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Abstract

When optimizing a program’s performance, one can improve most at the program’s biggest bottleneck.
To find the biggest bottleneck in a program, people often use a profiler. However, if a program does
not speed up as expected, the profiler is rarely blamed. In this thesis we will show why Java profilers
are more often wrong than right when profiling programs.

In Java there are two types of CPU profiling techniques: instrumenting and sampling. We will
show that the impact of an instrumenting profiler affects a program’s performance and how it affects
the JVM’s optimization decisions, on which Java heavily depends.

Next we will investigate sampling profilers, which disagree more often than they agree with one
another. We will show how sampling profilers suffer from inaccuracy due to the Java Virtual Machine’s
implementation which in some cases causes them to miss even the most obvious bottlenecks.

We will end the thesis by explaining another approach to sampling, introduced by Mytkowicz in
2010, and give advice on future work to further investigate this technique, as we believe it might be
the best way to find performance bottlenecks in Java software.
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1 Introduction

To optimize a program’s performance, it makes sense to start with the code that takes most time to
execute, and when optimized, would make the program benefit the most. In other words, it would
make sense to look for the biggest bottleneck in a program.

Unfortunately it is hard to predict which part is the bottleneck in a program, even if one would
know and understand the entire code base. This is where a profiler comes in handy. A profiler is a
piece of software that looks at what the code is doing while it is running, and is able to calculate (or
estimate) which parts of the code most time is spent in.

The only problem is, how do you know if a profiler is right? A program might behave different
when it is being profiled compared to a normal run, the so called ‘observer effect’ [1]. Also, a profiler
might have a bias because of the way it is implemented [2].

In this thesis we will investigate whether a profiler can be used to find performance bottlenecks
in Java software.

1.1 Motivation
It is a common belief that in order to find performance bottlenecks in Java code, one should use
a profiler. Which makes sense since a profiler is able to give fairly precise data about the code at
runtime. There is however some previous research which shows concerns about a profiler’s accuracy.

Because CPU profiling (1.4.1) in Java can be done via two techniques, this thesis will be split up
and handle them both separately.

1.1.1 CPU profiling via instrumenting
If a program is profiled with an instrumenting profiler, it will know exactly which method is called by
who, how often and in what order. This technique however has the downside that in order to collect
this information the profiler has to add code to that program, causing a significant overhead [1,3–6].

Although this additional code slows down the program, it is not our primary concern. The fact
that the code is changed should cause more concern. When code is changed, it will behave differently,
especially in the Java language [7].

The Java programming language has been specifically designed to have as few implementation
dependencies as possible. It is intended to let application developers write their code once and run
it anywhere. To do this, Java does not compile its code directly to machine dependent native code,
but instead compiles to a machine independent intermediate code called bytecode. The bytecode
will then be interpreted by the different JVMs (Java Virtual Machines) specifically made for each
platform [8].

Because of the intermediate layer and the overhead of the JVM, Java in its early days was
considered a slow language [9]. To cope with this problem Java added optimizations which improve
the runtime significantly [8, 10,11].

When code is injected in a program, it can cause these optimizations to behave differently or
even not be executed at all. This makes the profiled program different from the unprofiled program.
Machkasova talks about this so called observer effect in [1] and shows how an instrumenting profiler
causes a very powerful optimization called inlining to not be executed.
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1.1.2 CPU profiling via sampling
Another technique used to profile Java software is sampling, which has a far lower overhead because
it doesn’t change the code but instead pauses it at a certain interval to take a sample. Each sample
tells what the program is doing at the time of that sample, and even though a lot of information is
lost from parts that aren’t sampled, it is believed that with enough samples, a realistic estimate can
be made [2].

The problem however is that Java can’t be interrupted at any point in time because it could
conflict with the stack space of the running code. This is further complicated when multiple threads
are running. Therefore, taking samples is only allowed at safe points in the code, so called ‘yield
points’ [7, 12].

Still, interrupting a program causes an overhead, and compilers may omit yield points from a loop
if they know code does not allocate memory and does not run for an unbounded amount of time. As
such samples may not only be postponed, but may even get canceled in a potentially hot part of the
code [2, 13].

1.2 Research questions
The main research question that will be answered in this thesis is the following:

How accurately do Java profilers predict runtime performance bottlenecks?

To answer this question, we will first find out the influence of profiling on the runtime of a program,
for which we have the following question:

What is the impact of profiling on the execution time of a program?

Knowing the overhead of the different profiler techniques can be useful, but it will not answer
the main question. The next step is to find out how this overhead influences different parts of the
program and biases the profiler results. Which leads us to the next subquestion:

What is the impact of profiling on the relative time per function?

Java uses many optimizations at runtime to increase its performance. The JVM (Java Virtual
Machine) determines which parts of the code would benefit from optimizations by monitoring /
profiling the code. When profiling a program, it might influence the JVM’s decisions which leads us
to the subquestion:

How does the execution of a Java program differ when profiling?

Knowing the effect of a profiler on a program, we now know how we should interpret the infor-
mation a profiler reports. This brings us to our final subquestion:

How should we use a profiler to find bottlenecks?

By answering these subquestions, we expect to have a better understanding of how the presence
of a profiler influences a program’s behavior and how that impacts the accurately with which it can
predict performance bottlenecks.

Because there are two types of CPU profilers in Java (1.4.1) which largely differ from one another,
not all subquestions are fitting for each profiling method.

1.3 Research methods
In this thesis, the following research methods are used.

1.3.1 Exploratory research
Find previous related research. What has been discovered, concluded and what has been reported
for future work? How do results differ from each other and what are possible explanations for the
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different results (if there are any).

1.3.2 Controlled Experiments
We will use controlled experiments to measure JVM optimizations and compare the different profilers
and their impact on programs. We will use various controlled experiments like running Micro tests
(small programs made for doing only one or a few operations) and the DaCapo Benchmark Suite.

The results from those experiments will be analyzed via statistical analysis and / or visual analysis.

Action research

With action research we hope to be able to prove what we have found in previous research and
controlled experiments, such as injecting code in existing methods to test if a profiler recognizes the
slower method.

Statistical analysis

Statistical analysis sums large datasets and bases conclusions on averages / smallest / biggest out-
comes.

Visual analysis

Visual analysis presents large datasets in a visually compelling way. Facilitating the user to discover
interesting relationships or patterns which otherwise would be hard to find.

1.4 Background
This section contains information which helps explain the thesis.

1.4.1 Definitions
Profiler

A profiler is a piece of software that observes and interacts with a program to gather information
about its execution, such as data on how often methods get called [14].

In Java, there are three profiling forms commonly used. CPU profiling determines how much
time the program spends executing various parts of its code (called CPU profiling because it uses the
CPU’s free-running timer (1.4.2)); memory profiling the number, types and lifetime of objects that
the program allocates; hot lock profiling determines threading issues like congested monitors [3].

In this thesis we will focus on CPU profiling, of which there are two techniques in Java: instru-
menting and sampling.

Instrumenting

Instrumenting is a profiling technique where a profiler injects code in the program’s (byte)code,
usually to record the entering and exiting of a method [15]. By doing this it gathers all data needed
to generate a detailed overview of the number of times a method is called, where each call is coming
from and the time spent in each method.

Sampling

Sampling is a profiling technique where the profiler interrupts the JVM at a certain interval (usually
between 5 and 20 ms) in which it finds out what the stack is like to get an estimate of how often
methods are being called and where they are most commonly found on the stack [14]. Sampling
profilers are built on the assumption that the number of samples for a method is proportional to the
time spent in the method [2, 12].
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Observer effect

The observer effect is the change that occurs in a program’s behavior when it is being executed
together with a monitoring tool [14].

Bottleneck

A bottleneck, in this thesis, is the part of a program that consumes the most time and / or resources.
It is the part in a program, which has the greatest influence on the program’s speed. In other words,
the part that, when optimized to 0 seconds, would speed up the program the most.

Hot and cold methods

A hot method is a method that has a significant impact on the execution time of a program. The
hottest method is a program’s biggest bottleneck. A cold method does not have a significant impact
on the execution of a program and optimizing it will have little effect on the performance of a program.

Yield points

A yield point is a location in the program’s code where it is safe to interrupt. It is used by the
garbage collector and to collect samples [2]. Each compiler generates yield points which makes the
running thread check a bit in the machine control register to determine if it should yield the virtual
processor [12].

Yield points can be skipped for performance reasons which could lead to inaccurate results of
sampling profilers [2], which can be found in chapter 3.6.

Inlining

The overhead of method invocation is one of the major reasons for the poor performance of Java [11].
For this reason, modern JVMs use the inlining optimization, which gets triggered when a method
gets called often. It will replace the method call with the body of the called method.

Inlining is one of the few optimizations which can be prevented by using the --XX:-Inline
parameter, which we use throughout this thesis because it helps illustrate the impact of instrumenting
profilers (2.3) and is used by Mytkowicz’s experimental profiler tprof [2] to get accurate results which
caused us to use it for our tests with the traditional sampling (chapter 3) and the experimental profiler
of Manson (chapter 4).

Dead code elimination

Dead code elimination is an optimization which, at run time, does a live variable analysis [16]. It
will look for code that does not affect the output and will remove that code to reduce calls, memory
usage and calculations. In some circumstances, the compiler can determine that some code will never
affect the output, and eliminate that code.

1.4.2 How to measure?
In this thesis, several conclusions are based on small Java sample programs (so called micro tests).
When running these small programs, it is important to understand the impact of optimizations and
external factors that can clutter the results.

This chapter will describe the biggest result changing factors that we have found, but for a
complete overview the Robust Java Benchmarking web pages from Boyer provide more information
1 2.

1https://www.ibm.com/developerworks/java/library/j-benchmark1
2https://www.ibm.com/developerworks/java/library/j-benchmark2
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Time measuring in Java

There are three different ways to measure elapsed time in Java:

• Absolute-time clock relates to some external time reference (such as UTC). This clock is often
called the time-of-day clock or wall-clock and has a low resolution (varies between systems but
generally 10 milliseconds or worse) [17].
The absolute-time clock is represented by System.currentTimeMillis().

• Relative-time clock uses a high-resolution counter from which a “free-running” time can be
calculated (generally the resolution is at microsecond level or better, but if the hardware doesn’t
support that it will have a resolution which is at least as good as the absolute clock) [17].
The relative-time clock is represented by System.nanoTime().

• CPU time is the time actively spent by the CPU per thread. It also uses relative time (based
on a high-resolution counter) but ignores system time (waiting, blocking, IO, etc). CPU time
is disabled by default because it can be expensive in some JVM implementations 3.
The CPU time is represented by java.lang.management.ThreadMXBean.getCurrentCpuTime().

For measuring / calculating the elapsed time, the relative-time clock is recommended because it
uses the highest resolution clock available on the system.

When measuring the time of small Java sample programs it is important to know that requesting
time causes some overhead and therefore the tests can not be to small. We ran several tests to
measure the overhead of requesting time (Appendix A) and noticed an average overhead of 1 ms
(varying between 0,05 ms and 1,04 ms). It is important to make sure a test runs long enough to
make this overhead negligible.

We believe the relative-time is best suited for finding bottlenecks because is uses the highest
resolution available, and also shows ‘non-CPU time’ in its results (such as logging, garbage collection,
thread-blocks) which we believe can cause a program to be slow just as much as an inefficient
algorithm.

Java Virtual Machine warmup

The JVM profiles its code while running to find out which parts would benefit from optimizations.
This, together with optimizing it causes overhead. When the JVM believes a piece of code will be
executed so often that it will benefit from an optimization enough to overcome the optimization
penalty, it will perform the optimization [12,18].

When measuring, this so called ‘warmup’ should be taken into account to prevent ‘unexpected’
results from cluttering the conclusions [19]. The graph listed below illustrates the overhead when
running the same test 50 times (Appendix B) without a profiler, but using a profiler had comparable
results.

3http://docs.oracle.com/javase/7/docs/api/java/lang/management/ThreadMXBean.html
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Figure 1.1: Time spent for each CPU intensive run. This visualization shows that the execution time
of the first two runs is almost double due to the warmup of the JVM.

Hardware energy saving issues

When running small tests one should always keep in mind that hardware might need some time
to “wake up”. Modern computers have many energy saving settings which will impact the results.
Especially with IO the results will suffer from idle hardware like conventional hard drives and networks
that needs time to get up to speed.

The graph below shows the results of running an IO intensive test (reading 100.000 text files
divided over 50 runs) after not using the hard drive for some time.

Figure 1.2: Time spent for each IO intensive run. This visualization shows how different IO intensive
tests (reading 2000 text files) speeds up after a few runs, this could be caused by the hard drive which
needs to get up to speed after being idle for some time.
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* The low run times of the Java 7 results between run 25 and 30 are unexpected and we suspect
could be because of an interrupted test which ran before the Java 7 one. After rerunning the tests
we were not able to reproduce it but decided to show the results of the first test because it at the
very least shows the importance of using averages of many runs and having a stable environment for
tests.

