
The Influence of First-Class Relations on Coupling and Cohesion
A Case Study

Rob van der Horst
University of Amsterdam

Master Software Engineering 2011
+31 6 28 45 92 55

rob@equate.nl

ABSTRACT
In object oriented programming languages associations between
objects are often implemented through object field members.
This paper discusses what the effects would be on coupling and
cohesion if those associations were instead implemented with
first-class constructs for relations or first-class relations.

First-class relations have positive effects on coupling and
cohesion according to various papers [31, 27]. However, we
found only one paper [32] in which the first-class relations have
actually been used in real-world software. That paper however,
did not report effects on coupling or cohesion. Therefore, we
conducted an empirical research to find out if first-class
relations indeed have effects on coupling and cohesion and
which characteristics of first-class relations cause these effects.
In this research we used an existing software program and
replaced associations implemented through object field members
with first-class relations.

From our findings we concluded that three characteristics of
first-class relations indeed have a positive effect on coupling or
cohesion. The characteristics that were found to have positive
effects are (1) being one entity, (2) being the only relation
construct and (3) support for relational constraints. Another
important characteristic is that first-class relations have their
own special notation. Although, we do consider this a vital
characteristic to first-class relations, we could not find any
results supporting this claim. In some cases a java object also
sufficed as relation construct. We expected that roles would are
also important for decoupling. However, this could not be
established. Finally, we concluded that a first-class relation can
not decouple a parent from its property if its role cannot be
expressed in terms of its public methods. It does provide a
dependency injection mechanism.

Keywords
Relations, Associations, Aspect-Oriented Programming

1. INTRODUCTION
1.1 Background and Context
The idea for this research arose from the marketplace business
model. This business model revolves around the idea of a
marketplace in which independent contractors can register for
developing and testing small chunks of software. For
decomposing the system-to-be into small chunks it is essential to
apply the principle of information hiding [30]. A prerequisite for
information hiding is that chunks are loosely coupled and have
high cohesion [9]. Later on in the development process, these
chunks of software will be assembled using connectors to
compose the software system. This idea has been implemented

in different fields of software engineering such as component-
based development [7], service-oriented software engineering
[7] and role-based development [23]. What separates our idea
from those fields of software engineering is its granularity. We
search for a more fine-grained decomposition. Fine-grained
decomposition provides more ways to decompose the system
into sub-systems. Consequently, during composition some
components will end up together in the same subsystem while
others end up in different subsystems. Intra-subsystem
connectors differ from inter-subsystem connectors. The Java
virtual machine for example provides intra-subsystem
connectors for objects while SOAP can be used as inter-
subsystem connector. The choice of connector must be made
early on in development. If Java would support connectors that
provided the same interface as the SOAP interface then the
decision of dividing into subsystems could be made further
downstream in the development process. The objects would be
unaware of the type of connector or even be unaware that they
would be connected to other objects. We believe that a first-
class relation (FCR) can be such a connector.

1.2 Motivation
In January 2011, we stumbled upon a piece of Java code that
had a circular dependency between two objects. Both objects
maintained references to instances of each other. If an object
instance was added or removed both references had to be
updated. The objects had to know which method of the other
object to use to prevent an infinite loop. In other words, the
objects required knowledge of the internal implementation
details of the other object. A first-class relation, if available to
Java, could have easily implemented this relation and prevented
the dependency on the internal details. It would do so by
removing the cyclic dependency the two objects have with each
other.

Figure 1 Basic idea of first-class relation.

Figure 1 shows that the coupling between the two objects has
been replaced by coupling between the objects and the relation.
The picture also shows that the reference to the other object is
no longer required and thus the relation is no longer maintained

addB()
removeB()

B b
A

addA()
removeA()

A a
B A B

addAB()
removeAB()

{A,B}
relation

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 2

inside the objects themselves. The object can now focus on its
core functions now that the burden of maintaining the relation
has been removed. This leads to the expectation that cohesion or
coherence should improve.

The relation construct provides the maintenance methods out-of-
the-box. Maintenance methods are getters and setters that
operate on the relation as a whole. This embodies the basic idea
of the first-class relation.

Various sources have reported advantages of relations
implemented as first-class relations as opposed to implemented
through field members. A few of these are:

- higher cohesion/lower coupling [31, 27];
- guaranteed referential integrity under transactional control

[28];
- relational consistency and integrity through support of

operations and constraints on relationships as a whole [32,
28];

- the programs are easier to understand [26, 27];
- the programs are easier to modify [27];
- alignment with database is better [32];
- alignment with domain model is better [32];
- traceability improves [27].
Except for Rumbaugh [32] these sources did not provide real
world empirical prove. They used small pieces of sample code
or were logical argumentations. Therefore, we chose to conduct
an empirical idiographic case study on one existing software
program to validate these claims made about first-class relations.

1.3 Scope
This research considers only the effects of first-class relations on
coupling and cohesion. It does not consider effects on other
quality attributes such as maintainability. Therefore, the
conclusions we drew were from the perspective of coupling and
cohesion. Because we performed empirical research of an
existing software program, only the characteristics that were
relevant for the software program were investigated.

Although relations can exist between more than two objects [21,
32] we consider only binary relations.

The scope of our research is limited to:

- effects on coupling and cohesion metrics;
- characteristics of the first-class relation relevant to the

software program;
- binary relations;
- static first-class relations (see paragraph 3.4 for more

information);
- relations between object instances as opposed to relations

involving object classes;
- relations that are associations i.e. not inheritance or

implementation of interfaces.

1.4 Concepts of Coupling and Cohesion
The definition of coupling used by Chidamber and Kemerer [11]
says “two objects are coupled if and only if at least one of them
acts upon the other, X is said to act upon Y if the history of Y is
affected by X, where history is defined as the chronologically
ordered states that a thing traverses in time”. They continue to
conclude that by that definition any action performed by X on Y
or by Y on X constitutes coupling. These actions can be method
calls or access to field members.

The definition of cohesion used by Chidamber and Kemerer [11]
is based on the principle of similarity of methods within an
object. This similarity is based on the intersection that methods
have through field members. The degree of similarity is viewed
as the object class cohesiveness. An object class is considered
cohesive if it has different methods performing different
operations on the same set of field members. One such set is
considered as a function area by Hitz and Montazeri [19].

1.5 Characteristics of First-Class Relations
For a relation construct to be considered first-class it must
exhibit a number of characteristics. These characteristics are:

1. it has its own special notation;
2. it is constructed as one entity;
3. no other construct defines a relation between the same

participants in parallel with a first-class relation;
4. it represents the same concept in run-time;
5. operations can be performed on relationships;
6. constraints can be applied to relationships.

The first characteristic is that a first-class relation must have its
own special notation. Rumbaugh [32] argues that a special
notation aids in the visualization of relations in the program
code and the communication with other stakeholders.
Communication approves because without the special notation it
is not possible to describe relationships without also describing
the actual implementation of relations. He compares the special
notation with the notation of relations in the modeling language
Object Modeling Technique (OMT), the predecessor of UML. In
OMT relations are represented as lines between object classes
with the name of the relation written above the line.

The second characteristic has been derived from Jacksons
definition for a relation [21]: A relation is a structure that
relates atoms. It consists of a set of tuples, each tuple being a
sequence of atoms. You can think of a relation as a table, in
which every entry represents an atom. The order of the columns
matters, but not the order of the rows. Each row must have an
entry in every column. For object-oriented programs the term
“atom” must be substituted by the term “object instance”. It is
the structure i.e. the table, which makes the relation to be one
entity. In OMT, that one entity is the line between the object
classes.

The third characteristic is that no other relation constructs are
possible between the same participants. Different relation
constructs may be used but between the same participants only
one construct may be used at a certain moment in time. If more
than one construct is used at one time then it is not possible to
guarantee relational integrity between participants.

The fourth characteristic is that the relation construct must
remain in tact at run-time. Run-time support is required for a
number of reasons. These reasons include dynamic lookup of
participants, debugging and serialization. The run-time concept
of a relation also aids in thinking in terms of relations and hence
facilitates the communication among stakeholders of the
software program.

The fifth characteristic is that it must be possible to apply
operations to relationships. We recognize two types of
operations: structure operations and behavior operations.
Structure operations allow us to change and query the structure
of a relationship. Behavior operations consist of the behavior of
the participants in the relationship.

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 3

The sixth characteristic is that it must be possible to apply
constraints to all participants in a relationship. Constraints are
used by Rumbaugh in [33] to support propagation of operations.
The operations act on the participants across relationships. Also,
Rumbaugh and Jackson [21] both recognize the necessity for
constraining the cardinality of the participants in a relationship.

1.6 Research Question
The absence of case studies on real world software in literature
on first-class relations creates doubt about the proclaimed
advantages. Although some studies have been done on small
pieces of code these are not expected to be sufficient to uncover
the intricacies typical of applying theories to real world
software. This could very well be the reason that first-class
relations up till now have not been adopted by mainstream
programming languages.

In this paper we take a first step in uncovering these intricacies.
We do so by focusing on coupling and cohesion because this
most clearly relates to our requirement for decomposing the
software program. Therefore, central in this paper is the
following research question:

Which characteristics contribute to a successful implementation
of first-class relations with respect to coupling and cohesion,
and which characteristics contribute to failure?

In support of our main research question we have formulated a
number of sub-questions.

1. Which elements constitute a first-class relation?

We found different elements of first-class relations in the papers
but these have not always been implemented in the models that
followed. For example, Balzer et al mentioned the existence of
invariants in [3, 4] and Rumbaugh mentioned propagation of
operations in [33].

2. How should first-class relations be applied to object-
oriented code?

For traceability we describe how we will apply first-class
relations to the software program. We have to identify the
relations and their characteristics from the source code because
we did not have access to the design of the software program.

3. Which definitions of coupling and cohesion are appropriate
for first-class relations?

The definitions of coupling and cohesion we choose can have a
profound impact on our results. The definitions have to be
applicable to the programming language of the software
program. Furthermore, earlier versions of coupling and cohesion
have been questioned in papers that followed.

1.7 Related Work
The relation has been around as a first-class citizen in modeling
languages such as UML [22] and entity relationship diagrams
[10]. However, the relation never got the same support in
mainstream object-oriented programming languages such as
Java, C++ or Smalltalk. Back in 1987, James Rumbaugh
suggested an implementation of relations as first-class citizens in
the object-oriented language Data Structure Manager (DSM)
[32]. After Rumbaugh's implementation of DSM other
programming languages followed, such as RelJ [6]. RelJ
resembled DSM in that it too supported relations as part of an
object-oriented language. However, RelJ never got
implemented.

It wasn’t until 1995 that the work of Rumbaugh was followed
up. Noble and Grundy published their paper on relationship in
object-oriented development [27]. They implemented
relationships with relationship objects. Using these relationship
object Nobles and Grundy observed advantages such lower
coupling, higher cohesion, smaller programs, easier to
understand code and better alignment between design and
program code. Noble reported the same advantages in 1997 in
his paper on basic relationship patterns. These patterns described
how objects could be used to model relationships.

More people joined the research of first-class relations from
2002. The research focused on implementations of dedicated
relational languages (RelJ and Rumer), implementations of add-
ons (RAL, CaesarJ and Noiai) or theory.

In the fields of add-ons, Hannemann and Kiczales published
their paper in 2002 on their implementation of design patterns in
AspectJ [18]. Although, this paper was not specifically aimed at
relations their implementation did show how relations could be
implemented using aspect-oriented programming (AOP). The
paper of Noble and Pearce in 2006 [31] presented the
Relationship Aspect Library (RAL). RAL supported two types
of relations: static relations and dynamic relations. Static
relations were implemented with AspectJ while dynamic
relations were implemented with Java. In 2007, Østerbye
presented his implementation of a library for association
relationships in C# called NOIAI (“No object is an island”) [29].
In 2008, Noble, Pearce and Nelson presented a three-level
model of relationships [24, 25] in which relations form the third
tier after the object tier and association tier. The relation tier
adds roles and relationship constraints. They did not however,
present an implementation of their model like Noble and Pearce
did earlier with RAL.

In the field of relational languages, Bierman and Wren presented
RelJ in 2005 [6]. RelJ was a language that supported a subset of
the features of Java and added support for relationships. RelJ
was never implemented however. In 2006, Aracic et al
introduced the concepts of their language CaesarJ in [1]. CaesarJ
combines object-oriented programming with aspect-oriented
programming in one language. In 2007, Balzer et al presented a
relational model [4]. This model proposed member interposition
for object members specific to a relation. It also proposed
relationship invariants to constraint the objects in a relation.

Our concept of the first-class relation is not confined to
development time but extends into run-time as well. The first-
class relation construct must be interchangeable with other
technologies. In other areas of software engineering,
technologies have been developed that show similarities with
relation constructs. One such area is that of role-based
development. Lee and Bae [23] proposed an implementation of a
role model using Javassist to modify code at source level. The
resulting code contained classes similar in functionality to that
of relations. In the area of service oriented software engineering
relations are perhaps best compared with the service
composability design principle described by Thomas Erl [13].
Applying this design principle depends on the implementation of
several design patterns. CORBA defines a relationship by the set
of roles the entities have [28]. The Relationship Service
implements the relationships. It also implements roles. CORBA
objects represent the roles in a relationship.

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 4

1.8 Organization of this Paper
The next section describes the research method we used. Section
3 describes the explorative part of our research. Section 4
describes the application part of our research. Section 5 presents
an overview of the results for each element of a first-class
relation. Section 6 presents the analysis of the results and refers
back to sections 4 and 5. The analysis is presented from a
viewpoint of each of the characteristics of a first-class relation.
Section 7 sums up the conclusions.

2. RESEARCH METHOD
We split our research into two phases: exploration and
application. The objective of the exploration phase is to gain an
understanding of the matter, seek answers to our sub questions,
select a software program to refactor and set up our development
environment. The exploration will be done iteratively: (1) learn -
define a first-class relation based on work of others (2) apply -
implement in an existing software program and (3) refine -
analyze results and adapt model of first-class relation.

