Assessing the Effectiveness of
Fault-Proneness Prediction Models
Across Software Systems

Roy de Wildt

roydewildt@gmail.com

August 10, 2016, 85 pages

Supervisors: Jurgen Vinju
Rinse van Hees
Host organisation: Info Support B.V.

UNIVERSITEIT VAN AMSTERDAM

FACULTEIT DER NATUURWETENSCHAPPEN, WISKUNDE EN INFORMATICA
MASTER SOFTWARE ENGINEERING
http://www.software-engineering-amsterdam.nl

X

)

X

mailto:roydewildt@gmail.com
http://www.software-engineering-amsterdam.nl

Contents

Abstract
1 Introduction
1.1 Problem Statement
1.2 Imitial Study
1.3 Literature Overview
1.4 Research Questions
1.5 Contributions e
1.6 Recommendations e e
1.7 Outline e e e
2 Background
2.1 Fault Detection e e
2.1.1 Issue-trackers e
2.1.2 Selection bias
2.2 Fault Distribution
2.2.1 Paretoprinciple. e
2.2.2 Gini Coefficient
2.3 Software Measurement e e e e
2.3.1 Chidamber-Kemerer metrics
2.3.2 Li-Henry metrics L
2.3.3 Briand et al. coupling metrics Lo Lo
2.3.4 Benlarbi-Melo polymorphism metrics oo L
2.3.5 Khoshgoftaar reuse metrics L L
2.3.6 Relationship between product metrics and fault-proneness
2.4 Principle Component Analysis.
2.4.1 Rotations and loadings L
2.5 Logistic Regression Modelso
2.5.1 Model comparison L e
2.5.2 Stepwise selection
2.5.3 Model measures e e e e e e e
2.5.4 Model validation
2.6 Outlier Detection e
2.6.1 Mahalanobis distance
3 Fault Distributions in Software Systems and the Pareto Principle

3.1 Introduction

3.2 Description of Study Setting L L
3.2.1 Systems e
3.2.2 Measurement instruments L L e e e
3.2.3 Variables

3.3 Data Analysis Methodology

3.4 Analysis Results

3.5 Conclusion and Discussion e e e e

-

s
[e RN BEN Ie N I |

—_

3.5.1 Threats to validity L
3.5.2 Futureresearch e

4 Reassessing the Applicability of Fault-Proneness Prediction Models Across Soft-

ware Systems

4.1 Introduction L e e e e e e
4.2 Description of Study Setting L o
4.2 1 Systemso e
4.2.2 Variables
4.3 Data Analysis Methodology L
4.3.1 Descriptive statistics L
4.3.2 Outlier analysis L
4.3.3 Principle component analysis oo
4.3.4 Prediction model construction. L Lo
4.3.5 Model evaluation
4.3.6 Hypothesis testing
4.4 Analysis Results L e
4.4.1 Descriptive statistics Lo
4.4.2 Outlier Analysis
4.4.3 Principal component analysis L Lo oo
4.4.4 Prediction model construction. L Lo
4.4.5 Model validation
4.4.6 Hypothesis testing L
4.5 Conclusion and Discussion Lo
4.5.1 Threats to validity L
4.5.2 Futureresearch L

Improvements to Regression-Based Fault-Proneness Prediction Models
5.1 Imtroduction L e

5.2 Description of Study Setting L L
5.2.1 Systems e
5.2.2 Variables e e

5.3 Data Analysis Methodology
5.3.1 Descriptive Statistics Lo
5.3.2 Outlier analysis L
5.3.3 Prediction model construction. L Lo oo
5.3.4 Model evaluation e
5.3.0 Hypothesis testing L

5.4 Analysis Results e
5.4.1 Descriptive Statistics L
5.4.2 Outlier analysis
5.4.3 Prediction model construction. oL
5.4.4 Model evaluation e
5.4.5 Hypothesis testing L

5.5 Conclusion and Discussion L Lo
5.5.1 Threats to validity L
5.5.2 Futureresearch e

The Influence of Environmental Factors on Fault-Proneness Prediction Models
6.1 Introduction

6.2 Description of Study Setting
6.2.1 Systems
6.2.2 Variables L

6.3 Data Analysis Methodology
6.3.1 Model construction Lo

31
31
32
32
33
34
34
34
34
35
36
36
37
37
37
37
38
39
40
41
42
43

44
44
46
46
46
47
47
47
47
47
47
48
48
48
48
49
50
52
33
53

6.3.2 Model validation
6.3.3 Hypothesis testing
6.4 Analysis Results e
6.4.1 Hypothesis testing L
6.5 Conclusion and Discussion
6.5.1 Threats to validity
6.5.2 Futureresearch e

Bibliography

A

5 O Q W

Tooling

A.1 File Selection e
A.2 Lines of Code Counter e
A3 Git Crawler e e e
A4 Byte-Code Metric Suite e
A.5 Fault Prediction Metric Suiteo
A.6 System Overview Measures e

Preliminary Study: Fault Distribution Histograms
Replication Study: Principal Component Analyses
Factor Study: Pools

Factor Study: Selected Variables

64

67
67
67
68
69
70
73

76

78

81

83

Abstract

Fault-proneness prediction models uses techniques from machine learning and statistics in order to
indicate parts of the software system that are likely to be fault-prone. These models can be used
to improve the fault discovery strategy by pointing out fault-prone parts of the software system. If
accurate enough, they could be applied in the industry to reduce the resources needed for reviewing
or testing software systems. A number of researchers succeeded in building accurate fault-proneness
prediction models which were trained and validated using a single-system. However, there is little
known about the effect on fault-proneness prediction model accuracy when applied across systems;
let alone the factors that influence the model’s accuracy.

In this study, we assess the effectiveness of regression-based fault-proneness prediction models ap-
plied across systems. Three axes are proposes along which fault-proneness prediction models could
be improved: (i) By changing the included fault-proneness predictors; (ii) by tuning or altering
fault-proneness prediction modelling techniques; (iii) or by considering the context in which the fault-
-proneness prediction model operates. 13 commercial systems active in the financial sector were used
to test the effect of these improvements.

Based on our discoveries, it seems to be possible to build effective fault-proneness prediction models
that could be applied across systems; our best cross-system fault-proneness prediction models obtained
on average an accuracy of 92%. However, building stable fault-proneness prediction models is far from
straightforward, there is still little known about which factors influence the prediction models and
which predictors actually correlates with class fault-proneness. In our opinion, we do not think that
(regression-based) fault-proneness prediction could effectively applied in practice at this point.

Chapter 1

Introduction

1.1 Problem Statement

The claim that a large part of the faults reside in a small part of a software system [1, 2] triggered
many researchers to find ways to discover parts of the system that are likely to contain faults. A
number of these researchers focused on building fault-proneness prediction models that are able to
separate fault-prone modules from non fault-prone modules [3]. These models can be used to improve
the fault discovery strategy by pointing out the modules that are likely to contain a larger part of the
faults. If accurate enough, they could be applied in the industry to reduce the resources needed for
reviewing or testing software systems.

A number of studies claimed they build highly accurate fault-proneness prediction models, using
regression analysis techniques and product measures, that find between the 70% and 90% of all the
fault-prone modules with an accuracy around 80% [4, 5, 6, 7, 8]. However, these models are build
and verified on the same software system, assuming the fault-proneness prediction model will only be
used on that particular system. This assumption affects the quality and the generalisability of the
model: (i) The quality is affected by the limited data a single system is able to provide for training
the model. If there is too little data available for the model to be trained with, it will influence the
prediction accuracy negatively by overgeneralising the training data. As a result, the current system
must be mature enough before any prediction model can be used with reasonable accuracy, and even
then the data is still limited to a single system. (ii) The generalisability is affected by only considering
the current system in the validation process. The validation of the prediction model will only provide
insights in the accuracy of the model regarding that particular system, but it tells nothing about
the performance of the model on other systems. As a result, the model is tied to that system and
cannot be used with confidence on other systems. Also, because the model needs to be rebuild for
each system, the model is unable to evolve over time.

The latter two limitations could be resolved by using fault-proneness prediction models that are
trained and validated using multiple systems. By using more than one mature system to build the
fault-proneness prediction model, it should solve the constraint on the training data and makes it
possible to apply the model new or small software systems. Moreover, if the factors that influence the
quality of a prediction model are known and can could be controlled, that model could be reused on
similar systems with reasonable accuracy (the ratio of true positives and negatives to all predictions).
However, there is little known about the effect on the model’s accuracy when applied across systems;
let alone the factors that influence the model’s accuracy (e.g. does team composition influences
prediction accuracy).

A realistic condition when applying fault-proneness prediction models in practice is that they could
be used across systems and trained using multiple-systems datasets. If not, models will be usable
on a single system of substantial size. If it is the case that fault-proneness prediction models are
incapable of predicting accurately across systems, it will have serious ramifications for the utility of
fault-proneness prediction models in practice.

1.2 Initial Study

Briand et al. [4] stated that previous studies on fault-proneness prediction modelling “can be char-
acterized as feasibility studies”, this is because these studies were not applied under “realistic condi-
tions”. In their opinion “the purpose of building such [fault-proneness prediction] models is to apply
them to other systems”, for this reason they assessed the applicability of fault-proneness models across
object-oriented software projects.

Briand et al. build a fault-proneness prediction model based on a medium size Java system and
applied the model to a different Java system developed by the same team (only different project
manager), using similar technologies (OO-design, and Java), and in a similar environment. The
systems varied in coding standards and design strategies. The two systems used were Xpose and
Jwriter. Xpose is an application for displaying and showing XML documents and has 144 Java classes
with a total of 1.774 methods. Although this application was developed after Jwriter, it was used to
build the model because it was the the larger of the two systems. Jwriter is a component that provides
basic word processing capabilities and has 68 classes with a total of 933 methods. This component
was used to validate the model on.

The model of Briand et al. used a set of measurements extracted from a static analyser, called
Jmetrics [9]. The static analyser measured a subset of coupling measures described in [10, 11], a set
of measures related to polymorphism [12], a subset of of the Chidamber & Kemerer OO metric-suite
[13], and some simple size measures based on counts of class methods and attributes. The data about
faults found in the field by customers were collected and used as input for the prediction model, and
to verify the model’s prediction accuracy.

For the analysis of the data, a subset of the measurements was used. The metrics in this subset were
selected using a mixed stepwise selection procedure. Also, a Principal Component Analysis (PCA)
was used to find groups of measurements that measure the same underlying concept. Briand et al.
conducted three regression analyses: an univariate regression analysis, and two multivariate analysis:

e The univariate regression analysis was used for each individual measure against the dependent
variable — fault /no-fault to detect if the measure is an useful predictor of fault proneness.

e A logical regression analysis with raw metrics as its input and the assumption of a linear rela-
tionship with the dependent variable was used to select a subset of variables that tend to explain
the fault-proneness for that system.

e A logical regression analysis in combination with the MARS basic functions, assuming a more
complex relationship between the independent variables and the dependent variable, was used
to create a composite function of measurements that tend to explain the fault-proneness for that
system best.