Impact of external optimizations

It is important to keep in mind that the OS and hardware also optimize themselves, for instance when
reading IO. Reading small text files more then once will give an unrealistic result when measuring the
impact of reading files.

In the graph (figure 1.3, displayed below) we show the second test of reading a batch of 2000
files 50 times in a row. The first runs are not displayed as they contained the wake up effects.

Even though the first few runs were slower than the remaining runs because of the JVM warmup,
the reading times are significantly lower than the results of figure 1.2 which reads different files in
each of the 50 runs.

Figure 1.3: Time spent for each IO intensive run. This visualization shows running the same IO
intensive tests (reading 2000 text files) speeds up after a few runs, this is likely because of caching
of the read files.

* The spikes in the Java 7 results can have multiple reasons. It is important to keep in mind that
many background processes are running which can intervene. Therefore it is important to reduce the
number of background processes and applications, run the test multiple times and use averages of
the results.

1.5 Hardware and software
In this thesis we used a few different machines for measurement, below we will describe the different
machines and their specifications.

Machine A: MacBook Pro running Mac OSX 10.8.4 (64 bit)
This MacBook Pro is the stock 2010 model configured with a 2,4 GHz Intel Core i5 with 4GB of
1067MHz DDR3 memory.
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It has two Java versions installed:

• Java 1.6.0_45-b06 (called java6 in this thesis)

• Java 1.7.0_17-b02 (called java7 in this thesis)

We used both version of Java in the first experiments because Java 1.6 is still used in real world
applications and most previous research is based on this version. We also used Java 1.7 because
we wanted to see if there were a lot of differences between the two versions which could make our
research irrelevant.

Due to limited time and the minimal difference between these two versions we decided to continue
using Java 1.6 only.

Machine B: MacBook Pro running Ubuntu 12.04.1 LTS desktop (64 bit) virtual on
Mac OSX 10.8.4
This MacBook Pro is the stock 2010 model configured with a 2,4 GHz Intel Core i5 with 4GB of
1067MHz DDR3 memory. Using Oracle Virtual Box (version 4.2.16) we gave Ubuntu access to two
of the four cores and 906MB of memory.

We used this environment to run the experiments with LightWeight profiler. LightWeight profiler
requires a Linux environment and has been made on an Ubuntu environment. We used Ubuntu
12.04.3 because it is the latest LTS version of Ubuntu. We used this machine to run the LightWeight
profiler tests because LightWeight profiler often crashed when profiling large projects like the DaCapo
Benchmark Suite.

Because the LightWeight profiler is built for OpenJDK we used OpenJDK 6 build 27 (64 bit).

Machine C: TransIP VPS X1 running Ubuntu 12.04.1 LTS server (2x)
These virtual servers have 1 Intel Xeon core (speed around 2GHz) and 1 GB of memory available.

We used this environment because some tests were very time consuming, often running for many
days non stop and we were able to rent more of these machines spread the tests over multiple machines
to save time.

We used Java 1.6.0_45 (64 bit) for all tests on this environment.

Software
We used YourKit version 12.0.5 and JProfiler version 7.2.3 on all tests. All tests with the DaCapo
Benchmark Suite are based on version 9.12-bach. The Xprof and Hprof profilers are included in the
JVMs, therefore their versions are not mentioned here.

1.6 Document structure
The remainder of this document is structured as followed:

• Chapter 2 contains the methods, results and analyses of the instrumenting profiling technique.

• Chapter 3 describes the methods, results and analyses used for the sampling profiling technique.

• Chapter 4 discusses an experimental profiling technique which was introduced in previous re-
search. It also uses an experimental profiler which uses some principles of that previous research.

• Chapter 5 contains the conclusion.

• Chapter 6 contains our advice for future work.
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2 Instrumenting

2.1 What is the impact of profiling on the execution time of
a program?

Instrumenting is known for its big overhead on the execution time of a program [3, 14]. How much
overhead instrumenting has on a program will differ per program.

2.1.1 Method
To measure the overhead, we made two small test programs of which one contains a high amount
of method calls which do a simple dividing calculation and the other reads a collection of text files
from a local traditional hard drive. We hope to see how much overhead instrumenting has on CPU
intensive applications (method calls and calculations) and IO heavy applications.

2.1.2 Results
Impact of instrumenting on CPU heavy operations

The source of the program which we’ve used to measure the overhead can be found in Appendix B.

Mode Java 6 Java 7
Normal 367 ms 369 ms

No-inline 3.508 ms 3448 ms
Hprof 2.334.390 ms 2.182.181 ms

YourKit 124.940 ms 149.542 ms
JProfiler 253.267 ms 259.127 ms

Impact of instrumenting on IO heavy operations

The source of the program which we’ve used to measure the overhead can be found in Appendix D.

Mode Java 6 Java 7
Normal 661 ms 652 ms

No-inline 664 ms 653 ms
Hprof 3.631 ms 3.299 ms

YourKit 659 ms 714 ms
JProfiler 693 ms 683 ms

How does the instrumenting overhead influence CPU and IO results

The results above show that instrumenting profilers have a bigger overhead on the CPU heavy
operations than on IO related operations. This is explainable because IO operations are system
calls which are out of scope for the profiler while each method call of the CPU heavy operations
requires additional logging.
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To show how this impacts the results, we’ve made a combination of the two programs which we’ve
used to measure these results. We measure the time required to do a high number of CPU intensive
operations and measure the time to do a high number of IO intensive operations, both with Java’s
relative time function nanoTime and compare the time spent in the CPU and IO part of the program.

Figure 2.1: Visualization of the time spent in CPU heavy vs IO heavy parts of a test program and
how profilers impact this ratio (Java 1.6)

Figure 2.2: Visualization of the time spent in CPU heavy vs IO heavy parts of a test program and
how profilers impact this ratio (Java 1.7)

Looking at the graphs above, it becomes clear that between 92% and 99% of the execution time
is spent in the IO part, but when an instrumenting profiler is run it gives the impression that more
then half the time is spent in the CPU part.

The source of this program can be found in Appendix E.
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2.1.3 Analysis
We have shown that instrumenting causes a high overhead on small CPU intensive methods while
IO related activity has a far lower overhead. This is explainable because when Java tries to do an
IO operation, it calls the operating system, which is out of the scope of the profiler. This difference
in overhead causes the instrumenting profiler’s results to have a bias towards CPU intensive small
methods.

Because the difference between Java 6 and Java 7 is minimal, we will run the remaining tests in
Java 6.

2.1.4 Threats to validity
To make sure that external factors didn’t impact our results, we ran the CPU tests 50 times on the
same JVM instance and removed the first few results of each run because of the JVM warmup which
clutters the results. Each measured time in this section is an average of remaining runs on a single
JVM instance (47 runs with one exception for JProfiler which required 5 runs before giving stable
times) measured with Java’s relative time function nanoTime.

We ran the IO tests 50 times (all with different text files) and removed the first 10 runs because
of the JVM warmup. We did this three times and removed the first run to prevent hard drive wake
ups from cluttering the results. The results are averages of the 80 remaining runs measured with
Java’s relative time function nanoTime.

Because the overhead of instrumenting was so high, the tests took too long to execute. The
results mentioned above are multiplications of smaller tests. To be sure that this wouldn’t invalidate
the results we first tested if the time scale was linear, which it was. This can be found in Appendix
C.

Java optimizes code if it detects repeating calculations, which is what we are doing in the micro
tests in this chapter. To prevent various Java optimizations from optimizing our tests and therefore
cluttering our results, we have to trick the JVM in thinking each run is unique to prevent it from
optimizing.

Each CPU test consists of a random start point (varying between 0 and 8). Because the loop
continues to 100.000 we believe the difference is small enough not to impact our results, while still
fooling the JVM enough to prevent optimizations from replacing the loop with the end value.

Each IO test grabs two random characters from each IO file and adds them to a variable which
gets printed at the end of the test which prevents the JVM from thinking of this test as dead code
and removing it.

2.2 What is the impact of profiling on the relative time per
function?

Knowing the overhead of instrumenting profilers on the execution time of a program can be useful
but doesn’t tell if it can be used for finding performance bottlenecks. What if instrumenting makes
a program significantly slower, but it does find the bottleneck? We can assume that the bottleneck
of a slow program also is the bottleneck of a fast program.

It’s more important to find out what instrumenting does to the relative time spent in each method
because it gives us a better insight of the effect that the profiler has on the program and therefore
its result.

2.2.1 Method
To test the overhead of instrumenting on the relative time per function, we wrote a test program
that runs three methods, which differ in size and required execution time, and try to find out if and
how instrumenting profilers impact their execution time.
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2.2.2 Results
The program starts by calling runTests which in turn calls the methods simple (which is the simplest
of the three and takes the least time), middle and hard (which takes most time) in separate loops
and measures the time it takes to complete each loop using Java’s nanoTime function.

Figure 2.3: Visualization of the percentage of measured time spent in each loop of methods simple,
middle and hard

The graph above shows how the overhead added by instrumenting impacts the difference in time
between methods. The time difference is clearly visible in the normal runs as well as the runs without
the inlining optimization. But the overhead that instrumenting causes makes this differences much
smaller.

The table below shows the measured times (according to nanoTime) which helps to explain the
graph above. Take for example the small method times of the normal run and JProfiler run:
Normal run: 8 ms / ( 8 ms + 15 ms + 31 ms) * 100 = 14,8%
JProfiler run: 532 ms / ( 532 ms + 534 ms + 555 ms) * 100 = 32,8%

simple method middle method hard method
java6 normal 2M runs 8 ms 15 ms 31 ms

java6 (inlining disabled) 2M runs 29 ms 37 ms 41 ms
java6 Hprof instr. 2M runs 4731 ms 4735 ms 4759 ms

java6 YourKit 2M runs 256 ms 265 ms 285 ms
java6 YourKit 2M runs (no ATM) * 979 ms 983 ms 1025 ms

java6 JProfiler 2M runs 532 ms 534 ms 555 ms
* The ATM mentioned at YourKit’s result is a setting they call “Adaptive Tracing Mode” which,

when enabled (which it is by default), does not instrument small methods with a high invocation
count to reduce instrumenting overhead. It is mentioned here because with this function enabled,
the profiler is unable to find the simple, middle and hard methods in its result.

The source code of this program can be found in Appendix F.

2.2.3 Analysis
The time between the simple and middle method, and the time between the middle and hard method
increases by roughly the same amount, but because of the big overhead of instrumenting on these
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methods their differences seem negligible. The overhead is so big that differences between methods
(almost) disappears, which may prevent one from finding the bottleneck.

2.2.4 Threats to validity
To prevent outliers from cluttering the results, we ran the 3 functions 50 times, removed the first
runs because of the JVM warmup. The results in this chapter are averages of the remaining 48 runs.

The results of the profilers are left out of this chapter because they do not add value to this
section as they can’t be compared with unprofiled programs and the difference between the three
methods is comparable to the results above (with exception to YourKit which finds the methods to
be 0% of the execution time). The results of the profilers can be found in Appendix G.

2.3 How does the execution of a Java program differ when
profiling?

We know that an instrumenting profiler injects code to be able to measure programs activity in such
detail. But changing the size of the code changes the optimizing decisions which the JVM’s Just In
Time (JIT) compiler makes [7,11]. Java heavily depends on its optimizations to be able to compete
with other languages in terms of performance [9].

Until now, we showed the overhead of instrumenting, and how this overhead makes the differ-
ences between methods feel negligible. But previous research suggests and some even prove that
instrumenting causes code to behave differently from non-instrumented code.

2.3.1 Method
To answer this subquestion, we will sum existing literature and their results to explain how an in-
strumenting profiler impacts the execution decisions of the JVM and how this makes the execution
different from a normal run.

2.3.2 Results
Dmitriev says that instrumenting causes overhead because it takes time to execute its own methods,
but may in its presence also prevent optimizations from taking place. It also may cause processor
cache misses [3].

Machkasova demonstrated the effect of an instrumenting profiler on the dead code elimination
optimization using the Hprof profiler and a simple program [15]. Below the two test programs they
used for their tests are listed. The Dead code example does not print the result which causes the
JVM to prevent the code from being executed.