The objective of the application phase is to measure and analyze
the effects of first-class relations on coupling and cohesion. We
identify relations in the baseline code, match it to our first-class
relation model, and then apply each element of the first-class
relation. After the application of each element we validate the
functions of the software program and measure the effects the
application has on the participants in the relation and the rest of
the software program. The effects are analyzed and explained.
See Figure 2 for an overview of the application research method.
Eventually, all results are combined to form our conclusion.

Due to timing constraints we limit the research to include only
part of the relations found in the software program. To make a
fair comparison to first-class relations we try to avoid code that
is tightly coupled or has low cohesion due to bad programming.
Therefore, we select relations that follow established
programming practices. One such practice is the use of design
patterns. To make the results more predictable we select only
design patterns, which are known to have a certain effect on
coupling and cohesion [8, 14, 15].

We also select a number of straightforward relations i.e.
relations between an object and its property. We refer to those
relations as property relations. Design patterns often introduce
additional elements such as interfaces and abstract classes.
These additional elements may influence the outcome of the
refactoring because they are not considered part of the business
domain and therefore may become redundant in the process of
refactoring to first-class relations. With property relations we
intentionally refrain from factoring out the parent itself into a
relation. The property relations are taken from an arbitrary test
case by following its call tree.

For each relation, we analyze its characteristics. These
characteristics are translated to the elements of our model of a
first-class relation. Paragraph 3.3 describes this model. The
elements include cardinality, how client objects use the relation,
which methods constitute the behavior of the relation and what
type of behavior it concerns.

The first-class relation is then implemented, one element at a
time. Every element is then switched on and off individually.
There are some dependencies however between the elements.
For example cardinality is part of the structure of the first-class
relation and cannot be switch on and off independent of
structure. The implementation follows the guidelines described
in paragraph 3.4.

We validate the resulting program code with regression tests. To
validate the implementation of the first-class relations we follow
the results presented by Kiczales and Hannemann in [18] and let
experts in the field of first-class relations review the code. After
each application step, the resulting program code is saved to a
source code version system.

After each finished application step we record the metrics. We
start with recording the baseline. Then for each relation, every
time an element is switched on or off, the resulting values of the
metrics are recorded in a database. For coupling we record the
values between two related objects but also values in relation
with all objects in the software program. In addition to the
metrics themselves, we record which objects were changed and
what roles they played in the relation. For the design patterns,
the naming of the roles are taken from Gamma et al [14]. For the
relations in the test case, the role names are restricted to client,
parent and property. The application steps are matched with the
revisions in the source code version system.

All information recorded during the application phase is coded.
The set of codes is: name of the relation, name of the
participants, coupling or cohesion and element of first-class
relation. The coding helps us with identifying patterns during the
analysis.
The validity of the measurements is ascertained in two ways: (1)
the measurements are performed with tools that have proven
themselves in other studies and (2) the internal code of the
metric tools has been analyzed during the exploration phase and
compared to their definitions.

The metrics are not used for quantitative analysis. Instead, we
use the metrics to support us in understanding the effects of
first-class relations and to ascertain that we do not miss
unexpected effects. We compare the resulting metrics to the
baseline and to the previous step. We do this for all objects that
were changed and for the clients.

Finally, during analysis we look at the elements of first-class
relations and how they translate to the characteristics of first-
class relations. To support us with the analysis, we use our notes
and where necessary do the measurements again with tracing
enabled for the metric tools so we can examine intermediate
results such as collections of objects.

baseline code

select
relations

analyze
relation 1

analyze
relation 2

analyze
relation n

implement
relation 1

implement
relation 2

implement
relation n

selection of relations

elements of FCR

validate
program

validate
program

validate
program

adapted code

measure c&c

validated code

analyze
metrics

analyze
metrics

analyze
metrics

metrics

effect on c&c

measure c&c measure c&cmeasure c&c

analyze
results

conclusion

Figure 2 Research Method in Application Phase

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 5

3. EXPLORATION PHASE RESEARCH
In this section we describe the explorative part of our research.
As part of the exploration we present our development
environment and answer the sub-questions. The answers are
given in the form of the metrics used for coupling and cohesion,
a model of first-class relations and a procedure for identifying
and applying first-class relations to existing source code.

We use the term object class to indicate the type of an object.
We use the term object instance to indicate an instance of an
object. Throughout this paper we use the term object if it is
irrelevant to the discussion whether it concerns an object class or
object instance. We use the term relation class to indicate the
type of relation. We use the terms relationship to indicate an
instance of a relation. A relationship is the set of tuples of object
instances in a relation that are linked together, or group of
interacting object instances [4]. See Nelson et al [25] for a more
precise description. Throughout this document we use the term
relation if it is irrelevant whether it concerns a relation class or
relationship.

3.1 Definition of Coupling and Cohesion
Of the advantages mentioned, coupling and cohesion are directly
related to decomposing systems. How these quality attributes
change is indicative for the value of first-class relation with
respect to decomposition. This paragraph describes which
metrics are appropriate for our research.

3.1.1 Coupling
Coupling metrics appropriate for object-oriented systems can be
divided into three categories [12]: (1) inheritance coupling, (2)
component coupling and (3) interaction coupling. The coupling
metrics we consider were introduced by Chidamber and
Kemerer in [11], or derived from those metrics. The metrics
included CBO (coupling between object classes), WMC
(weighted methods per class) and RFC (response set for a class).

Inheritance coupling pertains to class inheritance, interfaces and
abstract classes. These constructs exist only during design-time.
Two object classes are inheritance coupled if one is a direct or
indirect sub-class of the other. During run-time super-classes
and interfaces are no longer recognizable as a separate construct.
For this type of coupling, Java already provides first-class
constructs. This type of coupling can influence decomposition
but we could not find any metrics for inheritance coupling.

Component coupling pertains to relations between objects that
may exist at some point in the lifetime of an object. Component
coupling is typically implemented in Java code using field
members and method parameters. This type of coupling also
exists during run-time.

Of the component coupling metrics, CBO, Fan-In (afferent
coupling) and Fan-Out (efferent-coupling) are very useful. They
pertain to static relations between objects. In Java, a static
relation is created using object field members. Fan-In of an
object is the number of static references from other objects to
this object. Fan-Out of an object is the number of static
references to other objects. CBO is the number of static
references between two objects or the union of Fan-In and Fan-
Out.

Interaction coupling pertains to interactions between objects.
Interaction coupling is implemented in Java through method
calls and attribute access. Two interaction coupling metrics are
MPC (message passing coupling) and RFC.

Both metrics are useful to our research but only one is required
because they are closely related. Message related coupling
pertains to the messages sent between classes i.e. the methods
called. The metrics tool JHawk [17] defines MPC as the number
of methods from another class that are called. JHawk defines
RFC as the number of methods in a class plus the value of MPC.
Table 1 shows the coupling metrics appropriate for our research.

3.1.2 Cohesion
Cohesion metrics appropriate for object-oriented systems can be
divided into three categories [12]: (1) method cohesion, (2) class
cohesion and (3) inheritance cohesion.

Method cohesion describes the binding of the elements defined
within the same method. Individual methods are not considered
in our research. Objects are the smallest grained elements we
consider.

Class cohesion describes the binding of the elements defined
within the same object. Inheritance cohesion is the same as class
cohesion except that it also takes inheritance into account. Since
inheritance is a measure for reuse the functionality in super-
classes should be taken into account as if it were implemented
without inheritance.
Class and inheritance cohesion metrics are roughly divided into
two categories: those measuring lack of cohesion in methods
(LCOM) and those measuring cohesion itself. The former has
many variants. LCOM was introduced by Chidamber and
Kemerer [11] but was considered to be counter-intuitive by Hitz
and Montazeri [19] and others. In response Hitz and Montazeri
introduced an improved version of LCOM (ILCOM) using
graph theory. ILCOM measures the number of disjoint function
areas in an object. They referred to it as the number of
connected components of a graph.
Metrics to measure class cohesion itself are tight class cohesion
(TCC) and loose class cohesion (LCC). These metrics were
introduced by Bieman and Kang in [5]. They are similar to
ILCOM. TCC is the ratio between pairs of connected methods

Table 1 Appropriate Coupling Metrics

Metric Formula Category

CBO The size of the intersection of the
set of object classes referenced by
this class with the set of object
classes that reference this class.

Component

Fan-In The number of classes that
reference this class.

Component

Fan-Out The number of classes referenced
by this class.

Component

MPC The number of calls made to
methods in other classes.

Interaction

Table 2 Appropriate Cohesion Metrics

Metric Formula Category

ILCOM Number of connected components Class

TCC Number of pairs of directly
connected methods divided by
number of pairs of methods

Class

LCC As TCC but includes indirectly
connection methods as well.

Class

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 6

and all pairs of methods in a class. LCC measures both directly
connected methods and indirectly connected methods while
TCC measures only directly connected methods. Valid values
for TCC lie between 0 and 1. Table 2 shows the cohesion
metrics appropriate for our research.

3.2 Development Environment
The software program we chose for our research is JUnit 4.9,
which is maintained by Kent Beck and Erich Gamma. JUnit is a
unit-testing framework for Java programs. It has a graphical and
a text user interface for viewing results. It is integrated with
several programming environments such as Eclipse.

JUnit is a relatively small program making it easy to
comprehend. It also contains design patterns for which the
effects on coupling and cohesion are known. JUnit comes
included with a suite of test cases, which will help us doing the
regression tests.

JUnit is split into two parts: one supporting version 3.8 clients
and another supporting version 4 clients and providing classes
for backward compatibility. Figure 24 gives an overview of the
classes we encountered during our study. It distinguishes version
3.8 classes from version 4 classes. The relations that have been
refactored are shown with dotted lines. Notice that the figure
does not intent to be a complete overview of JUnit.

We chose RAL [31] for the implementation of the first-class
relations. The number of programming languages with support
for relations we known of is limited to RelJ, Rumer, Noiai,
CaesarJ and RAL. Neither RelJ nor Rumer has an
implementation and consequently no software program has been
developed. Noiai is an add-on for C# and cannot be used for
JUnit. CaesarJ seems a viable option. It is a Java-based
collaboration-oriented programming language. It extends
AspectJ. However, the implementation of CaesarJ is complex
compared to that of RAL. This will make it difficult to extend if
required. RAL is also Java-based and uses AspectJ. RAL does
have some issues such as missing support for polymorphic pair
types, missing support for n-ary relations and limited support for
multiple instantiations of relationships [25]. However, none of
those issues will hinder us in using it.

For detection of design patterns we chose the Design Pattern
Detection tool from CSSE Laboratory. It’s an easy to use stand-
alone tool that operates against a directory of Java sources. And
as a bonus it has been tested with JUnit 3.7. The tool has been
documented in [35] and is available for download together with
the results for JUnit 3.7 from the web site of CSSE Laboratory
[34].

We did not find a tool that provided all metrics we required.
Therefore, we chose two tools: JHawk 5 Professional Edition by
Virtual Machinery for coupling and VizzMaintenance 2.0 of
ARiSA AB for cohesion. JHawk comes as a stand-alone tool as
well as an eclipse-plugin. It is available for download from the
company’s web site [36]. VizzMaintenance comes as an eclipse-
plugin. It is available for download from the company’s web site
[2].

Both metrics tools perform their measurements on the Java
source code. They do not take aspects of AspectJ source code
into account. JHawk allows one to select the objects that must be
measured during analysis. This makes it possible to exclude or
include the object classes in the JDK at will. VizzMaintenance
does not support LCC and for TCC it counts only the public
methods.

3.3 Model of First-Class Relation
This paragraph presents our model of a first-class relation
(Figure 3). It identifies the elements of the model and thus
answers sub-question 1. The main two elements we distinguish
are structure and behavior.

Structure itself is divided into three sub-elements: (1) state, (2)
maintenance methods and (3) cardinality. Structure is the
container for the objects instances that participate in the
relationship. The object instances that are part of the relationship
at a given time define the state of the relationship. Access to the
structure is provided by maintenance methods. Cardinality limits
the number of object instances on each side of the relationship.

The second element is behavior. There are two types of
behavior: active and reactive. Reactive behavior is triggered by
object instances that take part in the relation causing other object
instances in the relationships to react. This kind of behavior is
typically implemented with the Observer design pattern. Active
behavior is initiated by a third object; a client object.

Roles are also part of behavior. Roles describe the public
interface of the objects that is used by the relation when an
object participates in a relationship.

3.3.1 Structure
State is the collection of tuples of object instances that make up
the relationship. An object in a relation is referred to as a
participant, Balzer et al [3, 4]. The binary relation has two
participants that are each other’s partner. Together two partner
instances are referred to as a tuple. The set of tuples can be
viewed as a table [21, 32]. State changes when tuples are added
or deleted. State can also be queried.

Maintenance methods provide access to state. State is changed
when maintenance methods add or delete tuples. State is queried
when maintenance methods get tuples, participant instances or
the size of state. Typical maintenance methods are add(),
remove(), size() and get(). Additional maintenance methods
exist to facilitate use of lists of participants. Maintenance
methods are used by clients of the relation and by the behavior
methods of the relation. The name of maintenance methods was
taken from [18] where Kiczales and Hannemann describe the
implementation of design patterns with aspects.

Cardinality constrains the number of tuples in a relationship. An
n-to-m relation has a maximum of n*m tuples. Cardinality also
constrains the number of object instances in a relationship. For
one participant n distinct instances can be in the relationship and
for its partner m distinct instances can be in the relationship.

Figure 3 Theoretical Model of a Relation

Relation

State

BA

b1a1

b1a2{

C
ar

di
na

lit
y

A {

C
ardinality B

Maintenance methods

Structure

Behavior

R
ol

e
A R

ole B

Object A Object B

tuple

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 7

3.3.2 Behavior
Balzer et al in [3] mention that relations contain the behavior
that participants have in common. We define behavior as the
interaction between the participants of a relation. Interaction is
initiated through behavior methods. The behavior methods use
only the public methods of the participants. This may conflict
with the idea of Pearce and Noble in [31] that objects can
behave differently when they are participating in a relation.
However, we use only the public methods of the participants to
honor the principle of information hiding.

We differentiate between two types of behavior just like
Kiczales and Hannemann do in [18]. These types are reactive
and active. They used reactive behavior for the Observer pattern,
and active behavior for the other patterns.

Behavior is reactive (Figure 4) when it is triggered by one
participant and then performs an action on its partner (to keep it
in sync). Reactive behavior cannot be accessed by clients.
Reactive behavior is useful for attaching functionality to an
existing software program.

