The Influence of First-Class Relations on Coupling and Cohesion
A Case Study

Rob van der Horst
University of Amsterdam
Master Software Engineering 2011
+31 6 28 45 92 55
rob@equate.nl

ABSTRACT

In object oriented programming languages associations between
objects are often implemented through object field members.
This paper discusses what the effects would be on coupling and
cohesion if those associations were instead implemented with
first-class constructs for relations or first-class relations.

First-class relations have positive effects on coupling and
cohesion according to various papers [31, 27]. However, we
found only one paper [32] in which the first-class relations have
actually been used in real-world software. That paper however,
did not report effects on coupling or cohesion. Therefore, we
conducted an empirical research to find out if first-class
relations indeed have effects on coupling and cohesion and
which characteristics of first-class relations cause these effects.
In this research we used an existing software program and
replaced associations implemented through object field members
with first-class relations.

From our findings we concluded that three characteristics of
first-class relations indeed have a positive effect on coupling or
cohesion. The characteristics that were found to have positive
effects are (1) being one entity, (2) being the only relation
construct and (3) support for relational constraints. Another
important characteristic is that first-class relations have their
own special notation. Although, we do consider this a vital
characteristic to first-class relations, we could not find any
results supporting this claim. In some cases a java object also
sufficed as relation construct. We expected that roles would are
also important for decoupling. However, this could not be
established. Finally, we concluded that a first-class relation can
not decouple a parent from its property if its role cannot be
expressed in terms of its public methods. It does provide a
dependency injection mechanism.

Keywords

Relations, Associations, Aspect-Oriented Programming

1. INTRODUCTION
1.1 Background and Context

The idea for this research arose from the marketplace business
model. This business model revolves around the idea of a
marketplace in which independent contractors can register for
developing and testing small chunks of software. For
decomposing the system-to-be into small chunks it is essential to
apply the principle of information hiding [30]. A prerequisite for
information hiding is that chunks are loosely coupled and have
high cohesion [9]. Later on in the development process, these
chunks of software will be assembled using connectors to
compose the software system. This idea has been implemented

in different fields of software engineering such as component-
based development [7], service-oriented software engineering
[7] and role-based development [23]. What separates our idea
from those fields of software engineering is its granularity. We
search for a more fine-grained decomposition. Fine-grained
decomposition provides more ways to decompose the system
into sub-systems. Consequently, during composition some
components will end up together in the same subsystem while
others end wup in different subsystems. Intra-subsystem
connectors differ from inter-subsystem connectors. The Java
virtual machine for example provides intra-subsystem
connectors for objects while SOAP can be used as inter-
subsystem connector. The choice of connector must be made
early on in development. If Java would support connectors that
provided the same interface as the SOAP interface then the
decision of dividing into subsystems could be made further
downstream in the development process. The objects would be
unaware of the type of connector or even be unaware that they
would be connected to other objects. We believe that a first-
class relation (FCR) can be such a connector.

1.2 Motivation

In January 2011, we stumbled upon a piece of Java code that
had a circular dependency between two objects. Both objects
maintained references to instances of each other. If an object
instance was added or removed both references had to be
updated. The objects had to know which method of the other
object to use to prevent an infinite loop. In other words, the
objects required knowledge of the internal implementation
details of the other object. A first-class relation, if available to
Java, could have easily implemented this relation and prevented
the dependency on the internal details. It would do so by
removing the cyclic dependency the two objects have with each
other.

A B A B
Bb A a
addB() addA()
removeB() removeA()
relation
{AB}

addAB()
removeAB()

Figure 1 Basic idea of first-class relation.

Figure 1 shows that the coupling between the two objects has
been replaced by coupling between the objects and the relation.
The picture also shows that the reference to the other object is
no longer required and thus the relation is no longer maintained

The Influence of First-Class Relations on Coupling and Cohesion — A Case Study

inside the objects themselves. The object can now focus on its
core functions now that the burden of maintaining the relation
has been removed. This leads to the expectation that cohesion or
coherence should improve.