Live code (prevents dead code elimination):
1 public static void main(String[] args) {
2 long t1 = System.nanoTime();
3
4 int result = 0;
5 for (int i = 0; i < 1000 * 1000; i++) {
6 result += sum();
7 }
8
9 long t2 = System.nanoTime();

10 System.out.println("Execution time: " +
((t2 - t1) * 1e-9) +

11 " seconds to compute result = " +
result);

12 }
13
14 private static int sum() {
15 int sum = 0;
16 for (int j = 0; j < 10 * 1000; j++) {
17 sum += j;
18 }
19 return sum;
20 }

Dead code (triggers dead code elimination):
1 public static void main(String[] args) {
2 long t1 = System.nanoTime();
3
4 int result = 0;
5 for (int i = 0; i < 1000 * 1000; i++) {
6 result += sum();
7 }
8
9 long t2 = System.nanoTime();

10 System.out.println("Execution time: " +
((t2 - t1) * 1e-9) +

11 " seconds to compute result = ");
12 }
13
14 private static int sum() {
15 int sum = 0;
16 for (int j = 0; j < 10 * 1000; j++) {
17 sum += j;
18 }
19 return sum;
20 }
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When running the live code example without a profiler, it takes 5,86 seconds to execute. Running
the dead code example takes 0,14 seconds to execute. Which shows that the dead code elimination
did take place. Running the live code with a profiler takes 10,41 seconds to execute while running
the dead code takes 10,65 seconds, which shows there is hardly any difference between the two runs.
See the complete data below.

Dead code Live code Dead code (10x) Live code (10x)
Not profiled 0,14 seconds 5,86 seconds 0,145 seconds 68,82 seconds

Profiled 10,41 seconds 10,65 seconds 103,49 seconds 102,81 seconds
In another study Machkasova shows how the Hprof profiler impacts the inlining optimization [1].

To demonstrate this, she used the following code samples:

Easy inline code:
1 for(int i=0;i<2147483647;i++)
2 counter += return1();
3
4 public int return1(){
5 return 1;
6 }

Complex inline code:
1 for(int i=0;i<2147483647;i++)
2 counter = addCount(int i);
3
4 public int addCount(int add) {
5 add=add+1;
6 return add;
7 }

Hand inlined code:
1 for(int i=0;i<2147483647;i++)
2 counter++;

The easy inline and complex inline code should be inlined and comparable to the hand inlined
code, the time it takes to run each test will show if the code is inlined.

run Complex (S) Easy (S) Hand (S) Complex (C) Easy (C) Hand (C)
Unix 0,282 0,284 0,282 6,446 6,45 6,456

Unix, no inlined 11,92 14,06 0,28 29,878 18,174 6,372
Unix, Hprof * 4,634 4,876 0,176 4,92 4,64 0,204

Windows 0,43 0,474 0,45 7,982 8,05 7,972
Windows, no inline 21,578 20,706 0,422 27,048 26,992 7,864
Windows, Hprof * 5,882 5,268 0,244 5,482 5,242 0,252

Runtimes in seconds. (S = Server mode, C = Client mode, * The Hprof runs used a smaller loop
because of the instrumenting overhead)

The results above show that under normal run conditions the inlining optimization on the complex
and easy test both get executed which causes their runtimes to be comparable with the hand inlined
version.

When the tests are run with Java’s --no-inline flag, the difference between the complex, easy
and the hand inlined code becomes visible. This demonstrates the improvement that the inlining
optimization has on the execution time of a program.

The instrumenting profiler’s results are comparable to the run without inlining (it requires far
more time to execute the complex and easy tests compared to the hand inlined version). This shows
the impact of instrumenting profilers on the inlining optimization.

2.3.3 Analysis
The results from Machkasova’s papers confirm Dmitriev’s assumption that instrumenting profilers
cause the JVM to behave different. The results show examples of how the dead code elimination is
prevented when an instrumenting profiler is used. It also shows that inlining likely gets disabled when
an instrumenting profiler is used, which has a high impact on the code’s execution time.

2.3.4 Threats to validity
The tests that Mytkowicz ran with the Hprof profiler, were also done with JProfiler. The results of
these tests we’re not included in the papers because they showed a similar pattern as the Hprof tests.
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Because this behavior is reproducible with another profiler, they explain it is not an artifact of the
Hprof profiler.

2.4 How should we use a instrumenting profiler to find bottle-
necks?

In this chapter we investigated the overhead of instrumenting a program. We show that instrumenting
causes a high overhead on small CPU intensive methods while IO related activity has a far lower
overhead. The difference in overhead causes the instrumenting profiler’s results to have a bias towards
CPU intensive small methods.

We have also shown that the overhead caused by an instrumenting profiler is so big that differences
between methods of different length seem to (almost) disappear, which may prevent a bottleneck
from being found.

Finally we summed some research which shows that instrumenting causes a program to behave
differently because of their influence on the JVMs optimizing decisions.

These arguments together lead us to believe that instrumenting is not suited as a technique for
finding runtime CPU performance bottlenecks. It can help to understand a program as it can show
precise information like which method calls which and how often, but we believe it will likely fail in
actually finding the true bottleneck in a program.

This however does not mean that there is no use for instrumenting profilers. The main advantage of
instrumentation-based profilers over techniques like sampling-based profilers is its flexibility. Virtually
any kind of data can be captured using this technique, from EJB security check occurrences to GUI
event firing.

For CPU performance measurements, the advantage of instrumentation is that it records the exact
number of events such as method invocations; is capable of measuring precise timings (instead of a
statistical approximation); and can be used selectively (for example on just a few methods) [3].

2.5 Discussion
Mccanne and Torek explain that instrumenting profilers are not well suited as ‘offline’ profilers because
of their enormous overhead, but would be far more useful if a user could dynamically, at runtime,
instrument only a part of the code and, when done, remove the instrumenting code bringing the
program back its original state [20]. We agree that having this kind of instrumenting profiler would
make it more practical in use, as it decreases the overhead significantly, but still doesn’t solve the key
problems of instrumenting. As soon as an instrumenting profiler starts, the code will behave differently
causing an observer effect. It might help in investigating once a bottleneck is found, but we doubt it
will help solve the problems an instrumenting profiler has for finding the actual bottlenecks.
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3 Sampling

3.1 What is the impact of profiling on the execution time of
a program?

Unlike instrumenting, sampling profilers are believed to have little overhead because they don’t modify
the source code but instead interrupt the JVM on a regular interval. To test the impact of sampling
on Java programs, we will use the same two programs as used in the instrumenting profiler tests
which stress either the CPU or IO and see how sampling impacts execution time of those programs.

3.1.1 Method
To measure the overhead, we made two small test programs off which one contains a high amount
of method calls which do a simple dividing calculation and the other reads a collection of text files
from a local traditional hard drive. We hope to see how much overhead sampling has on CPU heavy
applications (method calls and calculations) and IO heavy applications.

3.1.2 Results
Impact of sampling on CPU heavy operations

The source of the program which we’ve used to measure the overhead can be found in Appendix B.

Mode Java 6 Java 7
Normal 367 ms 369 ms

No-inline 3.508 ms 3.448 ms
Xprof 382 ms 427 ms
Hprof 374 ms 410 ms

YourKit (20 ms sampling interval) 377 ms 484 ms
YourKit (5 ms sampling interval) 399 ms 485 ms

JProfiler (own method filter) 376 ms 431 ms
JProfiler (no filter) 376 ms 436 ms

Impact of sampling on IO heavy operations

The source of the program which we’ve used to measure the overhead can be found in Appendix D.

Mode Java 6 Java 7
Normal 661 ms 652 ms

No-inline 664 ms 653 ms
Xprof 665 ms 704 ms
Hprof 798 ms 772 ms

YourKit (20 ms sampling interval) 706 ms 701 ms
YourKit (5 ms sampling interval) 871 ms 900 ms

JProfiler (own method filter) 677 ms 677 ms
JProfiler (no filter) 673 ms 749 ms
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3.1.3 Analysis
We have shown that sampling has a very low overhead on performance. Also the overhead on the
CPU intensive tests is roughly the same as the overhead of the IO intentsive operations. Compared
to the instrumenting results of chapter 2.1, this profile technique shows a more realistic spread of
overhead.

3.1.4 Threats to validity
To prevent external factors from cluttering the results, we ran the CPU tests 50 times and removed
the first 3 runs because of the JVM warmup. The results in this chapter are averages of 47 runs
measured with Java’s relative time function nanoTime.

We ran the IO tests 50 times (all with different text files) and removed the first 10 runs because
of the JVM warmup. We did this three times and removed the first run to prevent hard drive wake
ups from cluttering the results. The results are averages of the 80 remaining runs measured with
Java’s relative time function nanoTime.

Java optimizes code if it detects repeating calculations, which is what we are doing in the micro
tests in this chapter. To prevent various Java optimizations from optimizing our tests and therefore
cluttering our results, we have to trick the JVM in thinking each run is unique to prevent it from
optimizing.

Each CPU test consists of a random start point (varying between 0 and 8). Because the loop
continues to 100.000 we believe the difference is small enough not to impact our results, while still
fooling the JVM enough to prevent optimizations from replacing the loop with the end value.

Each IO test grabs two random characters from each IO file and adds them to a variable which
gets printed at the end of the test which prevents the JVM from thinking of this test as dead code
and removing it.

3.2 Do profilers agree on their hottest method?
It makes sense that sampling has a far lower overhead than instrumenting, instrumenting alters
existing code by adding its own code which adds overhead because is has more code to execute and
the growing size of methods makes it harder to optimize them. Sampling does not alter code but
instead interrupts the JVM every few milliseconds.

Sampling profilers assume that the number of samples for a method is proportional to the time
spent in the method [2]. For this to be true, the number of samples taken should be high enough
to make it statistically valid. This number of samples depends per program, the more methods a
program has, the more samples it would need to get a realistic result. When enough samples are
taken, the various sampling profilers should all have a similar result. If two profilers have different
results, only one (if any) can be right.

3.2.1 Method
To test if profilers agree with each other, we will profile 11 programs from the DaCapo Benchmark
Suite [21] with four different popular profilers: Xprof, Hprof, YourKit and JProfiler in both the normal
mode and without the inlining optimization (which gave us some unexpected results in the Hot and
Cold test in chapter 3.6 and the experimental profiler’s Hot and Cold test in chapter 4.1).

3.2.2 Results
From the 11 programs which we’ve profiled of the DaCapo Benchmark Suite, there were only 3
programs on which the profilers agreed on the hottest method (Batik I.7, Lucene Index I.11 and
Xalan I.14).
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3.2.3 Analysis
The results above show that the four used sampling profilers more often disagree then agree. Keeping
in mind that only one profile can possibly be the correct one, this draws into question the trustwor-
thiness of profilers. If a profiler is not able to predict the hottest method of a program correctly, how
can we trust a profiler to be correct about the less hot and therefore less easy to find methods?

3.2.4 Threats to validity
We’ve chosen the DaCapo Benchmark Suite because it consists of a set of open source, real world
applications. It also has the ability to run benchmarks several times on the same JVM instance, which
helps minimizing the JVM warmup from cluttering the results.

All results are based on averages of 100 runs per program, spread over 5 JVM instances (So
5 times 20 runs per JVM instance). All programs where profiled 100 times with each of the 10
profiler / setting variations, which required between 2 and 3 hours per program. Each profiler ran for
approximately 12 to 18 minutes per program, which we believe is high enough to get a statistically
valid number of samples.

When inspecting the results, we sometimes ignored the results from JProfiler labeled ‘jp-own’.
JProfiler by default has a setting that filters some of Java’s classes, while other profilers do not filter
the results.

We decided to run the tests in both settings (labeled ‘jp-own’ for the default setting and ‘jp-all’
for the unfiltered results) because we didn’t want to ignore the default setting as we assume it is
default for a reason.

The results from this setting however appeared to sometimes be close to the unfiltered results of
JProfiler, and the remaining times the results appeared unlikely.

3.3 Is the hottest method disagreement innocent?
There can be different explanations for the disagreement between profilers. We have to keep in mind
that sampling profilers estimate hotness based on their recorded samples [22]. What if, for example,
profiler A finds method x to be 19% and method y to be 18% and profiler B finds method y to
be 19% and method x to be 18%. Then technically the two profilers would disagree, but since both
method x and y are considered hot and close to each other, one could say this disagreement is
innocent.

If we take the top n methods of all four profilers and union their results, we could see that for
instance the four profilers would disagree on each others hottest, but maybe agree on each others
top n methods if we ignore the order in which they occur.

3.3.1 Method
For this test, we will make a union from the top 1 to top 10 methods found across all profilers to see
if profilers start agreeing with each other if the number of methods grow. We will do this for all 11
programs which we profiled from the DaCapo Benchmark Suite. We will calculate the average over
these 11 programs.

3.3.2 Results
The graph below visualizes the average number of different methods found in the results of the 11
profiled programs of the DaCapo Benchmark Suite. It shows the growth from the top 1 to top 10
method list together with the ideal and worst case scenario’s.
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Figure 3.1: The number of different methods found in the top methods lists of Hprof, Xprof, YourKit
and JProfiler based on an average of 11 programs from the DaCapo Benchmark Suite.

The data used for this graph can be found in Appendix I.15.

3.3.3 Analysis
The graph above shows that the disagreement between profilers is not only in the first method but
persists if in the union of more methods.

This indicates that profilers do not only disagree on the hottest method, but seem to continue to
disagree with each other in a close to linear pattern. Which makes their disagreement more serious
and their outcome questionable.