For a more detailed description of the data analysis methodology, Briand et al. refers to a previous
study [14].

The fault-proneness prediction models were validated in terms of precision, percent of correctly
classified faulty classes out all faulty classes identified by the model; and recall, percent of correctly
classified faulty classes out all faulty classes in the system. The models were evaluated using v-cross-
validation and cross-system validation techniques.

The results indicate that “a model built on one system can be accurately used to rank classes within
another system according to their fault proneness” but that “applying the models across systems is
far from straightforward”. Their two multivariate regression fault-proneness prediction models had
“completeness and correctness values of about 60% for both models”. To obtain these values they had
to adjusted the cut-off values to 0.22 for the linear model and 0.06 for the MARS model. Briand
et al concluded that both the multivariate models perform better than chance and models based on
size measures. They speculated that changes in the distribution of measures and system factors (e.g.
experience, design method) affects fault-proneness prediction when used between systems.

This thesis continues the work done by Briand et al. on cross-system fault-proneness prediction
models. We will replicate their study and verify the results. Finally, new research goals will be added
based on the outcomes of the replication study.

1.3 Literature Overview

Various methods are used in research for building fault-proneness predictions models [3], including:
genetic programming [15], neutral networks [16], case-based reasoning [17], fuzzy logic [18], Dempster-
Shafer networks [19], decision trees [20], Naive Bayes [21], and regression analysis [5, 6, 22, 23, 7, 24, 8].

In order to replicate the study done by Briand et al. [4], we focus regression-based fault-proneness
prediction models. The following paragraphs present the work of other researchers on logistic regres-
sion based fault prediction. An overview of the literature can be found in Table 1.1. The table presents
the study, the precision and recall of their best performing prediction model, and the predictors used
by the model. We refer to Chapter 2 for more information on precision, recall, and predictors.

Denaro et al. [5] used logistic regression to relate software measures to class fault-proneness of
homogeneous software products. They also promote the use of cross-validation techniques to validate
prediction models that use small datasets. The predictors used in their best prediction model were:
eLOC, Comm, Lines, FP, LFC, EXEC. This model was able to find 89% of all faults in the system
with an accuracy of 77%. They concluded that it is possible to build statistical models based on
historical data for estimating fault proneness of software modules.

Khoshgoftaar et al. [22] developed a fault-proneness prediction model based solely on process-
history variables like module age (Age), new modules (IsNew), and changed modules (IsChg). They
investigated if a module its history prior to integration could help predict the likelihood of fault
discovery during integration and testing. They used logistic regression to build the classification
model with a cost-weighted classification rule. Their model found on average 79 % of all faults in the
system with an accuracy of 65%. They drew the following conclusions: (i) Modules that had faults in
the past are likely to have faults in the future. (ii) Unplanned requirements changes result in faults.
(iii) Faults are more likely when code is changed. (iv) Software-quality models can be useful to help
target reliability improvement.

Nagappan and Ball [23] presented an empirical approach for early prediction of pre-release defect
density based on the defects found using static analysis tools. They showed that there exist a strong
positive correlation between static analysis defect density and the pre-release defect density determined
by testing; with static analysis defect density the number of defects found per KLOC, and pre-release
defect density as the number of defects per KLOC found by other methods before the component
is released. Their model used the input of their in-house fault detection tools, Prefix and Prefast,
as predictors and classified 83% of the components correctly (the model’s precision and recall were
omitted to protect proprietary information).

Schneidewind [7] investigated logistic regression as a discriminant of software quality. He used
Logistic Regression Functions (LRFs) and Boolean Discriminant Functions (BDFs) to predict the
probability of the occurrence of discrepancy reports (drcount; reports of deviations between require-
ments and implementation). He used two unrelated systems, one system for validation and another
system for application. He concluded that very high quality classification accuracy can be obtained
while reducing the inspection cost incurred in achieving high quality. His best model, using a com-
bination of LRFs and BDFs and C, S, E1, E2, N, L as predictors, classified modules with at least a
drcount of 1 from modules with no drcount with an accuracy of 98.75%.

Ostrand and Weyuker [24] summarized their work of ten years of software fault-proneness prediction
research. Their model, called the standard model, is a negative binomial regression model that predicts
faults in a release of a system based on the predictors: LOC, Faults in Release N-1, Changes Releases
N-1 and N-2, Files status, File-age, File-type. The model predicted the top 20% of most fault-
prone files over releases of nine industrial systems. Averaging over the releases of nine systems, their
standard model was able to correctly identify files that accounted for between 75% and 93% of the
actual defects. They also found that in spite of the differing functionality of the systems, development
and testing personnel, corporation that wrote and maintained them, development methodologies,
and level of maturity, their standard model always behaved very well (these conclusions were drawn
from observations made between releases of a same system). Finally they concluded that Negative
Binomial Regression performed better than other models, Recursive Partitioning, Random Forests,
and Bayesian Additive Regression Trees.

Munson and Khoshgoftaar [8] used discriminant analysis as tool for detection of fault-prone pro-
grams. They used mostly size measures as predictors: PROCS, COM, LOC, BLNK, ELOC, VG1,

VG2, N1, N2, n1, N, V, E. They state that linear regression models are of limited value for the detec-
tion of fault-prone modules. They also investigated multivariate regression analysis techniques and
argue that the distribution of faults are heavily skewed in favour of programs that have no or a small
number of faults. Instead they used the discriminant analysis which was able to correctly identify
75% of the modules. They concluded the following (i) There is a relationship between program faults
and certain orthogonal complexity domains (ii) That predictive models could possibly be used for the
determination of program faults and program modifications. (iii) The complexity metrics are strongly
intercorrelated which could lead to unreliable predictive quality of models used.

Briand et al. [14] explored the relationship between existing object-oriented coupling, cohesion, and
inheritance measures and the probability of fault detection in system classes during testing. They
used a dataset consisting out of eight systems developed by students as part of an assignment and
found that their best model classified 92% of the classes as fault prone with a precision of 78%.
NOP, RFCy_L, NMI, FMMEC, NIH-ICP_L, CLD were the predictors used in their fault-proneness
prediction model. Beside the size of a class, the frequency of method invocation and the depth of
inheritance hierarchies seems to be the main driving factors of fault-proneness.

Table 1.1: Literature overview of regression-based fault-proneness prediction modelling

Predictor-set Recall Precision
Briand et al. [4] T NIP, OCMIC, OCMEC +60% +60%
Briand et al. [14] RFC., NOP, RFC_L, NMI, FM- 92% 78%
MEC, NIH-ICP_L, CLD
Ostrand and Weyuker [24] LOC, Faults in Release N-1, Changes - 75%-93%

Releases N-1 and N-2, Files status,
File-age, File-type

Denaro et al. [5] eLOC, Comm, Lines, FP, LFC, 8% 7%
EXEC

Khoshgoftaar et al [22] IsNew, IsChg, Age 79% 65%

Nagappan and Ball [23] PREfix tool, PREfast tool - 83%

Schneidewind [7] C, S, E1, E2, N, L 99%

Munson and Khoshgoftaar [8] PROCS, COM, LOC, BLNK, ELOC, 75% 82%
VG1, VG2, N1, N2, nl, N, V, E

T initial study (see Section 1.2)

1.4 Research Questions

This thesis continues the work on cross-system fault-proneness prediction models done by Briand et
al [4]. The goal of this thesis is to asses the effectiveness of fault-proneness prediction models when
used across systems. Formulating this goal lead to the following research question. This question
stands central in our research.

RQ1: Is it possible to build an effective fault-proneness prediction model that could be
applied across systems?

To answer our main research question (RQ1), we will start by investigating the effectiveness of fault-
proneness prediction models in general. Fault-proneness prediction models depend on the assumption
that faults are inequality distributed over the system. If this assumption does not hold, then fault-
proneness prediction models are not useful because every class in the system is equally fault-prone.
The following research question will be used to learn more about fault distributions in software systems
and will aid the assessment of the practical effectiveness of fault-proneness prediction models.

RQ2: Are faults within a software system unequally distributed over its classes?

Next, we will replicate the research of Briand et al. [4], and reassess the applicability of fault
proneness models across software projects. The initial study is described in Section 1.2.

RQ3: Can fault-proneness prediction models effectively be used across systems developed
by the same team?

In our replication study, we proposed three axes along which we think cross-system fault-proneness
prediction models could be improved. Improvements along two of the axes requires optimizations
to the prediction model itself. The goal of this study is to alter the model construction method as
proposed by Briand et al., in order to increase the accuracy of the current regression-based fault-
proneness prediction models.

RQ4: Can Briand et al. their cross-system fault-proneness prediction model be improved?

Finally, we will investigate which factors influence fault-proneness prediction models when they are
applied across systems. Briand et al. suspects that system factors like experience and design method
affect the prediction models. But other factors could be thought of like team composition, process
protocols and standards, and system type and function.

RQ5: Which factors influence the fault-proneness prediction model’s accuracy when used
across systems?

To answer the main research question, we will use the findings from our preliminary research to
scope the domain in which the fault-proneness prediction models could be effectively used. Next, we
use the improved model construction process to build our best fault-proneness prediction models, and
apply those on datasets with idealistic similarities.

e If we are not able to construct a fault-proneness prediction model with a reasonable accuracy
under these circumstances, then changes are that fault-proneness prediction models are not
effective across systems and thereby answering our main research question. If this tends to
be true, then we strongly advise against using regression-based prediction models for fault
prediction in practice.

e If we are able to create one or more fault-proneness prediction models with reasonable accuracy,
then we conclude that it is possible to build cross-system fault-proneness prediction models and
that additional research is required to fully answer the main research question. If this is the
case, we advice that future research focusses on the factors whom influence the fault prediction
models.

1.5 Contributions

Contribution #1: Java metric-suite

In effort to replicate Briand et al. their study [4], a metric-suite was build to replace the non-public and
closed source JMetrics metric-suite. Our metric-suite contains a subset of Briand et al. their cohesion
metrics [25], Benlarbi & Melo their polymorphism measures [12], all metrics from the Chidamber &
Kemerer metric suite [13], all metrics proposed by Li & Henry [26], and some size metrics. Besides
from the byte-code metrics, an extension of the tool contains also process metrics: change metrics
based on Koshgoftaar et al. [22] their change measurements, a subset of Ostrand & Weyuker their
‘optimal’ standard model measures [27], and a class-author count. The implementation of the metrics
are described in detail (see Appendix A) and the tool is open-source and publicly available!.