The relation construct provides the maintenance methods out-of-
the-box. Maintenance methods are getters and setters that
operate on the relation as a whole. This embodies the basic idea
of the first-class relation.

Various sources have reported advantages of relations
implemented as first-class relations as opposed to implemented
through field members. A few of these are:

- higher cohesion/lower coupling [31, 27];

- guaranteed referential integrity under transactional control
[28];

- relational consistency and integrity through support of
operations and constraints on relationships as a whole [32,
28];

- the programs are easier to understand [26, 27];

- the programs are easier to modify [27];

- alignment with database is better [32];

- alignment with domain model is better [32];

- traceability improves [27].

Except for Rumbaugh [32] these sources did not provide real

world empirical prove. They used small pieces of sample code

or were logical argumentations. Therefore, we chose to conduct

an empirical idiographic case study on one existing software

program to validate these claims made about first-class relations.

1.3 Scope

This research considers only the effects of first-class relations on
coupling and cohesion. It does not consider effects on other
quality attributes such as maintainability. Therefore, the
conclusions we drew were from the perspective of coupling and
cohesion. Because we performed empirical research of an
existing software program, only the characteristics that were
relevant for the software program were investigated.

Although relations can exist between more than two objects [21,
32] we consider only binary relations.

The scope of our research is limited to:

- effects on coupling and cohesion metrics;

- characteristics of the first-class relation relevant to the
software program;

- binary relations;

- static first-class relations (see paragraph 3.4 for more
information);

- relations between object instances as opposed to relations
involving object classes;

- relations that are associations i.e. not inheritance or
implementation of interfaces.

1.4 Concepts of Coupling and Cohesion

The definition of coupling used by Chidamber and Kemerer [11]
says “two objects are coupled if and only if at least one of them
acts upon the other, X is said to act upon Y if the history of Y is
affected by X, where history is defined as the chronologically
ordered states that a thing traverses in time”. They continue to
conclude that by that definition any action performed by X on Y
or by Y on X constitutes coupling. These actions can be method
calls or access to field members.

The definition of cohesion used by Chidamber and Kemerer [11]
is based on the principle of similarity of methods within an
object. This similarity is based on the intersection that methods
have through field members. The degree of similarity is viewed
as the object class cohesiveness. An object class is considered
cohesive if it has different methods performing different
operations on the same set of field members. One such set is
considered as a function area by Hitz and Montazeri [19].

1.5 Characteristics of First-Class Relations
For a relation construct to be considered first-class it must
exhibit a number of characteristics. These characteristics are:

1. it has its own special notation;
. it1is constructed as one entity;
3. no other construct defines a relation between the same
participants in parallel with a first-class relation;
4. it represents the same concept in run-time;
5. operations can be performed on relationships;
6. constraints can be applied to relationships.

The first characteristic is that a first-class relation must have its
own special notation. Rumbaugh [32] argues that a special
notation aids in the visualization of relations in the program
code and the communication with other stakeholders.
Communication approves because without the special notation it
is not possible to describe relationships without also describing
the actual implementation of relations. He compares the special
notation with the notation of relations in the modeling language
Object Modeling Technique (OMT), the predecessor of UML. In
OMT relations are represented as lines between object classes
with the name of the relation written above the line.

The second characteristic has been derived from Jacksons
definition for a relation [21]: A relation is a structure that
relates atoms. It consists of a set of tuples, each tuple being a
sequence of atoms. You can think of a relation as a table, in
which every entry represents an atom. The order of the columns
matters, but not the order of the rows. Each row must have an
entry in every column. For object-oriented programs the term
“atom” must be substituted by the term “object instance”. It is
the structure i.e. the table, which makes the relation to be one
entity. In OMT, that one entity is the line between the object
classes.

The third characteristic is that no other relation constructs are
possible between the same participants. Different relation
constructs may be used but between the same participants only
one construct may be used at a certain moment in time. If more
than one construct is used at one time then it is not possible to
guarantee relational integrity between participants.