3.3.4 Threats to validity
Because an average of 11 programs can be invalidated if we have a big outlier, we did a manual
inspection to make sure this was not the case with our data.

Other possible threats to validity equal to the previous chapter can be found in section 3.2.4.

3.4 Is the difference in top methods explainable?
Another explanation of profiler disagreement could be that the different hottest methods have a
caller/callee relationship. Two profilers may disagree, but the disagreement may not be problematic;
it is often difficult to understand a method’s performance without also considering its callers and
callees.

If a profile is incorrect, it does not have to mean it cannot help find a bottleneck. For example
the caller/callee scenario might lead to the true bottleneck without much effort, and even though a
profiler was incorrect, one would benefit from its report.

3.4.1 Method
To find out if profiler disagreement can be explainable, we will do a manual code inspection in 3 of the
programs we profiled which appear to be explainable (some profilers agree on each other and the found
method names give the impression that they are related) to find out if some of the disagreements are
explainable.
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3.4.2 Results
After a more extensive inspection, some of the disagreements between profilers, seem to have a reason-
able explanation. We will list three cases where the hottest method disagreement has a caller/callee
relationship.

The graphs in this chapter are visualizations of a union of the top n hottest methods of each
profiler and how the percentages relate to the results of other profilers. Therefore, if we mention the
top n methods, the number of methods in the legend can be higher.

Profiler disagreement in DaCapo’s Avrora

Figure 3.2: Visualisation of the top 6 hottest methods of each profiler on the Avrora program.

Medium$Receiver.waitForNeigbors is considered the hottest method according to Hprof, JProfiler
and Xprof (all between 22% and 27%) but YourKit finds java.lang.Object.wait to be the hottest
method with 78% (Appendix I.6).

Code inspection showed that Medium$Receiver.waitForNeigbors calls an abstract Synchroniser
class for its waitForNeigbors method. The RippleSynchronizer and BarrierSynchronizer waitForNeigbors
methods for example contain the synchronized statement. The synchronized statement uses the
Object.wait method if another thread is active in the marked code 1 2.

The code of Medium$Receiver.waitForNeigbors (listed below) seems unlikely to be as hot as
the profilers think. YourKit is more likely correct although we believe a better prediction would be the
method containing the synchronized statement as Object.wait will be very hard to trace back to
the caller.
1 // public static abstract class Receiver extends Medium.TXRX
2 private void waitForNeighbors(long gtime) {
3 if (this.medium.synch != null) this.medium.synch.waitForNeighbors(gtime);
4 }

Profiler disagreement in DaCapo’s H2

The profilers Hprof, Xprof and JProfiler (without filter) agree that method BaseIndex.compareRows
is the hottest or close to hottest method of the H2 program when we profiled it with inlining disabled.
YourKit however gave only a few percentages to this method and instead blames Row.getValue to
be the hottest method.

1http://en.wikibooks.org/wiki/Java_Programming/API/java.lang.Object
2http://en.wikibooks.org/wiki/Java_Programming/Keywords/synchronized
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Figure 3.3: Visualisation of the top 5 hottest methods of the H2 application profiled without the
inlining optimization (excluding JProfiler with own method filter).

After looking into the code (listed below) we found that the compareRows method uses the
getValue method of the abstract interface SearchRow which gets implemented by Row class.

BaseIndex.compareRows
1 public int compareRows(SearchRow paramSearchRow1, SearchRow paramSearchRow2) throws

SQLException {
2 for (int i = 0; i < this.indexColumns.length; i++) {
3 int j = this.columnIds[i];
4 Value localValue = paramSearchRow2.getValue(j);
5 if (localValue == null)
6 {
7 return 0;
8 }
9 int k = compareValues(paramSearchRow1.getValue(j), localValue,

this.indexColumns[i].sortType);
10 if (k != 0) {
11 return k;
12 }
13 }
14 return 0;
15 }

Row.getValue
1 private final Value[] data;
2 // ...
3 public Value getValue(int paramInt) {
4 return this.data[paramInt];
5 }

Profiler disagreement in DaCapo’s Eclipse

The profilers Hprof, Xprof and JProfiler agree that SimpleWordSet.add is the hottest method of
Eclipse but YourKit finds CharOperation.equals to be the hottest and sees the SimpleWordSet.add
as a far less hot method.
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Figure 3.4: Visualisation of the top 7 hottest methods of the Eclipse application profiled without the
inlining optimization (excluding JProfiler with own method filter).

The code of the two methods is displayed below: Looking into the code (listed below) we found
that the equals method gets called by the add method, which might explain the difference between
the profilers.

SimpleWordSet.add
1 public char[] add(char[] word) {
2 int length = this.words.length;
3 int index = CharOperation.hashCode(word) % length;
4 char[] current;
5 while ((current = this.words[index]) != null)
6 {
7 char[] current;
8 if (CharOperation.equals(current, word)) return current;
9 index++; if (index != length) continue; index = 0;

10 }
11 this.words[index] = word;
12
13 if (++this.elementSize > this.threshold) rehash();
14 return word;
15 }

CharOperation.equals
1 public static final boolean equals(char[] first, char[] second)
2 {
3 if (first == second)
4 return true;
5 if ((first == null) || (second == null))
6 return false;
7 if (first.length != second.length) {
8 return false;
9 }

10 int i = first.length;
11 do { if (first[i] != second[i])
12 return false;
13 i--; } while (i >= 0);
14
15 return true;
16 }

Side note: The code samples in this section are reverse engineered from .class from the jar files
included in the DaCapo Benchmark Suite by JD-GUI and therefore missing comments and might look
different from the original .java files.

3.4.3 Analysis
The investigated programs, all with a minor disagreement, reported methods which had a close
relation to one another. The different methods call each other, either directly or indirectly.
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The results from the Avrora program are somewhat strange and we suspect to be an example of
yield point inaccuracy which we will describe in chapter 3.6 as the majority of the profilers mark a
one line abstract method as hottest.

The results of H2 and Eclipse are clearly examples of caller/callee relationships. Strangely the
methods that YourKit found were not seen as hot by the other profilers, which could be a depth
setting in the profilers although its very unlikely that three different profilers would have this setting
and also in the same depth.

This shows that not all disagreements are bad, although a profiler would technically be wrong, it
might be close enough to the hot method that the actual hot method will be found.

3.4.4 Threats to validity
Possible threats to validity are equal to the previous chapters and can be found in section 3.2.4.

3.5 Do profilers see their hottest methods increase after in-
creasing their weight?

The ideal situation for testing a profiler’s correctness would be to optimize the hottest method and
validate it by re-profiling it. Unfortunately optimizing a method can be very hard and time consuming,
it would be easier to add code to a hot method and validate if the profiler recognizes the increased
hotness of that method.

3.5.1 Method
We will run a series of tests for hot methods found in the programs PMD and Sunflow from the
DaCapo Benchmark Suite. For each hottest and second hottest PMD and Sunflow owned method,
we will run 5 different tests, injecting an algorithm to calculate the first 100, 200, 300, 400 or 500
Fibonacci numbers and profile the altered versions of these programs.

If we compare the results of the different tests, the injected method should increase in hotness,
while other methods’ hotness should decrease.

After injecting the method, we believe 4 things can happen to the data:

• Result 1: The injected method increases in percentages while others decrease or stay the same.
This confirms the hypothesis which could mean that the profiler was correct about the method.

• Result 2: The injected method increases in percentages but some other methods increase as
well. This breaks the hypothesis as other methods should not change.

• Result 3: The injected method does not increase in percentages but some others do. This
clearly breaks the hypothesis, and can be seen as a conformation that the profiler was wrong
about a method.

• Result 4: Nothing changes or barely changes. This is the least conclusive, which means the
injected algorithm didn’t have enough impact to show differences in the results which likely
means the method wasn’t as hot as the profiler reported.
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3.5.2 Results
Results of injecting PMD

Profiler Method Result 1 Result 2 Result 3 Result 4
(All net.sourceforge.pmd)

Xprof SimpleNode.findChildrenOfType X
ClassScope.findVariableHere X

Xprof AbstractJavaRule.visit X
(no inlining) ClassScope.findVariableHere X
Hprof ast.JavaParser.jj_3R_91 X

ast.JavaParser.jj_3R_120 X
Hprof ast.JavaParser.jj_3R_91 X
(no inlining) ast.JavaParser.jj_3_41 X
JProfiler SimpleNode.findChildrenOfType X

ast.JavaParser.jj_3R_91 X
JProfiler ast.JavaParser.jj_3R_179 X
(no inlining) ClassScope.findVariableHere X
YourKit JavaParser.jj_scan_token X

JavaParser.jj_2_41 X
YourKit JavaParser.jj_scan_token X
(no inlining) JavaParser.jj_2_41 X

Results of injecting Sunflow

Profiler Method Result 1 Result 2 Result 3 Result 4
(All org.sunflow.core)

Xprof accel.KDTree.intersect X
accel.BoundingIntervalHierarchy.intersect X

Xprof primitive.TriangleMesh$WaldTriangle.intersect *
(no inlining) accel.KDTree.intersect X
Hprof primitive.TriangleMesh.intersectPrimitive X

accel.KDTree.intersect X
Hprof primitive.TriangleMesh$WaldTriangle.intersect *
(no inlining) accel.KDTree.intersect X
JProfiler primitive.TriangleMesh.intersectPrimitive X

accel.KDTree.intersect X
JProfiler primitive.TriangleMesh$WaldTriangle.intersect *
(no inlining) accel.KDTree.intersect X
YourKit primitive.TriangleMesh.intersectPrimitive X

accel.KDTree.intersect X
* The results for the TriangleMesh$WaldTriangle.intersect are not mentioned in this table be-
cause those tests weren’t run. See the threats of validity for more details.

The data which led to these conclusions are left out of this chapter to keep it short, but can be
found in Appendix J and K.

3.5.3 Analysis
The injecting and re-profiling of the PMD and Sunflow programs had the total opposite results from
one another.

The PMD results were often unclear. In some cases the injected method increased in hotness,
but another increased just as much, or even more. In some cases the injected method increased and
later decreased. In some cases nothing seemed to change.

The Sunflow injections however had a far clearer effect. Most of the injections had the expected
result of increasing the injected method while others decrease (or at the very least stay the same),
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and the remaining results the injected method increased and some others increased as well, but not
in the phase the injected method increased.

The impact in execution time after injecting the method also differed. While the PMD results
showed little overhead after being injected, the Sunflow injections had such a big effect that we
had to stop the tests due to time limitations. The most extreme example was the injection of
TriangleMesh.intersectPrimitive where a normal average run with xprof was around 35 seconds,
but after injecting the 300 Fibonacci numbers algorithm, it increased to an average of 1182 seconds
per run.

3.5.4 Threats to validity
A very important factor that can invalidate the results mentioned above is that the PMD injection
tests have been done on a Quad core MacBook Pro running OSX (Machine A) while the Sunflow
injection tests have been done on a Single core Ubuntu VPS (Machine C).

Because this is a totally different hardware platform, we ran the PMD program without injec-
tions on that same Ubuntu VPS and compared the top 5 hottest methods found on both platforms
(Appendix I.4).

We found roughly the same methods on these two totally different environments, not always in
the same order and not with the same percentages, but because of the variation in hardware this
was expected. The similarity however, was enough for us to believe the injection results would be
comparable on another platform.

A few test runs of the Sunflow injections on the MacBook Pro also showed an extreme increase
in time just like on the Ubuntu VPS.

Due to a misconfiguration in the YourKit profiler with inlining disabled in the Sunflow program
which we found later on, the results are not included. Because the normal run had nearly the same
top 10 run, and was able to detect the injections, we assume the run with inlining disabled will also
recognize it.

Because the injection had an extreme impact on the runtime of the tests (going from 2 hours for
the not injected class, up to 2 weeks for an injected run), we had to stop the tests because of time
limitations, for this reason, the primitive.TriangleMesh$WaldTriangle.intersect injections
were not executed.

3.6 What could cause profilers to be wrong?
Sampling profilers base their results on the assumption that number of samples for a method is
proportional to the time spent in the method, which can only be true if every part of the program
has an equal probability to be profiled. Unfortunately a profiler cannot ‘just’ interrupt a program at
any time it desires. Instead, the built-in stack trace sampling methods that sampling profilers use will
only make stack trace sampling happen at safe points. Safe points (yield points) are places in the
code of which the VM knows it can do a whole host of things safely (like initiate garbage collection).
The locations of these safe points are determined by the JIT (Just In Time compiler), which often
puts them in places not ideal for CPU profiling [7].

Yield points are not free and compilers often optimize their placement or decide to omit yield
points from a loop if it can establish that the loop will not do any allocation and will not run
indefinitely [2].

