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Abstract

Grammars form an integral part of grammarware. When a grammar evolves, the gram-
marware has to evolve with it. In this process, the exact changes in the grammar have to
be found and changes have to be made to parts that rely on the changed grammar parts.
This thesis presents an algorithm, cfgDiff, which can find the difference between two
context-free grammars. Using a model which handles both the ordered and unordered
elements of a grammars, the algorithm can provide concise edit scripts.
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Chapter 1

Introduction and Motivation

When grammars evolve, the grammarware needs to be adapted to reflect these changes.
Although grammars have been around for decades, grammarware evolution still is a
manual process.

The foundations of grammar-dependent software and grammatically structured data lay
within the grammar. If a grammar changes, they probably need to be modified as well
[10]. To see which parts of the grammarware need to be modified, the engineer needs to
be able to see what modifications have been made to a grammar. Diff tools can be used
to compare two grammars and mark any changes.

1.1 Context

The CWI developed Rascal1 as a domain specific language for source code analysis and
manipulation. To facilitate source code analysis, Rascal has his own formalizations to
define grammars.

To ease the development of grammars in Rascal, the Rascal team at the CWI wants
to create an integrated development environment for grammars in Rascal. Part of this
project is a tool which can calculate the difference between two context-free grammars.
Although Vadim Zaytsev already developed a tool to difference two grammars, it can
only output a list of non-matching non-terminals.

1http://www.rascal-mpl.org/
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1.2 Problem definition

Although the difference between two context-free grammars can be calculated by a text-
based diff algorithm, such as GNU diff2, the results of this comparison will presumably
yield very little information about the semantic difference between the two grammars.
This is caused by the way text-based diff algorithms operate: they difference the files on a
line-to-line basis. Because context-free grammars are written down in a human readable
form, characters like whitespacing are inserted to make the grammar more readable
and are semantical irrelevant. More importantly, text-based diff algorithm disregard
the hierarchical structure of context-free grammars since it is designed to compute the
difference on a character to character basis. Since some parts of a context-free grammar
are unordered lists, rearranging these lists can result in a lot of semantically irrelevant
changes. Furthermore, these changes are based on the difference between a textual
representation of the two grammars and may be difficult to interpret.

To counteract the shortcomings of text-based diff algorithms, a tree based diff algorithm
can be used. A context-free grammar can be structured as a tree. By doing so all format-
ting can be ignored. Also, a tree based diff algorithm will yield much less semantically
irrelevant changes. Although tree diff algorithms for ordered and unordered trees exist in
many forms, none can handle both ordered and unordered lists mixed within the same
tree, like they occur in context-free grammars. This occurrence of both ordered and
unordered lists in context-free grammars are caused by the associativity of context-free
grammar constructs. For some constructs the ordering of its children is irrelevant, for
example in a choice. In other constructs ordering is important, because the order of its
children reflect the order in which the subproductions should occur. Since no existing
tree algorithm allows the combination of both ordered and unordered lists within a tree,
a new diff algorithm has to be developed.

1.2.1 Scope

A lot of data formats and notations to represent context-free grammars exist. To develop
a tool which can read all these notations is a resource intensive operation. Therefore the
scope of this research is limited to the notation of context-free grammars Rascal uses.

Furthermore this research is limited to detecting changes in the tree structure of the
context-free grammar. The transformation of tree edit operations into grammar edit
operations will not be part of this research.

1.2.2 Research question

Based on the problem definition, the following research question has been formulated:

2http://www.gnu.org/s/diffutils/
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How can a context-free grammars be differenced?

In order to answer this questions I will explore existing diff algorithms and their short-
coming when they are applied to context-free grammars. Based on these findings a diff
algorithm for context-free grammars will be presented and evaluated.

1.3 Approach

1.3.1 Literary study

At first a literary study will be conducted on existing differencing algorithms. This
research will focus on how existing algorithms work and what they do to work effective
and efficient and their applicability on context-free grammars will be researched.

1.3.2 Developing cfgDiff

At this point it has been established that existing tree diff algorithms have trouble
differencing context-free grammars. Unordered tree diff algorithms can not detect all
the necessary types of changes made to a tree and ordered tree diff algorithm can detect
irrelevant changes. Therefore a new tree diff algorithm, cfgDiff, has to be designed. An
existing tree diff algorithm may serve as a basis for this new algorithm. If a suitable
algorithm has been found, it will be modified into cfgDiff using the following steps:

� Rewrite the algorithm in Rascal3.

� Add code to load and preprocess the grammars.

� Define the cost model and edit operations.

� Modify the algorithm to work on grammar data types.

� Test and improve the algorithm.

If adapting an existing algorithm isn’t viable, developing a new algorithm may be opted.
Factors which can contribute to this problem are unreadable or lacking source code,
incomplete pseudo code listing or descriptions and approach or lack of certain edit op-
erations may yield unsuitable algorithm.

3Parts of the algorithm may be skipped as they will be replaced in later steps.
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Testing cfgDiff

Once parts of the cfgDiff algorithm are written, it can be tested incrementally. At first
only one kind of change operation will be applied to a random tree structure at a time.
This way, we can easily verify that each type of change is recognized correctly by the
algorithm.

The algorithm will be validated with two tests. The first test checks the edit cost. The
cost of the edit script should be equal to or smaller than the cost of the generated
changes. If this is true we can apply the edit script to the original tree. If the edit
script is applied successfully, the resulting tree should match the tree with the generated
changes.

If these tests succeed for all edit operations on their own, combinations of edit operations
can be applied to the tree. These changes can be validated with the same tests as used
before.

1.4 Outline

Chapter 2 describes existing work, its shortcomings and a introduction to grammars in
Rascal. Chapter 3 describes the algorithm in detail. Chapter 4 gives an overview of the
capabilities of the algorithm using test result. Chapter 5 provides an overview of the
difference between the algorithm and XDiff. Chapter 6 concludes with weaknesses and
trade offs in the algorithm and hints for future work.

6



Chapter 2

Background and Context

Before addressing the research question of this thesis, existing literature needs to be
reviewed to be able to understand the problem. This overview will address related work
and its shortcomings.

2.1 Tree diff algorithms

Tree diff algorithms are a well researched subject. However, all research are focused on
ordered [26, 4, 19, 15] or unordered trees [20]. No prior work has been found on trees
which contain both ordered and unordered lists. Some of these algorithms are specialized
for certain problems by making certain assumptions, for instance algorithms that diff
labeled trees [26, 19, 15], XML [4, 20] or UML [7, 22] documents. Other algorithms
are optimized for certain fields, for example by sacrificing accuracy for faster run times
[4, 19].

Most of these algorithms work by traversing the tree bottom up [26, 4, 20]. Using this
approach a set containing the leaf nodes is composed for each tree. The algorithm tries
to match the nodes in these sets with each other by finding the edit distance between
the nodes. When all nodes are processed, the sets are replaced by the set of parents of
all nodes currently in the sets. The algorithm than tries to match these subtrees with
each other, utilizing the previously calculated edit distance between the children. This
process is repeated until the distance between the roots of both trees is calculated.

2.1.1 Related work

As mentioned earlier, related work exists. However, each of these algorithms have short-
comings or restrictions, making it hard or impractical to use the algorithm as a grammar
differencing algorithm. Although this overview is incomplete, it gives a good summary
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of the related work.

The tree-to-tree editing problem[15]

The tree-to-tree edit problem by S. M. Selkow presents an algorithm to calculate the
distance between two labeled trees using an ordered model. The algorithm builds a dis-
tance table while recursively going deeper into the tree, without trying to find matching
subtrees to reduce the matching space. The algorithm supports inserting and deleting
subtrees and the relabeling of labels.