The fourth characteristic is that the relation construct must
remain in tact at run-time. Run-time support is required for a
number of reasons. These reasons include dynamic lookup of
participants, debugging and serialization. The run-time concept
of a relation also aids in thinking in terms of relations and hence
facilitates the communication among stakeholders of the
software program.

The fifth characteristic is that it must be possible to apply
operations to relationships. We recognize two types of
operations: structure operations and behavior operations.
Structure operations allow us to change and query the structure
of a relationship. Behavior operations consist of the behavior of
the participants in the relationship.

Rob van der Horst — University of Amsterdam — 2011

The Influence of First-Class Relations on Coupling and Cohesion — A Case Study

The sixth characteristic is that it must be possible to apply
constraints to all participants in a relationship. Constraints are
used by Rumbaugh in [33] to support propagation of operations.
The operations act on the participants across relationships. Also,
Rumbaugh and Jackson [21] both recognize the necessity for
constraining the cardinality of the participants in a relationship.

1.6 Research Question

The absence of case studies on real world software in literature
on first-class relations creates doubt about the proclaimed
advantages. Although some studies have been done on small
pieces of code these are not expected to be sufficient to uncover
the intricacies typical of applying theories to real world
software. This could very well be the reason that first-class
relations up till now have not been adopted by mainstream
programming languages.

In this paper we take a first step in uncovering these intricacies.
We do so by focusing on coupling and cohesion because this
most clearly relates to our requirement for decomposing the
software program. Therefore, central in this paper is the
following research question:

Which characteristics contribute to a successful implementation
of first-class relations with respect to coupling and cohesion,
and which characteristics contribute to failure?

In support of our main research question we have formulated a
number of sub-questions.

1. Which elements constitute a first-class relation?

We found different elements of first-class relations in the papers
but these have not always been implemented in the models that
followed. For example, Balzer et al mentioned the existence of
invariants in [3, 4] and Rumbaugh mentioned propagation of
operations in [33].

2. How should first-class relations be applied to object-
oriented code?

For traceability we describe how we will apply first-class
relations to the software program. We have to identify the
relations and their characteristics from the source code because
we did not have access to the design of the software program.

3. Which definitions of coupling and cohesion are appropriate
for first-class relations?

The definitions of coupling and cohesion we choose can have a
profound impact on our results. The definitions have to be
applicable to the programming language of the software
program. Furthermore, earlier versions of coupling and cohesion
have been questioned in papers that followed.

1.7 Related Work

The relation has been around as a first-class citizen in modeling
languages such as UML [22] and entity relationship diagrams
[10]. However, the relation never got the same support in
mainstream object-oriented programming languages such as
Java, C++ or Smalltalk. Back in 1987, James Rumbaugh
suggested an implementation of relations as first-class citizens in
the object-oriented language Data Structure Manager (DSM)
[32]. After Rumbaugh's implementation of DSM other
programming languages followed, such as Rell [6]. Rell
resembled DSM in that it too supported relations as part of an
object-oriented language. However, Rel] never got
implemented.

It wasn’t until 1995 that the work of Rumbaugh was followed
up. Noble and Grundy published their paper on relationship in
object-oriented development [27]. They implemented
relationships with relationship objects. Using these relationship
object Nobles and Grundy observed advantages such lower
coupling, higher cohesion, smaller programs, easier to
understand code and better alignment between design and
program code. Noble reported the same advantages in 1997 in
his paper on basic relationship patterns. These patterns described
how objects could be used to model relationships.

More people joined the research of first-class relations from
2002. The research focused on implementations of dedicated
relational languages (RelJ and Rumer), implementations of add-
ons (RAL, CaesarJ and Noiai) or theory.