Contribution #2: Empirical knowledge

One part of this thesis was to replicate the study done by Briand et al. regarding cross-system fault-
proneness prediction models [4]. We successfully replicated their study by using both the initial study
and their exploratory study [14]. The validation data is based on 4 observations, using 6 large active
commercial systems. The results provide a small contributes to the body of empirical knowledge.

lhttps://github.com/scrot/mt

https://github.com/scrot/mt

Contribution #3: Prediction model improvements

We proposed three improvements regarding regression-based fault-proneness prediction models. The
improvements cover three axes: (i) altering the collection of predictors to choose from; (ii) the mod-
elling technique by considering the state of the system during measurement; (iii) improve the model
by controlling the context of the systems. The first two improvements were validated using 6 large
active commercial systems, the latter improvement was validated using 13 commercial systems. T'wo
out of the three improvements (ii and iii) drastically increased the accuracy of the fault-proneness
prediction models. The average accuracy of the 100 prediction models that were build using 13 com-
mercial systems was 92%; with an average precision and recall of 92% and 93%, respectively. This is
an increase in accuracy of 36% compared to the fault-proneness prediction models from the replication
study; which had an average accuracy of 56%, an average precision 76%, and an average recall of 60%.

Contribution #4: Factor analysis

In the final part of this thesis we did extensive research into the influence of environmental and system
related factors on fault-proneness prediction models. The study was supported by 13 large commercial
systems. Although, we did not found factors whom influence prediction models, we provided evidence
that people, technology, or process related factors are not likely to influence the fault prediction model.

1.6 Recommendations

Our recommendations are based on the results from the preliminary research (see Chapter 3), the
replication study (see Chapter 4), the improvement study (see Chapter 5), the factor study (see
Chapter 6), and the knowledge obtained from the literature study (see Section 1.3).

Based on our discoveries, it seems to be possible to build effective fault-proneness prediction models
that could be applied across systems; All our cross-system fault-proneness prediction models obtained
on average an accuracy of 92%. However, building stable fault-proneness prediction models is far from
straightforward, there is still little known about which factors influence the prediction models and
which predictors actually correlates with class fault-proneness. In our opinion, we do not think that
(regression-based) fault-proneness could effectively applied in practice at this point. More research is
necessary in order to build effective and reliable prediction models.

During our research, we improved commonly used methods, which are often used in regression-based
fault-proneness prediction modelling. Comparing the average model accuracy from the replication
study with the average model accuracy from our factor study, an improvement of 35% was observed.
In our opinion, the increase was mainly caused by three things:

e The used predictor-set. The predictors used in the fault-proneness prediction models must be
simple and have a clear relation to fault-proneness. Also, prevent using predictors that measure
the same underlying concept and make sure that they measure various aspects of a class (e.g.
include process measures and product measures).

o State-aware measurements. To correctly measure the properties of a fault-prone class, the state
of the whole system considered. Preferably, revert the system-state to a version which contains
a particular fault. The measurements will represent fault-prone classes more accurately and will
result in better fault-proneness prediction models.

e System-pools as dataset. Build models using system pools, that are collections of systems which
are taken from a similar context. The model is more likely to fit its function to generalizable
fault-prone patterns rather than to the patterns of single system.

1.7 Outline

This thesis is divided in the following chapters: Chapter 2 provides information on the relevant topics;
Chapter 3 is the summary of the preliminary research; In Chapter 4 we summarize the replication

10

study; Chapter 5 we propose our improvements to the prediction model construction method; Chap-
ter 6 contains the exploratory study regarding factors whom might influence the prediction model.

11

Chapter 2

Background

2.1 Fault Detection

The interpretation of a fault specifies what the fault-proneness prediction model actually predicts. In
this thesis we consider a fault the cause of an error that might lead to a system failure and could
cause part of the system state to behave differently than expected [28].

2.1.1 Issue-trackers

Discovered faults could be stored in an issue-tracker system. An issue-tracker system is a database
that contains issue-reports with information on faults that are currently in the system or faults that
were fixed in the past. These reports could be classified into categories: Fault-reports, enhancements
to the system, updates of the documentation, improvements of current system functionality, code
re-factorings, and others (see Herzig et al. [29] for more information on issue-report categories). A
class contained a single fault if it is changed by a commit that resolves an issue in the issue tracker.
Only the fault-reports in the issue-tracker are considered.

2.1.2 Selection bias

“Selection bias refers to systematic differences between baseline characteristics of the groups that are
compared” [30]. When issue-reports are used to extract system faults, the resulting dataset will be
affected by selection bias. This is because the issue-reports could be incorrect; Herzig et al. [29] found
that 33.8% of al bug reports are misclassified. Also, the issue-reports could be incomplete because of
faults that are not (yet) in the issue-tracker. As a result, the conclusions drawn from these datasets
are subjective.

2.2 Fault Distribution

The distribution of faults tells something about how faults are spread out over a system. The inequality
of fault distributions is one of the reasons to build fault(-proneness) prediction models. Important to
notice is that fault distributions are in most cases estimations of the actual fault distributions, this
is because they are subjected to selection bias. The fault distributions in this thesis are therefore
biased and the conclusions drawn are subjective. Two measures of inequality are used in this thesis
and described in this section: Pareto principle and the Gini-coefficient.

2.2.1 Pareto principle

The Pareto Principle describes the notion of the vital few, where a small part of the observations are
responsible for a large part of the effect [31].

It seems like the distribution of faults follows the Pareto Principle. Studies from different envi-
ronments over many years confirmed the claim that a large number of the defects are caused by a

12

part of the system. In the Software Defect Reduction Top-10 List [1], Boehm and Basili state that
“About 80% of the defects comes from 20% of the modules and about half the modules are defect free”.
Fenton and Ohlsson hypothesized that “A small number of modules contain most of the faults” [32]
and found evidence for this hypothesis. The latter study is replicated with the same results [33, 34].
Weyuker & Ostrand also found strong evidence for the same statement [35].

Although the support for the Pareto Principle indicates an unbalanced distribution of faults within
components, it could be easily explained by the fact that the code within the modules are also
unequally distributed. In other words, the small number of modules that contain most of the faults
also makes up most of the system’s source-code. Fenton & Ohlsson tested the hypothesis “If a small
number of modules contain most of the faults [...] then this is simply because those modules constitute
most of the code size” [32] and found no evidence that supported the hypothesis, they even found
strong evidence of a converse hypothesis. Also, the replication studies found no support for this
hypothesis [33, 34]. However, there are studies that confirmed this hypothesis [36, 37].

The results of the studies related to the Pareto Principle and fault distribution in software systems
are summarized in Table 2.1. The table contains the studies and the results of the two hypotheses:
“Few modules contain most faults” and “Few faulty modules constitute most of the size”. These
hypotheses are the same as in Fenton and Ohlsson their study, but it does not separate faults found
post-release and faults found pre-release. During the analysis we did not take the definition of a fault
in consideration.

Based on the literature from Table 2.1, it seems that it is true that few modules contain most of
the faults (most distributions are around 20-80, with a lowest extreme of 20-60). However, there is
some support for the hypothesis that few fault modules constitute most of the total system size.

Table 2.1: Fault distribution literature
Few modules contain most faults Few faulty modules constitute

most of the size
No support (20-30; 100-12; 60-6)

Fenton & Ohlsson Confirmed (20-60; 10-80; 10-100)
32)

Andersson & Confirmed (20-63; 20-70; 20-70)
Runeson [33]

Grbac & Runeson Confirmed (20-67; 20-66; 20-77; 20-63; No support (20-32; 20-29; 20-22;

No support (20-38; 20-25; 20-39)

34)

Munson et al. [§]
Ohlsson & Alberg
(6]

20-80)
Confirmed (20-65)
Confirmed (20-60)

20-26; 20-23)

Compton & Confirmed (12-75) Confirmed (12-63)
Withrow [36]

Kaaniche & Confirmed (38-80) Confirmed (38-54)
Kanoun [37]

Weyuker & Confirmed (20-83; 20-83; 20-75 ;20-81; -

Ostrand [35] 20-93; 20-76)

2.2.2 Gini Coefficient

The Gini-coefficient is a measure of statistical dispersion and commonly used to measure inequality
[38]. The Gini-coefficient measures the inequality among values of any frequency distribution. The
value ranges between 0 and 1 where 0 implies complete inequality and 1 complete equality.
A graphical representation of the Gini-coefficient is shown in Figure 2.1 and can be calculated as
follows [39]:
G=A/(A+ B) (2.1)

A+ B is the area under the line of equality and A can be calculated using Equation 2.2. Where A
is the lowest and B is the highest value of the variable y, and F(y) is the cumulative distribution of

13

b
A= / F@)L — F()ldy (2.2)

To relate the Gini-coefficient to the Pareto Principle, we will use a simplified version of the 20-80
rule. Instead of the fault-proneness prediction following a smooth distribution, we say that 20% of the
system components contain 80% of the faults and that these faults are distributed equally over these
20%. The remaining 20% faults are also equally divided over the rest of the system components. The
space between the equality line and the Lorenz curve is equal to (0.5 — (0.8 + 0.8 + 0.4))/0.5 = 0.6.

Figure 2.1: Gini coefficient (diagram based on [40])

100

Cumulative number of faults (%)

Cumulative number of files (%)

2.3 Software Measurement

As predictors for the fault-proneness prediction models we will use a subset of product and process
measures. Based on a subset of these metrics and their relation with fault-proneness, the fault-
proneness prediction model may or may not classify components as fault prone.

A metric captures information about an attribute or entity [41]. A software metric captures a
certain aspect of a software system. The goal of a considerable number of software metrics is to
provide insight in the quality of the source-code of the system but there are also metrics that measure
different aspects of the system. Based on the measurement goal of a metric, software metrics could
be categorized into roughly two groups [42]:

e Product metrics, also known as quality metrics, measure the properties of the system itself. The
product metrics includes reliability metrics, functionality metrics, performance metrics, usability
metrics, and style metrics.

e Process metrics, also known as management metrics, measure the properties of the process which
is used to obtain the software. It includes cost metrics, efforts metrics, advancement metrics,
and reuse metrics.

The following subsections cover the research related to product metrics and process metrics.

2.3.1 Chidamber-Kemerer metrics

Chidamber and Kemerer proposed a metric suite consisting out of six object oriented design metrics
based on the ontology of Bunge and validated them using Weyuker’s proposed set of measurement
principles [13]. The metric-suite holds the following product metrics:

14

Weighted Methods per Class (WMC). the sum of the complexity of all methods within a class.
For a class C, with methods M;...M,, defined in C and c;...c, the complexity of these methods:

WMC = zn:cl (23)

=1

This metric is a predictor on how much time and effort is required to develop and maintain
classes. In case of inheritance, these methods could also impact the sub-classes.