X-Diff: an effective change detection algorithm for XML documents [20]

X-Diff: an effective change detection algorithm for XML documents by Wang et. al
presents an algorithm to calculate an edit script between two XML documents using an
unordered model. The algorithm tries to remove identical subtrees using a bottom-up
approach to reduce the matching space. It also limits the matching of nodes to nodes
with the same signature (the name of the XML elements). It supports inserting and
deleting subtrees/leafs, relabeling of attributes and changing the values of leaf nodes.
Although the algorithm is very quick, this is mainly so because it uses early rejection
on nodes with different names. Since the names of nodes in a context-free grammar
describe the action applied to its contents, this limits the applicability of this algorithm
for grammars.

Detecting changes in XML documents [4]

Detecting changes in XML documents by Cobena et al. presents an algorithm to calcu-
late an edit script between two XML documents using an ordered model. Since it has
been developed for use in a XML data warehouse, the algorithm sacrifices accuracy in
exchange for faster run times. The algorithm uses a priority queue to determine which
unmatched subtree is the heaviest, so a match can be found for this subtree first. If
no match is found, the subtree is split up into its subtrees and inserted in the priority
queue.

Vadim Zaytsev’s grammar diff tool

Vadim Zaytsev build a simple grammar diff tool for his work on grammar convergence.
Although it supports multiple file formats as input grammars, the output of the tool
is very limited. The tool checks if each non-terminal is defined in both grammars, if
this is not the case a message is printed. For all non-terminals that are defined in both
grammars, their productions are compared. If they do not match, the tool simply prints

8



Figure 2.1: Excerpts from Vadim Zaytsev’s grammar diff tool.

the name of the non-terminal and both productions. No attempts are made to find
renamed non-terminals or to pinpoint differences between non matching productions.

2.1.2 Shortcomings in existing work

As mentioned in section 1.2, existing diff algorithms have inherent shortcomings when
they are applied to context-free grammars. Text-based diff algorithms ignore the struc-
ture of context-free grammars and are sensitive to changes in white spacing and reorder-
ing.

Although unordered tree diff algorithms respect the structure of the file format, it ig-
nores any changes in the ordering of elements. Ordered tree diff algorithms respect the
structure too, but treat any unordered elements as ordered which increases the size of
the resulting edit script.

These shortcomings can be illustrated by the following minimal example (described using
EBNF):

nonterminal = A B ( C | D ) ;

Which will be represented using the following XML:

<nonterminal>
<A />
<B />
<choice>

9



Figure 2.2: The difference between both XML document according to GNU diff 2.8.1.

<C />
<D />

</choice>
</nonterminal>

Which is changed to the following non-terminal to difference against:

nonterminal = B A ( D | C ) ;

Represented by the following XML:

<nonterminal>
<B />
<A />
<choice>

<D />
<C />

</choice>
</nonterminal>

The semantical difference between the two grammars is the reordering of A and B. The
reordering of C and D are irrelevant, since the are part of an unordered choice.

Text-based diff algorithms

Text-based diff algorithms lack important information about the exact changes between
the two grammars. Instead, they only specify which lines need to be added or removed
from the original file to make the new file and do not specify which line replaces which
line. Because of this, text-based diff algorithms only point out which lines have not been
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Figure 2.3: The difference between both XML documents according to DeltaXML
(http://www.deltaxml.com). DeltaXML, an online ordered tree diff tool, was used be-
cause I was not able to run XyDiff.

changed between the two files. No effort is put into finding the closest match for a line
or to pinpoint which parts of the lines have been changed.

Text-based diff algorithms detect the changes made to the ordering of A and B, and C
and D in the example since they work on an ordered model. As seen in figure 2.2, the
edit script contains the deletion of <A />, followed by inserting it back after <B />.
The same changes are made for <C /> and <D />.

Ordered tree diff algorithms

Ordered tree diff algorithms are better at pinpointing differences between two grammars.
Because tree diff algorithms work on nodes instead of whole lines, changes can be detected
at a much smaller scale than text-based diff algorithms do. Since most lines in a grammar
will consist of multiple nodes, parts of a line can be identified as changed instead of the
whole line. Most tree diff algorithms also support a replacement operation, for which
the algorithm tries to match changes in both files with each other. This provides more
insight about the changes that have been made to the files.

Ordered tree diff algorithms, like DeltaXML detect the same changes for this example as
text-based diff algorithms do (see figure 2.3). This is because they use the same ordered
model, although tree based diff algorithms work on the tree representation of the XML
document instead. An advantage of unordered XML diff algorithms over text-based diff
algorithms is that they ignore any changes in whitespacing around XML elements.

11



Figure 2.4: The difference between both XML document according to XDiff.

Unordered tree diff algorithms

Unordered tree diff algorithms go one step further than ordered tree diff algorithms
by treating all children of a node as an unordered collection. This results in better
matchings for the parts of a grammar where the order of elements is irrelevant, since
there is no penalty involved when elements are reordered. On the other hand it can
rearrange the ordered parts of a grammar because changes are found between the closest
matching pairs of elements without taking the order of the elements into account.

X-Diff[20], an unordered tree diff algorithm, does not detect any changes made in the
example (see figure 2.4). This is because all nodes still contain the same children, only
their ordering is changed. In the unordered model, reordering of children is ignored.

The ideal algorithm

The ideal algorithm will only recognize the reordering of the ordered A and b. The
reordering of C and D will be ignored since they are unordered.

2.2 Grammar convergence

The end result of Grammar convergence [25] is comparable to an edit script. Although
tools exists to aid in the converging process, no known tool can automatically conver-
gence two grammars. Therefore a grammar expert has to execute the converging process
manually by finding a difference between the two grammars and find a transformation
to describe this difference. This process is time consuming and requires an expert to
succeed.

Although grammar converging results in an edit script, it is written by the grammar
engineer himself in a manual process. Therefore, grammar convergence can not be seen
as a replacement for a grammar diff tool because the grammar convergence process
requires such a tool aid in the process.

12



Figure 2.5: An example of a data type with two constructors in Rascal. The data
type SomeType contains the constructor foo (consisting of a list of SomeType named
someList) and bar (consisting of a set of int named someSet).

Figure 2.6: The grammar data type. The name of the constructor starts with a backslash
to prevent ambiguity.

2.3 Rascal

Rascal is a domain specific language for source code analysis and manipulation, also
know as meta-programming. Part of Rascal’s feature set is its own grammar formalism
to define grammars. The diff algorithm needs to be able to calculate the differences
between two grammars described in this notation.

2.3.1 Data types

Besides the normal data type like bool, int and str(ing), Rascal has built-in support
and syntax for several collection types, including lists, sets and maps. Each of these
collection types have their own syntax to instantiate instances. Rascal also has a data
type to represent tree structures, the node type. Nodes are untyped data structures
which contain a name and a list of children. Constructors can define typed subtypes
of nodes and can be used to define problem-specific data types. See figure 2.5 for an
example.

2.3.2 Grammars in Rascal

Grammars in Rascal are represented using several different data types consisting of
dozens of constructors. Each of these data types are build especially to contain parts of
the abstract syntax tree of a grammar.

In these data types, the type of collection (list, set or map) defines the orderliness of the
elements. Lists are used to defined ordered elements and are allowed to contain multiple
copies of the same element. Sets are used when the elements are unordered and their
elements need to be unique within the set. Maps are used to store mappings between a
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Figure 2.7: The Production data type.

key and a value. The mappings are stored unordered and require the key to be unique
within the map.

The Grammar data type

The Grammar data type (see figure 2.6) serves as the root of an abstract syntax tree
describing a context-free grammar. It consists of a set of Symbol representing the starting
rules (starts) and a map (rules) defining the productions. The map contains mappings
of a key (sort) with a value (def ). The key contains a Symbol containing the name
of the production, the value contains a Production containing a tree representing the
production.