Behavior is active (Figure 5) if a third object initiates the
interaction between the two participants. The third object, the
client, operates directly on the behavior in the relation. It does
not have to be aware of the object instances in the relation
though.

3.3.3 Roles
Roles define the behavior that is expected of the participants.
Nelson in [24] uses roles to add state and behavior to
participants in the context of a relation. He does so by adding
fields and methods to the participant. Again we do not want to
break the principle of information hiding and therefore use only
the public methods participants already have. An object may
only participate in a relation if has the methods defined by the
role.

A participant has formalized a role if the methods required for
the role are part of a separate construct. In Java, this construct is
the interface. If a participant has not formalized its roles then it
is said to be oblivious of what it is used for.

Figure 6 shows that role A is defined by methods bMethod(),
cMethod() and dMethod(). If object A implements these
methods it can play role A and thus participate in the relation.

Figure 7 shows that behavior of the relation is defined by the
interaction between the methods in the roles. With reactive
behavior, any time a method in role A is executed, methods in
role B get executed. With active behavior, the methods of roles
A and B are executed together, part of the behavior methods,
which in turn are triggered by a client.

3.3.4 Clients
Clients are objects that operate on a relation. Clients can change
or query the state of a relationship. Clients can also execute the
behavior methods of a relationship if it concerns active behavior.
Relationships can have more than one client

3.4 Implementation in RAL and AspectJ
RAL is a library of relation aspects and relation objects. The
relation aspects support static relationships while the relation
objects support dynamic relationships. Relationships are static if
they always exist during run time. Relationships are dynamic if
they can be created and destroyed during run-time.
For the implementation of first-class relations we used static
relations only because aspects can be implemented invisible to
the metric tools. Invisibility is important because we want to
prevent that aspects are regarded as objects.

The static relations of RAL provide structure, including state,
maintenance methods and cardinality. They do not however,
provide behavior. To implement behavior we had to extend the
static relations with aspect code. To guide us with this we used
the description of Kiczales and Hannemann in [18].

The static relations are used to create relations between two
objects1. In RAL, static relations are available only with many-
to-many cardinality. RAL provides two aspects for this:
StaticRel and SimpleStaticRel. The former differs from the
latter in that it provides support for pairs of objects where the
pair can be defined as an object. Behavior is added by extending
or adapting SimpleStaticRel.

1 According to [31] unary relations are also supported with the
SimpleStaticReflexiveRel aspect, but this aspect was not
present in the library.

Relation
Object A Object B

bMethod()
cMethod()
dMethod()

xMethod()
yMethod()

Behavior

Structure

Role A Role B+aMethod()
+bMethod()
+cMethod()
+dMethod()

+xMethod()
+yMethod()

bMethod()
cMethod()
dMethod()

Role A

Figure 6 Roles Dictate Which Objects can Participate

Relation

bMethod()
cMethod()
dMethod()

xMethod()
yMethod()

Behavior

Structure

Role A Role B

Relation

bMethod()
cMethod()
dMethod()

xMethod()
yMethod()

Behavior

Structure

Role A Role B
mMethod()
nMethod()
oMethod()

Figure 7 Reactive Behavior (l) versus Active Behavior (r)

RelationObject A

+existingMethod()

Object B

+someMethod()if:
A.existingMethod()
then:
B.someMethod()

direction of navigation

Figure 4 Reactive Behavior

RelationObject A

+aMethod()

Object B

+anotherMethod()do:
A.aMethod()
and:
B.anotherMethod()

Client

direction of navigation

Figure 5 Active Behavior

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 8

aspect Attends extends
 SimpleStaticRel<Student, Course> {
 ...
 void grade(Student s, Course c) {...}

}

Below is illustrated how access to the Attends relation from the
object source code may look.
Attends.aspectOf().grade(aStudent,aCourse);

3.4.1 Structure
SimpleStaticRel is an abstract aspect, which forms the basis of
structure. We adapt SimpleStaticRel to add support for one-to-
one relations (SimpleStaticOneToOneRel) and one-to-many
relations (SimpleStaticOneToManyRel). The add() function
ascertains that the cardinality does not exceed one and it
provides methods for returning a single object rather than a Set
of objects. Note that RAL does support dynamic relations with
one-to-one and one-to-many cardinality.

SimpleStaticRel and SimpleStaticOneToManyRel can contain
only one relationship while SimpleStaticOneToOneRel can
contain multiple relationships. Concrete static relations are
defined by extending an abstract relation and adding behavior.

State is implemented in RAL using java.util.HashSet. This
implementation does not guarantee preservation of the order of
the entries in the relation. We added support for this too using
java.util.LinkedHashSet. Note however, that this conflicts
with the definition of a relation by Jackson [21].

RAL provides basic maintenance methods out-of-the-box. We
have added more sophisticated methods for working with
collections and making the roles visible e.g. addObserver().

3.4.2 Behavior
We added support for behavior the same way as Pearce and
Noble do in [31]. They add methods to the static relation
aspects. RAL however, does not explicitly support behavior.

We use pointcut/advice pairs to implement reactive behavior.
Pointcut/advice pairs allow us to react to events that occur in
one of the participants. Reactive behavior supports propagation
of operations as mentioned by Rumbaugh in [33].

Active behavior is added as regular methods to an aspect. Active
behavior can operate on the relation as a whole. The participants
are kept in sync with each other because they are manipulated in
the same operation.

3.4.3 Roles
In RAL, the name of the role is attached to the static relation
through the generic type parameters. In the first example the role
of Person has not been formalized through a Java interface.
aspect Attends extends SimpleStaticRel<Person,Course>
In the next example, Person implements the role of Student
using the interface Student. The Attends relation uses the
methods in the interface Student to access to Person object (or
other objects that implement Student).
aspect Attends extends SimpleStaticRel<Student,
Course> {
 ...
 void grade(Student s, Course c) {
 String id = s.getStudentId();
 ...
 }
}

// interface Student formalizes role
interface Student {
 public String getStudentId();
 public void addKnowledge(Knowledge k);
}

// class Person declares that it can play role Student
class Person implements Student {...}

3.4.4 Participant Methods
Following Østerbye, we use participant methods to make code
more readable and provide a convenient way of accessing
relationships. They also prevent that first-class relation
constructs are regarded as objects by the metrics tools. Østerbye
already recognizes the convenience to access relationships
through its roles rather than directly [29] and therefore adds
support for this to Noiai.

AspectJ provides a mechanism for attaching methods or code in
general to objects, called inter-type declarations (ITD). In our
case we will attach methods of the first-class relation to
participants or their role. We use participant methods for our
maintenance methods but also for our behavior methods.

The code example below shows the relation ResultObserver.
First, a relationship is accessed without using a participant
method and then with the use of a participant method.

ResultObserver.aspectOf().add(fResult,this);
fResult.addObserver(this);

Without the participant method the metric would count
aspectOf() as a method call.

3.5 Identifying Relations in Existing Code
In this paragraph we describe how we identify relations in
existing code and how they are mapped to first-class relations.
We identify relations in two ways. First, we use the Design
Pattern Detection tool to identify the design patterns and thereby
the relations involved. Then we identify relations manually from
a test case.

The relations we identify in the test case are either of the type
aggregation or composition. Other types exist too as Guéhéneuc
and Albin-Amiot showed in [16]. They defined that a binary
relationship in its most general form exists when an object
instance can send messages to another object instance. They
called such a relationship an association. They defined
aggregation and composition relations as a more restricted
association. Aggregation and composition relations can only be
established through field members.

It concerns an aggregation relation when the property is passed
on to the parent through its constructor. It concerns a
composition relation when the property is created in the
constructor. Either way, the parent cannot exist without the
property.

To replace the relation between a field member and its parent
with a first-class relation we remove the getter, setter and size
methods as well as constructors. First-class relations use the
maintenance methods instead.
We must derive cardinality from the code as well because we do
not have access to the design of the software program. The
lower bound of the field member is at least one if the field
member is created by the constructor. If not, it is at least zero.

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 9

The upper bound is at most “many” if a Collection class or
derived class was used. If not, it is at most one.

The interfaces that Java objects implement indicate the roles
they can play. One of the interfaces may be used for the relation.

The choice between reactive behavior and active behavior
depends on the client. If the client uses one participant as
argument when invoking the method of the other participant we
will use active behavior. If not, the relation is a candidate for
reactive behavior.

All refactoring that takes place will pertain to the first-class
relations only. We will not move other parts of code to other
objects, or remove code that is not used in the regression tests.

4. APPLICATION PHASE RESEARCH
In this section we describe the application phase of our research.
During this phase we select the relations that will be refactored.
For each relation we identify which elements it is made up of,
refactor it to a first-class relation, validate the code, measure the
coupling and cohesion and then analyze the results.

The application phase is divided into two sub-phases. In the first
sub-phase we refactor relations that were taken from design
patterns. In second sub-phase we refactor relations that were
taken from the test case. Each sub-phase is described in a
separate paragraph. Both paragraphs start with the step in which
the relations are selected and then discuss each relation per sub-
paragraph.

We analyze all relations, mapping them to the elements of a
first-class relation. These elements are structure, behavior, roles
and participant methods. Per element we describe how the code
is refactored and what the effects are on coupling and cohesion.
To validate the adapted code we run the test suites that
accompany the source code of JUnit. Log statements are added
to the adapted code and that of the first-class relations to
ascertain that the adapted code is actually used.

The test suites we use for testing are:
- junit.samples.AllTests.java
- junit.samples.SimpleTest.java
- junit.samples.money.MoneyTest.java
- junit.tests.AllTests.java
- junit.tests.extensions.AllTests.java
- junit.tests.framework.AllTests.java
- junit.tests.runner.AllTest.java
- org.junit.samples.ListTest.java

4.1 Design Patterns
Many sources report the advantages of design patterns with
respect to coupling and cohesion. Many of them however, refer
to Gamma et al [14]. Gamma et al mention that the following
design patterns are good for lower coupling: Abstract Factory,

Bridge, Chain of Responsibility, Command, Façade, Mediator
and Observer. For cohesion much less information is available
for specific design patterns.

Although, many sources report that increased cohesion is an
advantage of design patterns, we found that the Composite
pattern is bad for cohesion [15]. For the other design patterns,
we did not find any reports that showed what the effects were on
cohesion that could be attributed to one specific design pattern.

Of the aforementioned design patterns, the Design Pattern
Detection tool found one instance of the Observer, one instance
of the Composite pattern and 23 instances of the Command
pattern. Of those 23 instances 18 instances were not deemed
usable because they consisted of (anonymous) inner classes. The
effect of inner classes had not been considered during the
exploration phase nor had they been described by the metric
documentation.

From the remaining 5 instances one was considered to be an
instance of the Adapter pattern, based on the names of the
classes. The names revealed the intent of the pattern. An
instance of the Command pattern can also be an implementation
of the Adapter pattern since the difference between both patterns
is mostly intent [35]. Of the remaining 4 instances one was
selected arbitrarily.

4.1.1 Observer Pattern
The Observer pattern “defines a dependency between objects so
that when one object changes state, all its dependents are
notified and updated automatically” [14]. The pattern minimizes
the coupling between the Subject and the Observer [14]. The
pattern decreases coupling by using an interface that all
Observers must implement. Removing this interface should lead
to lower coupling between Subject and Observer.

Figure 8 shows the UML class diagram of the implementation in
JUnit of the Observer pattern without the first-class relation. The
Observer pattern implements the relation between TestResult
and interface TestListener.
Figure 9 shows the implementation of the Observer pattern with
the first-class relation. TestResult no longer depends on the
TestListeners and vice versa. Note that the first-class relation
is unidirectional. See Figure 25 for the source code.

Structure
In the start situation, the structure consists of the List objects
that hold the TestListeners. Access to the structure consists of
methods to add and remove listeners. The TestListeners can
be listening to multiple TestResults and so the cardinality is
many-to-many.

To apply structure, we use the SimpleStaticRel aspect. This
aspect supports many-to-many cardinality and provides the

+addError(Test, Throwable)
+addFailure(Test, AssertionFailedError)
+endTest(Test)
+startTest(Test)

ResultPrinter

+addError(Test, Throwable)
+addFailure(Test, AssertionFailedError)
+endTest(Test)
+startTest(Test)

JUnit38ClassRunner

+addError(Test, Throwable)
+addFailure(Test, AssertionFailedError)
+endTest(Test)
+startTest(Test)

TestListener

+addError(Test, Throwable)
+addFailure(Test, AssertionFailedError)
+endTest(Test)
+startTest(Test)

TestListenerTest

+addError(Test, Throwable)
+addFailure(Test, AssertionFailedError)
+endTest(Test)
+startTest(Test)

List<TestListener> fListeners
TestResult

ObserverSubject

ConcreteObserver

Client

Figure 8 Instance of Observer Pattern in JUnit Figure 9 Observer Pattern Implemented as First-Class
Relation

TestResultObserver

addObserver()

SimpleStaticRel

addError()
addFailure()
endTest()
startTest()

T
e
stR

e
su
lt

T
e
stL
iste

n
e
r

JUnit38ClassRunner
TestListenerTestTestResult<Client>

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 10

maintenance methods by default. The getters, setters and List
objects are therefore removed from TestResult.

After refactoring structure, the MPC (message passing coupling)
value drops in TestResult. The drop is caused by the removal of
the calls to java.util.Collection and related classes. MPC
does not drop as much as possible because other relations exist
that also use java.util.Collection. Part of the code removed
from TestResult is shown below.
protected List<TestListener> fListeners;
public synchronized void

addListener(TestListener listener) {
 fListeners.add(listener);
}

Support for structure does not influence component coupling
(CBO, Fan-In or Fan-Out) or cohesion because we cannot
completely remove the references to TestListener. Only MPC
drops but that is not due the lower coupling between TestResult
and the TestListeners but because we removed method calls to
utility classes.