Depth of Inheritance Tree (DIT). The depth of inheritance of a class. In cases of multiple
inheritance, the maximum length from a node to the root of the tree. Classes that are deep in
the inheritance tree are likely to inherit a greater number of methods, making it more complex
to predict its behaviour.

Number of Children (NOC). Number of immediate sub-classes subordinated to a class in the
class hierarchy. A large number of child classes imply more code reuse, higher change of improper
abstraction of the parent class, and more method testing on the parent class. The number of
children also give an idea of the potential influence a class has on the design.

Coupling between Object Classes (CBO). Number of other classes the class is coupled to. High
coupling of classes tend to result in low modularity preventing code reuse. It also affects encap-
sulation of the classes making the code more sensitive to changes in other parts of the design,
making maintenance more difficult.

Response for a Class (RFC). The number of all methods that can be invoked in response to a
message to an object of the class or some method in the class.

RFC = |RS| where RS is the response set of the class. (2.4)

The response set for the class can be expressed as the equation below, where {M} is the set of
all methods in the class and {R;} is the set of methods called by method 4.

RS = {M} Nalli {RZ} (2.5)

This metric indicates the complexity of a class and the effort to test or debug a class. A high
number of possible methods that can be evoked in response to a message complicates testing
and debugging because a higher level of understanding is necessary.

Lack of Cohesion Methods (LCOM). The count of the number of method pairs whose similarity
is null minus the pairs whose similarity is not null. For a class Cy, with methods Mj...M,
and instance variables {I;} used by method M;. Let P = {([;,[;)|; N I; = 0} and Q =
{(I;, ;)|I; N I; # 0}. If all n sets are () then let P = ().

[Pl —1QI, if [P|> Q)|

, otherwise

LCOM = { (2.6)

The measure of cohesion gives an indication of the complexity of a class. Low cohesion means
that a class does more than one thing making it more difficult to understand.

2.3.2 Li-Henry metrics

Li and Henry revised and extended the Chidamber and Kemerer metric suite [26]. They removed the
CBO metric which measures the non-inheritance related coupling and added three coupling metrics:
coupling through inheritance, coupling though message passing, coupling though abstract data types; a
class increment metric, number of local methods (NOM); and two size metrics: lines of code of a class
(SIZE1), and the number of class properties (SIZE2).

Objects could be coupled to each other through certain communication mechanisms. There are
three form of coupling: coupling through inheritance, coupling through message passing, and coupling
through data abstraction.

15

e Coupling through Inheritance (CTI). Measured using depth of inheritance (DIT) or number of
children of a class(NOC). Inheritance promotes reuse but also creates the possibility of violating
encapsulation and information hiding. Incorrect use of inheritance or improper design may
introduce extra complexity to a system, making it more fault-prone.

e Coupling through Message Passing (CTM). Measured using the MPC metric, that is the number
of send statements defined in a class. Message passing occurs when an objects needs some service
that another object provides. The number of messages send from a class may indicate how
dependent the implementation is on other classes. One needs to keep the classes the program
depends on in mind, increasing the complexity of the class. Also, if the other class contains
a bug it is probable it could affect the classes that depend on it (e.g. when a class throws a
null-pointer exception, the dependent classes must deal with this exception accordingly).

e Coupling through Abstract Data Types (CTA). Measured using the DAC metric, the number
of abstract data types (ADTSs) in a class. A class can declare a variable that has the type of
the ADT (e.g. extensions and implementations of the ADT). This type of coupling may cause
violation of encapsulation if private properties could be accessed directly, which could result in
faults. Moreover, the more ADTs a class has the more complex the coupling of that class.

Measures related to class interface increment:

o Number of local methods (NOM). The number of local methods. Gives an indication of the
complexity on an interface of a class. This metric may indicate the operation property of a
class; the more methods a class has, the more complex the class its interface.

Measures related to size:

o Class lines of code (SIZE1). measured as number of semicolons in a class. The size of a procedure
or function could be an indication of the complexity of a class. Also a class is more likely to
contain bugs if it contains more code.

e Number of class properties (SIZE2). The sum of the total number of attributes and the total
number of local methods. This gives a more high level indication of the size of a class. The
higher the measure the more likely it is that the class contains faults.

2.3.3 Briand et al. coupling metrics

Briand et al. devised a suite for measures to quantify the level of class coupling [25]. The suite includes
different measures of OO specific coupling mechanisms. They analysed the relationship between the
measures and the probability of fault detection across classes. The results show that some of the
coupling measures may be useful as early quality indicators of OO design. Moreover, they found that
the measures are conceptually different from the Chidamber & Kemerer metric suite and could be
used to complement the CK-metric suite.

The metric suite contains 18 metrics: IFCAIC, ACAIC, OCAIC, FCAEC, DCAEC, OCAEC,
IFCMIC, ACMIC, OCMIC, FCMEC, DCMEC, OCMEC, OMMIC, IFMMIC, AMMIC,
OMMEC, FMMEC, DMMEC. The coupling metrics are counts for interactions between classes
and distinguish the relationship between the classes, the locus of impact, and the type of interaction.
The acronyms for the metrics indicates what interactions are counted:

e The first or first two letters indicate the relationship between the classes, that is the relation
of an arbitrary class C; to the considered class C. The following relationships are taken into
account: A, coupling to ancestor class; D, coupling to descendant classes; F, coupling to friend
classes; IF, coupling to inverse friend classes; and O, any other coupling relationship.

e The next two letters indicate the type of interaction: CA, there is a class-attribute interaction
between class C' and C; if C has an attribute of type C;; CM, there is a class-method interaction
between class C' and C; if C' has a method with a parameter of type C;; MM, there is a method-
method interaction between class C and C; if C' invokes a method of C;, or if a method of class
C; is passed as parameter to a method of class C.

16

e The last two letters indicate the locus of impact: IC, import coupling, the measure counts for a
class C' all interactions where C' is using another class; EC, export coupling, counts interactions
where class C' is the used class.

2.3.4 Benlarbi-Melo polymorphism metrics

Benlarbi & Melo defined an empirically investigation into the quality impact of polymorphism on
OO design [12]. They described two aspects of polymorphism: static polymorphism, polymorphism
based on compile time linking decisions (e.g overloading functions); and dynamic polymorphism,
polymorphism based on run-time binding decisions (e.g. virtual functions). They validated their
measures by evaluating their impact on class fault-proneness. They found that their measures measure
on a different orthogonal dimension than size measures and that they are significant predictors for
fault-proneness.
The metric suite they devised constitutes out of 6 metrics:

e OVO. Overloading in stand-alone classes. Measures the number of methods that are overwritten
in the same class, that are all methods with the same method name but different arguments.
The metrics is calculated using the following equation:

ovVo(C) =Y overl(f;,C) (2.7)
fieC

Where overl(f;,C') is an operator which returns the number of times the function member name
fi is overloaded in class C.

e SPA. Static polymorphism in ancestors. Measurement of the unique class couples of which their
methods statically overloads one another and where of one of the classes is an ancestor of the
other. The measure is calculated using the following equation.

SPA(C) = > SPoly(C;,C) (2.8)
C;€Ancestors(C)

Where SPoly(C;,C) is a function which returns the number of statically polymorphic functions
that appear in C; and C. Static polymorphic functions are functions that have the same name
but a different signature. Ancestors(C') returns the set of distinct ancestors of class C.

e SPD. Static polymorphism in descendants. Measurement of the unique class couples of which
their methods statically overloads one another and where of one of the classes is a descendant
of the other. The measure is calculated using the following equation.

SPD(C) = > SPoly(C;, C) (2.9)

C;€Descendant(C)

Where SPoly(C;,C) is a function which returns the number of statically polymorphic functions
that appear in C; and C, and Descendant returns the set of distinct descendants of class C'.

e DPA. Dynamic polymorphism in ancestors. Measurement of the unique class couples of which
their methods dynamically overloads one another and where of one of the classes is an ancestor
of the other. The measure is calculated using the following equation.

DPA(C) = > DPoly(C;,C) (2.10)

C;€Ancestors(C)

Where DPoly(C;,C) is a function which returns the number of dynamically polymorphic func-
tions that appear in C; and C. Dynamic polymorphic functions are functions that have the
same name and the same signature. Ancestors(C) returns the set of distinct ancestors of class

C.

17

e DPD. Dynamic polymorphism in descendants. Measurement of the unique class couples of which
their methods dynamically overloads one another and where of one of the classes is an ancestor
of the other. The measure is calculated using the following equation.

DPA(C) = > DPoly(C;, C) (2.11)
C;€Descendant(C)

Where DPoly(C;, C) is a function which returns the number of dynamically polymorphic func-
tions that appear in C; and C, and Descendant returns the set of distinct descendants of class
C.

e NIP. Polymorphism in non-inheritance relations. The measure of unique class pairs that dy-
namically or statically overload their methods and the relation between them is neither ancestor
or descendant. The measure is given in the following equation:

NIP(C)= Y SPoly(C;,C)+ DPoly(C;,C) (2.12)
C,; € Others(C)

Where SPoly(C;,C) is a function which returns the number of statically polymorphic functions
that appear in C; and C, DPoly(C;,C) is a function which returns the number of dynamically
polymorphic functions that appear in C; and C, and Others(C') returns the set of distinct classes
that are neither ancestors or descendants of class C. NIP is not actual polymorphism but could
be a potential for human confusion.

2.3.5 Khoshgoftaar reuse metrics

Koshgoftaar et al. developed a fault-proneness prediction model based solely on process-history vari-
ables [22]. This research is based on a preliminary study where they showed that reuse indicators can
improve classifications models for identifying fault-prone modules. They used three process metrics
for the purpose of measure reuse: module did not existed in previous versions (IsNew), module was
changed since last version (IsChg), and the age of a module (Age).

1 If module did not exist in ending
IsNew = version of prior build (2.13)
0 Otherwise

A module is considered reused if it had existed as part of a previous build. If a module required no
code change, it was reused as an object.

0 If no changed code since prior build

) (2.14)
1 Otherwise

I1sChg = {

They argue that modules with a long history may be more reliable and therefore expected to contain
less faults. The definition of a module’s age is the number of builds it has been through.

0 if module is new
Age =< 1 If module was new in the prior build (2.15)
2 Otherwise

2.3.6 Relationship between product metrics and fault-proneness

Briand et al. [14] explored the relationships between software measures and the quality of object-
oriented systems. They looked at the relation of coupling, cohesion, and instance measures and
the probability of fault detection in system classes during testing. They argued that size of classes,
frequency of method invocations, and depth of inheritance hierarchies might be the main driving
factors of fault-proneness.