The Production data type

The Production data type is used as base type for productions (see figure 2.7). Of these
five constructors, the following three are the most commonly used:

choice Defines a set of unordered alternatives.

priority Defines an ordered choices. Unlike choice, the order is important. It is used
when multiple productions are defined and they should be tried from left to right,
for instance when associativity is involved.

associativity Defines the associativity of the alternatives. The Associativity data type
defines which associativity to use for the alternatives, left or assoc for left to right,
right for right to left or non-assoc when related occurrences of alternatives are not
allowed.

14



Figure 2.8: The Symbol data type.

The Symbol data type

The Symbol data type is used to describe parts of the productions (see figure 2.8). Here
is an overview of the most frequently used Symbol constructors:

sort A user-defined non-terminal.

lex A lexical terminal.

lit Corresponds to a terminal symbol in EBNF.

keywords A terminal used to define keywords.

parameterized-sort Defines a parameterized sort symbol. The parameters contain a
list of parameter constructors, which define the names of the parameters. This
way a template can be used as a symbol, like generics in Java.

parameter Contains the name of a parameters for the parameterized-sort constructor.

label Applies a label to a symbol.

char-class Defines an character range. ranges contains a list of CharRange, which
defines the begin and end character of the range.

opt Corresponds to an option ([...]) in EBNF.

15



iter An one-or-more repetition. Corresponds to {...} in EBNF.

iter-star A zero-or-more repetition (an optional iter symbol).

iter-seps An one-or-more repetition, which need to be separated by the separators
symbols.

iter-star-seps A zero-or-more repetition, which need to be separated by the separators
symbols.

alt Defines an unordered set of alternatives. Corresponds to a pipe in EBNF.

seq Defines an ordered sequence of symbols. Every symbols has to match and be in the
same order.

2.4 Importance of orderliness

As can be seen in section 2.3.2, all constructors which contain a collection of elements
define their orderliness by their data type. Unordered collections are wrapped in a set
(or map), ordered collections are stored in lists. Although the orderliness of elements can
be ignored by converting all collections to ordered collections, it will add unnecessary
information to the grammar. Since the order is not important for unordered collections,
adding information to order them can lead to extra edit operations. These extra edit
operations can lead to incorrect choices by ordered diff algorithms, since these extra edit
operations increase the edit distance between two elements.

By treating all collections in a grammar as unordered, all order information will be
destroyed. Unordered diff algorithms will ignore the order of collections in collections
where the order of the elements is important. This can lead to cheaper edit scripts, but
can reorder collections into an incorrect order by mutating elements into elements in
another position.

Since neither scenario is desirable, both unordered and ordered diff algorithm are not
usable for context-free grammars.
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Chapter 3

Differencing context-free
grammars

It has been established earlier that differencing grammars can benefit from algorithms
that can handle both ordered and unordered elements. Since no such algorithm exists,
it needs to developed. The effort of developing cfgDiff is discussed in this chapter.

The chapter starts off with a description of the pseudo code which is used to present
parts of the algorithm. After that the preprocessing actions which are applied to the
grammar are described. Following this is an overview of the supported edit operations
and their cost model. Finally the different functions of the algorithm are described.

3.1 Pseudo code

Spread throughout this chapter are pseudo code of parts of the algorithm. This pseudo
code has an Rascal-like syntax. To aid in readability and briefness, parts of the algorithm,
such as optimizations and special cases, may be omitted. For example, diffList and
diffSet return the cost of the edit script besides the edit script itself. This way the already
calculated cost does not have to be recalculated when the cost of the edit script is required
by any of its calling functions. Another example are various lists of grammarNodes.
Most of these lists are lists of their id’s in actual code. This way grammarNodes can be
compared by their id’s when the list gets modified, which is faster and more precise in
Rascal1. To prevent extra code for looking up the grammarNode associated to an id,
this detail was omitted.

1When comparing two objects for equality, Rascal doesn’t check the annotations for equality. This
introduces a side effect in our situation when two identical subtrees are in the same list. When either of
the subtrees is removed from the list, the leftmost subtree of the two will be removed.
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Figure 3.1: The grammarNode data type and its constructors.

3.2 Preprocessing

The algorithm starts off by preprocessing the two grammars.

3.2.1 Transforming grammar data types to general data types

Grammars in Rascal can be build up using dozens of different constructors. Since the
constructor names contain information about the action to apply on their children, the
constructors can change from one into the other between two versions of a grammar
while leaving their children untouched. For example, when changing an ’one or more’
repetition on a subproduction to a ’zero or more’ repetition, the iter constructor in
the grammar is changed into a iter-star constructor. Although these transformations
are simple, we need cfgDiff to be able to detect these kind of transformations easily
without the need to define lists of possible transformations. To be able to do so, cfgDiff
transforms all constructors into untyped nodes. This way, all constructors can be treated
the in same way.

Because constructors are treated generically, the children of constructors have to be
treated generically too. This way the constructor name and children will not be seen as
a entity and can be dealt with on an individual basis. By dividing the children cfgDiff
will be able to do more advanced transformations, such as inserting elements into and
deleting elements from the children. This way we can transform a iter constructor
into an iter-seps2 constructor by changing the name of the node and inserting a list of
separator symbols.

To be able to divide the children, we need to transform the children into a list of type
unsafe containers. Each of these types, nodes, lists, sets, maps, str ings and integers will
be wrapped in their own container constructor of the grammarNode data type (see figure
3.1). Because of this, cfgDiff will work on grammarNodes instead of the Grammar data
type.

2A ’zero or more’ repetition with a list of separator symbols to serve as separation between the
elements.
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Figure 3.2: The annotations of a grammarNode.

Maps

We deviate a bit from this strategy when it comes to maps. Maps consist of an unordered
set of keys. Each key has its own value assigned to it. Because of this, we can represent
a map as a set of mappings.

Each mapping contains a key and value. Although these can be represented using a node,
the key and value never switch places in a context-free grammar. Because of this, we
represent a mapping with its own grammarNode type, mappingNode. This causes cfgDiff
to distinguish between a node and a mapping, preventing the unnecessary comparison
of between a key and a value.

3.2.2 Applying meta data

Once an element has been transformed into a grammarNode data type, meta data can
be added to each grammarNode. The meta data consists of four pieces of information,
stored on the grammarNode using annotations (see figure 3.2). These annotations and
their contents are:

id A unique identifier.

weight The weight of the grammarNode (including the weights of its children).

parentId The identifier of the element’s parent.

payload The subtree of the grammar represented by this grammarNode and its children.

The id contains a serial number, which should be unique in the grammar. The method
of generating the id and order of assignment is irrelevant to the algorithm. The weight
annotation contains the weight of the grammarNode (see 3.2.4). In some parts of the
algorithm access to the id of the parent is needed to generate an edit operation. Since
Rascal does not support back references, the id of the parent is stored instead of a
reference. Because all elements of a grammar are wrapped in grammarNodes, the size of
the tree increases. To speed up equality checks, the subtree of the grammar represented
by this grammarNode is stored in payload. This way we can check for equality on this
annotation instead of the grammarNode itself.
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3.2.3 Hashing

X-Diff[20] hashes all XML elements in both trees. This way the hashes instead of the
elements themselves can be checked for equality, which decreases run times. Although
X-Diff works on XML in an unordered only model, the same principle can be applied to
context-free grammars.

Although hashing is possible in Rascal, implementing the system made the algorithm
run slower than without hashing. Because of this, the algorithm does not utilize hashing
to improve equality checking speed.

