population

T
im

e
(m

s)

Inh5Assoc2 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1000

12

14

16

18

20

Population

T
im

e
(m

s)

Inh5Assoc2 GBQ CPU Time per Database

Sql Server MySql PostgreSql

91

100 200 300 400 500 600 700 800 900 1,000
10

20

30

40

50

60

Population

T
im

e
(m

s)

Inh5Assoc2 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

8

10

12

14

16

18

Population

T
im

e
(m

s)

Inh5Assoc2 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

92

Assoc 3

100 200 300 400 500 600 700 800 900 1000

20

25

30

35

Population

T
im

e
(m

s)

Inh5Assoc3 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000

10

15

20

25

30

Population

T
im

e
(m

s)

Inh5Assoc3 GBQ CPU Time per Database

Sql Server MySql PostgreSql

93

100 200 300 400 500 600 700 800 900 1,000

0

1,000

2,000

3,000

4,000

5,000

Population

T
im

e
(m

s)

Inh5Assoc3 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

20

30

40

50

60

70

Population

T
im

e
(m

s)

Inh5Assoc3 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

94

100 200 300 400 500 600 700 800 900 1,000

12

14

16

18

20

22

24

Population

T
im

e
(m

s)

Inh5Assoc3 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

95

A.2.4 Inheritance 6
Assoc 1

100 200 300 400 500 600 700 800 900 1000

10

15

20

25

30

Population

T
im

e
(m

s)

Inh6Assoc1 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000

8

9

10

11

12

13

14

Population

T
im

e
(m

s)

Inh6Assoc1 GBQ CPU Time per Database

Sql Server MySql PostgreSql

96

100 200 300 400 500 600 700 800 900 1,000

0

1,000

2,000

3,000

4,000

Population

T
im

e
(m

s)

Inh6Assoc1 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000
0

20

40

60

80

100

Population

T
im

e
(m

s)

Inh6Assoc1 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

97

100 200 300 400 500 600 700 800 900 1,000
6

8

10

12

14

16

Population

T
im

e
(m

s)

Inh6Assoc1 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

Assoc 2

100 200 300 400 500 600 700 800 900 1000

15

20

25

30

35

Population

T
im

e
(m

s)

Inh6Assoc2 GBQ Real Time per Database

Sql Server MySql PostgreSql

98

100 200 300 400 500 600 700 800 900 1,000

0

1,000

2,000

3,000

4,000

5,000

Population

T
im

e
(m

s)

Inh6Assoc2 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1000

12

14

16

18

20

Population

T
im

e
(m

s)

Inh6Assoc2 GBQ CPU Time per Database

Sql Server MySql PostgreSql

99

100 200 300 400 500 600 700 800 900 1,000

20

40

60

80

100

120

140

Population

T
im

e
(m

s)

Inh6Assoc2 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

10

12

14

16

18

20

22

Population

T
im

e
(m

s)

Inh6Assoc2 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100

Assoc 3

100 200 300 400 500 600 700 800 900 1000

20

25

30

35

40

Population

T
im

e
(m

s)

Inh6Assoc3 GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000
16

18

20

22

24

26

Population

T
im

e
(m

s)

Inh6Assoc3 GBQ CPU Time per Database

Sql Server MySql PostgreSql

101

100 200 300 400 500 600 700 800 900 1,000

0

1,000

2,000

3,000

4,000

5,000

6,000

Population

T
im

e
(m

s)

Inh6Assoc3 Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

20

40

60

80

100

120

140

160

Population

T
im

e
(m

s)

Inh6Assoc3 Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

102

100 200 300 400 500 600 700 800 900 1,000

12

14

16

18

20

22

24

26

Population

T
im

e
(m

s)

Inh6Assoc3 Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

103

A.3 Northwind

100 200 300 400 500 600 700 800 900 1000

11.8

11.9

12

12.1

12.2

Population

T
im

e
(m

s)

Northwind GBQ Real Time per Database

Sql Server MySql PostgreSql

100 200 300 400 500 600 700 800 900 1000

10

10.5

11

11.5

12

12.5

Population

T
im

e
(m

s)

Northwind GBQ CPU Time per Database

Sql Server MySql PostgreSql

104

100 200 300 400 500 600 700 800 900 1,000

5

6

7

8

9

10

11

12

Population

T
im

e
(m

s)

Northwind Query Real Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

100 200 300 400 500 600 700 800 900 1,000

5

6

7

8

9

10

11

12

Population

T
im

e
(m

s)

Northwind Query Real Time Medians Comparison

Sql Server PostgreSql GBQ EF

105

100 200 300 400 500 600 700 800 900 1,000

4

5

6

7

8

9

10

11

12

Population

T
im

e
(m

s)

Northwind Query CPU Time Medians Comparison

Sql Server MySql PostgreSql GBQ EF

106