18

Briand et al. hypothesized that “a class with high import coupling is more likely to be fault-prone
than a class with low tmport coupling”. This is because a class with high import coupling relies
on many external services, which all have to be understood. The challenge of understanding all
the services, and the increased likelihood of misunderstanding or misuse could result in more fault-
prone classes. The result of the univariate logistic regression analysis provides strong support for
this hypothesis. Most relationships between the import coupling measures and fault-proneness were
significant; method invocation seems to have the highest impact on fault-proneness.

Regarding the export coupling measures, Briand et al. hypothesized that “a class with high export
coupling is more likely to be fault-prone than a class with low export coupling”. An export-coupling
class has many other classes that rely on it. Failures are therefore likely to be traced back to a class
with export-coupling, this makes the class more fault-prone. There is no evidence for this hypotheses;
only the OCAEC measure was significant. A class that is used by many other classes does probably
not relate to fault-proneness.

As third hypothesis was formulated that “a class with low cohesion is more likely to be fault-prone
than a class with high cohesion”. “Low cohesion indicates inappropriate design”, and therefore a
class with low cohesion would be more fault-prone. The univariate logistic regression analysis of
the cohesion measures showed that only the LCOM3, Coh, and ICH were significant, but these are
unlikely to measure cohesion according to Briand et al. They concluded that there was weak support
for the cohesion hypothesis.

For the relation between depth measures (DIT, AID) and fault-proneness, Briand et al stated that
“a class situated deeper in the inheritance hierarchy is more likely ot be fault-prone than a class situated
higher up in the inheritance hierarchy”. Classes situated lower in the class hierarchy are more likely
to be inconsistent in correctly extending or specializing the ancestor classes, and would therefore be
more fault-prone. This hypothesis is supported, the DIT and AID measures were all significantly
related to class fault-proneness.

Regarding the relationship between ancestor measures (NOA, NOP, NMI) are fault-proneness,
Briand et al. hypothesized that “a class with many ancestors is more likely to be fault-prone than a
class with few ancestors”. They state that the larger the number ancestors a class is concerned with,
the larger the context needed to understand what the class represents. Such a class is more likely to
be fault-prone. The hypothesis is supported; all ancestor measures were significant.

For the relation between descendant measures (NOC, NOD, CLD) and fault-proneness, Briand et
al stated that “a class with many descendants is more likely to be fault-prone than a class with few
descendents”. As with high export-coupled classes, classes with many descendants have large influence
on the system because many classes rely on that class. “The class has to serve in many different
contexts, and is therefore more likely to be fault-prone”. There is support for the hypothesis, however
their impact of fault-proneness is smaller compared to the depth measures or ancestor measures.

For polymorphism measures (NMO, SIX), the hypothesized that “The more use of method over-
riding is being made, the more difficult/complex it is to understand or test the class”. The result is a
class that is likely to be fault-prone. The univariate regression analysis results provided evidence for
this hypothesis; both the NMO and SIX measures were significant.

Finally, they stated that “the larger the class, the more fault-prone it is”. This is because the class
contains more information. This hypothesis has weak support, only the NMA metric was significant.

2.4 Principle Component Analysis

Principle Component Analysis (PCA) is a multivariate statistical technique for analysing data where
observations are described by several inter-correlated dependent variables and was first formalized by
Hotelling [43]. The technique is used to extract important information from the dataset and represent
it as a set of new orthogonal variables called Principle Components (PCs). There a multiple ways of
performing a PCA, we adopted the method as described by Smith [44]. For more information on the
Principal Components Analysis see Abdi & Lynne [45].

Principle Components are obtained as linear combinations of the original values, these values are
called factor scores. For finding the principle components, the PCA starts with a first PC that has
the largest possible variance, the second PC is computed under the constraint of being orthogonal

19

to the first PC and to have again the largest possible variance. The other principle components are
calculated in a similar fashion as the latter component.

Taking a correlation matrix as input, the unit eigenvectors and their accompanying eigenvalues can
be calculated. These eigenvectors are perpendicular to each other and reveal the patterns in the data
if there are any. For choosing the first PC the eigenvector with the highest eigenvalue is chosen. The
second PC is the eigenvector with the second highest eigenvalue, and so on; the result is a feature
vector. On this point, one could choose to ignore vectors that have an eigenvalue below a certain
threshold, this is called dimensionality reduction. The final step is to multiply the transposed feature
vector with the transposed input matrix.

2.4.1 Rotations and loadings

An Interesting observation could be made when looking at the loadings of the variables of the PCs,
those are the correlations between the PC (the eigenvector) and that of the original variable. Compo-
nent loadings are analogous to correlation coefficients, squaring them gives the amount of explained
variation and tells something about how much of the variation in a variable is explained by the com-
ponent. If a variable has a high loading then it is strongly correlated with the PC and therefore
measures along that dimension.

To simplify the loadings and make them more interpretable the PCs are often rotated. A rotated
PC is called a Rotated Component (RC). The RCs are extracted by rotating the axes to align them
with the eigenvectors. T'wo types of rotations are possible: orthogonal rotations (e.g. varimax) that
assume the factors are not correlated, and oblique rotations (e.g. promax, oblimin) that allow for
correlation.

2.5 Logistic Regression Models

Logistic regression is one of the most frequently used regression methods in data analysis concerned
with describing the relationship between a response variable and one or more explanatory variables.
The application of the logistic regression model is to find the best fitting and easily interpretable
model that describes the relationship between an outcome (dependent or response) variable and a set
of independent variables (predictor or explanatory variables). Logistic regressions is frequently used
when the outcome variable is dichotomous, or binominal (e.g. dead or alive, passed or failed) [46].
The equation for calculating the probability of an outcome variable, based on a set predictors is as

follows:
e(Bot+Brzi+Bazat +Bpap)

ﬂ-(l‘) - 1+ e(ﬁo+/31$1+[32$2+"'+[3p$1)) (216)

Where 7 is the probability of the outcome and & are the independent variables used in the model. The
logistic regression model (see Equation 2.16 has 5o+ 8121+ Bax2 + - - - + Bpx, as unknown parameters.

To fit the regression model to a dataset, the values of these parameters must be estimated. In
logical regression, this is done using mazimum likelihood. In short, maximum likelihood assigns values
to the unknown parameters such that they maximize the probability of obtaining the observed set
of data. In order to calculate the mazimum likelihood the following function is used (the log variant
of the equation is more often used due its mathematical benefits, but this variant is more easy to

understand):
n

1B) = [w1 — () (2.17)

i=1

Where 5 represents the unknown parameters, the pair (x;,y;) is the value of the outcome variable
(y;) and the value of the independent variable (x;) for an independent observation 4, pi(x;)¥: is the
probability of (Y = 1|z) based on all observations that are associated with the outcome variable,
and [1 — 7(x;)]* ¥ is the probability of (Y = 0|z) based on all observations that are associated with
the outcome variable. p 4 1 likelihood equations to be solved and are obtained by differentiating the
log-likelihood function with respect to the p + 1 coefficients. The maximum likelihood estimators of

20

the parameters are the values that maximizes the equations. Because the equation is not linear the
optimization is done iteratively.

2.5.1 Model comparison

Three methods are occasionally used to statistically determine if the independent variables in the
model are significantly related to the outcome variable: The likelihood ratio test, Wald test, and
scored test. All these tests makes use of the likelihood of the models to assess their fit. We only focus
on the log likelihood ratio test, the other methods are described in detail by Hosmer & Lemeshow
[46].

The likelihood ratio test (or ls-test) compares two models based on the relative goodness of fit.
It assumes that one model is a nested model of the other, meaning that one model is a sub- (or
simplified) model of the other. It uses the likelihood ratio, which expresses how many times more
likely the data are under one model than the other. A low ratio means that the observed result was
less likely to occur under the null hypothesis.

(likelihood without the variable)

G=-21
o (likelihood with the variable)

(2.18)

The function G is chi-square distributed with p degrees of freedom, the difference in number of
parameters between the two models. The model could be expressed in terms of deviance or in terms
of fitted model and saturated model.

2.5.2 Stepwise selection

The goal of selection methods is to find the set of variables that result in the best model within the
context of the problem. Statistical model building involves seeking the a minimal model that still
accurately reflects the true outcome of the data. The reason for finding this model is because it is likely
to be numerically more stable (less chance of overfitting) and more easily adopted for use. Moreover,
the more variables included in the model, the greater the estimated standard errors become, thus
making the model more dependent on the observed data [46].

A popular selection method is stepwise selection. Stepwise selection is used in cases where there
are a large number of independent variables of which the association with the outcome variable is not
well understood. All stepwise selection methods base their inclusion or exclusion of variables on the
outcome of a statistical algorithm that checks the importance of variables. Based on the outcome and
a fixed decision rule, variables are included or excluded in the model. For logistic regression models,
the importance of variables is tested using one of the three model significance tests: likelihood ratio,
score, and Wald test. T'wo popular types of stepwise selection processes exists, forward and backward
(Hosmer & Lemeshow describe both the algorithms in detail [46]).

o forward stepwise selection. Forward selection starts with a model that includes the intercept
only. Based on a statistical criteria, variables are selected one at a time for inclusion until the
stopping criteria is met.

e backward stepwise selection. Backward selection includes all independent variables, and variables

are deleted based on a statistical criteria until the stopping condition is met.

2.5.3 Model measures

For validating the model itself, several metrics could be used. These metrics are based on two
elementary counts:

o True/false positives. The count of correctly identified outcome values such that (Y = 1]z) and
incorrectly identified outcome values respectively.

o True/false negatives. The count of correctly identified outcome values such that (Y = 0|z) and
incorrectly identified outcome values respectively.

21

These counts are used in a confusion matrix and used to describe the performance of a classification
model, see Table 2.2. The rows represent the actual cases and the columns the predicted case. The
values range from T- to F+ were T/F represents true/false and +/- represents positive/negative.

Table 2.2: Confusion matrix
Predicted True Predicted False

Actual True T+ F—
Actual False F+ T—

Based on the elementary counts, new composite measures could be formed:

e Accuracy. Accuracy is defined as the true positives and true negatives identified by the model
divided by the all observations. The measure can be obtained using the following equation:
(T+) +(T-)

All Observations

The measure is a ratio of the accuracy of the model. A low accuracy means that most of the

predictions of the model are incorrect. If an arbitrary model did 10 predictions in total but only

8 were correct, then the model’s accuracy is .8.