3.2.4 The weight model

For each element in a grammar, its weight can be calculated by determining its data
type and the combined weight of its children. The weight can be calculated for each
type by calculating the following:

nodeNode One plus the sum of the weights of all children.

setNode One plus the sum of the weights of all elements.

listNode One plus the sum of the weights of all elements.

mapNode One plus the sum of the weights of all its mappingNodes.

mappingNode The weight of the key plus the weight of the value.

stringNode One.

integerNode One.

These weights are used by cfgDiff to calculate the cost of an edit operation. The weight
of an element increases in value anytime the element gets larger. This is because edit
operations which modify larger subtrees should get a higher cost than edit operations
affecting smaller subtrees3. For example, removing and inserting the whole grammar
tree should have a higher cost than removing and inserting a subtree of the grammar.
This is caused by weights, the weight of the whole grammar is larger than the weight of
any of its subtrees on their own.

Most other algorithms use a function which determine the weight of a string based on
its length. This makes sense if the amount of difference between two strings make a
semantical difference in the structure. However, in Rascal’s grammars strings are used
to identify symbols. This means that the length or amount of difference between two
strings does not make a difference, the only thing which counts is whether or not the

3This is not true for move and substitute operations, they have a fixed costs.
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Figure 3.3: The EditScript type. It aliases EditScript as a list of EditOperations.

strings match. If they do not match, they point to different symbols. Because of this, the
length of a string has no influence on its weight and is fixed to a weight of one. Integers
work the same way, because only the fact that they differ or not counts. Therefore the
weight of any integer is also fixed to one.

For sets, lists and maps the sum of the weight of all children is taken and incremented
with one to represent the set, list or map itself. Nodes however are treated differently.
Although nodes are essentially a list with a string describing what action the node rep-
resents, the weight still is one plus the weight of the children4. In the weight calculation,
the string representing the name of the node and the ’list’ which contain the children do
not count as weight. This means that an empty node (a node without any children) has
a weight of one.

3.3 Edit scripts

When two grammars are differenced, cfgDiff produces an edit script. The edit script
describes a possible list of mutation, edit operations, which can be performed on the
original grammar to produce the modified grammar. If both grammars are the same, an
empty edit script is generated.

The list of edit operations are ordered. Rearranging the order can result in a different
grammar or an invalid operation. For instance, if we take the following list:

A B C D

And reorder it using the following move operations:

1. Move the element at position 3 to position 1.
2. Move the element at position 2 to position 0.

Move operation 1 will rearrange the list to A D B C and operation 2 rearranges the
list to B A D C. If the order of the move operations were reversed, the edit script will
mutate the list into a different result. Move operation 2 would rearrange the list to C A
B D and operation 1 rearranges the list to C D A B.
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Figure 3.4: The EditOperation type and its constructors.

Element type Insert element into Delete element from Substitute Move

node X X Name only Children only

set X X

list X X X

map X X

string X

integer X

Table 3.1: Element types and their supported edit operations.

3.3.1 Supported edit operations

cfgDiff supports four different edit operations: insert, delete, substitute and move (see
figure 3.4 and table 3.1). The edit operations consist of identifiers referencing to the
elements in question. This way any post processing done by future work can easily ref-
erence to the elements and their surroundings, opening up possibilities to better describe
grammar changes.

Insert

The insert operation inserts an element, identified by newId, at a specific position in
the element identified by oldParentId. If the parent element is ordered, the element is
inserted at position newPosition, shifting the element currently at that position (if any)
and any subsequent elements to the right. It is not possible to insert any element as a
parent of an existing element.

Delete

The delete operation is the reverse of the insert operation. It deletes the element iden-
tified by oldId from its parent. When the element is deleted, it shifts all of the parents
elements which are currently to right of that position (if any) to the left. It is not possible
to delete an element while keeping a part of its subtree in its place with this operation.

4As opposed to one for the node itself plus one for the name string plus one for the list containing
the children plus the weight of the children.
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Substitute

Substitute replaces the element identifier by oldId with the element identifier by newId.
If the element is a node, only the name of the node is replaced.

Move

The move operation moves an element on oldParentId to another position on the same
element. An element can not be moved from one element onto another. The opera-
tion deleted the element at position oldPosition and then inserts it back at position
newPosition. Because sets they are unordered, move operations are not supported on
them.

3.3.2 Cost model

For each edit operation a cost can be calculated based on the weight of the element
which is mutated. The cost model is deterministic, it always results in the same cost if
the same edit operation, element and grammars5 are provided.

Insert

Insert operations have a cost equal to the weight of the subtree they insert. A different
approach would be to provide discounts on cost for larger subtrees. However, this would
favor mutate unchanged elements around the subtree to benefit from the discount on
a larger inserted subtree. Because this behavior is not wanted, linear cost model for
inserts is implemented.

Delete

Delete operations have the same cost model as insert operations. This is because delete
operations are the reverse of an insert operation and thus should have the same cost
model.

Substitute

Substitutes always have a cost of one. Since substitutes can only be applied to strings,
integers and the labels of nodes (which are a string), the cost is equivalent to the weight
of those types. Because the amount of difference does not matter, only the fact that

5And if the identifiers are assigned in the same manner.
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the value has changed, a fixed cost model was chosen. The cost of one was chosen
because this is the weight of any of the possible elements that can be substituted. Also,
a substitute operation should be cheaper than deleting and inserting the node, which
has a combined cost of 2 for both strings and integers.

Move

Moves too have a fixed cost of one. Although moves can be applied to any type of
element, they only change the ordering of the children of an element. Because of this a
fixed cost model was chosen. Also, a move operation should be cheaper than deleting
and inserting the element, which has a cost of at least 2. Furthermore a move operation
should also be preferred over swapping the values of both elements with two substitutes,
if that is possible, which has a cost of 2.

I will illustrate the choices in the cost model with a complex scenario. Consider the
following ordered lists of strings:

[”A”, ”B”] and [”B”, ”C”]

When the first list gets mutated into the second list, there are three possible scenario’s6.
The first scenario is moving ”A” after ”B” and substituting ”A” for ”C”. The second
scenario deleted ”A” and inserts ”C” after ”B”. The third scenario substitutes ”B” with
”C” and ”A” with ”B”. Because all three scenario’s are as likely to happen in real life
scenario’s, all edit scripts should result in an equal cost. Under the current cost model,
this is true.

3.4 The cfgDiff algorithm

After the supported edit operations and their costs have been defined, we can dive deeper
into cfgDiff.

3.4.1 Early rejection

When diffing two grammars, cfgDiff will calculate the edit distance between a lot of
elements. A lot of those calculations will be unnecessary, because changing the original
element into the new element will not make any sense in a context-free grammar. For
example, changing an element containing an integer into an element containing a set is
something that should not happen. If the parent element would allow a set of alternatives
at that position in the grammar, the integer would be contained into a set already.
Because the elements are not compatible with each other, matching the subtrees of those

6For simplicity, duplicate and more complex edit scripts are omitted as they are already represented
or irrelevant for this example.
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elements, if they have any, against each other would make no sense either since the result
of those matches are going to be rejected anyway. To avoid having to calculate those
unnecessary calculations, an early rejection system has been build into the algorithm.

The early rejection system is a simple system. Because different types of elements
probably will not match, a comparison between two different kinds of elements will always
be rejected. This way we can compare the constructor names of two grammarNodes and
reject them if they does not match. Although the comparison is valid in some locations
of the grammar, they just can not be transformed into each other, an edit script has
to be returned anyway. Because of this the worst possible edit script will be returned,
deleting the original element and inserting the new element.

3.4.2 Bottom up or top down

Most algorithms found during my literary study traverse the tree bottom up [26, 4,
20]. When a bottom up approach is used, the algorithm starts at the leafs. When
traversing up the tree the leafs combine with their parents and their sibblings, growing
into bigger subtrees. This way the edit distance between the elements of the subtree can
be calculated incrementally by using the already calculated edit distance between their
children.