3.6.1 Method
To demonstrate the impact of suboptimal placement and removal of yield points, we will reproduce
the Hot and Cold program results from Mytkowicz’s paper [2]. The hot method clearly accounts for
most of the execution of this program while the cold accounts for almost none.
1 static int[] array = new int[1024];
2
3 public static void hot (int i) {
4 int ii = (i + 10 * 100) % array.length;
5 int jj = (ii + i / 33) % array.length;
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6 if (ii < 0) ii = -ii;
7 if (jj < 0) jj = -jj;
8 array[ii] = array[jj] + 1;
9 }

10
11 public static void cold() {
12 for (int i = 0; i < Integer.MAX_VALUE; i++) {
13 hot(i);
14 }
15 }

The complete code can be found in Appendix H.

3.6.2 Results
Profiling the Hot and Cold program with the different profilers confirmed the results from Mytkowicz
(With exception of the YourKit results when inlining was disabled which we will discuss in the threats
to validity).

Hot Cold Main Other
Hprof 0,37% 1,13% 0% 98,49%
Xprof 0% 1,09% 0% 98,91%

JProfiler 0% 0,4% 0% 99,6%
YourKit 0% 0,0003% 0% 99,9997%

Hprof (inlining disabled) 0% 100% 0% 0%
Xprof (inlining disabled) 0% 99,995% 0% 0,005%

JProfiler (inlining disabled) 0% 99,9996% 0% 0,0004%
YourKit (inlining disabled) 98,1357% 1,8635% 0% 0,0007% *

The other contains a collection of Java native functions like: AbstractStringBuilder.<init>,
StringBuilder.<init>, AbstractStringBuilder.append, PrintStream.println, etc.

The Xprof and Hprof profiler also display the number of samples taken, which was surprisingly
low in their normal runs. Xprof took only 281 samples during the nearly 83 minute lasting test and
Hprof took 265 samples during the 82,5 minute lasting test. This is a clear indicator of yield point
omission.

3.6.3 Analysis
The results above show how the four sampling profilers are not able to detect the hot method as
hottest (See threats to validity for the YourKit exception). When a profiler is not able to detect a
method as obvious as the hot method due to the placement and optimization of yield points, how
can one guarantee a realistic profile of a real world application where the hottest method will be far
less obvious?

3.6.4 Threats to validity
The YourKit results when we disabled the inlining optimization gave some unexpected results. We
think this can be explained because the YourKit profiler is believed to do its own bytecode re-writing,
which also got noticed by Mytkowicz [2].

We were not able to profile the DaCapo Benchmark Suite with YourKit without using the
--no-validation flag, which ignores the validation errors of DaCapo Benchmark Suite. These
validations are based on line counts and byte counts. This made YourKit suspicious of doing byte-
code rewriting as the other profilers were had no problems running the tests without this flag.

Another reason is that the YourKit results contain their own methods, which could only happen
if the profiler injects some code of its own. For example the Lucene Index program’s second hottest
method, according to YourKit, is the Table.createRow from the com.yourkit.probes package
(Appendix I.11).

To make sure enough samples were taken we ran the Hot and Cold loop 250 times, which took
between 1 and 5 hours depending on the overhead of the profiler and the ‘no inline’ flag.
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3.7 How does the execution of a Java program differ when
profiling?

While yield points explain why profilers might produce wrong profiles, it does not explain why profilers
disagree with each other. If the profilers all use the yield points for sampling, they should all be biased
in the same way and thus produce the same data.

3.7.1 Method
To answer this question, we will sum existing research from Mytkowicz [13] to explain why profilers
disagree with each other.

3.7.2 Results
Mytkowicz explains that, due to the presence of a sampling profiler, a program behaves different in
two ways: (i) directly, because the presence of different profilers causes differently optimized code,
and (ii) indirectly, because the presence of different profilers causes differently placed yield points.
While (i) directly affects the programs performance, (ii) does not affect the program’s performance,
but it affects the location of the “probes” that measure performance.

They show how (ii) contributes (more) to disagreement than (i) by profiling 8 programs with Xprof
and with Xprof together with either Hprof, JProfiler or YourKit. They visualize the absolute difference
of the hottest method (the percentage rapported) of Xprof without another profiler (variable x in the
graph) and Xprof when ran together with another profiler (variable y in the graph).

Figure 3.5: Visualisation of the observer effect of a sampling profiler on a program (From [2])

Another experiment which they did was to use a debug build of Hotspot to count the number
of yield points the JIT places in a method. They found that, the number of yield points placed in
a method, depends on which profiler is used. As an example they explain how profiling the Antlr
program with Xprof gave them an average of 9 yield points per method for the hottest 10 methods
while profiling with Hprof gave them an average of 7 yield points per method.

3.7.3 Analysis
That a profiler doesn’t alter a program’s code, doesn’t mean it can’t change the behavior of that
program. When a profiler runs it launches some background threads which also can have effect on
the memory layout. This can change the behavior of a program. Because profilers have different
memory requirements and may perform different background activities, the effect of a program’s
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behavior differs between profilers. Because program behavior affects the JVM’s dynamic optimization
decisions, using a different profiler can lead to differences in compiled code [7, 13].

3.7.4 Threats to validity
To ensure that the profilers have enough samples and avoid start-up effects, all tests were executed
20 times on the same JVM invocation.

3.8 How should we use a sampling profiler to find bottlenecks?
Throughout this chapter, we have explained several concerns about sampling profilers. Compared to
instrumenting profilers, sampling profilers have a very low overhead.

The problem with sampling profilers however is not their overhead, but the way they are imple-
mented. Sampling profilers often do not agree with each other, and even though the disagreement is
sometimes because of a caller/callee relation of methods, it does not change that they still disagree.

If profilers would only disagree on caller/callee method relations, they would still be useful as a
performance analyst will probably look at the callers and callees to figure out what a method is doing.
But after we increased the weight of the hottest methods of the PMD program, the number of times
a profiler was able to detect an increase in a method’s hotness was surprisingly low which suggests a
profiler might have been wrong about that method.

Previous research showed that a sampling profiler’s dependency on yield points prevents the code
from having an equal probability to get sampled; together with the influence that a profiler’s presence
has on the JVM’s optimization decisions makes their result unreliable. A sampling profiler is based
on the assumption that the number of samples for a method is proportional to the time spent in the
method, which can only be true if every part of the code has an equal probability to get sampled.
But because of a sampling profiler relies on yield points, of which the placement will be optimized
and sometimes omitted by the JVM and influenced by the presents of the profiler, this cannot be
guaranteed.

Another point that we haven’t emphasized in this thesis is that a sampling profiler’s outcome can
only be reliable if a high number of samples is taken. This limits the programs to those who spent a
significant amount of time doing something CPU intensive.

This however does not mean that sampling profilers are unable to find performance bottlenecks.
Looking at the Sunflow application the profilers agreed on most of each others results and the injection
tests clearly showed that the hot methods were indeed hot (section 3.5.2). The problem we found is
not that sampling profilers don’t work, but that one can’t be sure if their outcome is wrong or right.

If a sampling profiler is being used to find a performance bottleneck, keep in mind that the profiler
could be wrong just as easy as it could be right. It is important to validate if the profiler is right
or wrong by, for example, testing the profiler’s output by increasing the weight of the method and
testing if the profiler recognizes the increase in hotness like we did in section 3.5.
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4 Another approach to sampling

Current sampling profilers are believed to be inaccurate because of their dependency and influence on
yield points which has effect on the samples that those profilers try to take. Mytkowicz introduced
another way to build a sampling profiler, which does not suffer from the inaccuracies caused by yield
point dependency. He made a proof of concept profiler, called tprof, which does not use the JVMTI
(Java Virtual Machine Tool Interface) to take its samples. Instead it uses standard UNIX signals to
pause the Java application thread and take a sample of the current executing method. This technique
is found to be effective, as shown in [2].

Unfortunately tprof is no longer available and therefore can’t be tested. Manson luckily found
this approach promising [7] and recently made a proof of concept profiler with some similarities to
tprof called LightWeight profiler1.

4.1 Is LightWeight profiler able to detect the hot method in
the HotAndCold test?

Section 3.6 showed how the traditional sampling profiler suffers from being limited to only profile at
yield points. If this approach of sampling does not suffer from yield point inaccuracies, it should be
able to detect the hot method from the previously done Hot and Cold test.

4.1.1 Method
To test if LightWeight profiler does not suffer from suboptimal placement and removal of yield points,
we will run the same Hot and Cold program as done in chapter 3.6 where the hot method clearly
accounts for most of the execution of this program while the cold accounts for almost none.

If this profiling technique does not depend on yield points for measurement, it should be able to
find the hot method and report it as hot.

4.1.2 Results
Hot Cold Main Other

LightWeight 23,43% 74,83% 0% 1,67% *
LightWeight (inlining disabled) 86,05% 9,77% 0% 4,15%
The results above show that both the normal and the run without the inlining optimization do

find the hot method, but the normal run does not mark the hot as the hottest.
After inspecting the results we found that there is an explanation for the difference between the

normal run and the run without the inlining optimization. The visualization below shows that the
profiler does not find the hot method during the entire run.

1https://code.google.com/p/lightweight-java-profiler/
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Figure 4.1: Visualization of the spreading of found hot method samples during the Hot and Cold test
running normally

The visualization below shows that the test without the inlining optimization has a far better
spreading of the hot method.

Figure 4.2: Visualization of the spreading of found hot method samples during the Hot and Cold test
running without the inlining optimization

The two visualizations above show a clear difference in the spreading of found samples of the
hot method. While the run without inlining seems to find the hot method during the entire run, the
normal run has a large part where it isn’t able to find the hot method.

The table below shows the number of samples found in the each of the runs:
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Found samples Found samples
Method in normal run in run without inlining

HotAndCold.cold 2245 308
HotAndCold.hot 703 2714

. 50 131
Non Java thread (GC/JIT/pure native) 2733 52

In java code, unknown frame 1232 719
sun.misc.floatingDecimal.<clinit> 1 0

java.security.SecureClassLoader.getPermissions 1 0
sun.misc.URLClassPath$FileLoader.getResource 0 1

Total 6965 3925
What stands out is that the normal run seems to find a lot more GC/JIT/pure native samples,

which could explain the gap in the results of the normal run is due to some optimizations.

4.1.3 Analysis
The results of the Hot and Cold test with the inlining optimization were surprising at first. The
profiler was able to detect the hot method far more often than the traditional profilers, but it was not
the result we expected. Mytkowicz however explained in this paper that his profiler tprof had to be
run with inlining disabled because of the limitation of reading the stack and optimizations. We were
able to confirm that this is also true for LightWeight profiler after an inspection in the raw output
which we visualized above.

4.1.4 Threats to validity
To make sure enough samples were taken we ran the Hot and Cold loop 250 times, which for both
tests took at least an hour.

The results in this chapter are measured on the OpenJDK JVM running on a virtual Ubuntu
(Machine B).

4.2 Do profilers see their hottest methods increase after in-
creasing their weight?

Because this sampling approach had far better results in the Hot and Cold test, we decided to profile
the PMD program and see how the results which this profiler found would be influenced by increasing
its weight.

4.2.1 Method
We will run the PMD program from the DaCapo Benchmark Suite with the LightWeight profiler to
find the two hottest methods of PMD with and without the inlining optimization. For each of the
hottest methods, the Fibonacci algorithm calculating the first 100, 200, 300, 400 and 500 Fibonacci
numbers will be injected and the program will be re-profiled.

If we compare the results of the different tests, the injected method should increase in hotness,
while other method’s hotness should decrease.

After injecting the method, we believe the same 4 things can happen to the data:

• Result 1: The injected method increases in percentages while others decrease or stay the same.
This confirms the hypothesis which could mean that the profiler was correct about the method.

• Result 2: The injected method increases in percentages but some other methods increase as
well. This breaks the hypothesis as other methods should not change.

• Result 3: The injected method does not increase in percentages but some others do. This
clearly breaks the hypothesis, and can be seen as a conformation that the profiler was wrong
about a method.
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• Result 4: Nothing changes or barely changes. This is the least conclusive, which means the
injected algorithm didn’t have enough impact to show differences in the results which likely
means the method wasn’t as hot as the profiler reported.

4.2.2 Results
Profiler Method Result 1 Result 2 Result 3 Result 4

(All net.sourceforge.pmd)
LightWeight ast.SimpleJavaNode.childrenAccept X

util.Benchmark.mark X
LightWeight AbstractRuleChainVisitor.visitAll X
(no inlining) ast.SimpleJavaNode.childrenAccept X
The data that led to these conclusions are not included in this chapter, but can be found in

Appendix J.8 and J.9.

4.2.3 Analysis
The results above show that the ast.SimpleJavaNode.childrenAccept was indeed a hot method.
The other two methods however did not have the expected results.

Unfortunately the LightWeight profiler was very unstable which made running tests with it a
very time consuming job and the amount of data we managed to obtain is not enough to base any
conclusions on.