Accuracy = (2.19)

e Precision. Precision is defined as the true positives identified by the model divided by the total
number of actual positives. The measure is expressed by the equation:

T+
Precision = ——F—— 2.20
T + D) (2.20)
The measure is the ratio of all the actual positives the model did find. A low recall indicates
that a lot of the actual positives were not detected by the model. If an arbitrary model identified

7 true positives but the actual number of positive cases is 10, then the model’s recall is .7.

e Recall. Recall is defined as all the correctly identified positive cases divided by the incorrectly
identified negatives and the correctly identified positives and given by the following equation:

T+
Recall = ——F——— 2.21
T+) 221
The measure is the fraction of all correct results returned by the model. If an arbitrary model
identifies 2 true positives, 3 true negatives, and the total of cases is 10, then the model’s recall

is .5.

2.5.4 Model validation

For cross-validation validates the model using the same system it was build on. Cross-validation can
be done in several ways, [47] studied different types of cross-validation and bootstrap techniques for
accuracy estimation and model selection. In his paper he describes several types of cross-validation
techniques, including the two most frequently used: holdout and k-fold cross-validation

e Holdout, also called test sample estimation, partitions the data into two mutually exclusive
subset; the training set and the test set. The training set is usually 2/3 of the data set and the
test set 1/3. The smaller the training set, the higher the bias; the smaller the test set, the wider
the confidence interval. A drawback of the holdout technique is that is makes inefficient use of
the data, a third of the dataset is not used for training. Because the individual systems of our
dataset are rather small, we will not use this validation technique.

o Cross-validation, also called k-fold cross validation or rotation estimation, randomly split the
dataset into k£ mutually exclusive subsets D1, Ds, ..., Dy of approximately equal size. The model
is trained and tested k times; each time ¢ it is trained on D \ D; and tested on D;. Kohavi
recommends the stratified ten-fold cross-validation method for model selection. This is the one
we will use in our research.

22

2.6 Outlier Detection

Outlier analysis is important in prediction model building, especially if the models that are being
build are regression models. Outliers in data can distort the prediction and the effect on accuracy.
Detecting outliers in an univariate sense done by considering the Inter Quartile Range (IQR), that is
the difference between the 75th and 25th quartiles. A continuous data-point is considered an outlier
if the following equation holds:

z; > 1.5 IQR (2.22)

A multivariate outlier analysis is done a bit differently compared to the univariate variant. The
difference between the two types of outlier analysis is that the multivariate type measures the distances
with respect to the correlation structure. As a result, the exclusion criteria is not based on the distance
from the mean but rather the distance from the correlation structure.

2.6.1 Mahalanobis distance

Various distance measures could be used to measure the distance from the correlation structure, one of
them is is Mahalanobis distance. The Mahalanobis distance of an observation is the distance between
a data-point and the centroid of the dataset in units of standards deviations. It takes the correlation
structure of the data as well as the individual scales into consideration. The lower the distance,
the closer a data-point is to the multi-dimensional mean (centroid). The distance is measured with
respect to the Principal Components, a Mahalanobis distance of 1 is equal to the standard deviation
of along single orthogonal dimension; this holds for every orthogonal dimension. The distance of a
single data-point is calculated as follows.

D(x) = /(@ — {))T51(& - i) (2.23)
Where & = (z1,22,...,2,) is a single datapoint its values of the independent variables. [=
(p1, f12, - - -, i) are the means of the independent variables. S~! is the inverse covariance matrix

of the independent variables.

Outliers could be detected using the Mahalanobis distances by setting the distances of the data-
points of gainst the 97,5% Quantile. A data-points that satisfy the following equation are considered
outliers.

D(z;) > Q (2.24)

where D(z;) is the Mahalanobis distance of a single data-point and Q is the 97.5%-Quatile of the
Chi-Square distribution.

23

Chapter 3

Fault Distributions in Software
Systems and the Pareto Principle

The fault distribution plays an important role in fault-proneness prediction. Without an unequal
distribution of faults in a system, one part of the system is not more fault-prone than another. There
is much support for the claim that a large part of the faults reside in a small part of the system (see
Section 2.2), but this support comes from around 20 systems where most of those systems are closed
source or dated. Because of the importance of this claim, we dedicate this chapter to validate if the
Pareto Principle holds for the fault distribution in modern software systems. To re-evaluate the claim
in a modern context, we will replicate a part of Fenton & Ohlsson’s research on faults and failures in
a complex software system [32]. In the following section we will describe our research question, study
setting, and data analysis methodology. We conclude with the analysis results and discussion.

3.1 Introduction

It is widely accepted that faults are unequally divided over software. Many belief that an average
system’s fault distribution adheres to the Pareto Principle; many faults reside in a small part of
the system. From the eight studies we considered, all of them supported this claim (see Section 2.2).
They found distribution between 20-60 and 10-100, where 20-60 means that 20 percent of the modules
contains 60 percent of the system’s faults.

One of the main remarks regarding the Pareto Principle is that the effect could easily be explained
by the inequality in size of the modules. In other words, the module size correlates with module
faults, and as a result, the modules that are large in size naturally contains more faults compared
to modules that are small in size. However, this effect was not observed in any of the studies of our
literature study.

A remark regarding the literature is that they do not clearly mention that their dataset is only an
approximation of the actual fault distribution that their conclusions are subjective (see Section 2.1
for more information on selection bias). Note that the conclusions drawn in this study are subjective
and that they only tell something about the faults we observed.

Our hypotheses related to the Pareto Principle are based upon hypotheses 1 and 2 of Fenton &
Ohlsson their qualitative analysis of faults and failures in a complex system [32], but we did not
replicate the hypotheses. Our hypotheses differ in two ways:

e Instead of measuring faults on module-level, we measure faults on class-level. The reason is that
the study we will replicate only considers classes. Moreover, Catal & Diri [3] recommends to
perform measurements on class-level.

e Instead of separating faults found in pre-release testing and during operation, no such division
was made in this study. Systems developed using an agile software development methodology
have no strict separation of pre-release and operation faults.

24

We use hypothetical population means based on the findings from our literature study. The first
hypothesis will provide an answer to the question: does the distributions of observed faults in software
systems adhere to the Pareto Principle? The 21 fault distribution observations of our literature study
have a median of 20-75. Therefore, we expect that an average system has at least an observed-fault
distribution of 20-75.

H1: 20% of a software system’s classes contains at least 75% of the total observed faults

Secondly, we expect that 20% of the most fault-prone classes in a system does not make up more
than 29% of its total size. This value is the median of 13 observations from the literature study.

H2: 20% of a software system’s classes that contains most of the observed faults make up
29% of the total system’s size at most

Beside the two hypotheses devised by Fenton & Ohlsson, we will also propose a different measure
for measuring the inequality of the observed-fault distribution, the Gini-coefficient (see Section 2.2).
The Gini-coefficient is more expressive compared to the Pareto Principle because it tells something
about the whole distribution instead of a single point in the distribution. We consider a distribution
based on the first hypothesis (H1) 20-75. We interpret this rule as a discrete distribution. The
Gini-coefficient is calculated as follows:

(LT, 2y (25 25 1 5 Ty %)
~\2 100 100 100 100 © 2 100 100/ 100 ’
And the Gini coefficient: 50 95 50
= _— — = U. .2
(100 100) 100 0-5 (3.2)

Our hypothesis is as follows:
H3: The Gini coefficient of a software system’s observed-fault distribution is at least 0.5

The chapter is structured as follows: Section 3.2 describes the setting of the study. Section 3.3 lays
out the analysis methodology. In Section 3.4 we present our findings. In Section 3.5 we discuss our
findings, draw our conclusions, and layout feature work.

3.2 Description of Study Setting

In this section we describe the systems, and how we collect and filter the dataset. We describe the
independent and dependent variables, and how we will analyse the data and answer our hypotheses.

3.2.1 Systems

For all our three hypothesis we will use the same collection of systems. We selected the first 1000 Java
systems from GitHub ! stars. A star is given to a project for each person who marked the project
as interesting and wants to follow its activities; a person can revoke its star if he no longer finds the
project interesting. As a result, projects with the most stars may indicate the projects (hosted on
GitHub) that are deemed to be most interesting by the users of GitHub at that current moment.
We assume that these projects are popular, modern, and actively developed and tested systems. A
threat to validity is that the selection of the systems is not completely random. In order to select the
most popular dataset, we made an ordering of population we could pick from. The result is that the
dataset is biased towards the popular projects. However, we think that these ordering causes less bias
compared to the constrains we had to set on the data like minimum size, minimum degree of activity,
maximum age. Because the star-rating provides an indication of projects that are popular today; we
expect them to be active, relevant, heavily used, and of reasonable size.

We retrieve all the project data of the 1000 systems using an automated tool that is part of gcrawler.
This tool collects up-to-date data of the project characteristics (e.g. starts, forks, description) and

Thttps://github.com

25

https://github.com

pulls the latest version of the system from GitHub. All the systems are based on the latest commit
of the master branch at the time of collection. From the 1000 systems, 934 used the GitHub issue
tracking system. The last measured activity of 45 systems was before 2015 (with 1 in 2011, 3 in 2012,
16 in 2013, and 25 in 2014), 130 systems were active till 2015, and 825 systems were still active in
2016. The systems had on average 1916 stars, 609 forks, and were on average 54 megabytes large (for
most projects this size is based on the source-code size). According to GitHub, the largest project in
the dataset, liferay-portal, is 7.415 megabytes, and the smallest project android-smart-image-view is
57 kilobytes (one project had a size of 0). 933 system used the issue tracking system of GitHub.

The factors of the collected systems are gathered using ovms (see Section ??). Of the selected
systems, the source-code and the git-tree are analysed. Not all files are included for analysis; excluded
files are non-Java files, generated files, and test files (see Section ??). Due to the size of our dataset,
it is not possible to analyse the systems on class-level, instead we did the analysis on file-level which
is still more fine grained compared to an analysis on module-level. A class contains a fault if it is
changed by a commit that fixed a fault (see Section ?77?). Based on the results, we will exclude some
systems based on the number of observed faults they have. All systems with less than 2 faults will be
removed from the dataset. We exclude these systems because they will skew the dataset. For example,
if a system has zero faults (e.g. because they did not mention the fix in the commit message) the Gini
coefficient will be 0, meaning that the fault distribution is perfectly distributed. On the other hand;
if a system has a single fault, the Gini coefficient will be 1, which means the faults are extremely
uneven distributed. These extreme cases do not give a realistic representation of a fault distribution
and are therefore excluded from the dataset. In total, 856 systems were included in the dataset.

3.2.2 Measurement instruments

For building the fault- and code distribution we use the data provided by our own tools gcrawler
and zloc, respectively. The distribution takes a map of classes to counted values and returns map of
number of classes to cumulative counted values (with increasing difference). More simply put, the
fault distribution is an aggregation of the counted values of classes that are sorted from low to high.