Although the bottom up approach seems to be favored by existing literature, if also
tested cfgDiff with a top down approach. Implementing this approach gave a significant
speed improvement over the bottom up approach. This can result from two factors.
First of all, when calculating the edit distance between two nodes using the top down
approach, the children of both nodes can be compared with each other before calculating
the edit distance between each pair of nodes. Because comparing nodes is extremely
cheap compared to calculating the edit distance between two nodes, the matching space
for the edit distance function can be reduced significantly with a minimal investment.
Secondly, the bottom up approach was used by an early paper [26] and two papers
presenting a XML diff algorithm [4, 20]. Since most XML documents have a more fixed
hierarchy than grammars, the depth of the leave nodes in XML documents will not
vary much between relevant leaf nodes. This means matching or related subtrees can
be found more effectively in XML documents using a bottom up approach. Although
grammars also have a fixed hierarchy describing which nodes can be the children of
which node, the structure of a grammar describes a large part of the grammar (for
instance a node describing whether or not the content should be repeated once or more).
In XML documents the XML structure describes how the information is structured in
the document, for example that this node contains the name of an article. This means
early rejection based on the signature of a node, like [20] uses, is counter productive for
cfgDiff because it incorrectly rejects valid matches, resulting in a larger than necessary
edit script. However, this causes that fewer comparisons can be rejected early, increasing
the number of edit distances that need to be calculated and slowing down the algorithm.
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Figure 3.5: Pseudo code of the diffGrammar function.

3.4.3 diffGrammar : diffing two grammars

The diffGrammar function is used to diff two grammars (see figure 3.5). Since the root
of a grammar is a constructor, the preprocessing will transform it into a nodeNode.
Although dist can effectively do this itself, it will compare both children against each
other if both the starting rules and productions are changed. To eliminate this, the
diffGrammar function splits up the two children and pulls them separately through
dist. Since the algorithm effectively removes matching elements from sets and maps, no
further actions are necessary to reduce the number of starting rules and productions.

3.4.4 dist : calculate the difference between two elements

The dist function is used to calculate the edit distance between two elements (see figure
3.6). First, the function checks if both elements are equal. If so, the function terminates
with an empty edit script. If not, the function checks whether both element types are
compatible. If the element types are not compatible, the function returns an edit script
deleting the old element and inserting the new element. This serves as early rejection
(see 3.4.1).

For each grammarNode type, dist uses specific calculations to calculate the edit script
between two elements. For integers and str ings, a substitute is generated. nodes generate
a substitute operation if the name does not match plus the edit script for mutating its
children, which are treated as a list. For lists and sets, diffList and diffSet will be called
to calculate the edit script. In a map, the mappings will be differenced as if they are
part of a set. Their mappings are divided into the key and value are pulled through dist
separately. Their edit scripts will be combined to form the edit script of the mapping.

26



Figure 3.6: Pseudo code of the dist function.
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Figure 3.7: Pseudo code of the elementsEqual function.

3.4.5 elementsEqual : comparing two elements for equality

The elementsEqual function checks if two elements are equal to each other (see figure
3.7). Because the original grammar is packed into grammarNodes, we can compare the
value of the payload annotation for equality. This way we can check if the subtrees
represented by both elements match.

3.4.6 findBestChanges: finding the best combination of changes

The findBestChanges function tries all combinations of inserting, deleting and changing
the elements of one list into another list (see figure 3.8). Although the function works on
two lists (to allow copies of elements to exist in the lists as opposed to sets), the elements
are treated as unordered to reduce the complexity of the function. This way it can handle
both ordered and unordered lists. If the list was ordered, the calling function can order
the results afterwards To further reduce the complexity even further, the change of one
element into another also counts as the change of deleting one element and inserting the
other element.

Because the findBestChanges function needs to try all possible combinations, it has a
very high complexity. To make matters worse, the edit distance between every pair of
elements from both lists need to calculated7. Replacing this function with a function
where a strategy picks which element to change into another element first has been tried,
but were unable to return the optimal result every time.

The function first checks if either of the two incoming lists are empty. If this is the case
the function returns a diff script deleting or inserting all elements from the nonempty
list. Since the function is used recursively, this serves as a termination. The first element
of the list containing the fewest elements is taken and compared against every element
of the other list. In each iteration the functions calls itself with both lists minus the
elements taken from both lists in this iteration, resulting in an edit script. Then the
function retrieves the edit distance between the pair of elements. Both edit scripts are
added together and stored. When all elements from the longest list are iterated through,
the cheapest edit scripts are chosen and returned.

The function returns a list of edit scripts, all of which are the cheapest edit script.

7Although omitted in the pseudo code, a cache is used to prevent the calculation of the distance
between a pair of elements multiple times

28



Figure 3.8: The findBestChanges function.
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Figure 3.9: Pseudo code of the diffSet function.

Because the function does not know where moves will be required and how the picking
of elements to pair up affects the number of required moves, it can not pick one. To
make sure that the calling function can reorder the element pairs using the least amount
of moves possible, all possibilities are returned. This way the calling function calculate
move edit operation for all these possibilities and pick the cheapest one. For example,
the findBestChanges function retrieves the following input lists:

[”A”, ”B”] and [”C”, ”D”]

The cheapest edit script between the two lists involves two substitutes. However, because
findBestChanges works unordered to reduce the complexity of the function, it has two
valid edit scripts which can modify the first list into the second. The first possibility
substitutes ”A” for ”C” and ”B” for ”D”, which keeps the list in the same order as
a side effect. The second possibility substitutes ”A” for ”D” and ”B” for ”C”, which
reorders the list and will require one move operation later on. Because findBestChanges
works unordered, it has no preference for either of the two edit scripts since they both
are the cheapest of all the enumerated possibilities. However, if the second option was
an ordered list, the calling function needs to add an extra move operation to rearrange
the list. To prevent this findBestChanges will return a list of possible edit scripts and
lets the calling function pick the best option from those.

3.4.7 diffSet : calculate the difference between two sets

The diffSet function diffs two sets (see figure 3.9). It results in a edit script for mutating
the original set into the new set.
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Reducing complexity

When the edit distance between two sets need to be calculated, the algorithm tries to
reduce the matching space between the two sets first. Since checking for equality is very
cheap compared to calculating the edit distance between two elements, the algorithm
tries to reduce the matching space by removing matchings elements.

When two elements are equal, the edit distance between the two is zero. No cheaper
combination with either of the elements in it can be made with any other elements from
either set, so letting findBestChanges process those combinations is a waste of time.
Therefore elements that exist in both sets get removed.

To find the matching elements, the algorithm calculates the intersection between the
two sets. Every element contained in the intersection gets removed from the old and
new sets.

Finding the best combination of changes

Once all matching elements have been eliminated from both sets, the findBestChanges
will do the rest of the work by finding the best way to change the original elements into
the new elements.

3.4.8 diffList : calculate the difference between two lists

The diffList function differences two lists (see figure 3.108). It results in an edit script
for mutating the original list into the new list. Unlike diffSet, diffList respects the
orderliness of the lists by adding move edit operations to the edit script if necessary.

Reducing complexity

Like the diffSet function, the diffList function first tries to reduce the complexity by
finding matching pairs (see figure 3.11). At first, it tries to remove elements from the
front and back of the list by checking for their equivalence. If they are equivalent, the
elements can be removed from the list. Since these elements are in the front and/or back
of the list, removing them from both lists will not make any difference on the reordering
process.