Reactive behavior
In the start situation, the Observer pattern has behavior that can
be characterized as reactive because the client needs access only
to the Subject to trigger the notify methods. TestResult is the
Subject and it has four notify methods to which TestListeners
must subscribe. The TestListeners do not query state of
TestResult while Gamma et al [14] do describe the pattern that
way. Instead the four notify methods pass arguments from
TestResult to TestListeners.
To implement the behavior with RAL/AspectJ we moved the
code in the notify methods to the first-class relation. Before the
move, the notify method addError() in TestResult looked like
this:
public synchronized void
addError(Test test, Throwable t) {
 fErrors.add(new TestFailure(test, t));
 for (TestListener each : cloneListeners())
 each.addError(test, t);
}

Afterwards, with the loop over the TestListeners removed, the
method looks as follows:

public synchronized void
addError(Test test, Throwable t) {
 fErrors.add(new TestFailure(test, t));
}

The code below shows the implementation of the addError()
notify method in the first-class relation. We used
pointcuts/advice to attach the behavior to the notify method of
TestResult.
protected pointcut subjectAddError(TestResult s, Test
test, Throwable t) :
(call (void TestResult.addError(Test, Throwable)))
&& target(s) && args(test, t);

after(TestResult s, Test test, Throwable t)
returning: subjectAddError(s, test, t) {
 @SuppressWarnings("unchecked")
 Iterator iter= from(s).iterator();
 while (iter.hasNext()) {
 ((TestListener) (iter.next())).addError(test,t);
 }
}

Effectively, the first-class relation facilitates the transport of the
arguments Test and Throwable from TestResult to the
TestListeners through the method addError(). The JVM is the
vehicle for transport but instead another vehicle could also be
used. This would make it possible to decouple two (sub)systems.

After refactoring, the coupling between TestResult and
TestListener was removed completely. For TestResult, the
overall values for Fan-Out and CBO dropped by one. For
TestListener, the overall values for Fan-In and CBO dropped
by one.

Cohesion for TestResult increased but it remained the same for
TestListener. The increase was caused by the removal of the
fields and methods associated with TestListener. Effectively,
one disjoint function area had been removed.

With the support of behavior in first-class relations complete
decoupling between two objects can be achieved. Both objects
become independent of the other and can be developed
independently. The relation can later on be imposed onto the
two objects.

Roles
In the start situation, the role of TestResult is defined by the
notify methods: addError(), addFailure(), startTest() and
endTest(). The role of TestListeners is defined by the same
methods.

To implement roles with RAL/AspectJ we created a new
interface SubjectRole, which declared the four notify methods
and added it to TestResult using the open class mechanism of
AspectJ:
declare parents: TestResult implements SubjectRole;

public interface SubjectRole {
 public void addError(Test test, Throwable t);

public void addFailure(Test t,
 AssertionFailedError a);

 public void startTest(Test t);
 public void endTest(Test t);
}

After refactoring the roles, we noticed no changes to coupling or
cohesion in any of the objects. The reason was that a role was
already present in the start situation: TestListener itself is the
role. Adding an explicit Observer role to TestListener would
perform the same function, a second time.

Roles are formally defined by interfaces that potential
participants of the relation have to implement to participate. It is
a communication aid for the first-class relation to potential
participants. As such it can serve as a contract.

Participant methods
Participant methods do not exist in the start situation. They are
added to the first-class relation for readability. The participant
method addObserver() was added to TestResult.

After implementation we noticed that the participant method
prevented that MPC of the clients increased by one. The
participant method had no effect on cohesion or component
coupling. Influence of the participant method occurred in the
clients only. Table 3 shows the effect on MPC for all clients.

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 11

Table 3 Effects of Participant Methods on MPC of Clients
Object Without With
TestListenerTest 6 5
TestRunner 25 24
JUnit38ClassRunner 24 23
ForwardCompatibilityTest 22 21
InitializationErrorForwardCompatibilityTest 17 16

The lack of supporting participant methods or a similar
mechanism (unless perhaps the Java reflection classes are used)
is the reason for not using a POJO2 as first-class relation
construct. POJO’s would unnecessarily increase MPC.
However, further on in the application phase we see that abstract
super classes do support a mechanism for participant methods.
Concrete classes however, do not.

4.1.2 Composite Pattern
The Composite pattern “composes objects into tree structures to
represent part-whole hierarchies” [14]. The pattern increases
cohesion according to Grand in [15]. The reason is that it
includes specialized methods in general purpose classes.
Therefore, we do expect to see improvement in cohesion.

Figure 10 shows the UML class diagram of the instance of the
Composite pattern in JUnit. It implements the relation between
TestSuite and Test. TestSuite is the parent and Test is its
property. TestSuite is a Test itself. Test can be in more than
one TestSuite and TestSuite can contain more than one Test.
Instances of both TestSuite and ActiveTestSuite can play the
role of Composite. This instance of the Composite pattern has
four Leaf classes.

Figure 11 shows the implementation of the Composite pattern
with the first-class relation. The Leaf role (Test interface) has
been removed from TestSuite and has been placed in the first-
class relation. The client now acts on the first-class relation and
not on Test. The code of the resulting first-class relation is
shown in Figure 26.

Structure
In the start situation, the structure consists of the Vector object
that holds the Test objects. Access to the Test objects is given

2 POJO is an acronym for Plain Old Java Object. A POJO is an

ordinary java object.

by an add method, a size method and an index-based query
method. No remove method exists. Test objects can be added to
multiple TestSuites. Therefore the cardinality is many-to-many.

To apply structure we created a new relation aspect,
CompositeRelation. The reason was that the clients required
that order of the tuples were preserved. RAL’s SimpleStaticRel
does not guarantee order because it uses java.util.HashSet for
the tuples. We used java.util.LinkedHashSet instead.

It does not mean that order must be preserved by definition.
Indeed, in [21] Jackson defines relations without order. We
decided to support order to minimize impact on JUnit.

We also added extended maintenance methods to support use of
Vectors and for querying by index, both to minimize impact on
the client code:
public void addAllTests(TestSuite suite, Vector<Test>
_Tests) {
 Iterator<Test> iter = _Tests.iterator();

 Test test;
 while (iter.hasNext()) {
 test = (Test) iter.next();
 TestComposite.aspectOf().add(suite,test);
 }
}

After the refactoring, the MPC in TestSuite dropped by 2
because the use of methods of the Vector class dropped. CBO
and Fan-Out didn’t change even though the Vector of Tests
was removed from TestSuite. The reason was that the Test
interface was still used by the behavior methods as well as many
static utility methods.

We notice that support for structure does not remove the
necessity of the partner objects. Also, all relations with the same
partner object must be implemented as first-class relation.
Otherwise, the necessity for the partner objects remains.

Active Behavior
In the start situation the Composite pattern has behavior that can
be characterized as active because the client requires access to
both participants. It does so using an interface that both
participants have in common, the Component.

In this instance the behavior consisted of the methods run() and
countTestCases(). Both are enforced by the Test interface, the
Component.

TestListener

TestListener

JUnit4TestCaseFacade

TestListener

TestDecorator
TestCase

TestSuite JUnit4TestAdapter

Client

ActiveTestSuite

TestComposite
CompositeRelation

countTestCases()
run()

Test

Test

Figure 11 Composite Pattern Implemented as First-Class
Relation

+countTestCases()
+run(TestResult)

Test

+countTestCases()
+run(TestResult)

JUnit4TestAdapter

+countTestCases()
+run(TestResult)
+addTest(Test)
+testAt(int)
+testCount()
+tests()

Vector<Test> fTests
TestSuite

+countTestCases()
+run(TestResult)

TestCase

+countTestCases()
+run(TestResult)

TestDecorator

+countTestCases()
+run(TestResult)

JUnit4TestCaseFacade

Component

Composite

Leaf

+run(TestResult)
Vector<Test> fTests

ActiveTestSuite

Client

Figure 10 Instance of Composite Pattern in JUnit

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 12

To apply behavior we moved the behavior in the Composite to
the first-class relation. We did not move the behavior in the Leaf
to the first-class relation. Kiczales and Hannemann in [18] do
also move the Leaf behavior methods to the aspect. We believe
that is not correct because the behavior in the Leafs is part of
their core functionality. Therefore, the first-class relation now
has methods run() and countTestCases() that were previously
implemented by TestSuite. These methods iterate over the
Components in the relation.
public int TestSuite.countTestCases() {
 int testCases= 0;

 @SuppressWarnings("unchecked")
 Enumeration enu = Collections.enumeration(
 TestComposite.aspectOf().from(this));

 while (enu.hasMoreElements()) {
 testCases += ((Test) (enu.nextElement())).
 countTestCases();
 }
 return testCases;
}

After refactoring, ILCOM remains the same for TestSuite but
TCC (tight class cohesion) drops almost to zero. The reason that
cohesion does not improve is the static utility methods. After we
removed them from TestSuite we saw that TCC doubled to that
of its original value. The utility methods did not use any fields
and were therefore regarded as separate function areas. Without
the utility methods all that remains of Testsuite is a class with
only name as property, a getter method and a setter method. See
Figure 27 for the source code.

Without the utility methods CBO and Fan-Out values drop to
zero for TestSuite, as did MPC. With the utility methods there
was no change in the coupling.

Coupling in the Leafs did not drop. It was expected to drop on
account of Fan-In. That it did not drop was because JHawk did
not take the implemented Test interface into account.

As was expected from [15] we did see an improvement in
cohesion. However, the utility methods did pose an obstacle to
achieving this. They even gave the impression that cohesion
decreased because the ratio of the number of connected methods
over the number of disconnected methods decreased after the
first-class relation had been implemented.

Roles
In the start situation, the Composite pattern adds the role of Leaf
to a container object to make it behave like a Leaf. For this
Composite instance the Leaf role was implemented by the Test
interface. Test was added to TestSuite and ActiveTestSuite
and its operation methods countTestCases() and run() were
implemented. These methods looped over the Tests and called
the methods of the same name in the Leaf objects. The Tests
were stored in a Vector object.
To implement the role for TestSuite in the first-class relation
we removed the Test interface and had it added back again by
the first-class relation using the open class mechanism of
AspectJ. We did not have to create a dedicated interface for this
role since Test was already present.

declare parents: TestSuite implements Test;

After the role had been added we saw no effect on coupling or
cohesion. The role of Test was imposed on Testsuite so that it

could behave as Leaf. Notice also that the role could have been
imposed on any object.

Although roles have no effect on coupling or cohesion they are
useful as is shown by their presence in the Composite pattern. In
the Composite pattern the role of Test formally ties Composite
and Leaf together.

Participant Methods
We added participant methods for the regular maintenance
methods but also for the extended maintenance methods (with
Vector support). These participant methods were added to
CompositeRelation using parameterized types to preserve the
generic nature of the maintenance methods:
public void Fwd.addAllComponents(Vector<Component>
_Components) {
 Fwd<Component> composite = (Fwd<Component>) this;
 Iterator<Component> iter = _Components.iterator();

 Bwd<Composite> component;
 while (iter.hasNext()) {
 component = (Bwd<Composite>) iter.next();
 composite.fwd.add((Component)component);
 component.bwd.add((Composite)composite);
 }
}

A client using a participant method is shown below:
suite.addAllComponents(TestSuite.createTests(TestListen
erTest.class,AssertTest.class,TestImplementorTest.cla
ss,NoArgTestCaseTest.class,ComparisonCompactorTest.cla
ss,ComparisonFailureTest.class,DoublePrecisionAssertTe
st.class,FloatAssertTest.class));

The participant methods prevented that MPC of the clients
increased. The same result was noticed with the Observer
pattern. Although participant methods do nothing for coupling
and cohesion for the participants they do indeed make the code
in the clients more readable. The relations on the other hand are
no longer visible.

4.1.3 Command Pattern
The Command pattern “encapsulates a request as an object,
thereby letting you parameterize clients with different requests,
queue or log requests, and support undoable operations” [14].
The pattern reduces coupling between the Receiver and the
Invoker [14]. Reduction is achieved by introducing the
(Concrete)Command object. Therefore, we do not expect
coupling to reduce by introducing a first-class relation [8].

Figure 12 shows the UML class diagram of the implementation
of the Command pattern in JUnit. The Command pattern
introduces the FilterRequest object to create a relation between
Filter and sub-classes of the abstract class Request. Thus
FilterRequest stores relations between one of its siblings and a
Filter object.

T he execute method of the pattern is getRunner(). It is
implemented in the concrete sub-class FilterRequest and is
used by clients. The execute method triggers the action method
apply() in Filter. Clients use the constructor of FilterRequest
or its filterWith() method to create new relationships.

Figure 13 shows the implementation of the Command pattern
with the first-class relation. The first-class relation replaced the
FilterRequest object and Request was made a concrete object
class. Its filterWith() method was removed and instead the
clients use the maintenance methods of the first-class relation.

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 13

The getRunner() method constitutes the behavior of the first-
class relation. The clients access its behavior directly. The code
of the resulting first-class relation is shown in Figure 28.

Structure
In the start situation, structure is contained in FilterRequest. It
consists of two field members, one of type Request and the other
of type Filter making cardinality one-to-one. Other than the
constructor, FilterRequest does not provide any methods to
access the field members.

To apply structure we used our SimpleStaticOneToOneRel
aspect. It supplies a method to add new one-to-one relations.
This makes the constructor of the in FilterRequest redundant
as well as both field members. What remains in FilterRequest
is the getRunner() method.

However, getRunner() no longer knows on which instances of
Request and Filter it must act. Although it can use the
maintenance methods of the first-class relation, it still requires
one of the participant instances to get to the other. In other
words, the bond between FilterRequest and its participants has
been lost. To resolve this we added Request as parameter to the
method call of getRunner() and the method is made static:

public static Runner Request.getRunner(Request req) {
 Filter filter = RequestCommand.aspectOf().
 getFrom(req);
 try {
 Runner runner= req.getRunner();
 filter.apply(runner);
 return runner;
 } catch (NoTestsRemainException e) {

 return new ErrorReportingRunner(Filter.class,
 new Exception(String.format(

 "No tests found matching %s from %s",
 filter.describe(), toString())));
 }
}

After structure was added we saw no change in coupling or
cohesion. Even in FilterRequest there was no change in
cohesion.

We notice that where it concerns structure, support of relations
does not necessarily require a special construct; specialized
relation objects can also achieve lower coupling and higher
cohesion. The introduction of the FilterRequest object is such a
specialized relation object, which forms the relation between
Filter and Request.