When taking a percentage of the distribution (e.g. 20% of distribution) the percentage is converted
to the total number of files that is requested and is round down if the value is not an integer. For
example, the distributions has a total of 101 classes a 20% is requested, 20% of 101 classes is 20.2; so
one wants the total number of faults that reside in the first 20.2 classes. This is not possible and the
number of faults of the first 20 classes is returned instead.

The function of the distributions are always discrete and a composition of linear functions because
the space between the classes is always a positive integer, therefore we can exactly calculate the Gini-
coefficient (see Figure 3.2.2). We calculate the Gini-coefficient by taking a distribution as described
in the previous paragraph. The space between x and 2 — 1 can be calculated as follows (the difference
between z — 1 and x is always 1):

With y, the corresponding y of x and y,_1 the corresponding y of the predecessor of x. To calculate
the total space under the under the Lorenz-curve:

B=> S(). (3.4)

Difference between the space of the line of equality and the Lorenz curve is then calculated as follows:
A = 1/2 x total faults * total files — B (3.5)
Finally the Gini-coefficient can be calculated:

G=A/(A+B) (3.6)

26

Figure 3.1: Calculating Gini coefficient (diagram based on [48])

Cumulative number of faults

Cumulative number of files

3.2.3 Variables
Independent variables

Of the systems that were included for analysis, we collected the following values to answer the hy-
potheses: the percentage of faults in the 20% most faulty classes; the percentage of code in the 20%
most faulty classes; and the Gini coefficient of the fault distribution. The independent variables are
the means of the collected values.

Dependent variables

As dependent variables for the first two hypotheses we used the median of all the observation made
in the literature survey regarding the Pareto Principle. For the fourth hypothesis we used a Gini
coefficient based on a distribution of 20-75. These values are fixed and mentioned in the hypotheses.

3.3 Data Analysis Methodology

From the data collected by ovms, the mean (u), standard deviation (o), maximum (Maz), and the
minimum (Min) are calculated.

Next, the histograms of the Pareto Principle values (z’es of the 20-x are plotted), the percentage
of code in the 20% most fault classes, and the Gini-coefficients of the observed-fault distributions are
presented to help understand the results of remaining analysis.

The goal of testing the first hypothesis (H1) is to check if on average an observed-fault distribution
of a software system adheres to the Pareto Principle. In the literature study, a fault distribution of at
least 20-60 is considered a distribution that adheres to the Pareto Principle (with a median of 20-75).
To test the hypothesis we will conduct an one-tailed one-sample t-test for the hypotheses (with an
alpha value of a < .05). We choose this statistical test because we are working with a hypothetical
population mean and a sample mean, and we want to know about the direction of the difference
between those means.

The goal of testing the second hypothesis (H2) is to verify that in general only a small part of the
system’s code resides in the 20% most faulty classes. In the literature, at most 40% of the system’s
code may reside in 20% of the most faulty classes to accept the hypothesis (with a median of 29%)
This hypothesis is similar to Hypothesis H1, therefore the same test will be used.

The last hypothesis is similar to the previous hypothesis, and tested using the same test. We consider
an observed-fault distribution with Gini-coefficient of .50 unequally distributed and therefore use this

27

value as the hypothetical mean.

3.4 Analysis Results

Out of the 1000 systems, 856 systems were analysed by the ovms tool. The other systems caused an
error: some projects had a size of zero; some projects had the exact same name as other projects (our
tool used project-name as unique identifier); Some project did not had a HEAD commit; and some
projects had illegal field values. These projects were automatically excluded from the dataset by the
tool. Of the 856 systems none of the systems had less than 4 faults and were all included for further
analysis. Histograms of the fault- and code-distributions can be found in Appendix B.

Testing the Pareto Principle on fault distribution. A one-tailed one-sample t-test was con-
ducted to determine if a statistically significant difference (« < .05) existed between inequality of
distribution of the observed faults from our sample of 1000 popular GitHub projects and the obser-
vations from our literature study. For the first hypothesis (H1), the null hypothesis was formulated
Hy : u < 75. The total percentage of faults in the 20% most faulty files in the systems we analysed
was more than 75% (M = 77.27, SD = 18.991) than the systems from our literature study on the
Pareto Principle, ¢(856) = 3.519,p = .000. There is significant evidence to reject the null hypothe-
sis, therefore we conclude that the faults we observed are unequally distributed over the system and
that at least 75% of the system’s faults resides in 20% of its files. Further, Cohen’s effect size value
(d = .12) suggested a small practical significance.

Testing the percentage of code in the 20% most faulty files. A one-tailed one-sample
t-test was conducted to determine if a statistically significant difference (o < .05) existed between
the percentage of code in the 20% of the most faulty files from our sample of 1000 popular GitHub
projects and the observations from our literature study. For the second hypothesis (H2), the null
hypothesis was formulated Hy : p > 29. The total lines of source code in the 20% most faulty files
in the systems we analysed was less than 29% (M = 25.89, SD = 24.608) than the systems from our
literature study on the Pareto Principle, ¢(856) = —58.383, p = .000. There is significant evidence
to reject the null hypothesis, therefore we conclude that the distribution of observed faults could not
be explained by the size of the files and that at most 29% of the total lines of source code of the
system system resides in the 20% of the most faulty files. Further, Cohen’s effect size value (d = .13)
suggested a small practical significance.

Testing the fault distribution inequality. A one-tailed one-sample t-test was conducted to
determine if a statistically significant difference (o < .05) existed between the fault distribution
inequality from our sample of 1000 popular GitHub projects and the observations from our literature
study. For the third hypothesis (H3), the null hypothesis was formulated Hy : p < .5. The Gini
coefficient of the systems we analysed was more than .5 (M = .54, SD = .119) than the systems from
our literature study on the Pareto Principle, ¢(856) = 9.822,p = .000. There is significant evidence
to reject the null hypothesis, therefore we conclude that the distribution of observed faults is an
unbalanced one and that the Gini coefficient of the distribution of observed system faults is at least
.5. Furthermore, Cohen’s effect size value (d = .34) suggested a moderate practical significance. The
results are summarized in a histogram (see Figure ??). Instead of frequency, the probability density
is shown, values on the x-axis are allocated to 60 bins, the kernel density function is plotted over the
histogram to give a more clear view of the shape (not restricted to the number of bins).

3.5 Conclusion and Discussion

One of the objectives of this preliminary research was to find out if the Pareto Principle could be
applied to the fault distribution in software system. If it is the case that software systems adhere to
the Pareto Principle, it means that an useful ordering can be made in such a way that a large part of
the faults can be discovered. This assumption is one of the main reasons why researcher invest time
and resources in fault-proneness prediction modelling. Our results provides strong support for the
claim that distributions of faults in software systems adhere to the Pareto Principle; on average 20%
of the classes contained 77% of the faults. Moreover, we found evidence that the most faulty classes
do not contain most of the system’s code; only 26% of the code resided in the 20% most faulty classes.

28

Besides replicating Fenton & Ohlsson their qualitative analysis [32], a new metric was used for
measuring the inequality of fault distributions based on the measure of economic inequality, the Gini
coefficient [38]. The results using the Gini coefficient measure were in line with the 20 — n measure
and supported the claim that fault are unequally distributed over the system. We prefer the use of
the Gini-coefficient to measure fault-distributions over using the 20 — n rule. One limitation of the
20 — n rule can be seen in the histogram in Appendix B. A lot of observations are in the right most
bar, meaning that a lot of the systems in the dataset had 100% of the faults in at most 20% of the
modules. At this point, information is lost, it could be that the faults are located in 20% of the
classes, in 1% of the classes, or anything in between. Not only in the latter case is information lost,
by fixing one of the variables to 20%, the information of fault distribution itself is lost. The Gini
coefficient does not has this limitation because it does not fixate on a single variable.

3.5.1 Threats to validity

A threat to the internal validity resides in the fault classification process. The classification of faults
is subjective and depends on the way faults are reported and how they are collected again. Moreover,
a fault is not always a fault, even if it is reported as a fault. Contrariwise, it could be the case that
a fault is never formally reported and could be fixed on the spot. The result is that the observations
are biased towards the faults we observed. The hypotheses only tells something about the observed
faults. In other words, the outcome to the hypotheses could differ if another fault classifier is used.
To mitigate this threat, we tried to create awareness by explicitly refering to the observed faults to
press that the classification process is subjective.

Other threats to the internal validity could be caused by the instrumentation used for the calcu-
lations and collection of the data. We build the tool explicitly for this research and it has not been
validated by an external third party. However, we did test and pilot the tool, but it could be that
in edge case scenarios the tool fails. To cope with threats related to instrumentation, we published
the source code and the raw output of the analysis of the dataset so it can be validated by external
parties. Moreover, the systems in the dataset are all accessible and the exact state of the system can
be restored using the provided commit id.

3.5.2 Future research

Most of the current research on fault distribution analyses systems on module-level, we analysed our
dataset on a finer level of granularity, on file-level. We think this level of granularity is enough to give
an indication of the fault distribution regarding software systems and that these finding do not change
significantly if lower level of granularity are used. However, this is a speculation and we could not
test this is because of the size of the dataset and the time complexity of analysing fault distribution
of class-level. It is interesting to see if this speculation is true because fault-proneness prediction
is preferably done on class-level, and knowing the fault distribution on class-level provides the best
accuracy [3].

In our research we applied a new measure to represent fault distribution inequality, one that is
much more expressive compared to the Pareto Principle (20 — x rule). We calculated the accumulated
faults with a dz the size of files. Although, this tells something about the inequality of the fault
distribution, it does not provide insights in the correlation of the number of faults with the size of
these files. A second hypothesis has to be tested to cover the latter. The expressive power of the Gini
coefficient could be improved if not the files are accumulated but the source lines of code of the files
are accumulated instead. The result is that the area under the Lorenz curve becomes larger (Gini
coefficient increases) if the files with the most faults also contain the most lines of code; the area
of the Lorenz curve remain unaffected, relative to counting the files, if the lines of code are equally
divided over the files. The way the Gini coefficient is affected by the result of the source lines of code
within the files is interesting. But in the case if the files with the lowest number of faults contain
more lines of code, that is an inverse correlation between lines of code and faults, the area under the
Lorenz curve increases (Gini coefficient decreases); this is an unwanted side effect which obscures the
actual measurement. Nevertheless, it is still interesting to investigate if the Gini coefficient could not
only replace the first hypothesis of this study (H1) but also the second hypothesis (H2).