Because diffList works on lists instead of sets, an element can occur as multiple copies
in a list, for example when the name of a non-terminal appears multiple times within a

8Parts of this figure are reused in the subsequent subsections to point at certain parts of the pseudo
code.
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Figure 3.10: The pseudo code of the diffList function.
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Figure 3.11: Reducing the complexity in the diffList function.
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Figure 3.12: Finding the best combination of changes in the diffList function.

production. Because of this, neither of the elements from matching pairs are removed
from the list at this time. Instead they are marked as a matching pair of elements.

Because an element can occur as multiple copies within a list and may not appear as
frequent in the other list, we need to find the best copy for those cases to minimize
the number of moves. An algorithm solves this problem by selecting which combination
of matching pairs form the longest sequence of matching pairs while maintaining the
order of the lists. All matching pairs which are not in this sequence are unmarked, all
elements in the sequence are removed from their respective list. This reduces the list
length and produces pairs of elements which are equivalent and may require a move later
on (because edit operations will make non matching element equivalent later on, moves
will be calculated later).

The lcsMatchingPairs function is an altered version of the longest common subsequence[18]
and finds the longest sequence of matching pairs. Because cfgDiff already checked for
equality, the algorithm can check the set of matching pairs to see if the elements are
equal. The function returns two sets of matching pairs. The first set contains the longest
sequence of matching pairs that preserve the order of the original lists. The second set
contains all matching pairs which does not contain any elements of the first set, making
it the set of all matching pairs not in the longest sequence.

Finding the best combination of changes

Once the matching space has been reduced, the findBestChanges function will try all
combinations of changing a list into the other list to find the cheapest combinations of
changes (see figure 3.12). Besides each edit script, the findBestChanges function also
provides a list of pairs of elements which are mutated from one into the other9.

Since findBestChanges returns a list of the cheapest edit scripts (see 3.4.6), the diffList
functions enters a loop here. For every possibility of findBestChanges, it will generate
the full edit script including moves. This way cfgDiff can pick the cheapest edit script
at the end of the function.

9Pairs where one elements gets deleted and the other inserted and unmatched elements are removed
from this list since they does not require a move
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Figure 3.13: Finding which pairs require a move in the diffList function.

Figure 3.14: Deleting elements in the diffList function.

Finding which pairs require a move

The lcsMatchingPairs function can then be used to find out which of the matching pairs
require a move (see figure 3.13). This way we know which pairs form the smallest set of
pairs that require a move to end up in the correct order.

Delete unmatched elements

Once we know which elements form pairs, we can figure out which elements are not in
any pair (see figure 3.14). These elements will either be inserted of deleted, depending
on which list they originate from. To make the rearrangement of elements that will
happen later easier, cfgDiff also deletes all elements that need to be deleted here. All
elements that need to be inserted, will be inserted at a later stage.

Finding out where to move elements to

The algorithm knows which pairs require a move, but need to figure out where to move
the element to (see figure 3.15). Because elements will be moved around in the list,
simply taking their position will not result in the correct move operations everytime.
However, a sequence of steps can be executed to figure out which position the element
has at this point and to which position the element has to be moved to:

� Take the list of old elements and remove all deleted elements.

� Transform the list to their matched new elements (newIds).

� Make a list in the order we want to reorder the element to (toOrder).
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Figure 3.15: Moving elements in the diffList function.
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Figure 3.16: Inserting elements in the diffList function.

� Make a list of new elements that does not require a move (unmovedIds).

� For each pair which needs a move, do the following:

– Take the current position of the element in newIds. This is the fromPosition.

– Set the toPosition to zero, if it is not found we want to move the element to
the beginning of the list.

– Loop through all if the id’s in toOrder that are left of curId. Do this from
right to left.

– If that id is found in unmovedIds, set it as toPosition, add it to unmovedIds
and break from this loop.

– Add the move operation to the diff script.

– Update the newIds list to reflect the move.

Insert unmatched items

Once all elements have been deleted and moved, it leaves us with all elements that need
to be inserted (see figure 3.16). We do this from left to right to simplify the process
of finding the position to insert at. To do this we loop through the original new list.
For each element we check if that element is in the insert list. If so, we add an insert
operation to the diff script.

At this point the edit script is complete for this incomplete edit script that findBestChanges
provided. We add this edit script to a list and try the next incomplete edit script.

Picking the cheapest edit script

At this point, all possibilities of findBestChanges have been completed and collected in
a list (see figure 3.17). We find the cheapest edit script10 and return it.

10If multiple edit scripts share the same cost, we can pick any. Which one does not matter at this
point since the changing of a list into another list does not affect its surrounding elements.
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Figure 3.17: Picking the cheapest edit script in the diffList function.
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Chapter 4

Results

After the algorithm has been presented, we can test the algorithm. The algorithm has
been tested for correctness of the edit script, run time and shortness of the edit script.
After these tests, the cfgDiff algorithm will be applied to a real life grammar and its
output1 will be compared against other diff algorithms.

4.1 Test set generation

The algorithm is tested by generating random trees and random changes. Because
cfgDiff works on a type unsafe model, trees are generated instead of grammars. This
way the size of the tree is more manageable because we are not bound by predetermined
data types, which have a mandatory minimum number of children. This results in less
variance between the weights of the generated trees. Furthermore, this simplifies the
generation of trees and will never result in invalid data types when the tree is modified.

The weight of the generated tree is determined by an input variable, treeSize. An
algorithm generates a random root node and up to five children2. For each of these
children, a random element is chosen and allotted a part of the treeSize budget which
will be the resulting weight of the child.

Each of these children will be a node, list or set. The generation between these types
has been weighted to generated a node 4 out of 6 times, a list 1 out of 6 times and a
set 1 out of 6 times. This way, the tree will be a better reflection of the contents of a
grammar tree, which are node heavy. Each of these types will be filled with their own
children, generated recursively, if the remaining weight budget for the child allows it.

1Because of recent changes in Rascal’s grammar data types, the data types in the output of cfgDiff
may not match those described in section 2.3.

2This limit is put into place to prevent the generation of a large number of elements, which does not
occur often in real life grammar scenario’s, which will slow down cfgDiff down dramatically.
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Figure 4.1: The original generated tree. Nodes containing {} are a set, their children
are the elements of the set. A number followed by () denotes a node. The number is the
name of the node and are a strings. Numbers where used in test set generation because
they are easier to distinguish than random texts.

Once the original tree has been generated, an altered tree has to be generated. To do
this, an algorithm generates up to treeSize random changes and applies it to a copy of
the original tree. Although the changes are not recorded3, the edit cost of these changes
are computed and saved.

Figure 4.1 provides an example of an original tree. Figure 4.2 shows what the tree looks
like after random modifications have been applied to that tree. Figure 4.3 shows the
output of cfgDiff when ran on the two grammars.

4.2 Test run with small tree sizes

The first test run focused on small tree sizes. Because the trees remain small, large
numbers of samples can be completed relatively quickly and would result in small data
sets if an error occurred, making them easier to diagnose. This test run contained 10.000
samples, were all of the generated original trees has a weight of eleven. To generate an
altered tree, between zero and ten random edit operations (insert, delete, substitute and

3cfgDiff may generate another or more efficient edit script, making the comparison of the contents
of an edit script almost impossible to do.
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Figure 4.2: The modified tree. See figure 4.1 for the original tree and a legend.
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Figure 4.3: The difference between the trees of figure 4.1 and figure 4.2.
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move) were applied to the original tree.

4.2.1 Correctness of the edit script

When applied to the original tree, all edit script resulted in the altered tree. This shows
that for this test set, all edit scripts are correct.

4.2.2 Run time

The run time of each run of cfgDiff was measured using cpuTime (exclusive preprocess-
ing time). The 10.000 samples took 328.4 seconds to difference, resulting in an average
run time of 32.8 milliseconds4. The longest run time in this test run was 577.2 millisec-
onds. The longest run times were the result of a lot of insert operations, which caused
a larger than usual altered tree. Preprocessing took 33.2 seconds, an average of 3.3
milliseconds per sample.