Active Behavior
In the start situation, FilterRequest contains a static
getRunner() method to implement the behavior. Clients trigger

behavior through both participants making it active. Structure is
already implemented in the first-class relation.

To apply behavior to the first-class relation we move the
getRunner() method to the first-class relation. This makes the
FilterRequest object completely redundant.

After the implementation of behavior we still see no change in
coupling and cohesion. This confirms the idea that specialized
relations objects already pose advantages over relations
implemented through field members.

Roles
In the start situation the role of Request is defined by its
methods getRunner() and toString(). The role of Filter is
defined by its methods apply(Object) and describe(). To
implement roles with RAL/AspectJ we created new interfaces
ReceiverRole and CommandRole, which declared the methods
and were added to Filter and Request using the open class
mechanism of AspectJ:
declare parents: Filter implements ReceiverRole;
declare parents: Request implements CommandRole;

After applying the roles we saw no effect on coupling or
cohesion.
Roles are implemented as interfaces and added to participants
using the open-class mechanism of AspectJ. JHawk however
does not see that these interfaces have been added because they
are added during compilation and JHawk measures the source
code, not the byte code.

Participant Methods
In the start situation the first-class relation has no participant
methods. It is expected that MPC values will drop when
participant methods are added to the first-class relation because
in the start situation the relation is implemented as an object and
participant methods were not used.

Participant methods were implemented for the maintenance
methods and for behavior method getRunner():
// Participant structure methods
public void Filter.addRequest(Request request) {
 RequestCommand.aspectOf().add(this,request);
}

public void Request.addFilter(Filter filter) {
 RequestCommand.aspectOf().add(filter,this);
}
// Participant behavior methods
public Runner Request.getRunner() {
 return RequestCommand.aspectOf().getRunner(this);
}

CategoryTest

+Runner getRunner()
Request

+Runner getRunner()
FilterRequest+apply(Runner)

Filter

MaxStarterTest

Client/Invoker

Command

Receiver

ConcreteCommand

Figure 12 Instance of Command Pattern in JUnit

Request FilterClient RequestCommand
SimpleStaticRel

getRunner()

R
equest

Filter

Figure 13 Command Pattern Implemented as First-Class
Relation

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 14

public Runner Filter.getRunner() {
 return RequestCommand.aspectOf().getRunner(
 RequestCommand.aspectOf().getTo(this));
}

Compared to the start situation, with structure and behavior
already implemented in the first-class relation, the MPC values
in the clients dropped as expected. However, compared to the
baseline situation, where the relation was implemented through
a specialized object, the MPC values did not drop. For
CategoryTest the MPC actually increased by one. The reason
for this increase is that the specialized relation object was
implemented as a sibling of one of the participants. Using the
abstract super-class, the client cannot differentiate between the
participant class and the specialized object class. In other words,
abstract super-classes can simulate participant methods.

4.2 Test case
For the test case we confined ourselves to the property relations
because these relations are static. Other types of relations, such
as relations with local method scope are dynamic of nature. We
limited the scope of our research to static relations.

For the test case we selected junit.samples.AllTests. The
choice of test case was arbitrary since all test cases we used for
regression tests had the same signature: creation of a test suite,
add tests and run the test suite. The test case identified the
relations depicted in Table 4.

The table shows that most relations are in fact aggregation
associations. Aggregation associations occur when the
cardinality of the property is always one but property can outlive
the parent. The table also shows that two relations exist between
TestResult and TestFailure, one for errors and one for failures.
Refactoring the relations from the test case happened in the
same manner as those from the design patterns. All relations had
the same structure in the start situation and implementing the
structure in the first-class relation required the same steps. In the
next paragraphs we show only the high lights of the
measurements and analysis for these relations.

Structure
In the start situation, the structure for all one-to-one relations is
implemented as field member (property) of an object (parent).
Either the clients create the parent and pass the property to the
parent through the constructor or they use an access method to
add the relation after creation of the parent. For the one-to-many
relations, the property is implemented with a collection class.
Furthermore, all relations are unidirectional which implies that
the property is unaware of the relation.

To apply structure we used the SimpleStaticOneToOneRel for
the one-to-one relations and SimpleStaticOneToManyRel for the
one-to-many relations. The property is removed from the parent
as well as the associated access methods for clients. To access
the property, the parent now uses the maintenance methods.

Active behavior and Roles
For all relations in the test case that have behavior, the behavior
is active; the client has access to both participants. Also all
relations that have behavior are aggregation associations.

For aggregation associations, we can implement only the role of
the property because the role of the parent cannot be expressed
in terms of public methods. Therefore, the behavior methods in
the first-class relation are a copy of the methods of the property.

We added the roles as interfaces to the parent using the open
class mechanism of AspectJ.

Participant methods
We applied participant methods as we did for the relations in the
design patterns. We used participant methods both for
maintenance methods and for behavior methods.

4.2.1 JUnit4TestCaseFacade versus Description
Figure 14 shows the start situation of the relation between
JUnit4TestCaseFacade and Description. It concerns an
aggregation relation; the instance of Description is only passed
in as argument to the constructor of JUnit4TestCaseFacade and
therefore cardinality will always be one. JUnit4TestCaseFacade
also has an access method getDescription() that returns the
instance of Description.

After applying structure we see coupling between both
participants and lack of cohesion in JUnit4TestCaseFacade drop
to zero. The application of structure replaces the instance of
Description with a maintenance method call:

DescribableDescription.aspectOf().getTo(this);

Adding behavior does not further decrease coupling and lack of
cohesion since both are already zero. The behavior consists of
the toString() method of JUnit4TestCaseFacade. It returns the
string value of Description. Behavior was implemented by
placing this method in the first-class relation.
Adding roles to the first-class relation has no effect on coupling
and cohesion. Description is the only participant that has a role.
It is defined by its toString() method. The role was added
using an interface:
public interface DescriptionRole {
 public String toString();
}

The participant methods made MPC drop by one. Adding the
participant methods replaces the direct calls to the maintenance
methods. Calls to the participant methods look the same as calls
to the access methods:
getDescription();

The source code of the resulting first-class relation is shown in
Figure 29.

4.2.2 ResultPrinter versus PrintStream
Figure 15 shows the start situation of the relation between
ResultPrinter and java.io.PrintStream. It concerns an
aggregation relation; java.io.PrintStream is only passed in as
argument to the constructor of ResultPrinter and therefore

Table 4 Cardinality of Relations in Test case

Parent Property Cardinality Remark
JUnit4TestCaseFacade Description 1-1
TestResult TestFailure 1-n Errors
TestResult TestFailure 1-n Failures
TestFailure Test 1-1
TestFailure Throwable 1-1
ResultPrinter PrintStream 1-1
TestRunner ResultPrinter 1-1

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 15

cardinality will always be one. The methods that define the role
of java.io.PrintStream are:
public void print(String text);
public void println(String line);
public void println();

Lack of cohesion and the coupling metrics drop by one for
ResultPrinter after the implementation of structure. The
method getWriter() and the constructor of ResultPrinter are
removed. Instead the maintenance methods are used, a
participant constructor method is created and a participant getter
method. The participant methods prevent that MPC increases in
the clients.

Adding behavior does not change coupling and cohesion.
Implementation of the structure has replaced all references in
ResultPrinter to PrintStream with references to the first-class
relation. Using participant methods has removed even those
references. What remains are the methods of PrintStream.
ResultPrinter requires those to function, which means that it
remains aware of the relation and the first-class relation acts like
the dependency injection mechanism.

Implementation of the roles has no effect on coupling or
cohesion either. PrintStream is the only participant that has a
role.

The source code of the resulting first-class relation is shown
Figure 30.

4.2.3 TestFailure versus Throwable and Test
Figure 16 and Figure 17 show the start situation of the relations
of TestFailure with Test and Throwable. It concerns two
aggregation relations; Test and Throwable are only passed in as
argument to the constructor of TestFailure. After creation the
relation is never mutated. Therefore cardinality with Test and
Throwable will always be one.
public TestFailure(Test failedTest, Throwable
 thrownException) {
 fFailedTest= failedTest;
 fThrownException= thrownException;
}
Strictly speaking the properties can have value null. However,
the code in the remainder of the object, does not anticipate on
that i.e. nowhere is checked for value of null. TestFailure
contains methods for accessing the Test and Throwable fields.

Test does not have a role in the relation with TestFailure i.e.
TestFailure is used as container only. Throwable does play a
role. Its role is defined by the following methods:

public void printStackTrace(PrintWriter p);
public String getMessage();

Lack of cohesion and the coupling metrics drop by 2 for both
participants after implementing structure. Coupling and
cohesion did not change for any object after implementing
behavior.

After implementation of the roles no change to coupling and
cohesion is measured. The resulting implementation of the first-
class relation between TestFailure and Throwable is shown in
Figure 31 and the relation between TestFailure and Test in
Figure 32. Notice that the latter implements the constructor for
TestFailure.

4.2.4 TestResult versus TestFailure
Figure 18 and Figure 19 show the start situation of the two
relations that TestResult has with TestFailure. One is for
errors and the other for failures. Both relations are used in the
Observer pattern in which TestResult plays the role of Subject.
For both relations, TestResult can have zero or more instances
of TestFailure. TestResult stores errors and failures in Lists
and provides access methods to them. The relations do not
contain any behavior.
Both relations must be implemented to cause the coupling and
lack of cohesion to drop. Implementing only one of these two
relations as a first-class relation causes the ILCOM to drop by
one for TestResult but coupling remains the same. Only after
implementing the second relation the coupling decreases.

MPC drops in TestResult because it no longer uses the List
object to store TestFailure but only after the first-class relations
have replaced both relations.

The source code of the resulting first-class relations is shown in
Figure 33 and Figure 34.

4.2.5 TestRunner versus ResultPrinter
Figure 20 shows the start situation for the relation between
TestRunner and ResultPrinter. It concerns an aggregation
relation; ResultPrinter is only passed in as argument of the
constructor of TestRunner. TestRunner also provides a default
ResultPrinter. Furthermore, the relation can be mutated using
the setPrinter() method which replaces the current

new(Description d)
Description getDescription()

Description fDescription
JUnit4TestCaseFacade

String toString()

Description

createTest()

JUnit4TestAdapterCache

Parent PropertyClient

1

Figure 14 Relation between JUnit4TestCaseFacade and
Description

new(PrintStream ps)
PrintStream getPrintStream()

PrintStream ps
ResultPrinter

void print(String s)
void println(String s)
void print()

PrintStream

new()

TestRunner

Parent PropertyClient

1

Figure 15 Relation between ResultPrinter and PrintStream

new(Test t, throwable tr)
Test failedTest()

Test fFailedTest
TestFailure Test

Parent Property

1

addError()
addFailure()

TestResult

Client

Figure 16 Relation between TestFailure and Test

new(Test t, throwable tr)
Throwable thrownException()

Throwable fThrownException
TestFailure

getMessage()
printStackTrace()

Throwable

addError()
addFailure()

TestResult

Parent PropertyClient

1

Figure 17 Relation between TestFailure and Throwable

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 16

ResultPrinter. The role of ResultPrinter is defined by the
following methods:
void print(TestResult result, long runTime);
void printWaitPrompt();
Structure for this relation requires an adapted version of add().
It must replace the existing tuple instead throwing an exception.
We implemented this by creating a new version of abstract
SimpleStaticOnetoOneRel aspect.

We noticed that the RAL/AspectJ implementation of first-class
relations can not support roles in all situations. To superimpose
the role on ResultPrinter we had to adjust the visibility of the
two methods involved. We changed the visibility from
“package” to “public”. Without it AspectJ throws a “reducing
visibility” exception.
The implementation of structure in the first-class relation
decreases the value of ILCOM, CBO and Fan-Out of
TestRunner and the value of CBO and Fan-In of ResultPrinter.
MPC depends on a participant method to stay the same.
The implementation of behavior and roles does not change
coupling or cohesion. The source code of the resulting first-class
relation is shown in Figure 35.

5. RESULTS
This section presents an overview of the results of the
application phase of our research. Table 5 in Appendix F shows
the relations we refactored and the characteristics of the first-
class relations that were created. In total we created 10 first-class
relations involving 13 participants and several clients.

Seven of the first-class relations had behavior, one of which was
reactive. We measured the effects of structure, cardinality,
participant methods, behavior and roles on coupling and
cohesion.

The subsequent paragraphs present overviews of the effects we
measured. For clarity, the objects for which we did not find
measurable effects were left out.

5.1 Structure
We did not implement the sub-elements of structure
(maintenance methods, state and cardinality) individually.
Instead they were implemented together in one step.

Occasionally, the source code in the client objects in JUnit
required us to add to the functionality provided by the RAL
aspects. Additional functionality was required for (1) cardinality
other than many-to-many and (2) preservation of the order of the
tuples in a relationship.

To support cardinality other than many-to-many we
implemented two new relation aspects, one for one-to-many and
one for one-to-one cardinality. To preserve cardinality in the
add() method of one-to-one relations we had to support two
mechanisms: (1) blocking the operation and (2) replacing the
tuple.

To support preservation of the order of the tuples in the many-
to-many relationships we replaced the java.util.HashSet with
the java.util.LinkedHashSet in the predefined RAL aspects.
This support was required in one occurrence only. For the other
occurrences we used the RAL aspects.

The effect of the changes mentioned above was evident in the
component coupling and cohesion of the participants of the
relation, but not in any of the clients. Improvement of MPC in
the parents, on the other hand, was not caused by our changes
but was mostly due to removing the getters and setters needed to
access the collection objects that were used to store the
properties.

In the property relations, the component coupling metrics
showed that parent and property became completely decoupled.
However, because the role of the parent could not be extracted,
it was now coupled to the first-class relation instead.
Prerequisite for decoupling between parent and property was
that all relations between the same participants were
implemented as first-class relation.
An overview is presented in Table 6 in Appendix F.

5.2 Behavior
We encountered different types of behavior in JUnit. The
behavior was either active or reactive. The behavior in the
relations from the design patterns depended on the roles of both
participants. The behavior in the relations in the test case on the
other hand, depended on the role of the property only. These
relations had active behavior only. See Figure 21. Either parent
or client could initiate the behavior.

To support behavior we added methods to the relation aspects.
For reactive behavior we had to use pointcuts/advices to attach
the relation methods to the methods of the triggering participant.