In the fields of add-ons, Hannemann and Kiczales published
their paper in 2002 on their implementation of design patterns in
Aspect] [18]. Although, this paper was not specifically aimed at
relations their implementation did show how relations could be
implemented using aspect-oriented programming (AOP). The
paper of Noble and Pearce in 2006 [31] presented the
Relationship Aspect Library (RAL). RAL supported two types
of relations: static relations and dynamic relations. Static
relations were implemented with Aspect] while dynamic
relations were implemented with Java. In 2007, Osterbye
presented his implementation of a library for association
relationships in C# called NOIAI (“No object is an island”) [29].
In 2008, Noble, Pearce and Nelson presented a three-level
model of relationships [24, 25] in which relations form the third
tier after the object tier and association tier. The relation tier
adds roles and relationship constraints. They did not however,
present an implementation of their model like Noble and Pearce
did earlier with RAL.

In the field of relational languages, Bierman and Wren presented
Rell in 2005 [6]. Rel] was a language that supported a subset of
the features of Java and added support for relationships. RelJ
was never implemented however. In 2006, Aracic et al
introduced the concepts of their language CaesarJ in [1]. Caesar]
combines object-oriented programming with aspect-oriented
programming in one language. In 2007, Balzer et al presented a
relational model [4]. This model proposed member interposition
for object members specific to a relation. It also proposed
relationship invariants to constraint the objects in a relation.

Our concept of the first-class relation is not confined to
development time but extends into run-time as well. The first-
class relation construct must be interchangeable with other
technologies. In other areas of software engineering,
technologies have been developed that show similarities with
relation constructs. One such area is that of role-based
development. Lee and Bae [23] proposed an implementation of a
role model using Javassist to modify code at source level. The
resulting code contained classes similar in functionality to that
of relations. In the area of service oriented software engineering
relations are perhaps best compared with the service
composability design principle described by Thomas Erl [13].
Applying this design principle depends on the implementation of
several design patterns. CORBA defines a relationship by the set
of roles the entities have [28]. The Relationship Service
implements the relationships. It also implements roles. CORBA
objects represent the roles in a relationship.

Rob van der Horst — University of Amsterdam — 2011

The Influence of First-Class Relations on Coupling and Cohesion — A Case Study

1.8 Organization of this Paper

The next section describes the research method we used. Section
3 describes the explorative part of our research. Section 4
describes the application part of our research. Section 5 presents
an overview of the results for each element of a first-class
relation. Section 6 presents the analysis of the results and refers
back to sections 4 and 5. The analysis is presented from a
viewpoint of each of the characteristics of a first-class relation.
Section 7 sums up the conclusions.

2. RESEARCH METHOD

We split our research into two phases: exploration and
application. The objective of the exploration phase is to gain an
understanding of the matter, seek answers to our sub questions,
select a software program to refactor and set up our development
environment. The exploration will be done iteratively: (1) learn -
define a first-class relation based on work of others (2) apply -
implement in an existing software program and (3) refine -
analyze results and adapt model of first-class relation.

The objective of the application phase is to measure and analyze
the effects of first-class relations on coupling and cohesion. We
identify relations in the baseline code, match it to our first-class
relation model, and then apply each element of the first-class
relation. After the application of each element we validate the
functions of the software program and measure the effects the
application has on the participants in the relation and the rest of
the software program. The effects are analyzed and explained.
See Figure 2 for an overview of the application research method.
Eventually, all results are combined to form our conclusion.

Due to timing constraints we limit the research to include only
part of the relations found in the software program. To make a
fair comparison to first-class relations we try to avoid code that
is tightly coupled or has low cohesion due to bad programming.
Therefore, we select relations that follow established
programming practices. One such practice is the use of design
patterns. To make the results more predictable we select only
design patterns, which are known to have a certain effect on
coupling and cohesion [8, 14, 15].

We also select a number of straightforward relations i.e.
relations between an object and its property. We refer to those
relations as property relations. Design patterns often introduce
additional elements such as interfaces and abstract classes.
These additional elements may influence the outcome of the
refactoring because they are not considered part of the business
domain and therefore may become redundant in the process of
refactoring to first-class relations. With property relations we
intentionally refrain from factoring out the parent itself into a
relation. The property relations are taken from an arbitrary test
case by following its call tree.

For each relation, we analyze its characteristics. These
characteristics are translated to the elements of our model of a
first-class relation. Paragraph 3.3 describes this model. The
elements include cardinality, how client objects use the relation,
which methods constitute the behavior of the relation and what
type of behavior it concerns.