4.2.3 Shortness of the edit script

In three cases the edit cost was larger than the cost of the generated changes (see section
4.5 for an explanation), all of which were 1 point more costlier than the generated
changes.

4.3 Test run with larger tree sizes

Once we know that small tree sizes result in correct edit script, we can increase the size
of the trees. This way we can see how the algorithm performs when larger trees have to
be differenced. This is important because Grammars in Rascal tend to be represented
by very large trees.

This test run started with a treeSize of 105 With this treeSize, 10 random tests will be
generated and differenced. When the runs are completed, the treeSize is increased with
10 and another 10 tests will be ran. This goes on until 1.000 tests have been completed
or an error has been found.

4The resolution of cpuTime was limited to 15,6 milliseconds on the test machine, which may affect
the preciseness of the results

5Because the tree generation creates a root node with 10 weight points worth of children, the weight
of the total tree is treeSize + 1.
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1-2 2-3 3-4 4-5 1-5

insert 12 31 6 0 46

delete 31 0 308 0 336

substitute 1 2 10 0 16

move 0 0 0 0 0

total 44 33 324 0 398

Table 4.1: The edit cost for each edit operation between the versions of Derric’s grammar.

4.3.1 Correctness of the edit script

As with the small tree sizes test run, all edit scripts resulted in the altered tree, showing
that for this test set, all edit scripts are correct.

4.3.2 Run time

The 1.000 samples took 12.796 seconds to difference, resulting in an average run time
of 12.8 seconds. The longest run time in this test run was 185.8 seconds. Preprocessing
took 109.9 seconds, an average of 109.9 milliseconds per sample.

4.3.3 Shortness of the edit script

As opposed to the small tree size test, every cost of the calculated edit script were smaller
than or equal to the cost of the generated changes.

4.4 Application of cfgDiff to a real life grammar

Until now, all presented result are based on generated data. To see how cfgDiff performs
on context-free grammars, real grammars need to be used as input for cfgDiff. Since
not many grammars written in Rascal have undergone an evolution, pickings for test
subjects are scarce.

I’ve picked the grammar of Derric[16] as test subject for cfgDiff. Its grammar evolution
includes five versions in Rascal syntax, before that it was written in SDF. See table 4.1
and figure 4.6 for the results. The edit costs of each diff may seem high in comparison to
the textual difference between the source grammars. This is because Rascal transforms
the grammar radically when the Grammar data type is made.

To make a comparison with an existing tree diff algorithm, all of Derric’s grammars
have been transformed into an XML representation. The names of constructors are
transformed into uppercase to be able to identify which XML elements are nodes. The
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Figure 4.4: The results of the large tree sizes test run. The weight of the tree is the
highest weight of either (original or altered) tree. The plot cloud becomes less dense
after a weight of 510 because no larger original trees where generated.
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Figure 4.5: The average run times of the large tree sizes test run. The weight of the
tree is grouped into the nearest group of ten. High variance in average execution time
is caused by an average of 10 samples per data point.

names of the constructors children are displayed in lowercasing and are always the chil-
dren of the constructors XML element. The XML documents where differenced using
DeltaXML6, an ordered tree diff algorithm. The textual differences between the source
grammars are also provided.

Since the Derric grammar generates large trees (between 5487 and 5904 elements), un-
changed parts of the tree are omitted.

6http://www.deltaxml.com
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Figure 4.6: The edit cost for each edit operation between the versions of Derric’s gram-
mar.
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Figure 4.7: The textual difference between version 1 and 2 of Derric’s grammar.

4.4.1 Versions 1 and 2

The evolution from version 1 to 2 involves the modification of the non-terminal Con-
tentModifier (see figure 4.7). It removes the option Id ”=” Id, since this was already
covered in the non-terminal Expression. Preprocessing the two grammars took 1.372
seconds and calculating the difference between them took 0.187 seconds.

In XML, the difference is the replacement of the value of the ContentModifier mapping
(see figure 4.8).

cfgDiff replaces the value of the ContentModifier mapping as well (see figure 4.9). How-
ever, it replaces only parts of it, it leaves the rhs child intact. First it substitutes the
name of the CHOICE constructor with PROD7. Then it removes the alternatives child
from the PROD constructor. Then it inserts the lhs child subtree as the first child of the
PROD constructor, shifting the already existing child to the second position. Finally it
inserts the attributes child subtree as the third child of the PROD constructor.

7Because of this change, the names of the children will automatically change and a third empty child
will be added
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Figure 4.8: The difference between the XML representations of version 1 and 2 of Derric’s
grammar.
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Figure 4.9: The output of cfgDiff on version 1 and 2 of Derric’s grammar.
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Figure 4.10: The textual difference between version 2 and 3 of Derric’s grammar.

4.4.2 Versions 2 and 3

The evolution from version 1 to 2 involves a change made to function calls (see figure
4.10). It changes the syntax of the parameter to only allow an Id or Id ”.” Id and labels
them differently. Preprocessing the two grammars took 1.326 seconds and calculating
the difference between them took 0.421 seconds.

In XML, the difference is the two text replacements and the insertion of the PROD
constructor (see figure 4.11). cfgDiff mimics these changes (see figure 4.12).
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Figure 4.11: The difference between the XML representations of version 2 and 3 of
Derric’s grammar.
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Figure 4.12: The output of cfgDiff on version 2 and 3 of Derric’s grammar.
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Figure 4.13: The textual difference between version 3 and 4 of Derric’s grammar.

4.4.3 Versions 3 and 4

The evolution from version 3 to 4 refactors terminals (see figure 4.13). Until now, all
terminals were incorrectly declared using syntax. Rascal normally uses lexical to define
terminal symbols. Also the way the follow restrictions were written has been changed.
Preprocessing the two grammars took 1.263 seconds and calculating the difference be-
tween them took 1.138 seconds.

Because of the extreme length of the output of DeltaXML, its changes are omitted
for briefness. DeltaXML deleted 7 nodes in the XML structure and inserted 1 node.
cfgDiff ’s changes mimic the changes DeltaXML detected, but uses 8 deletes, 10 substi-
tutes and 2 insertions in its edit script (see figure 4.14).
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Figure 4.14: The output of cfgDiff on version 3 and 4 of Derric’s grammar.
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Figure 4.15: The textual difference between version 4 and 5 of Derric’s grammar.

4.4.4 Versions 4 and 5

The evolution from version 4 to 5 reorders the follow restrictions on the terminal Id (see
figure 4.15). However, this has no influence on the contents of the Grammar data type.
Therefore, cfgDiff did not detect any changes. Preprocessing the two grammars took
1.232 seconds and calculating the difference between them took less than 0.016 seconds.

Because the ordering in the Grammar data type isn’t changed, DeltaXML did not detect
any changes either.
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Figure 4.16: The textual difference between version 1 and 5 of Derric’s grammar.

4.4.5 Versions 1 and 5

For completeness I’ve included the changes between the first and last version of Derric’s
grammar (see figure 4.16). Because they include all the changes described in the previous
sections, they will not be described again here. Preprocessing the two grammars took
1.341 seconds and calculating the difference between them took 35.131 seconds.

Because of the extreme length of the changes between the processed grammars, the
output of both DeltaXML and cfgDiff are omitted. DeltaXML deleted 7 nodes in the
XML structure, substituted 2 (2 deletes and 2 insertions), and inserted 3 node. cfgDiff
needed 10 deletes, 16 substitutes and 8 insertions for its edit script.
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Figure 4.17: The output of cfgDiff on the example from section 2.1.2.