For the property relations, the relational behavior methods of the
first-class relation used only the methods of the property and the
entire parent object was passed in as argument. These relations

Figure 18 Error Relation between TestResult and TestFailure
addError(Test t, Throwable tr)
List<TestFailure> fErrors

TestResult TestFailure

addError()

JUnit4TestAdapterCache

Parent PropertyClient

0..*1

addFailure(Test t, AssertionFailedError a)
List<TestFailure> fFailures

TestResult TestFailure

addFailure()

JUnit4TestAdapterCache

Parent PropertyClient

0..*1

Figure 19 Failure Relation between TestResult and
TestFailure

new()
new(ResultPrinter)

ResultPrinter fPrinter
TestRunner

print(TestResult tr, long rt)
printWaitPrompt()

ResultPrinter

setUp()

TextFeedbackTest

Parent PropertyClient

11

Figure 20 Relation between TestRunner and ResultPrinter

RelationParent Property

+aMethod()do:
A.aMethod()

Client

direction of navigation

Figure 21 Behavior in Test Case Relation Depended on
Property only

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 17

were triggered either by the parent object or by a client. The
property had cardinality that was always one. In other words, the
lifetime of the relation was equal to the lifetime of the parent
object.

Only the relations in the Observer pattern and the Composite
pattern showed improvement in coupling and cohesion due to
support of behavior. These relations contained behavior in
which both participants played a role. Coupling between
participants in the Observer pattern dropped to zero. This also
happened in Composite pattern after the static utility methods
had been removed from TestSuite.

The property relations showed no effects on coupling and
cohesion under the influence of support for behavior. Coupling
and cohesion had both already dropped due to the
implementation of structure.
An overview is presented in Table 7 in Appendix F.

5.3 Roles
Roles were used to formalize the interaction between the
relation and its participants. By doing so the number of potential
methods required of the participant is restricted.

To support roles we created java interfaces in which the methods
were listed that were required of the participant. Using the open
class mechanism of AspectJ we added them to the participant.
Furthermore, role names were specified as parameterized type to
the generic relation aspects. We did not measure any effects on
coupling or cohesion due to roles.

5.4 Participant Methods
The purpose of the participant methods was to make our
RAL/AspectJ implementation of first-class relations appear as
real first-class relation constructs to the metrics tools. As a
consequence, the first-class relation was no longer visible as
such in the client code. Now, to a client it appeared as though
relations had been implemented using the orthodox way of field
members. Participant methods were used to hide both
maintenance methods and behavior methods. On some occasions
we also used them to hide constructors.

The effects of participant methods were visible especially in the
client objects or in participants that also acted as client. The
effect was on MPC only. The FilterRequest object in JUnit
showed that participant methods can be implemented in
specialized relation objects too. The way to do this is to make a
specialized relation object as a sibling of one of the participants
by giving it the same abstract super-class. As a consequence, it
prevents MPC to drop.

Participant methods do attribute to the ease of use of first-class
relations. This cannot however be expressed through coupling or
cohesion.

An overview of the effect of participant methods is presented in
Table 8 in Appendix F.

5.5 Other Effects
In addition to the effects on coupling and cohesion we
encountered other effects as well some of which are worth
mentioning here:
- The amount of boilerplate code was reduced. The getters

and setters one must implement to maintain relations are no
longer necessary. Figure 22 shows the TestResult object
before applying two first-class relations and Figure 23
shows the same object afterwards.

- Interaction between two objects is formalized. The use of
roles in first-class relations is the opposite of how
interfaces are used today: showing what an object can do,
instead of what it must be able to do. First-class relations
demand that an object can play a certain role. Even though,
this role has not been explicitly identified by the object it
self, we can examine its public interface and determine
whether or not it can play that role. This allows us to super
impose relations onto objects.

- The relations were all unidirectional before refactoring.
During refactoring directionality needed not to be
considered because first-class relations support access from
both sides by default.

6. ANALYSIS
In this section we analyze our observations. Using these
observations we map the elements of first-class relations onto

Figure 22 Boilerplate Code in TestResult

Figure 23 Boilerplate Code Removed from TestResult

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 18

the characteristics of first-class relations to understand the
effects the latter have on coupling and cohesion.

6.1 Special Notation
We identified one element that supported the characteristic of
special notation. This element was the participant method. We
used the participant method to ascertain that the metric tools
would not count the first-class relation construct as object. In the
Command pattern implementation we noticed that a specialized
relation object can simulate participant methods if they have
been made sibling to one of the participants.

Special notation probably is important, but not for achieving
lower coupling or higher cohesion. We did see the MPC drop in
client objects and parent objects due to participant methods.
However, one could argue that it is the metric tools that drive
the need for the special notation and not coupling or cohesion
metrics themselves. To our metric tools, without the participant
methods, first-class relations have the same appearance as
POJO’s.

We do expect that special notation is especially useful to
promote using first-class relations. The implementation with
RAL/AspectJ however is a bit cumbersome to our judgment. To
illustrate our idea of a special notation we present a code snippet
of the Observer relation in a hypothetical object oriented
programming language.
role Subject {
 public void doSomething();
 public State getState();
}
role Observer {
 public void doSomethingToo(State state);
}
// Reactive relation
relation ResultObserver[Subject, Observer] {
 Subject.cardinality = 1;
 Observer.cardinality = many;

 if Subject.doSomething() {
 Observer.doSomethingToo(Subject.getState());
 }
}
class LocalParent() {
 // Use property relation to make result available
 // globally
 property TestResult result = new TestResult();
 ...
 // TestResult used further downstream
 result.doSomething();
}
class RemoteClient() {
 // TestResult remotely initialized
 TestResult result = TestResult.getInstance();

 // ResultPrinter locally initialized
 ResultPrinter printer = new ResultPrinter();
 try {
 ResultObserver resultObserver = new
 ResultObserver[TestResult, ResultPrinter];
 resultObserver.add(result, printer);
 }
 catch(RoleNotSupportedException e){
 // role(s) not supported by participant(s)
 ...
 }
}

This code snippet shows the definition of the ResultObserver
relation with its two associated roles. The LocalParent class
creates the instances of the TestResult object. The property
keyword places the instance in a global space, which is
accessible to remote clients. The instance of TestResult is
unaware of what is happening in other parts of the software or in
remote clients. The RemoteClient class retrieves the one
instance of TestResult making it available to the rest of the
remote client. The ResultObserver relation is created if
TestResult supports the Subject role and ResultPrinter
supports the Observer role. If not, an exception is thrown.

6.2 One Entity
State is the only element of first-class relations that supports the
characteristic of one entity. State was not implemented
individually but rather as part of structure together with the
maintenance methods and cardinality.

The effect of structure was not directly evident in the Observer
pattern and the Composite pattern. We noticed that the structure
itself had influence on MPC only, but not on component
coupling, and not on cohesion.

The property relations did show improvement in cohesion and
coupling from the implementation of structure. The inability to
extract the role from the parent made the parent become
dependent on the first-class relation instead. The metrics did not
show this because JHawk doesn’t recognize aspects as objects.
Support for structure did not succeed in removing this
dependency. Instead it provided a dependency injection
mechanism.

Since aggregation associations profit directly from first-class
relations we expect composition association to do so too but lack
evidence to support this. For less restricted types of associations
it is a prerequisite that first-class relations are implemented as
one entity.

6.3 The Only Relation Construct
The third characteristic of a first-class relation construct is that it
does not allow other relation constructs between the same
objects.

The importance of this characteristic was evident in the relations
between TestResult and TestFailure. After implementation of
only one of the two relations we saw no increase in cohesion or
decrease in coupling. We had to implement both relations as a
first-class construct to achieve this.

The relation between Testsuite and Test in the Composite
pattern again confirmed the importance of this characteristic.
TestSuite provides many static utility methods for Test that
obstruct decoupling and cohesiveness. Although one can also
argue that static utility methods should not be counted by the
metrics since they are references to object classes and not
references to object instances.

6.4 Same Run-Time Concept
The fourth characteristic is that of run-time concept. A first-class
relation must be recognizable as the same entity during run-time
and development.

We found no evidence to support this claim. Aspects remain
distinct entities during run-time but we could not test this
because there was no element in the first-class relation model
that we could switch on and off.

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 19

6.5 Support of Operations
The fifth characteristic was the support for operations on
relations. These are operations that are performed on the relation
as a whole i.e. all relationships formed by the relation.

We found no evidence to support this claim. Our one-to-one
implementation of the first-class relation can hold multiple
relationships and could possibly support this characteristic.
However, we did not come across any situation that required this
type of operation.

We do believe that once people start working with first-class
relations these operations will be used. We expect it to have the
same or better results on coupling and cohesion for two reasons:
(1) the same relational behavior methods can be used and (2)
there is no need to specify the participant instances on which to
operate because it will operate on all participant instances in all
relationships.

6.6 Support of Constraints
The last characteristic we identified was support for constraints.
Constraints keep participants in sync with each other.

Support for constraints was implemented by behavior. We
distinguished two types of behavior: reactive and active.
Reactive behavior can be compared to an if-then statement. If
participant A executes then participant B must execute too.
Active behavior can be compared to a block statement. It
ensures that behavior of participant A and behavior of
participant B are executed together.

Behavior also provides the means to implement transactional
control and reactive behavior in particular provides support for
propagation of operations as mentioned by Rumbaugh [33].

6.7 Other Observations
In this paragraph we discuss observations that were not related
to the characteristics of first-class relations.

6.7.1 Roles
Roles can be declared in RAL using parameterized interfaces or
object classes of generic aspects. We switched roles on and off
like we did with the other elements. Roles helped us to formalize
the relations. It clarified what was expected of an object to
participate in a relation. To honor information hiding we always
used only the public interface of the participants. However, we
hardly ever needed the entire public interface of the participants
to support a relation. And only that part of the public interface
that is needed is part of the definition of the role.

We envision a system in which relations and objects are
orchestrated through their associated roles. In such a system the
roles of an object matter, not the class of an object. Although,
our metrics do not differentiate between object roles and object
classes, we do see advantages. A role limits the strength of the
coupling between two objects to the methods defined by their
roles.

Roles support the same mechanism as dependency injection and
more. Using dependency injection only the interfaces of
property objects are tied to the parent object. Using a relation for
a parent and its properties, the interface also is the only entity
that remains tied to the parent. Relation on the other hand also
offers control over state.

6.7.2 Cardinality Constraints and Other Invariants
Different types of invariants are recognized in literature. Balzer
et al in [4] differentiate between value-based and structural
invariants and between intra-relationship and inter-relationship
invariants. An intra-relationship invariant is also called
cardinality.
Cardinality is the only invariant we encountered. Other
invariants could easily be implemented as property of a first-
class relation and enforced using post-conditions on the relation
methods.

6.7.3 Utility Objects
Utility objects should not be taken into account by the metrics.
In all our implementations we see the effect of maintenance
methods on coupling. The effect however, is often related to the
use of Collection objects or derived objects.

6.7.4 Reporting
Reporting functions are important in understanding the behavior
of a software system. First-class relations provide a centralized
repository of relationships. This repository can be queried
independent of the software system itself. It can present the
current situation of a system and keep a history of relationships.
This gives stakeholders guidance for future activities on the
software system, such as software maintenance and scaling.

6.7.5 Bidirectional Relation Example
The example of the bidirectional relation that we presented in
our motivation was bidirectional only to allow maintenance
from both participants. It was unrelated to the behavior of the
relation. A first-class relation makes the choice for directionality
irrelevant. Maintenance occurs directly on the relation not
through the participants.

6.7.6 Inter-Application Communication
In this paragraph we discuss how first-class relations can be
implemented to support inter-application communication. Based
on behavior we can distinguish four types of static relations:

1. reactive relation: an object depends on another object and
waits for it to be triggered by that other object but the
triggering object is unaware of that dependency;

2. active relation: a third object depends on the cooperation of
two objects;

3. property relation: a parent depends on its property and
actively engages that property;

4. siblings relation: two objects share the same parent but
have no shared behavior.

A reactive relation is imposed onto two objects that can exist
completely without the each other. The reactive relation can be
compared to the synchro-servo system in mechanics. The
synchro device senses the position of an object. The servo
device actuates another object to move its position according to
the change in position of the former object. Thus position can be
compared to state in the Observer pattern. Synchro and servo
devices are typically used when both objects are at different
locations and are typically connected through electrical wiring,
which is used to transport the change in position. Thus synchro
and servo devices are the roles played by the two objects. One
object must have an (output) interface that allows sensing its
position; the other must have an (input) interface that allows
actuating by position. Notice that the position of the first object
does not have to be the same type of position of the second
object. In this way the synchro-servo system and the reactive

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 20

relation differ from the Observer pattern. In the Observer pattern
both Subject and Observer must share the knowledge of the
same type of state.

A reactive relation is suitable for asynchronous inter-application
communication. Instances of Observer patterns are good
candidates for this type of communication. Gamma et al in [14]
describes that communication of the state of the Subject is
implemented using a callback function. A callback function
however, requires synchronous communication. Passing in
argument instead, as implemented in JUnit, keeps the
communication asynchronous. In fact, any two objects that are
independent of each other can be connected reactively.

An active relation is created if a third object, the client, wants to
actively engage two other objects. These two objects are
unaware of each other and the relation that has been imposed.

An active relation is suitable for synchronous communication
across multiple components, not just two as discussed in this
paper. It coordinates the method calls and can maintain state in
between calls. The client of an active relation can itself be
triggered through a reactive relation with another object. The
active relation can be compared to the process manager, as
described by Hohpe and Woolf in [20].

A property relation is a type of active relation in which only the
property plays a role. Both parent and client can initiate the
relation behavior. The parent cannot exist without the property.
The parent is composed of its properties and its properties are
added during the creation of the parent.

Our impression is that a property relation is best implemented
for intra-application communication. When a first-class relation
is used to implement a property relation, the parent becomes
dependent on the first-class relation instead of the property.
Although, a first-class relation still adds value by providing
structure, the parent is now tightly coupled to the first-class
relation.

Sibling relation is a relation between objects with the same
parent. For example, Test and Throwable both had TestFailure
as parent. This resulted in the implementation of two separate
relations.