4.2.4 Threats to validity
To be sure our results are statistically valid we used the same preventative measures as described in
section 3.2.4.

The tests of this chapter were ran on a virtual Ubuntu (Machine B) using a different JVM than
the tests the traditional sampling profiler. There are to many different variables therefore we cannot
make a trustworthy comparison between these results and the results from chapter 3.5.

4.3 Future work
We believe that even though the PMD injection tests were a bit disappointing, this profiling technique
is promising. Unfortunately we were not able to test this profiler and profiling technique in more detail
due to time limitations, but based on the results described by Mytkowicz on his profiler tprof [2], we
believe this technique is worth investigating.

Mytkowicz explains that traditional sampling profilers have two major problems, the first being
their dependency on yield points for taking samples and their second being the lack of a random
factor in taking samples. Sampling profilers, including LightWeight profiler, only take samples on a
fixed interval. If a profiler lacks a random factor, the interval could be scheduled together with other
activities like thread switches which would bias the results [2, 23].

The profiler tprof, which took samples on interval t + r (where t is a fixed interval of 10
milliseconds and r is a random value between -3 and 3 milliseconds), was able to find bottlenecks
in two programs by not having yield point dependency and having a random factor. They however
don’t show how this profiler performs without the random factor.

We would like to see how the LightWeight profiler performs with a random factor in its intervals
so a comparison can be made with and without it.
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5 Conclusion

The research question was stated as follows: How accurately do Java profilers predict runtime per-
formance bottlenecks?

There are two types of CPU profiling techniques currently used in Java: Instrumenting and
Sampling. We have shown that instrumenting, due to its enormous overhead on performance, is
not a well suited technique to find performance bottlenecks. The overhead will likely be too big to
run this profiler in production environment and differences between methods might appear smaller
and neglectable. More importantly, instrumenting profilers alter the program’s (byte)code which it
impacts the JVM’s optimization decisions which will cause the program to behave different when
being profiled.

Instrumenting may have very detailed reporting, which can be useful for understanding which
methods call which, how often, etc. But we believe it is not suited for finding CPU performance
bottlenecks.

Sampling has a far lower overhead on performance, which makes it possible to run this type of
profiler in a production environment. Sampling profilers estimate their results based on samples which
they take at a predefined interval, and rely on the hypothesis that the number of samples for a method
is proportional to the time spent in a method. For this hypothesis to be true, each part of the code
should have an equal probability to be sampled.

Unfortunately taking samples is not free, and cannot be done at every moment the profiler desires
it. Sampling profilers depend on the JVMTI for collecting stack traces, which uses yield points (safe
points in the code) for stack calls. Yield points are heavily optimized by the JVM and JIT to lower
the performance penalty which impacts the profilers accuracy a lot. Previous research has shown that
some JVMs do not only optimize their placement, but may also decide to skip yield points which will
impact the profiler’s accuracy even more.

This however does not mean that sampling profilers are wrong, we had some programs for which
they were unable to predict bottlenecks, and others which they predicted bottlenecks very well. A
simple way to test the trustworthiness of the profilers we used was to compare their hottest method
with other profilers. We used 4 well known profilers on 11 programs, on which they agreed on the
hottest methods of 3 programs. If two profilers show different results for the same program, only one
(if any) can be right.

We cannot conclude with any reliability whether sampling profilers are suited for finding perfor-
mance bottlenecks, due to the conflicting nature of our results. As such, when using a sampling
profiler, one should keep in mind that the results could easily be wrong.

There is however previous research which explains an alternative to current sampling implemen-
tations, which might lend itself far better to finding performance bottlenecks in Java software. First
introduced by Mytkowicz and used as a form of inspiration by Manson, which uses standard UNIX
calls to interrupt the program from outside the JVM and therefore skips the yield point inaccuracy
problem. It does however remove the platform independent advantage which existing Java profilers
have and needs more research before we can conclude if this technique suitable for finding performance
bottlenecks, but it gives some promising results which makes it an interesting candidate.
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6 Future work

In the Sunflow program the sampling profilers were able to find bottlenecks which after injection
had an enormous impact on the execution time of the tests. The exact data is not included in
this thesis because we had to stop the tests from running. The most extreme method was the
TriangleMesh.intersectPrimitive which before injection took around 2 hours to be profiled
1000 times in various profiling settings but we had to terminated while running with the Fibonacci
algorithm (300 numbers) after being finished with the 100, and 200 because it was running for more
than 2 weeks non stop.

This impact in time was far higher than the PMD program of which the highest increase in time
(with 500 Fibonacci numbers) was around 5% (from 2550 ms to 2675 ms for JavaParser.jj_3R_120).

Were the bottlenecks in Sunflow so obvious that profilers just couldn’t get it wrong or was the
PMD program more likely to suffer from yield point inaccuracy and omitting like we saw in the Hot
and Cold test?

We would recommend future work to find out what program implementations, or perhaps design
patterns, prevent or help profilers in predicting bottlenecks. If we would know what implementations
hinder a sampling profiler’s accuracy, we would have more certainty about a profiler’s results.

Another aspect of finding a bottleneck which we haven’t discussed is the reporting of a profiler’s
findings. If we assume that there is a profiler which is able to profile an application in such a way
that it is able to find the actual bottlenecks of that application. Then it still does not mean the
bottleneck is found.

Profilers can be used for far more than only finding CPU performance bottlenecks, and all this
data has to be presented in some way. Because a profiler’s reporting tool is not specifically designed
to find a CPU performance bottleneck, but rather to report whatever it is the profiler finds, it might
report too much information, making it hard for a user to find the actual bottleneck.

Sampling profilers have a big downside of not knowing much of the code they are profiling, but
since the user is likely to profile a program of which he has the source code, why not use that
program’s code as a source of information to help the profiler?

Profilers report bottlenecks on a ‘per method’ basis, but methods are not of equal length. This
can be an unfair comparison which can lead the user away from a possible bottleneck. If method a
consists of 50 lines of code and has the same hotness as method b which only has 4 lines of code,
than each line of code (on average) of method b would be far hotter and could possibly be a bigger
bottleneck than method a which might be more of a object oriented code smell.

Zaparanuks and Hauswirth introduced a profiler called AlgoProf [24], which searches for loops
and recursions in programs to detect algorithms and estimated a cost function for each algorithm.
They explain that a traditional profiler does not help in understanding how the cost was affected by
the algorithm, the program input and the underlying implementation. Their approach addresses this
limitation by providing a cost function that relates program input to algorithmic steps.
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A Efficiency of Time measurement in Java

In this thesis, some results are based on measuring the time it takes to execute micro tests. When
measuring, it is important to know the inaccuracy of measuring time.

We have done some micro tests to find out how accurate Java measures time, so we know how
large our tests should be for this inaccuracy to be negligible.

Used code
Below you see the code used for the measuring.
1 import java.util.ArrayList;
2 import java.util.Collections;
3 import java.util.HashMap;
4
5 public class TimeMeasurement {
6
7 private static final int loops = 240;
8 private static final int millisDelay = 1000;
9

10 public static void main(String[] args) {
11 HashMap<Long,Integer> times = new HashMap<Long,Integer>();
12 long total = 0;
13 try {
14 for (int i = 0; i < loops; i++) {
15 // long t = runCurrentMillisTimeTest();
16 long t = runNanoTimeTest();
17 total += t;
18 if (times.containsKey(t)) {
19 times.put(t, times.get(t) + 1);
20 }
21 else {
22 times.put(t, 1);
23 }
24 }
25 }
26 catch(InterruptedException e) {
27 System.out.println(e.getMessage());
28 }
29 System.out.println(loops + " loops of " + millisDelay + "ms delay:");
30 ArrayList<Long> keys = new ArrayList<Long>(times.keySet());
31 Collections.sort(keys);
32 for (long key : keys) {
33 System.out.println("Time " + key + ": " + times.get(key));
34 }
35 System.out.println("Avg: " + ((double)total / loops));
36 }
37
38 public static Long runNanoTimeTest() throws InterruptedException {
39 Long startTime = System.nanoTime();
40 Thread.sleep(millisDelay);
41 Long endTime = System.nanoTime();
42 return endTime - startTime;
43 }
44
45 public static Long runCurrentMillisTimeTest() throws InterruptedException {
46 Long startTime = System.currentTimeMillis();
47 Thread.sleep(millisDelay);
48 Long endTime = System.currentTimeMillis();
49 return endTime - startTime;
50 }
51
52 }
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Results
240 sleeps of 1000ms measured with System.currentTimeMillis

As seen in the graph above the majority of all runs are rounded to 1001ms which gives an 1ms
additional runtime.
Average time is 1000,9875ms.

240 sleeps of 100ms measured with System.currentTimeMillis

Same as with the 1000ms sleeps, most of the 100ms sleep runs take 101ms to run which also gives
an 1ms additional runtime.
Average time is 100,925ms.
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2000 sleeps of 10ms measured with System.currentTimeMillis

The 10ms sleep runs take about 11ms to run, which gives a comparable result as the 100 and 1000ms
runs of 1ms additional runtime.
Average time is 10,919ms.

20000 sleeps of 1ms measured with System.currentTimeMillis

Different from other tests, the majority of 1ms sleep runs are rounded to 1ms runtime giving no
overhead. Because of the rounding to milliseconds these results don’t say anything, although I was
hoping on a majority of 2ms because of an 1ms overhead found in all previous tests.
Average time is 1,1608ms.
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240 sleeps of 1000ms measured with System.nanoTime

As seen in the graph above the vast majority of the results has around 1ms overhead. Because of the
large nano time many different results are found and the graph is not as clear as with the millisecond
times. To clarify the peak is starts at 1001065000 and ends with 1001075000.
Average time is 1000994096.

240 sleeps of 100ms measured with System.nanoTime

Comparable with the 1000ms sleeps, most of the 100ms runs are also a little over 1ms. The peak
starts at 101026000 and ends at 101032000.
Average time is 100908296.
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2000 sleeps of 10ms measured with System.nanoTime

The 10ms sleep runs also take a little over 1ms more then the time spent ‘sleeping’, to be exact the
peak begins at 11022000 and ends at 11036000.
Average time is 10939243.

20000 sleeps of 1ms measured with System.nanoTime

Same as with the millisecond tests, most results are close to the 1ms. The peak starts at 1136000,
reaches its highest by far at 1146000 and slowly decreases to until 1155000 with a small peak again
at 1217000.
Average time is 1158916,75.

Discussing results
The results above show that measuring time has some overhead. The different scopes all show that
the overhead is close to 1 millisecond but can vary a little. Therefore we believe it is important to
make the tests big enough for these differences to be negligible.
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B Source code CPU intensive test

The code below is used in chapters 1.4.2, 2.1 and 3.1. All tests were run on Machine A.
1 import java.util.Random;
2
3 import tools.Helpers;
4
5 public class DivideInlineShort {
6
7 public static void main(String[] args) {
8 int n = args.length > 0 ? Integer.parseInt(args[0]) : 10;
9 Random r = new Random();

10 for (int i = 0; i < 50; i++)
11 runTest(n, r.nextInt(8) + 1);
12 }
13
14 public static void runTest(int n, int ran) {
15 int counter = 0;
16 long timeStart = System.nanoTime();
17
18 for (int j = 0; j < n; j++)
19 for (int i = ran; i < 100000 + ran; i++)
20 counter += return1(i);
21
22 long timeEnd = System.nanoTime();
23 System.out.println(
24 Helpers.roundedTimeInMillis(timeStart, timeEnd) + "\t\t" +
25 counter);
26 }
27
28 public static int return1(int i) {
29 return i / i;
30 }
31 }
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C Results of linear growth test running CPU
intensive runs

The results below are used in chapters 2.1 and 3.1. All tests were run on Machine A.
The results below show that normal runs and sampling runs increase linearly when the number

of outer loops are increased. It shows that doubling the number of loops also doubles the total time
spent on this test.