4.5 Shortness of the edit script

In some cases the edit script has a higher cost than the generated changes. This is caused
by an optimization in the diffList function. An algorithm is used to find which identical
elements should be matched up in pairs. Sometimes a copy of an element exists in a list
and has an identical element in the other list, for example:

[”X”, ”B”, ”B”] and [”Z”, ”B”, ”C”]

The algorithm can pick either ”B” from the first list and pair it with the ”B” from the
second list. However, because one ”B” can be substituted for a ”C”, which ”B” is picked
is important for the cost of the edit script. If the first ”B” of the first list gets paired up
with the ”B” of the second list, the second ”B” can be substituted with a ”C”, resulting
in one substitute and one more for changing ”X” into ”Z”. If the second ”B” of the first
list gets paired up with the ”B” of the second list, the first ”B” will be substituted with
”C” and moved to the last position8, resulting in one substitute, one move and one more
for changing ”X” into ”Z”.

Because the algorithm that picks the pairs has no knowledge of the actions that happen
later on with the picked pairs, the algorithm sometimes picks the wrong pair of items,
resulting in an extra move operation. Because the diffList algorithm tries to remove
identical elements from the beginning and ending of a list, these cases only happen when
the elements are placed between nonidentical elements.

4.6 Output of example from section 2.1.2

Section 2.1.2 provided an example to show the shortcomings in existing diff algorithms.
Since cfgDiff is designed for context-free grammars, its output (see figure 4.17) should
show improvements over the existing work.

8Or deleting the first ”B” and inserting ”C”, which has the same cost as one substitute and one move.
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cfgDiff only recognizes the only semantical difference between the two parts of the
grammar, the reordering of A and B. The reordering of the unordered C and D is ignored.
This deviates from the results of other diff algorithms. The text-based diff algorithm
and ordered tree diff algorithms also recognized the reordering of C and D, which is
semantically irrelevant. Unordered tree diff algorithms does not see any changes at all.
They ignore the reordering of A and B, which is relevant in a context-free grammar.
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Chapter 5

Evaluation

This chapter analyses the cfgDiff algorithm by comparing it to X-Diff[20].

5.1 Differences with X-Diff

cfgDiff has been based on X-Diff[20]. Although X-Diff is comparable to cfgDiff, it
differences XML documents with an ordered model, the development of cfgDiff changed
the algorithm drastically.

5.1.1 Edit operations

X-Diff lacks a move operation, although it works on an ordered model. Instead, insert
and delete operations are used. This can result in costlier edit scripts, but helps decreases
run times.

Furthermore, X-Diff only supports the substitute operation on leaf nodes (text nodes or
attribute nodes in XML documents). Since XML elements should not change from one
type into another, only leaf nodes can be substituted.

5.1.2 Different algorithm to find the best set of changes

Because cfgDiff supports move operations, which X-Diff does not, another algorithm
needed to be developed to find the best set of changes between two collections. X-
Diff uses the minimum cost maximum flow[?] algorithm to find the best set of changes.
Because cfgDiff has to move element pairs which are not in the flow, the algorithm has
to take these changes into account as well. Therefore the minimum cost maximum flow
algorithm wouldn’t suffice in this situation and the findBestChanges algorithm has been
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introduced.

5.1.3 Early rejection

Because substitution is not supported on XML elements, the early rejection model rejects
any comparisons based on the mismatching names of XML elements. cfgDiff deviates
from this model to support substitution on constructors. This feature is implemented
because the constructors in grammars contain information about how their children need
to be handled; XML elements only describe what information they contain.

5.1.4 Hashing

X-Diff uses hashing to speed up element equality checks. Because hashing slowed cfgDiff
down too much, hashing is not implemented in the final version of cfgDiff.

5.1.5 Bottom up vs. top down

X-Diff uses a bottom up approach. The first version of cfgDiff used the same approach,
but was significantly slower than its top down counterpart. The difference in efficiency
can be explained by difference in the early rejection models and the data they work
on. The names of XML elements in XML documents are diverse. X-Diff can effectively
reject many element comparisons because of this. Because cfgDiff supports substitute
operations on nodes, this early rejection rule can not be implemented in cfgDiff. There-
fore, no node to node comparisons can be rejected. To make matters worse, grammars
mainly consist of nodes.

5.2 Trade offs

5.2.1 Untyped data types

cfgDiff treats all constructors as untyped nodes. This way all constructors are allowed
to be transformed in any other constructor. The algorithm can include a list of valid
transformations to restrict the transformations and serve as rejection rules, decreas-
ing the run time of the algorithm. However, this would require time to describe valid
transformations and maintain this list when Rascal’s grammar data types are updated.

Because developing and maintaining such a list is labor intensive, the algorithm was
developed to work on untyped data types. As a side effect parts of the algorithm can be
reused to difference other data structures as well.

64



5.2.2 Eliminating matching elements

The diffList function removes matching elements to reduce the matching space and
decrease the run time. However, this may result in additional move operations (see
section 4.5). Because the conditions on which this occurs are rare and the savings on
elements where subtrees match are large, this trade off was implemented.

5.2.3 Describing edit operations in tree edit operations

Due to time constraints on this research project, a feature to transform tree edit oper-
ations into more descriptive grammar edit operations has not been implemented. The
amount of time for research and testing this feature would not fit in the tight schedule
of this project.

5.3 Weaknesses

5.3.1 Possibly long run times on large lists

The findBestChanges function tries all possible mutations in order to find the cheapest
edit script. This is necessarily to allow move edit operations. If move edit operations were
not be supported, a faster algorithm could be used instead. Because findBestChanges
was to enumerates all possible mutations, it can result in long run times when a grammar
contains large lists.

5.3.2 Inability to detect elements inserted within the tree

Some modifications to grammars can result in elements that are inserted within the
tree, as opposed to inserting them as leaves. Because cfgDiff does not support this
operation, modifications like these can result in the deletion and insertion of whole
subtrees. Implementing this feature would severely increase run times.

5.3.3 Inability to differences in grammar edit operations

The edit scripts cfgDiff produces consists of tree edit operations. The usability and
user friendliness of the tool would benefit from edit scripts which contain grammar edit
operations, since they are more descriptive. Also, a tool which pinpoints the original
sections of the grammars which are associated with each edit operation would benefit
the user experience.
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Chapter 6

Conclusion

The cfgDiff algorithm is a tree differencing algorithm which is developed for context-free
grammars. Although it lacks the transformation of tree edit operations into grammar
edit operations, it is a improvement over existing alternatives. It can handle both ordered
and unordered collections within the same tree, something that happens in most gram-
mars. Because of this feature, cfgDiff is able to detect changes without the unnecessary
or missing changes ordered and unordered tree diff algorithm detect.

6.1 Threats to validity

The algorithm has been tested on random trees due to the complexity of generating valid
grammars and the time it would take to generate and validate such test cases. Therefore
it is possible that the algorithm may function differently on grammars than it did on
random trees.

Also, some statistics presented in this thesis may be off due to small sample sizes, as in
figure 4.5. Furthermore, the statistics may be less precise because of the low resolution
of the cpuTime function. Its resolution is 15.6 milliseconds on the test machine, which
may affect some statistics.

6.2 Future work

The points described in section 5.3 provide improvements that can be made to the
algorithm. Addressing these points may result in an improved version of a function or a
totally different implementation.

Furthermore, cfgDiff provides an edit script containing tree edit operations. Work can
be done to transform the tree edit operations into grammar edit operations, for example
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’substitute non-terminal X’. This way, the edit script becomes more readable because
it provides a context in which the change has been detected. These grammar edit
operations may even be transformed into higher level grammar edit operations, such as
the inlining of a non-terminal.
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