Applying first-class relations can dissolve sibling relations. For
example, a consequence of the two first-class relations of
TestFailure with Test and Throwable was that the latter two are
no longer visibly related as siblings. A way to resurface this
sibling relation is to use the product of the two first-class
relations.

6.7.7 Decomposition
Figure 36 shows that both Observer pattern and Composite
pattern when refactored into first-class relation are locations
where the system can be decomposed. This was expected of the
Observer pattern since it binds together two object classes that
are essentially independent. We did not expect it from the
Composite pattern however. On hindsight this is not surprising.
The Composite pattern appoints an object to perform the role of
container. That object is then equipped with behavior to iterate
over the Leafs. This behavior however was not its core
functionality.

7. CONCLUSIONS
We conducted an empirical idiographic case study on JUnit to
find out how the characteristics of first-class relation constructs

attribute to coupling and cohesion of object-oriented code. We
identified six characteristics. During an exploration phase we
defined a model for the first-class relation constituted of its
elements. The exploration phase was followed by the application
phase in which we refactored the code to first-class relations.
During the analysis of this phase we translated the elements of
first-class relations to the characteristics of first-class relations.

We identified three major elements: structure, behavior and
roles. Structure consisted of state, maintenance methods and
cardinality. We distinguished active and reactive behavior. In
the application phase these elements were applied one by one to
parts of the source code of JUnit. We used design patterns and a
test case for selecting these parts.

We noticed that the effectiveness of behavior depended on the
extent to which participants in a relation could be made unaware
of their partner. A participant that cannot be made unaware of its
partner does not profit from support of behavior by the first-
class relation. This occurred in relations between parent and
their property hence we call this a property relation.

When both participants could be made unaware, then support for
behavior in the first-class relation construct was also required to
gain full profit on coupling and cohesion.

Support for roles was neutral to decoupling and cohesiveness.
Although, they were part of the definition of behavior and
restricted the public methods that were required from the
participants we did not measure any effects on coupling and
cohesion.

Three of the six characteristics of first-class relations support the
claim for decoupling and cohesiveness: (1) being one entity, (2)
being the only relation construct and (3) support for relational
constraints. The other characteristics could not be measured or
were neutral to coupling and cohesion. This also means that we
did not find any characteristics that conflicted with decoupling
and cohesiveness. Support for one entity is provided by state,
which is a sub-element of structure.

Structure provides a mechanism similar to dependency injection
if only the role of the property is implemented. Although
structure externalizes maintenance of tuples of related object
instances, it cannot make the parent unaware of the relation with
its property if the role of the parent cannot be expressed in terms
of its public methods. As a consequence, the relational behavior
cannot incorporate the behavior of the parent but only that of the
property.

Being the only relation construct is a prerequisite for decoupling
and cohesiveness. After one out of two relations between the
same participants had been refactored, coupling and cohesion
had remained the same. Coupling and cohesion did improve
after the second relation also had been refactored.

Relational constraints are supported by the behavior element
because it manages the behavior of the participants. The
relations from the Observer pattern and Composite pattern
required support of behavior to fully profit in terms of
decoupling and cohesiveness. The property relation however did
not.

To promote using first-class relations we expect that they must
have their own special notation. In our opinion this is an
important characteristic for any first-class construct. However,
we could not find any results supporting our opinion.

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 21

7.1 Threats to Validity
We cannot say with certainty to which extent the
implementation of the metrics by JHawk and VizzMaintenance
adhere to their definitions. Also, the metric definitions
themselves are not always clear on what they measure. Cohesion
metrics for example, as defined by Chidamber and Kemerer [11]
are not clear on whether or not to include fields from super-
classes or constructor. We resolved this issue by looking at the
difference between the start situation and the new situation only,
and not at the absolute values of the metrics.

Parts of our implementation that deviated from other sources
may have been beneficial for decoupling and cohesiveness. The
description of relational behavior given by Hannemann and
Kiczales [18] was not specifically aimed at relations. Our
decision to use this description may have led to a wrong
implementation. Pearce and Noble do however add behavior the
same way to RAL relations in [31]. Our decision to support
preservation of the order of tuples deviates from the definition of
a relation by Jackson in [21] as well as the implementation of
RAL. Pearce and Noble do suggest the support for sorted tuples
in [31]. To ascertain the validity of these decisions and of our
code quality in general we had an expert in first-class relations
review our code.

The logic that was moved to first-class relation constructs may
have hidden it from the metric tools but it may still be required
to be considered for coupling and cohesion. Further research is
required for new metrics that do take first-class relations into
account.

Our newly gained insight about behavior depends largely on the
presence in JUnit of instances of the design patterns Observer
and Composite and how these had been implemented. Gamma et
al [14] for example describe using a callback function to retrieve
state in the Observer pattern but JUnit uses argument passing
instead. Further research involving other design patterns or other
implementations of those design patterns can help with refining
our knowledge of first-class relations.

One can argue that the extent of the functionality that has been
placed in the relational behavior methods exceeds what is
appropriate for a relation. And that in doing so, first-class
relations start to resemble objects. However, one can just as well
argue that we did not go far enough. Balzer et al in [4] for
example go one step further and state that all behavior should be
placed in the relation, leaving objects with only getters and
setters thus degrading objects to entities. We believe that we
have shown that for two cooperating objects, which are
otherwise unaware of each other, their interaction should not be
placed in one of the objects. We believe also that we have
shown that if one object depends on the other, behavior should
be placed in the depending object.

7.2 Future Work
First-class relations require more empirical case studies. Most
studies have been theoretical dissertations. These concentrated
mostly on well-known design patterns such as the Observer
pattern. However, the bulk of relations do not stem from design
patterns but are ordinary property relations. As a consequence
the latter have been neglected so far.

The full potential of first-class relations has not been uncovered
by our study. This may be attributed to the fact that with
orthodox ways of programming relations remain in the
background. Developing a new software program using first-

class relation could help us understanding the full potential of
first-class relations.

8. ACKNOWLEDGMENTS
Our thanks go to Stephanie Balzer for her feedback on our code
and her help for pointing us in the right direction for this paper.
Furthermore, our thanks go to our supervisor, Jurgen Vinju, who
with his diligence kept pointing us in the right direction.

9. REFERENCES
[1] Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An

Overview of CaesarJ, Transactions on Aspect-Oriented
Software Development I. LNCS, Vol. 3880, (2006) 135-
173.

[2] Arisa, VizzMaintenance, http://www.arisa.se/products.php
(2010).

[3] Balzer, S., Gross, T.R.: Verifying Multi-Object Invariants
with Relationships, ECOOP (2011).

[4] Balzer, S., Gross, T.R., Eugster, P.: A Relational Model of
Object Collaborations and Its Use in Reasoning About
Relationships, ECOOP (2007).

[5] Bieman, J.M., Kang, B.K.: Cohesion and reuse in an
object-oriented system. Proceedings of the 1995
Symposium on Software Reusability (1995).

[6] Bierman, G.M., Wren, A.: First-class relationships in an
object-oriented language. In: ECOOP. Volume 3586 of
LNCS, Springer (2005) 262-286.

[7] Breivold, H.P., Larsson, M., Component-Based and
Service-Oriented Software Engineering: Key Concepts and
Principles, 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications (2007)

[8] Cacho, N., Sant’Anna, C., Figueiredo, E., Garcia, A.,
Batista, T., Lucena, C.: Composing Design Patterns: A
Scalability Study of AOP. In: AOSD (2006).

[9] Cade, M., Roberts, S.: Sun Certified Enterprise Architect
for J2EE Technology Study Guide, 2nd Edition (2010).

[10] Chen, P.P.: The entity-relationship model: toward a unified
view of data. ACM Transactions on Database Systems I:1
(March 1976).

[11] Chidamber, S. R., Kemerer, C. K.: A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software
Engineering, Vol. 20 (1994).

[12] Eder, J., Kappel, G., Schrefl, M.: Coupling and Cohesion in
Object-Oriented Systems.Technical Report, University of
Linz, Institut für Informationssysteme (1995).

[13] Erl, T.: SOA Principles of Service Design, The Prentice
Hall Service-Oriented Computing Series from Thomas Erl
(2007).

[14] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley (1995).

[15] Grand, M.: Patterns in Java, Volume 1, A Catalog of
Reusable Design Patterns Illustrated with UML (1999).

[16] Guéhéneuc,Y.G., Albin-Amiot, H.: Recovering binary class
relationships: Putting icing on the uml cake. In 19nd
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’04), ACM, (2004).

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 22

[17] Hall, K. (Virtual Machinery): JHawk 5 Documentation-
Metrics Guide, version 1.0, (2010).

[18] Hannemann, J., Kiczales, G.: Design pattern
implementation in Java and AspectJ. In OOPSLA, ACM
(2002).

[19] Hitz, M., Montazeri, B.: Measuring Coupling and Cohesion
in Object-Oriented Systems. Proc. Int. Symposium on
Applied Corporate Computing, (1995) 25-27.

[20] Hohpe, G., Woolf, B.: Enterprise Integration Patterns:
Designing, Building and Deploying Messaging Solutions
(2003).

[21] Jackson, D.: Software Abstractions: Logic, Language and
Analysis, The MIT Press (2006).

[22] Jacobson, I., Booch, G., Rumbaugh, J.E.: The Unified
Software Development Process. Addison-Wesley, Reading
(1999)

[23] Lee, J.S., Bae, D.H.: An enhanced role model for
alleviating the role-binding anomaly. Software: Practice
and Experience, 32(14): 1317-1344 (2002).

[24] Nelson, S.: First-Class Relationships for Object-Orientated
Programming Languages (2008).

[25] Nelson, S., Pearce, D.J., Noble, J.: Implementing First
Class Relationships in Java, RAOOL (2008).

[26] Noble, J.: Basic relationship patterns. In EuroPLOP
Proceedings (1997).

[27] Noble J., Grundy, J.: Explicit relationships in object-
oriented development. In Proceedings of Technology of
Object-Oriented Languages and Systems (TOOLS) (1995).

[28] OMG: Relationship Service Specification, Joint Object
Services Submission, OMG 94-5-5, (1994).

[29] Østerbye, K.: Design of a class library for association
relationships. In LCSD (2007).

[30] Parnas, D.: On the Criteria To Be Used in Decomposing
Systems into Modules, Communications of the ACM, Vol.
15, No. 12 (December 1972).

[31] Pearce, D.J., Noble, J.: Relationship aspects. In: AOSD,
ACM (2006) 75-86.

[32] Rumbaugh, J.: Relations as semantic constructs in an
object-oriented language. In: OOPSLA, ACM (1987) 466-
481.

[33] Rumbaugh, J.: Controlling propagation of operations using
attributes on relations. In OOPSLA ’88: Conference
proceedings on Object-oriented programming systems,
languages and applications (1988).

[34] Tsantalis, N.: Design Pattern Detection,
http://java.uom.gr/~nikos/pattern-detection.html (2010).

[35] Tsantalis, N., Chatzigeorgiou, A., Stephanides, G.,
Halkidis, S. T.: "Design Pattern Detection Using Similarity
Scoring", IEEE Transactions on Software Engineering, vol.
32, no. 11 (2006).

[36] Virtual Machinery: JHawk 5,
http://www.virtualmachinery.com/jhawkprod.htm (2010).

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 23

Appendix A UML Class Diagram of JUnit

Figure 24 UML-like Class Diagram of JUnit Showing Objects Relevant to Our Research

JUnit3.8

TestResult

ResultPrinterBaseTestRunner

TestRunner

JUnit38ClassRunner TestFailure

Test
TestListener

TestSuite

TestCase

JUnit4TestCaseFacade

Description

Request

FilterRequestClassRequest

Filter

CategoryFilter

Runner

fListeners

fFailures
fErrors

te
st

s

PrintStream

Throwable

Describable

Relations refactored in
this study are indicated
with the dotted line:

Parent Property

JUnitCore

JUnit4

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 24

Appendix B Observer Pattern
public aspect ResultObserver extends SimpleStaticRel<TestResult, TestListener> {

 // Participant methods
 public void TestResult.addObserver(TestListener o) {
 ResultObserver.aspectOf().add(this, o);
 }

 // Behavior reactive
 protected pointcut subjectAdds(TestResult s, Test test, Throwable t) :
 (call (void TestResult.addError(Test, Throwable))) && target(s) && args(test, t);

 after(TestResult s, Test test, Throwable t) returning: subjectAddError(s, test, t) {
 @SuppressWarnings("unchecked")
 Iterator iter= from(s).iterator();
 while (iter.hasNext()) {
 ((TestListener) (iter.next())).addError(test,t);
 }
 }

 protected pointcut subjectAddFailure(TestResult s, Test test, AssertionFailedError e) :
 (call (void TestResult.addFailure(Test, AssertionFailedError))) && target(s) && args(test, e);

 after(TestResult s, Test test, AssertionFailedError e) returning: subjectAddFailure(s, test, e) {
 @SuppressWarnings("unchecked")
 Iterator iter= from(s).iterator();
 while (iter.hasNext()) {
 ((TestListener) (iter.next())).addFailure(test,e);
 }
 }

 protected pointcut subjectStartTest(TestResult s, Test test) :
 (call (void TestResult.startTest(Test))) && target(s) && args(test);

 after(TestResult s, Test test) returning: subjectStartTest(s, test) {
 @SuppressWarnings("unchecked")
 Iterator iter= from(s).iterator();
 while (iter.hasNext()) {
 ((TestListener) (iter.next())).startTest(test);
 }
 }

 protected pointcut subjectEndTest(TestResult s, Test test) :
 (call (void TestResult.endTest(Test))) && target(s) && args(test);

 after(TestResult s, Test test) returning: subjectEndTest(s, test) {
 @SuppressWarnings("unchecked")
 Iterator iter= from(s).iterator();
 while (iter.hasNext()) {
 ((TestListener) (iter.next())).endTest(test);
 }
 }
}

Figure 25 Observer Pattern Implemented as First-Class Relation

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 25

Appendix C Composite Pattern
public privileged aspect TestComposite extends CompositeRelation<TestSuite, Test> {

 // Add Test interface so that others know TestSuite will now behave like Test
 declare parents: TestSuite implements Test;