The first-class relation is then implemented, one element at a
time. Every element is then switched on and off individually.
There are some dependencies however between the elements.
For example cardinality is part of the structure of the first-class
relation and cannot be switch on and off independent of
structure. The implementation follows the guidelines described
in paragraph 3.4.

baseline code

select
relations

selection of relations

analyze
relation 1

analyze
relation 2

analyze
relation n

elements of FCR

implemen
relation 1

implemen
relation 2

implemen
relation n

adapted code

validated code

measure c&c
metrics

measure c&c

measure c&c

analyze
metrics

measure c&c

analyze
metrics

analyze
metrics

effect on c&c

analyze
results

conclusion

Figure 2 Research Method in Application Phase

We validate the resulting program code with regression tests. To
validate the implementation of the first-class relations we follow
the results presented by Kiczales and Hannemann in [18] and let
experts in the field of first-class relations review the code. After
each application step, the resulting program code is saved to a
source code version system.

After each finished application step we record the metrics. We
start with recording the baseline. Then for each relation, every
time an element is switched on or off, the resulting values of the
metrics are recorded in a database. For coupling we record the
values between two related objects but also values in relation
with all objects in the software program. In addition to the
metrics themselves, we record which objects were changed and
what roles they played in the relation. For the design patterns,
the naming of the roles are taken from Gamma et al [14]. For the
relations in the test case, the role names are restricted to client,
parent and property. The application steps are matched with the
revisions in the source code version system.

All information recorded during the application phase is coded.
The set of codes is: name of the relation, name of the
participants, coupling or cohesion and element of first-class
relation. The coding helps us with identifying patterns during the
analysis.

The validity of the measurements is ascertained in two ways: (1)
the measurements are performed with tools that have proven
themselves in other studies and (2) the internal code of the
metric tools has been analyzed during the exploration phase and
compared to their definitions.

The metrics are not used for quantitative analysis. Instead, we
use the metrics to support us in understanding the effects of
first-class relations and to ascertain that we do not miss
unexpected effects. We compare the resulting metrics to the
baseline and to the previous step. We do this for all objects that
were changed and for the clients.

Finally, during analysis we look at the elements of first-class
relations and how they translate to the characteristics of first-
class relations. To support us with the analysis, we use our notes
and where necessary do the measurements again with tracing
enabled for the metric tools so we can examine intermediate
results such as collections of objects.

Rob van der Horst — University of Amsterdam — 2011

The Influence of First-Class Relations on Coupling and Cohesion — A Case Study

3. EXPLORATION PHASE RESEARCH

In this section we describe the explorative part of our research.
As part of the exploration we present our development
environment and answer the sub-questions. The answers are
given in the form of the metrics used for coupling and cohesion,
a model of first-class relations and a procedure for identifying
and applying first-class relations to existing source code.

We use the term object class to indicate the type of an object.
We use the term object instance to indicate an instance of an
object. Throughout this paper we use the term object if it is
irrelevant to the discussion whether it concerns an object class or
object instance. We use the term relation class to indicate the
type of relation. We use the terms relationship to indicate an
instance of a relation. A relationship is the set of tuples of object
instances in a relation that are linked together, or group of
interacting object instances [4]. See Nelson et al [25] for a more
precise description. Throughout this document we use the term
relation if it is irrelevant whether it concerns a relation class or
relationship.

3.1 Definition of Coupling and Cohesion

Of the advantages mentioned, coupling and cohesion are directly
related to decomposing systems. How these quality attributes
change is indicative for the value of first-class relation with
respect to decomposition. This paragraph describes which
metrics are appropriate for our research.

3.1.1 Coupling

Coupling metrics appropriate for object-oriented systems can be
divided into three categories [12]: (1) inheritance coupling, (2)
component coupling and (3) interaction coupling. The coupling
metrics we consider were introduced by Chidamber and
Kemerer in [11], or derived from those metrics. The metrics
included CBO (coupling between object classes), WMC
(weighted methods per class) and RFC (response set for a class).