The results below show that instrumented runs also increase linearly when the number of outer
loops are increased.
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D Source code IO intensive test

The code below is used in chapters 2.1 and 3.1. All tests were run on Machine A.
1 import java.io.BufferedReader;
2 import java.io.FileNotFoundException;
3 import java.io.FileReader;
4 import java.io.IOException;
5 import java.util.Random;
6
7 import tools.Helpers;
8
9 public class IOLoop {

10 private static final String relativeFileLocation = "/textfiles/";
11 private static final String fileName = "demo-file-";
12 private static final String fileExtention = ".txt";
13 private static final int numberOfLoops = 50;
14 private static final int numberOfFilesPerLoop = 2000;
15
16 public static void main(String[] args) {
17 IOLoop l = new IOLoop();
18 // If the string ’createfiles’ is passed first generate all files
19 if (args.length > 0 && args[0].equals("createfiles")) {
20 Helpers h = new Helpers();
21 h.createTextFiles(numberOfFilesPerLoop * numberOfLoops,
22 Helpers.getCurrentDirectory(l),
23 relativeFileLocation,
24 fileName,
25 fileExtention);
26 }
27 l.runTest();
28 }
29
30 public void runTest() {
31 Random r = new Random();
32 String path = Helpers.getCurrentDirectory(this) + relativeFileLocation + fileName;
33
34 for (int j = 0; j < numberOfLoops; j++) {
35 String s = "";
36 long startTime = System.nanoTime();
37
38 for (int i = (j * numberOfFilesPerLoop); i < ((j + 1) * numberOfFilesPerLoop); i++) {
39 String fileContent = getFirstLineOfFile(path + i + fileExtention);
40 int randomPos = r.nextInt(fileContent.length() - 2);
41 s += fileContent.substring(randomPos, randomPos + 1);
42 }
43
44 long endTime = System.nanoTime();
45 System.out.println(
46 Helpers.roundedTimeInMillis(startTime, endTime) + "\t\t" +
47 (s.length() > 10 ? s.substring(0, 10) : s));
48 }
49 }
50
51 private String getFirstLineOfFile(String url) {
52 try {
53 BufferedReader br = new BufferedReader(new FileReader(url));
54 String t, text = "";
55 if ((t = br.readLine()) != null) {
56 text = t;
57 }
58 br.close();
59 return text;
60 }
61 catch (FileNotFoundException e) { e.printStackTrace(); }
62 catch (IOException e) { e.printStackTrace(); }
63 return "";
64 }
65 }
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E Source code CPU and IO intensive test

The code below is used in chapter 2.1. All tests were run on Machine A.
1 import java.io.BufferedReader;
2 import java.io.FileNotFoundException;
3 import java.io.FileReader;
4 import java.io.IOException;
5 import java.util.Random;
6 import tools.Helpers;
7
8 public class DivideAndIOTest {
9

10 private static final String relativeFileLocation = "/textfiles/";
11 private static final String fileName = "demo-file-";
12 private static final String fileExtention = ".txt";
13 private static final int numberOfLoops = 50;
14 private static int numberOfDividesPerLoop = 1000;
15 private static int numberOfFilesPerIOLoop = 2000;
16
17 public static void main(String[] args) {
18 DivideAndIOTest di = new DivideAndIOTest();
19 // If the string ’createfiles’ is passed first generate all files
20 if (args.length > 0) {
21 if (args[0].equals("createfiles")) {
22 Helpers h = new Helpers();
23 h.createTextFiles(numberOfFilesPerIOLoop * numberOfLoops,
24 Helpers.getCurrentDirectory(di),
25 relativeFileLocation,
26 fileName,
27 fileExtention);
28 }
29 else if (args.length > 1) {
30 numberOfDividesPerLoop = Integer.parseInt(args[0]);
31 numberOfFilesPerIOLoop = Integer.parseInt(args[1]);
32 }
33 }
34 di.runTest();
35 }
36
37 public void runTest() {
38 Random r = new Random();
39 String path = Helpers.getCurrentDirectory(this) + relativeFileLocation + fileName;
40
41 for (int i = 0; i < numberOfLoops; i++) {
42 // Loop preps:
43 String tempIO = "";
44 int tempDivide = 0;
45 int randomDivide = r.nextInt(8) + 1;
46
47 // Loop:
48 long startTime = System.nanoTime();
49
50 for (int j = (i * numberOfFilesPerIOLoop); j < ((i + 1) * numberOfFilesPerIOLoop); j++) {
51 String fileContent = getFirstLineOfFile(path + j + fileExtention);
52 int randomPos = r.nextInt(fileContent.length() - 2);
53 tempIO += fileContent.substring(randomPos, randomPos + 1);
54 }
55
56 long betweenTime = System.nanoTime();
57
58 for (int j = 0; j < numberOfDividesPerLoop; j++) {
59 for (int k = randomDivide; k < (100000 + randomDivide); k++) {
60 tempDivide += return1(k);
61 }
62 }
63
64 long endTime = System.nanoTime();
65 // End loop, rest is anti-deadcode elimination and results
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66 System.out.println(
67 " Total: " + Helpers.roundedTimeInMillis(startTime, endTime) + "\t\t" +
68 " IO: " + Helpers.roundedTimeInMillis(startTime, betweenTime) + "\t\t" +
69 " CPU: " + Helpers.roundedTimeInMillis(betweenTime, endTime) + "\t\t" +
70 (tempIO.length() > 10 ? tempIO.substring(0, 10) : tempIO) + " " +
71 tempDivide);
72 }
73 }
74
75 private String getFirstLineOfFile(String url) {
76 try {
77 BufferedReader br = new BufferedReader(new FileReader(url));
78 String t, text = "";
79 if ((t = br.readLine()) != null) {
80 text = t;
81 }
82 br.close();
83 return text;
84 }
85 catch (FileNotFoundException e) { e.printStackTrace(); }
86 catch (IOException e) { e.printStackTrace(); }
87 return "";
88 }
89
90 private int return1(int i) {
91 return i / i;
92 }
93
94 }
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F Source code instrumenting overhead demo
code

The code below is used in chapter 2.2. All tests were run on Machine A.
1 import java.util.Random;
2
3 import tools.Helpers;
4
5 public class InstrumentingOverhead {
6
7 static final int calculationLoopSize = 2000000;
8 static final int numberOfRuns = 50;
9 static int[] array = new int[1024];

10 static double[][] data = new double[numberOfRuns][8];
11
12 public static void main(String[] args) {
13 Random r = new Random();
14 for (int i = 0; i < numberOfRuns; i++)
15 runTests(r.nextInt(10) + 1,i);
16 printData();
17 }
18
19 public static void runTests(int randomNumber, int cycle) {
20 long a,b,c,d = 0L;
21 a = System.nanoTime();
22 for (int i = randomNumber; i < calculationLoopSize; i++) simple(i);
23 b = System.nanoTime();
24 for (int i = randomNumber; i < calculationLoopSize; i++) middle(i);
25 c = System.nanoTime();
26 for (int i = randomNumber; i < calculationLoopSize; i++) hard(i);
27 d = System.nanoTime();
28 data[cycle][0] = Helpers.roundedTimeInMillis(a, b);
29 data[cycle][1] = Helpers.roundedTimeInMillis(b, c);
30 data[cycle][2] = Helpers.roundedTimeInMillis(c, d);
31 data[cycle][3] = Helpers.roundedTimeInMillis(a, d);
32 }
33
34 public static void simple(int i) {
35 i = i / 2 % array.length;
36 if (i < 0) i = -i;
37 array[i] = array[i] + 1;
38 }
39
40 public static void middle(int i) {
41 int ii = (i + 10) * 3 / 4 % array.length;
42 i = i % array.length;
43 if (ii < 0) ii = -ii;
44 if (i < 0) i = -i;
45 array[ii] = array[i] + 1;
46 }
47
48 public static void hard(int i) {
49 int ii = (i + 10 * 100) % array.length;
50 int jj = (ii + i / 33);
51 jj = jj / 2 * 4 / 3 * 5 / 13;
52 jj %= array.length;
53 i = i % array.length;
54 if (ii < 0) ii = -ii;
55 if (jj < 0) jj = -jj;
56 if (i < 0) i = -i;
57 array[ii] = array[jj] + 1;
58 }
59
60 public static void printData() {
61 System.out.print("easy: \t"); printRow(0);
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62 System.out.print("middle: \t"); printRow(1);
63 System.out.print("hard: \t"); printRow(2);
64 System.out.print("total: \t"); printRow(3);
65 }
66
67 public static void printRow(int row) {
68 for (int i = 0; i < numberOfRuns; i++)
69 System.out.print(data[i][row] + "\t");
70 System.out.println("");
71 }
72 }
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G Instrumenting profiler results for the rel-
ative time per method of section 2.2

Hprof instrumenting results
# Method Percentage of time spent Invocation count
1 InstrumentingOverhead.runTests() 57,33% 50
2 InstrumentingOverhead.hard() 14,33% 99.999.725
3 InstrumentingOverhead.middle() 14,12% 99.999.725
4 InstrumentingOverhead.simple() 14,10% 99.999.725

YourKit instrumenting results
# Method Percentage of time spent Time spent Invocation count
1 InstrumentingOverhead.runTests() 99% 40.376 ms 50

YourKit instrumenting results (without ATM optimization)
# Method Percentage of time spent Time spent Invocation count
1 InstrumentingOverhead.runTests() 99% 94.614 ms 50
2 InstrumentingOverhead.hard() 0% 101 ms 99.999.735
3 InstrumentingOverhead.middle() 0% 96 ms 99.999.735
4 InstrumentingOverhead.simple() 0% 96 ms 99.999.735

JProfiler instrumenting results
# Method Percentage of time spent Time spent Invocation count
1 InstrumentingOverhead.runTests() 51% 39.323 ms 50
2 InstrumentingOverhead.hard() 17% 13.416 ms 99.859.044
3 InstrumentingOverhead.middle() 15% 11.897 ms 97.999.731
4 InstrumentingOverhead.simple() 15% 11.756 ms 97.999.731
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H Source code Hot and Cold test

The code below is used in chapters 3.6 and 4.1. The tests for the traditional sampling profilers was
run on Machine A, the tests for LightWeight profiler were run on Machine B.
1 import java.util.Random;
2
3 import tools.Helpers;
4
5 public class HotAndCold {
6
7 static int[] array = new int[1024];
8
9 public static void main(String[] args) {

10 int n = args.length > 0 ? Integer.parseInt(args[0]) : 5;
11 Random r = new Random();
12 for (int i = 0; i < n; i++)
13 cold(r.nextInt(n));
14 }
15
16 public static void hot (int i) {
17 int ii = (i + 10 * 100) % array.length;
18 int jj = (ii + i / 33) % array.length;
19 if (ii < 0) ii = -ii;
20 if (jj < 0) jj = -jj;
21 array[ii] = array[jj] + 1;
22 }
23
24 public static void cold(int start) {
25 System.out.println("begin");
26 long begin = System.nanoTime();
27 for (int i = start; i < Integer.MAX_VALUE; i++) {
28 hot(i);
29 }
30 long end = System.nanoTime();
31 System.out.println("end, total time: " + Helpers.roundedTimeInMillis(begin, end));
32 }
33 }
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I DaCapo profile results

I.1 Design desicions
The problem with comparing results from one profiler with another is that each has its own output
form, and some can be very limiting. For instance, Xprof and Hprof made the do not show the
parameters nor line numbers of methods making it impossible to separate which method is called
when a method name occurs multiple times in a program.

To be able to compare the big amount of data generated by the various tests automatically
I’ve decided to remove line number and parameter references from methods. The downside of this
implementation is that double methods are now summed together and making them look heavier. I’ve
made this decision because often methods with a same name call each other and are often short. This
however will affect designs like the visitor pattern. I believe that, when known, these few impacted
results can be ignored by the programmer and will not affect the overall results.

I.2 PMD (ran on quad-core OSX)
I.2.1 Top methods compared
To visualize profiler disagreement we created graphs showing the top 3 methods of each profiler and
where they end up at different profilers.

Normal run:

Figure I.1: Top 3 hottest methods of PMD

57



Run with inlining disabled:

Figure I.2: Top 3 hottest methods of PMD without inlining

I.3 PMD (ran on single-core Ubuntu)
I.3.1 Top methods compared
To visualize profiler disagreement we created graphs showing the top 4 methods of each profiler and
where they end up at different profilers.

Normal run:

Figure I.3: Top 4 hottest methods of PMD
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Run with inlining disabled:

Figure I.4: Top 4 hottest methods of PMD without inlining

I.4 PMD top 5 Mac osx quad-core vs Ubuntu single-core per
profiler

Xprof

Figure I.5: Top 5 hottest methods compared of PMD OSX vs Ubuntu
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Figure I.6: Top 5 hottest methods compared of PMD OSX vs Ubuntu without inlining

Hprof

Figure I.7: Top 5 hottest methods compared of PMD OSX vs Ubuntu
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Figure I.8: Top 5 hottest methods compared of PMD OSX vs Ubuntu without inlining

JProfiler (own methods filter)

Figure I.9: Top 5 hottest methods compared of PMD OSX vs Ubuntu
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Figure I.10: Top 5 hottest methods compared of PMD OSX vs Ubuntu without inlining

JProfiler (all methods)

Figure I.11: Top 5 hottest methods compared of PMD OSX vs Ubuntu
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Figure I.12: Top 5 hottest methods compared of PMD OSX vs Ubuntu without inlining

YourKit

Figure I.13: Top 5 hottest methods compared of PMD OSX vs Ubuntu
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Figure I.14: Top 5 hottest methods compared of PMD OSX vs Ubuntu without inlining

I.5 Sunflow (ran on single-core Ubuntu)
I.5.1 Top methods compared
To visualize profiler disagreement we created graphs showing the top 4 and top 6 methods of each
profiler and where they end up at different profilers.