 /*
 * Behavior active
 */
 public void TestSuite.run(final TestResult result) {

 @SuppressWarnings("unchecked")
 Enumeration enu = Collections.enumeration(TestComposite.aspectOf().from(this));
 while (enu.hasMoreElements()) {
 if (result.shouldStop())
 break;
 this.runTest(((Test) (enu.nextElement())), result);
 }
 }

 private void TestSuite.runTest(Test test, TestResult result) {
 test.run(result);
 }

 public void ActiveTestSuite.run(TestResult result) {
 this.setActiveTestDeathCount(0);
 super.run(result);
 this.waitUntilFinished();
 }

 private void ActiveTestSuite.runTest(final Test test, final TestResult result) {
 Thread t= new Thread() {
 @Override
 public void run() {
 try {
 test.run(result);
 } finally {
 ActiveTestSuite.this.runFinished();
 }
 }
 };
 t.start();
 }

 public int TestSuite.countTestCases() {
 int testCases= 0;

 @SuppressWarnings("unchecked")
 Enumeration enu = Collections.enumeration(TestComposite.aspectOf().from(this));
 while (enu.hasMoreElements()) {
 testCases += ((Test) (enu.nextElement())).countTestCases();
 }

 return testCases;
 }
}

Figure 26 Composite Pattern Implemented as First-Class Relation

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 26

public class TestSuite {

 private String fName;

 public TestSuite() {
 }

 public TestSuite(String name) {
 setName(name);
 }

 public String getName() {
 return fName;
 }

 public void setName(String name) {
 fName= name;
 }

 @Override
 public String toString() {
 if (getName() != null)
 return getName();
 return super.toString();
 }
}

Figure 27 TestSuite Object after Implementation of First-Class Relation

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 27

Appendix D Command Pattern
public privileged aspect RequestCommand extends SimpleStaticOneToOneRel3<Filter, Request> {

 declare parents: org.junit.runner.manipulation.Filter implements ReceiverRole;
 declare parents: Request implements CommandRole;

 // Structure: participant method
 public void Filter.addRequest(Request request) {
 RequestCommand.aspectOf().add(this,request);
 }

 public void Request.addFilter(Filter filter) {
 RequestCommand.aspectOf().add(filter,this);
 }

 // Behavior active
 public Runner getRunner(Request req) {
 Filter filter = RequestCommand.aspectOf().getFrom(req);
 try {
 Runner runner= req.getRunner();
 filter.apply(runner);
 return runner;
 } catch (NoTestsRemainException e) {
 return new ErrorReportingRunner(Filter.class, new Exception(String
 .format("No tests found matching %s from %s", filter
 .describe(), req.toString())));
 }
 }

 // Participant behavior methods
 public Runner Request.getRunner() {
 return RequestCommand.aspectOf().getRunner(this);
 }

 public Runner Filter.getRunner() {
 return RequestCommand.aspectOf().getRunner(RequestCommand.aspectOf().getTo(this));
 }
}

Figure 28 Command Pattern Implemented as First-Class Relation

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 28

Appendix E Test Case Relations

public aspect DescribableDescription extends SimpleStaticOneToOneRel<Describable, Description> {

 declare parents: JUnit4TestCaseFacade implements Describable;

 // Participant maintenance methods
 public Description Describable.getDescription() {
 return DescribableDescription.aspectOf().getTo(this);
 }
 public JUnit4TestCaseFacade.new(Description d) {
 DescribableDescription.aspectOf().add(this,d);
 }

 // Behavior active.
 public String toString(Describable d) {
 return DescribableDescription.aspectOf().getTo(d).toString();
 }

 // Participant behavior method
 public String Describable.toString() {
 return DescribableDescription.aspectOf().toString(this);
 }
}

Figure 29 Relation between JUnit4TestCaseFacade and Description Implemented as First-Class Relation
public aspect ResultPrinterWriter extends SimpleStaticOneToOneRel<ResultPrinter, PrintWriterRole> {

 declare parents: java.io.PrintStream implements PrintWriterRole;

 // Participant constructor
 public ResultPrinter.new(PrintStream ps) {
 ResultPrinterWriter.aspectOf().add(this,ps);
 }

 // Participant maintenance method
 public PrintStream ResultPrinter.get() {
 return (PrintStream)ResultPrinterWriter.aspectOf().getTo(this);
 }

 // Behavior active
 public void println(ResultPrinter rp) {
 ((PrintStream)ResultPrinterWriter.aspectOf().getTo(rp)).println();
 }
 public void println(ResultPrinter rp, String string) {
 ((PrintStream)ResultPrinterWriter.aspectOf().getTo(rp)).println(string);
 }
 public void print(ResultPrinter rp, String string) {
 ((PrintStream)ResultPrinterWriter.aspectOf().getTo(rp)).print(string);
 }

 // Participant behavior methods
 public void ResultPrinter.println() {
 ResultPrinterWriter.aspectOf().println(this);
 }
 public void ResultPrinter.println(String string) {
 ResultPrinterWriter.aspectOf().println(this, string);
 }
 public void ResultPrinter.print(String string) {
 ResultPrinterWriter.aspectOf().print(this, string);
 }
}

Figure 30 Relation between ResultPrinter and java.io.PrintStream Implemented as First-Class Relation

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 29

public aspect TestFailureThrowable extends SimpleStaticOneToOneRel<TestFailure, Throwable> {

 // Relation operations, notice that other partner object already has these methods
 public String exceptionMessage(TestFailure tf) {

 Throwable t = TestFailureThrowable.aspectOf().getTo(tf);
 return t.getMessage();
 }

 public boolean isFailure(TestFailure tf) {
 return TestFailureThrowable.aspectOf().getTo(tf) instanceof AssertionFailedError;
 }

 public void printStackTrace(TestFailure tf, PrintWriter writer) {

 Throwable t = TestFailureThrowable.aspectOf().getTo(tf);
 t.printStackTrace(writer);
 }

 // Participant behavior methods
 public String TestFailure.exceptionMessage() {

 return TestFailureThrowable.aspectOf().exceptionMessage(this);
 }

 public boolean TestFailure.isFailure() {

 return TestFailureThrowable.aspectOf().isFailure(this);
 }

 public void TestFailure.printStackTrace(PrintWriter writer) {

 TestFailureThrowable.aspectOf().printStackTrace(this, writer);
 }
}

Figure 31 Relation between TestFailure and Throwable Implemented as First-Class Relation
public aspect TestFailureTest extends SimpleStaticOneToOneRel3<TestFailure, Test> {

 // Participant maintenance methods
 public Test TestFailure.getTest() {
 return TestFailureTest.aspectOf().get(this);
 }

 public TestFailure.new(Test failedTest, Throwable thrownException) {
 TestFailureTest.aspectOf().add(this, failedTest);
 TestFailureThrowable.aspectOf().add(this,thrownException);
 }
}

Figure 32 Relation between TestFailure and Test Implemented as First-Class Relation
public aspect TestResultErrors extends SimpleStaticOneToManyRel<TestResult, TestFailure> {

 // Participant maintenance methods
 public synchronized void TestResult.addError(Test test, Throwable t) {
 TestResultErrors.aspectOf().add(this,new TestFailure(test, t));
 }

 public synchronized int TestResult.errorCount() {
 return TestResultErrors.aspectOf().size(this);
 }

 public synchronized Enumeration<TestFailure> TestResult.errors() {
 return Collections.enumeration(TestResultErrors.aspectOf().from(this));
 }
}

Figure 33 Relation between TestResult and TestFailure (failures) Implemented as First-Class Relation

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 30

public aspect TestResultFailures extends SimpleStaticOneToManyRel2<TestResult, TestFailure> {

 // Participant maintenance methods
 public synchronized void TestResult.addFailure(Test test, AssertionFailedError e) {
 TestResultFailures.aspectOf().add(this, new TestFailure(test, e));
 }

 public synchronized int TestResult.failureCount() {
 return TestResultFailures.aspectOf().size(this);
 }

 public synchronized Enumeration<TestFailure> TestResult.failures() {
 return Collections.enumeration(TestResultFailures.aspectOf().from(this));
 }
}

Figure 34 Relation between TestResult and TestFailure (errors) Implemented as First-Class Relation
public privileged aspect TestRunnerResultPrinter extends SimpleStaticOneToOneRel2<TestRunner, ResultPrinterRole> {

 declare parents: ResultPrinter implements ResultPrinterRole;

 // Participant constructor
 public TestRunner.new(ResultPrinter printer) {
 TestRunnerResultPrinter.aspectOf().add(this,printer);
 }

 // Participant maintenance methods
 public ResultPrinter TestRunner.get() {
 return (ResultPrinter)TestRunnerResultPrinter.aspectOf().getTo(this);
 }

 public void TestRunner.add(ResultPrinter printer) {
 TestRunnerResultPrinter.aspectOf().add(this,printer);
 }

 // Active behavior operations
 public void print(TestRunner tr, TestResult tres, long rt) {

 ResultPrinterRole rp = TestRunnerResultPrinter.aspectOf().getTo(tr);
 rp.print(tres, rt);
 }

 public void printWaitPrompt(TestRunner tr) {

 ResultPrinterRole rp = TestRunnerResultPrinter.aspectOf().getTo(tr);
 rp.printWaitPrompt();
 }

 // Participant behavior methods
 public void TestRunner.print(TestResult tres, long rt) {

 TestRunnerResultPrinter.aspectOf().print(this, tres, rt);
 }

 public void TestRunner.printWaitPrompt() {

 TestRunnerResultPrinter.aspectOf().printWaitPrompt(this);
 }
}

Figure 35 Relation between TestRunner and ResultPrinter Implemented as First-Class Relation

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 31

Appendix F Overview of Effects of First-Class Relations

Table 5 Relations Implemented

 Before applying first-class relation The first-class relations and their characteristics

Parent Property Cardinality Name Behavior Structure

1 TestResult TestListener n-m ResultObserver reactive SimpleStaticRel

2 TestSuite Test n-m TestComposite active CompositeRelation3

3 Filter Request 1-1 RequestCommand active SimpleStaticOneToOneRel

4 JUnit4TestCaseFacade Description 1-1 DescribableDescription active SimpleStaticOneToOneRel

5 ResultPrinter PrintStream 1-1 ResultPrinterWriter active SimpleStaticOneToOneRel

6 TestFailure Throwable 1-1 TestFailureThrowable active SimpleStaticOneToOneRel

7 TestFailure Test 1-1 TestFailureTest - SimpleStaticOneToOneRel

8 TestResult TestFailure 1-n TestResultErrors - SimpleStaticOneToManyRel

9 TestResult TestFailure 1-n TestResultFailures - SimpleStaticOneToManyRel

10 TestRunner ResultPrinter 1-1 TestRunnerResultPrinter active SimpleStaticOneToOneRel24

Table 6 Effects of Structure

Object FCR Role MPC CBO FanIn FanOut ILCOM TCC (%)
TestResult ResultObserver Parent -2 - - - - -
TestSuite TestComposite Parent -2 - - - - -
JUnit4TestCaseFacade DescribableDescription Parent +1 -1 - -1 -1 -
Description DescribableDescription Property - -1 -1 - - -
ResultPrinter ResultPrinterWriter Parent +1 -1 - -1 -1 -
PrintStream ResultPrinterWriter Property - -1 -1 - - -
TestFailure TestFailureThrowable Parent -1 -1 - -1 -1 -
Throwable TestFailureThrowable Property - -1 -1 - - -
TestFailure TestFailureTest Parent -1 -1 - -1 -1 -100
Test TestFailureTest Property - -1 -1 - - -
TestResult TestResultErrors Parent -1 - - - -1 -4
TestResult TestResultFailures Parent -1 -1 - -1 -1 -4
TestFailure TestResultFailures Property - -1 -1 - - -
TestRunner TestRunnerResultPrinter Parent +1 -1 - -1 -1 -100
ResultPrinter TestRunnerResultPrinter Property - -1 -1 - - -

3 The main difference between CompositeRelation and SimpleStaticRel is that the former preserves the order of the tuples.
4 SimpleStaticOneToOneRel2 replaces key-value pairs instead of throwing an AssertionError when trying to add the same key a second

time.

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 32

Table 7 Effects of Behavior

Object FCR Role MPC CBO FanIn FanOut ILCOM TCC (%)
TestResult ResultObserver Parent - -1 - -1 -1 +19
TestListener ResultObserver Property - -1 -1 - - -
TestSuite5 TestComposite Parent - -1 - -1 - +50

Table 8 Effects of Participant Methods

Object FCR Role MPC CBO FanIn FanOut ILCOM TCC (%)

All clients ResultObserver Client -1 - - - - -

All clients TestComposite Client -1 - - - - -
CategoryTest RequestCommand Client -1 - - - - -
MaxStarterTest RequestCommand Client +1 - - - - -

All clients DescribableDescription Client -1 - - - - -
JUnit4TestCaseFacade DescribableDescription Parent -1 - - - - -

All clients ResultPrinterWriter Client -1 - - - - -
ResultPrinter ResultPrinterWriter Parent -1 - - - - -

All clients TestFailureTest Client -1 - - - - -
TestFailure TestFailureTest Parent -1 - - - - -

All clients TestResultErrors Client -1 - - - - -
TestResult TestResultErrors Parent -1 - - - - -
TestResult TestResultFailures Parent -1 - - - - -

All clients TestRunnerResultPrinter Client -1 - - - - -
TestRunner TestRunnerResultPrinter Parent -1 - - - - -

5 These values were measured without the interference of the static methods. They were removed from the before and after situation. With

the static methods TCC decreased to almost zero.

The Influence of First-Class Relations on Coupling and Cohesion – A Case Study

Rob van der Horst – University of Amsterdam – 2011 33

Appendix G Effect of First-Class Relation on Observer and Composite Pattern

Figure 36 UML-like Class Diagram of Part of JUnit after Refactoring Observer and Composite pattern with First-Class Relations

After

TestResult

ResultPrinterBaseTestRunner

TestRunner

TestFailure

Test

TestListener

TestSuite

TestCase

fFailures
fErrors

PrintStream

Throwable

Before

TestResult

ResultPrinterBaseTestRunner

TestRunner

TestFailure

Test
TestListener

TestSuite

TestCase

fListeners

fFailures
fErrors

te
st
s

PrintStream

Throwable