Inheritance coupling pertains to class inheritance, interfaces and
abstract classes. These constructs exist only during design-time.
Two object classes are inheritance coupled if one is a direct or
indirect sub-class of the other. During run-time super-classes
and interfaces are no longer recognizable as a separate construct.
For this type of coupling, Java already provides first-class
constructs. This type of coupling can influence decomposition
but we could not find any metrics for inheritance coupling.

Component coupling pertains to relations between objects that
may exist at some point in the lifetime of an object. Component
coupling is typically implemented in Java code using field
members and method parameters. This type of coupling also
exists during run-time.

Of the component coupling metrics, CBO, Fan-In (afferent
coupling) and Fan-Out (efferent-coupling) are very useful. They
pertain to static relations between objects. In Java, a static
relation is created using object field members. Fan-In of an
object is the number of static references from other objects to
this object. Fan-Out of an object is the number of static
references to other objects. CBO is the number of static
references between two objects or the union of Fan-In and Fan-
Out.

Interaction coupling pertains to interactions between objects.
Interaction coupling is implemented in Java through method
calls and attribute access. Two interaction coupling metrics are
MPC (message passing coupling) and RFC.

Table 1 Appropriate Coupling Metrics

Metric | Formula Category

CBO The size of the intersection of the
set of object classes referenced by
this class with the set of object
classes that reference this class.

Component

Fan-In The number of classes that Component
reference this class.

Fan-Out | The number of classes referenced Component
by this class.

MPC The number of calls made to Interaction

methods in other classes.

Table 2 Appropriate Cohesion Metrics

Metric | Formula Category
ILCOM | Number of connected components Class
TCC Number of pairs of directly Class

connected methods divided by
number of pairs of methods

LCC As TCC but includes indirectly Class
connection methods as well.

Both metrics are useful to our research but only one is required
because they are closely related. Message related coupling
pertains to the messages sent between classes i.e. the methods
called. The metrics tool JHawk [17] defines MPC as the number
of methods from another class that are called. JHawk defines
RFC as the number of methods in a class plus the value of MPC.

Table 1 shows the coupling metrics appropriate for our research.

3.1.2 Cohesion

Cohesion metrics appropriate for object-oriented systems can be
divided into three categories [12]: (1) method cohesion, (2) class
cohesion and (3) inheritance cohesion.

Method cohesion describes the binding of the elements defined
within the same method. Individual methods are not considered
in our research. Objects are the smallest grained elements we
consider.

Class cohesion describes the binding of the elements defined
within the same object. Inheritance cohesion is the same as class
cohesion except that it also takes inheritance into account. Since
inheritance is a measure for reuse the functionality in super-
classes should be taken into account as if it were implemented
without inheritance.

Class and inheritance cohesion metrics are roughly divided into
two categories: those measuring lack of cohesion in methods
(LCOM) and those measuring cohesion itself. The former has
many variants. LCOM was introduced by Chidamber and
Kemerer [11] but was considered to be counter-intuitive by Hitz
and Montazeri [19] and others. In response Hitz and Montazeri
introduced an improved version of LCOM (ILCOM) using
graph theory. ILCOM measures the number of disjoint function
areas in an object. They referred to it as the number of
connected components of a graph.

Metrics to measure class cohesion itself are tight class cohesion
(TCC) and loose class cohesion (LCC). These metrics were
introduced by Bieman and Kang in [5]. They are similar to
ILCOM. TCC is the ratio between pairs of connected methods

Rob van der Horst — University of Amsterdam — 2011

The Influence of First-Class Relations on Coupling and Cohesion — A Case Study

and all pairs of methods in a class. LCC measures both directly
connected methods and indirectly connected methods while
TCC measures only directly connected methods. Valid values
for TCC lie between 0 and 1. Table 2 shows the cohesion
metrics appropriate for our research.

3.2 Development Environment

The software program we chose for our research is JUnit 4.9,
which is maintained by Kent Beck and Erich Gamma. JUnit is a
unit-testing framework for Java programs. It has a graphical and
a text user interface for viewing results. It is integrated with
several programming environments such as Eclipse.