Normal run:

Figure I.15: Top 4 hottest methods of Sunflow
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Figure I.16: Top 6 hottest methods of Sunflow

Run with inlining disabled:

Figure I.17: Top 4 hottest methods of Sunflow without inlining
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Figure I.18: Top 6 hottest methods of Sunflow without inlining

I.6 Avrora (ran on single-core Ubuntu)
Normal run top 6 method comparison:

Figure I.19: Top 6 hottest methods of Avrora

66



Normal run top 6 method comparison (without YourKit):

Figure I.20: Top 6 hottest methods of Avrora (filtered out YourKit)

Run with inlining disabled top 4 comparison:

Figure I.21: Top 4 hottest methods of Avrora without inlining
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Run with inlining disabled top 7 method comparison (without YourKit):

Figure I.22: Top 7 hottest methods of Avrora without inlining (filtered out YourKit)

I.7 Batik (ran on single-core Ubuntu)
Normal run top 5 method comparison:

Figure I.23: Top 5 hottest methods of Batik
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Normal run top 6 method comparison (without JProfiler with own method filter):

Figure I.24: Top 6 hottest methods of Batik (filtered out JProfiler own method filter)

Run with inlining disabled top 4 method comparison:

Figure I.25: Top 4 hottest methods of Batik without inlining
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Run with inlining disabled top 6 method comparison (without JProfiler with own method
filter):

Figure I.26: Top 6 hottest methods of Batik without inlining (filtered out JProfiler own method filter)

I.8 Eclipse (ran on single-core Ubuntu)
Normal run top 4 method comparison:

Figure I.27: Top 4 hottest methods of Eclipse

70



Normal run top 7 method comparison (without JProfiler with own method filter):

Figure I.28: Top 7 hottest methods of Eclipse (filtered out JProfiler own method filter)

Run with inlining disabled top 3 method comparison:

Figure I.29: Top 3 hottest methods of Eclipse without inlining
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Run with inlining disabled top 7 method comparison (without JProfiler with own method
filter):

Figure I.30: Top 7 hottest methods of Eclipse without inlining (filtered out JProfiler own method
filter)

I.9 H2 (ran on single-core Ubuntu)
Normal run top 3 method comparison:

Figure I.31: Top 3 hottest methods of H2
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Normal run top 5 method comparison (without JProfiler with own method filter):

Figure I.32: Top 5 hottest methods of H2 (filtered out JProfiler own method filter)

Run with inlining disabled top 3 method comparison:

Figure I.33: Top 3 hottest methods of H2 without inlining
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Run with inlining disabled top 5 method comparison (without JProfiler with own method
filter):

Figure I.34: Top 5 hottest methods of H2 without inlining (filtered out JProfiler own method filter)

I.10 Jython (ran on single-core Ubuntu)
Normal run top 4 method comparison:

Figure I.35: Top 4 hottest methods of Jython
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Normal run top 5 method comparison (without YourKit):

Figure I.36: Top 5 hottest methods of Jython (filtered out YourKit)

Run with inlining disabled top 4 method comparison:

Figure I.37: Top 4 hottest methods of Jython without inlining
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Run with inlining disabled top 5 method comparison (without YourKit):

Figure I.38: Top 5 hottest methods of Jython without inlining (filtered out YourKit)

I.11 Lucene Index (ran on single-core Ubuntu)
Normal run top 4 method comparison:

Figure I.39: Top 4 hottest methods of Lucene Index
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Normal run top 6 method comparison (without JProfiler with own method filter):

Figure I.40: Top 6 hottest methods of Lucene Index (filtered out JProfiler own method filter)

Run with inlining disabled top 4 method comparison:

Figure I.41: Top 4 hottest methods of Lucene Index without inlining
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Run with inlining disabled top 5 method comparison (without JProfiler with own method
filter):

Figure I.42: Top 5 hottest methods of Lucene Index without inlining (filtered out JProfiler own
method filter)

I.12 Lucene Search (ran on single-core Ubuntu)
Normal run top 3 method comparison:

Figure I.43: Top 3 hottest methods of Lucene Search
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Normal run top 5 method comparison (without JProfiler with own method filter):

Figure I.44: Top 5 hottest methods of Lucene Search (filtered out JProfiler own method filter)

Run with inlining disabled top 3 method comparison:

Figure I.45: Top 3 hottest methods of Lucene Search without inlining
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Run with inlining disabled top 5 method comparison (without JProfiler with own method
filter):

Figure I.46: Top 5 hottest methods of Lucene Search without inlining (filtered out JProfiler own
method filter)

I.13 Tomcat (ran on single-core Ubuntu)
Normal run top 2 method comparison:

Figure I.47: Top 2 hottest methods of Tomcat
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Normal run top 3 method comparison (without JProfiler with own method filter):

Figure I.48: Top 3 hottest methods of Tomcat (filtered out JProfiler own method filter)

Run with inlining disabled top 2 method comparison:

Figure I.49: Top 2 hottest methods of Tomcat without inlining

81



Run with inlining disabled top 3 method comparison (without JProfiler with own method
filter):

Figure I.50: Top 3 hottest methods of Tomcat without inlining (filtered out JProfiler own method
filter)

I.14 Xalan (ran on single-core Ubuntu)
Normal run top 3 method comparison:

Figure I.51: Top 3 hottest methods of Xalan
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Normal run top 4 method comparison (without JProfiler with own method filter):

Figure I.52: Top 4 hottest methods of Xalan (filtered out JProfiler own method filter)

Run with inlining disabled top 3 method comparison:

Figure I.53: Top 3 hottest methods of Xalan without inlining
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Run with inlining disabled top 5 method comparison (without JProfiler with own method
filter):

Figure I.54: Top 5 hottest methods of Xalan without inlining (filtered out JProfiler own method filter)

I.15 Raw data number of methods found in top hottest meth-
ods across the 4 profilers

normal run Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10
PMD (linux) 2 4 6 7 10 13 14 16 18 22

Sunflow 2 3 4 6 7 8 9 11 11 12
Avrora 2 5 5 8 9 11 15 16 19 20
Batik 1 2 3 6 6 8 11 14 15 16

Eclipse 3 4 5 6 7 9 10 14 16 17
H2 4 5 6 9 11 14 14 16 19 21

Jython 2 5 6 8 11 14 16 20 22 22
Lucene Index 1 4 5 8 9 11 11 13 16 17

Lucene Search 4 7 8 10 10 13 14 16 16 17
Tomcat 3 6 9 12 15 17 20 22 24 27
Xalan 1 3 6 10 12 16 16 17 18 21

Average 2,3 4,4 5,7 8,2 9,7 12,2 13,6 15,9 17,6 19,3
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Inlining disabled Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10
PMD (linux) 2 5 7 8 11 13 15 17 20 23

Sunflow 2 3 5 6 8 10 12 13 13 14
Avrora 2 3 7 9 10 12 14 16 18 20
Batik 1 2 3 4 8 9 9 11 14 16

Eclipse 2 3 5 6 8 8 9 12 14 15
H2 3 3 5 8 10 12 16 17 20 21

Jython 2 4 5 7 9 11 13 16 17 19
Lucene Index 1 3 4 7 9 10 11 12 13 15

Lucene Search 4 4 7 8 11 13 14 15 18 19
Tomcat 3 6 9 12 15 18 20 22 25 28
Xalan 1 3 6 8 10 13 15 17 18 20

Average 2,1 3,5 5,7 7,5 9,9 11,7 13,5 15,3 17,3 19,1
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J DaCapo PMD bytecode injecting results

All injection tests of this chapter are run on Machine A.

J.1 Xprof (inlining disabled)
J.1.1 AbstractJavaRule.visit

Figure J.1: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining) (only own methods shown)
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Figure J.2: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining)

J.2 Hprof
J.2.1 ast.JavaParser.jj_3R_91

Figure J.3: Effect on top 10 methods after being injected with the Fibonacci algorithm (only own
methods shown)
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J.2.2 ast.JavaParser.jj_3R_120

Figure J.4: Effect on top 10 methods after being injected with the Fibonacci algorithm (only own
methods shown)

Figure J.5: Effect on top 10 methods after being injected with the Fibonacci algorithm
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J.3 Hprof (inlining disabled)
J.3.1 ast.JavaParser.jj_3R_91

Figure J.6: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining) (only own methods shown)

Figure J.7: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining)
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J.3.2 ast.JavaParser.jj_3_41

Figure J.8: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining) (only own methods shown)

Figure J.9: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining)
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J.4 JProfiler
J.4.1 ast.JavaParser.jj_3R_91

Figure J.10: Effect on top 10 methods after being injected with the Fibonacci algorithm (only own
methods shown)

Figure J.11: Effect on top 10 methods after being injected with the Fibonacci algorithm

91



J.5 JProfiler (inlining disabled)
J.5.1 ast.JavaParser.jj_3R_179

Figure J.12: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining) (only own methods shown)

Figure J.13: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining)
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J.6 YourKit
J.6.1 ast.JavaParser.jj_scan_token

Figure J.14: Effect on top 10 methods after being injected with the Fibonacci algorithm (only own
methods shown)

Figure J.15: Effect on top 6 methods after being injected with the Fibonacci algorithm
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J.6.2 ast.JavaParser.jj_2_41

Figure J.16: Effect on top 10 methods after being injected with the Fibonacci algorithm (only own
methods shown)

Figure J.17: Effect on top 10 methods after being injected with the Fibonacci algorithm
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J.7 YourKit (inlining disabled)
J.7.1 ast.JavaParser.jj_scan_token

Figure J.18: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining) (only own methods shown)

J.7.2 ast.JavaParser.jj_2_41

Figure J.19: Effect on top 5 methods after being injected with the Fibonacci algorithm (without
inlining) (only own methods shown)
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Figure J.20: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining) (only own methods shown)

J.8 LightWeight profiler
J.8.1 ast.SimpleJavaNode.childrenAccept

Figure J.21: Effect on top 10 methods after being injected with the Fibonacci algorithm (only own
methods shown)
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J.8.2 util.Benchmark.mark

Figure J.22: Effect on top 10 methods after being injected with the Fibonacci algorithm (only own
methods shown)

Figure J.23: Effect on top 10 methods after being injected with the Fibonacci algorithm
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J.9 LightWeight profiler (inlining disabled)
J.9.1 AbstractRuleChainVisitor.visitAll

Figure J.24: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining) (only own methods shown)

Figure J.25: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining)
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J.9.2 ast.SimpleJavaNode.childrenAccept

Figure J.26: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining) (only own methods shown)

Figure J.27: Effect on top 10 methods after being injected with the Fibonacci algorithm (without
inlining)

99



K DaCapo Sunflow bytecode injecting re-
sults

All injection tests of this chapter are run on Machine C.

K.1 Xprof
K.1.1 accel.KDTree.intersect

Figure K.1: Effect on top 5 methods after being injected with the Fibonacci algorithm
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K.1.2 accel.BoundingIntervalHierarchy.intersect

Figure K.2: Effect on top 5 methods after being injected with the Fibonacci algorithm

K.2 Xprof (inlining disabled)
K.2.1 accel.KDTree.intersect

Figure K.3: Effect on top 5 methods after being injected with the Fibonacci algorithm (without
inlining)
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K.3 Hprof
K.3.1 primitive.TriangleMesh.intersectPrimitive

Figure K.4: Effect on top 5 methods after being injected with the Fibonacci algorithm

K.3.2 accel.KDTree.intersect

Figure K.5: Effect on top 5 methods after being injected with the Fibonacci algorithm
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Figure K.6: Effect on top 9 methods after being injected with the Fibonacci algorithm

K.4 Hprof (inlining disabled)
K.4.1 accel.KDTree.intersect

Figure K.7: Effect on top 5 methods after being injected with the Fibonacci algorithm (without
inlining)
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K.5 JProfiler (all methods)
K.5.1 primitive.TriangleMesh.intersectPrimitive

Figure K.8: Effect on top 5 methods after being injected with the Fibonacci algorithm

K.5.2 accel.KDTree.intersect

Figure K.9: Effect on top 5 methods after being injected with the Fibonacci algorithm
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Figure K.10: Effect on top 9 methods after being injected with the Fibonacci algorithm

K.6 JProfiler (all methods, inlining disabled)
K.6.1 accel.KDTree.intersect

Figure K.11: Effect on top 5 methods after being injected with the Fibonacci algorithm (without
inlining)

105



K.7 YourKit
K.7.1 primitive.TriangleMesh.intersectPrimitive

Figure K.12: Effect on top 5 methods after being injected with the Fibonacci algorithm

Figure K.13: Effect on top 10 methods after being injected with the Fibonacci algorithm
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K.7.2 accel.KDTree.intersect

Figure K.14: Effect on top 5 methods after being injected with the Fibonacci algorithm

Figure K.15: Effect on top 10 methods after being injected with the Fibonacci algorithm
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