JUnit is a relatively small program making it easy to
comprehend. It also contains design patterns for which the
effects on coupling and cohesion are known. JUnit comes
included with a suite of test cases, which will help us doing the
regression tests.

JUnit is split into two parts: one supporting version 3.8 clients
and another supporting version 4 clients and providing classes
for backward compatibility. Figure 24 gives an overview of the
classes we encountered during our study. It distinguishes version
3.8 classes from version 4 classes. The relations that have been
refactored are shown with dotted lines. Notice that the figure
does not intent to be a complete overview of JUnit.

We chose RAL [31] for the implementation of the first-class
relations. The number of programming languages with support
for relations we known of is limited to RelJ, Rumer, Noiai,
Caesar] and RAL. Neither Rel] nor Rumer has an
implementation and consequently no software program has been
developed. Noiai is an add-on for C# and cannot be used for
JUnit. Caesar] seems a viable option. It is a Java-based
collaboration-oriented programming language. It extends
Aspect]. However, the implementation of Caesar] is complex
compared to that of RAL. This will make it difficult to extend if
required. RAL is also Java-based and uses Aspect]. RAL does
have some issues such as missing support for polymorphic pair
types, missing support for n-ary relations and limited support for
multiple instantiations of relationships [25]. However, none of
those issues will hinder us in using it.

For detection of design patterns we chose the Design Pattern
Detection tool from CSSE Laboratory. It’s an easy to use stand-
alone tool that operates against a directory of Java sources. And
as a bonus it has been tested with JUnit 3.7. The tool has been
documented in [35] and is available for download together with
the results for JUnit 3.7 from the web site of CSSE Laboratory
[34].

We did not find a tool that provided all metrics we required.
Therefore, we chose two tools: JHawk 5 Professional Edition by
Virtual Machinery for coupling and VizzMaintenance 2.0 of
ARiSA AB for cohesion. JHawk comes as a stand-alone tool as
well as an eclipse-plugin. It is available for download from the
company’s web site [36]. VizzMaintenance comes as an eclipse-
plugin. It is available for download from the company’s web site
[2].

Both metrics tools perform their measurements on the Java
source code. They do not take aspects of Aspect] source code
into account. JHawk allows one to select the objects that must be
measured during analysis. This makes it possible to exclude or
include the object classes in the JDK at will. VizzMaintenance
does not support LCC and for TCC it counts only the public
methods.

Relation
Structure
tuple
State
< A B o
> P 2
P K] el _ | _ bl s -
Object A c H Object B
5 a2 b1 5
3 2
S T T ®
Maintenance methods
Behavior
< Py
5} o
©° @
o w

Figure 3 Theoretical Model of a Relation
3.3 Model of First-Class Relation

This paragraph presents our model of a first-class relation
(Figure 3). It identifies the elements of the model and thus
answers sub-question 1. The main two elements we distinguish
are structure and behavior.

Structure itself is divided into three sub-elements: (1) state, (2)
maintenance methods and (3) cardinality. Structure is the
container for the objects instances that participate in the
relationship. The object instances that are part of the relationship
at a given time define the state of the relationship. Access to the
structure is provided by maintenance methods. Cardinality limits
the number of object instances on each side of the relationship.

The second element is behavior. There are two types of
behavior: active and reactive. Reactive behavior is triggered by
object instances that take part in the relation causing other object
instances in the relationships to react. This kind of behavior is
typically implemented with the Observer design pattern. Active
behavior is initiated by a third object; a client object.

Roles are also part of behavior. Roles describe the public
interface of the objects that is used by the relation when an
object participates in a relationship.

3.3.1 Structure

State is the collection of tuples of object instances that make up
the relationship. An object in a relation is referred to as a
participant, Balzer et al [3, 4]. The binary relation has two
participants that are each other’s partner. Together two partner
instances are referred to as a tuple. The set of tuples can be
viewed as a table [21, 32]. State changes when tuples are added
or deleted. State can also be queried.

Maintenance methods provide access to state. State is changed
when maintenance methods add or delete tuples. State is queried
when maintenance methods get tuples, participant instances or
the size of state. Typical maintenance methods are add(),
remove(), size() and get(). Additional maintenance methods
exist to facilitate use of lists of participants. Maintenance
methods are used by clients of the relation and by the behavior
methods of the relation. The name of maintenance methods was
taken from [18] where Kiczales and Hannemann describe the
implementation of design patterns with aspects.

Cardinality constrains the number of tuples in a relationship. An
n-to-m relation has a maximum of n*m tuples. Cardinality also
constrains the number of object instances in a relationship. For
one participant n distinct instances can be in the relationship and
for its partner m distinct instances can be in the relationship.

Rob van der Horst — University of Amsterdam — 2011

The Influence of First-Class Relations on Coupling and Cohesion — A Case Study

Object A Relation Object B
1 1 >
direction of navigation
+existingMethod() if: +someMethod()
A.existingMethod()
then:
B.someMethod()
Figure 4 Reactive Behavior
Object A Relation Object B

+aMethod()

do: +anotherMethod()
A.aMethod()
and

-~ v -
\ B.anotherMethod() /

A

direction of navigation

Client
T I

Figure 5 Active Behavior

3.3.2 Behavior

Balzer et al in [3] mention that relations contain the behavior
that participants have in common. We define behavior as the
interaction between the participants of a relation. Interaction is
initiated through behavior methods. The behavior methods use
only the public methods of the participants. This may conflict
with the idea of Pearce and Noble in [31] that objects can
behave differently when they are participating in a relation.
However, we use only the public methods of the participants to
honor the principle of information hiding.

We differentiate between two types of behavior just like
Kiczales and Hannemann do in [18]. These types are reactive
and active. They used reactive behavior for the Observer pattern,
and active behavior for the other patterns.

Behavior is reactive (Figure 4) when it is triggered by one
participant and then performs an action on its partner (to keep it
in sync). Reactive behavior cannot be accessed by clients.
Reactive behavior is useful for attaching functionality to an
existing software program.

Behavior is active (Figure 5) if a third object initiates the
interaction between the two participants. The third object, the
client, operates directly on the behavior in the relation. It does
not have to be aware of the object instances in the relation
though.

3.3.3 Roles

Roles define the behavior that is expected of the participants.
Nelson in [24] uses roles to add state and behavior to
participants in the context of a relation. He does so by adding
fields and methods to the participant. Again we do not want to
break the principle of information hiding and therefore use only
the public methods participants already have. An object may
only participate in a relation if has the methods defined by the
role.

A participant has formalized a role if the methods required for
the role are part of a separate construct. In Java, this construct is
the interface. If a participant has not formalized its roles then it
is said to be oblivious of what it is used for.

Figure 6 shows that role A is defined by methods bMethod(),
cMethod() and dMethod(). If object A implements these
methods it can play role A and thus participate in the relation.

Relation
Object A Structure Object B

Role A Behavior Role B

+
bMethod(’ bMethod(xMethod()

+cMethod() cMethod()

\+dMethod(), dMethod()

+xMethod()

yMethod() “+yMethod()

bMethod()
cMethod()
dMethod()

Role A

Figure 6 Roles Dictate Which Objects can Participate

Relation Relation
Structure Structure
Role A Behavior Role B Role A Behavior Role B
bMethod() Method() vt —] "N)
cMethod() Method() cMethod(:i:tnMethod() ﬁ/l\/\elhod()
dMethod(’ oMethod()

dMethod()

Figure 7 Reactive Behavior (1) versus Active Behavior (r)

Figure 7 shows that behavior of the relation is defined by the
interaction between the methods in the roles. With reactive
behavior, any time a method in role A is executed, methods in
role B get executed. With active behavior, the methods of roles
A and B are executed together, part of the behavior methods,
which in turn are triggered by a client.

3.3.4 Clients

Clients are objects that operate on a relation. Clients can change
or query the state of a rela