29

We used a heuristic way of measuring faults, that is by the means of semantically analysing the
commit messages. Because 933 system used the GitHub issue tracker and our semantic analyser detect
faults if a commit message formally closes an issue in the issue tracker through a commit, we think
that we have most of the faults. However, there is a change of over fitting. Based on the observations
by Herzig et al. [29], most of the detected faults are not faults at all. For future research is could be
interesting to replicate this study but with a more accurate fault discovery strategy. As suggested by
Herzig et al., the discovered faults should be verified manually.

30

Chapter 4

Reassessing the Applicability of
Fault-Proneness Prediction Models
Across Software Systems

4.1 Introduction

As shown in our preliminary research (see Chapter 3), the fault distributions of software systems
seems to be unequally balanced. Fault-proneness prediction models could be used to exploit this
knowledge, and deduce the part of the system that is most fault-prone.

Software fault-proneness prediction models have been put to the test by various researchers and
hold promising results. In our literature study on regression-based fault-proneness prediction models,
we found that the models were able to find on average 79% of all the faults within a system with a
precision of 78% (see Section 1.3). However, almost all of the models from our literature study are
probably less useful in practice, because the models were not applied under realistic conditions. These
models were validated on the same system as they were build on. A more realistic scenario would be
a model trained using one or more systems and used on a set of similar systems. However, there is
little knowledge about the effectiveness of fault-proneness prediction models used across systems.

Only two studies from our literature study validated the prediction model accuracy across systems,
Schneidewind [7] and Briand et al.[4]. Scheidewind did not focused on cross-system prediction models
and paid little attention to that matter. Briand et al. on the other hand, dedicated a significant
part of his research to cross-system prediction models, and claimed that they successfully build a
cross-system fault-proneness prediction model with reasonable precision and recall (see Section 1.2).
However, Briand et al. their study regarding cross-system fault-proneness prediction models was of an
exploratory nature and the conclusions were based on a single observation. Therefore, we see the need
to validate the findings of Briand et al. and contribute to the body of empirical knowledge of cross-
system fault-proneness prediction modelling. A replication study will be conducted; the following
hypothesis will be used for this purpose:

Hi: A fault-proneness prediction model that is trained on a system and validated on an-
other system with the same team composition will have at least an accuracy and recall of
60%.

The percentage used in the hypothesis is taken from the initial study where the cross-system model
obtained precision and recall of both 60%. Briand et al. explicitly mentioned that they kept the team
composition constant; this is reflected our hypothesis.

Hypothesis H1 enables us to compare Briand et al. their findings with ours and draw conclusions
based on the outcome. But, it provides no insight on how transferring a model from system A to
system B affects model accuracy. Consider the following case: A model has an accuracy of 90% when
applied on the same system it was trained on, but when used on another system, the accuracy drops
to 65%. The absolute prediction capabilities of the model looks promising, but the accuracy drop

31

tells otherwise. To also get some insights in the accuracy loss while a prediction model is transferred,
we state another hypothesis:

H2: A fault-proneness prediction model that is trained of a system and validated on another
system with the same team composition has the same prediction accuracy when trained and
validated on a single system.

This chapter is structured as follows: Section 4.2 describes the set up of the study. Section 4.3 lays
out the analysis methodology and how the initial study is replicated. In Section 4.4 we present our
findings. In Section 4.5 we discuss our findings and draw our conclusions.

4.2 Description of Study Setting

In this section we describe the system selection strategy and which systems we picked for our dataset.
Furthermore, we describe the data we collected from the systems and which procedure we used.
Because this is a replication study, we try to describe each decision and how it relates to the initial
study.

4.2.1 Systems

The initial study used two Java systems: XPosed and JWriter. Those systems are both closed source
and could therefore not be used in this replication study. The provided characteristics of the two
systems from the original dataset were used to choose similar systems. The systems consisted out of
144 and 68 Java classes respectively, were developed by the same team, and both came from the same
company. We will select system with similar characteristics.

In total we collected 10 systems. The systems were build by company that propagates strict
protocols and standards regarding software development (the company is kept anonymous on purpose).
All systems are still maintained and actively developed during the period of analysis. Most of the
systems in our dataset are smaller compared to the systems in Briand et al. their dataset. However,
the size of the systems used in the initial study and the size of the systems in this dataset are hard
to compare, because we filtered out all the files that are generated or related to testing '.

Because the dataset will be reused in this thesis and want to minimize observation bias, we randomly
selected 6 systems from the data that we will use for replication means. The set of all systems, and
the systems selected for this study (labelled with *) are shown in Table 4.1. For each system: the
number of non-generated/non-test Java source code files (Files), the number of source lines of code
(SLOC), the number of faults (Faults), the fault distribution (FGini), and the team who build the
system (Team) are shown in the table.

Table 4.1: Available systems overview

System Files SLOC Faults FGini Team
Blra* 30 3.023 8 45 C
Doc 83 2.666 86 41 B
Sec 100 4.511 254 .48 E
1Rat 22 781 0 51 D
MAdd* 80 4.012 38 .56 D
MApp 15 579 6 42 D
MIntO* 46 2.204 93 45 B
MlIra* 28 1.186 29 .38 D
MPen* 27 1.217 17 .59 B
MRep* 85 2.603 72 44 B

* system included in the single-system dataset

Another dataset must be created that comprises the system pairs that have a same team composition
relationship. The system pairs in the dataset must be unique couples ((a,b) = (b, a)) where the largest

1On average, the number of files had shrunk with a factor three after the exclusion of test and generated files

32

system of the pair, in terms of number of files, will be used as training data; the other will be used to
validate the prediction model. See Table 4.2 for an overview of all system pairs. The training system
(Train), validation (Validate), and the team who build both systems (Team) can be found the table.

Table 4.2: Between-systems overview

System pair Training Validation Team
MAdd-MlIra MAdd Mlra D
MRep-MIntO MRep MIntO B
MRep-MPen MRep MPen B
MIntO-MPen MIntO MPen B

4.2.2 Variables
Independent variables

The metric-suite used by Briand et al. was not made available for the public. Moreover, the imple-
mentation of the metrics are not described. Therefore, a new metric-suite was build containing the
same metrics as used in the initial study, except from a couple of simple size measures. The only
difference between our metrics and the metrics used by Briand et al. is at implementation level.

The metric-suite contains a subset of Briand et al. their cohesion metrics [25], Benlarbi & Melo their
polymorphism measures [12], all metrics from the Chidamber & Kemerer metric suite [13], all metrics
proposed by Li & Henry [26], and some size metrics. The implementation of the metrics are described
in detail (see Appendix A) and the tool is open-source and publicly available?. In the initial study,
Briand et al. uses a total of four size measures (totatrib, totprivatrib, totmethod, totprivmethod), we
measure totmethod using NOM.

All the metrics measure at class-level. Inner classes are not treated as individual observations but
their measures, methods, and attributes are counted to contribute towards the containing class. Also,
faults that traced back to an inner class were assigned to the out most containing class. This way
measurement is also used in the initial study.

Dependent variable

We want to evaluate whether the existing design measures are useful for predicting the likelihood that
a class is fault-prone; that is if the class contains at least one fault. The outcome value is dichotomous,
a class is either fault-prone or it is not.

A class is fault-prone if it at least contains one fault. We collect faults in a class using our own tool,
gcrawler. The tool analysis git commit messages; if the commit message contains hints of a fault that
has been fixed, then we say that all changed classes contain one fault each (see Appendix A).

The latter procedure is not ideal but had to be adopted due restricted data access and the absence
of issue-trackers. Take in mind that the faults that were detected using this procedure are probably
not all of the faults. Also, there might be some false positives among the observed faults. To roughly
check if the detected faults were actual faults, we randomly picked three systems from the dataset.
From these systems we collected the first 10 commit messages that contained the word ’fix’; "fixed’, or
'fixes’ (see Table 4.3). Next, a software architect, that was involved during development of the system,
analysed the listed commits and matching changes. He labelled each commit as a commit that fixed
a fault or a commit that did not fixed an actual fault (e.g. code refactoring, feature improvement).

2https://github.com/scrot/mt

33

https://github.com/scrot/mt

Table 4.3: Commit messages of observed faults in dataset

Commit message Fault-fixing commit
Fix unittest on maven by setting UTF-8 Yes
Merge branch 'Update_version_and_fix_double_package name’ Yes
Merge branch ’fixDeserializeBugFortify’ Yes
Merge branch ’Fortify_fixes’ Yes
Fix config docblocs, default Yes
Added fix for problematic retry of retrieval of requests Yes
Fixed small bug in Config.java Yes
Merge branch ’fix-graphite-logging’ into develop Yes
CODE Fixed graphite jndi’s. Yes
Fortify fixes Yes
CODE Corrected Toolkit dependency versions.* Yes

Based on the results of this sample, we will make the assumption that our procedure will find
actual faults. However, not all faults will be discovered. For example, in Table 4.3 there is one
commit message with the word ’corrected’ in it (labelled with a star). Our tool does not classify
this commit as a fault-fixing commit, but the commit fixes an actual fault according to the software
architect who analysed the commit.

4.3 Data Analysis Methodology

In this section we layout the methodology used for analysing the data. The analysis procedure consists
of: (i) An analysis of descriptive statistics, (ii) data distribution and outliers analysis, (iii) a principle
component analysis, (iv) a multivariate regression analysis, (v) and an evaluation of the prediction
model.

4.3.1 Descriptive statistics

For each system, all metrics are calculated. The minimum (Min), maximum (Max), sample mean (),
Median (Med), and the standard deviation (o) are collected of each metric. This data will help with
the interpretation of the results for upcoming analyses.

4.3.2 Outlier analysis

The outlier analysis is used to spot low variance measures. Outliers are removed from the dataset.
The outlier analysis is done following the same two steps as described by Briand et al. in the initial
study:

e All measures that do not have more than 5 non-zero data points are removed for analysis.
According to Briand et al. these measures do not differentiate classes very well and therefore
are not likely to be useful predictors for fault-proneness.

e Multivariate outliers are removed. To calculate the distance of the data point in this multi
dimensional space the Mahalanobis distance from the sample space centroid is calculated. If
the distance of the data point from the centroid is too large, it is removed from the dataset. In
the initial study there is no mentioning of the cut-off value, also it is unclear if the Mahalanobis
distance or the Jackknife distance was used (see Section 2.6). In this study, for each observation
in each system, the outlier distance is measured using squared robust Mahalanobis distances,
the outliers were detected using the 97,5%-quantile.

4.3.3 Principle component analysis

The Principal Component Analysis (PCA) is a method of analysis which involves finding the linear
combination of a set of variables that has maximum variance and removing its effect; repeating this

34

successively. PCA is used for finding metrics that are likely to measures the same underlying concept.
The result of this analysis is used as input during construction of the prediction model.

For identifying the Principal Components (PCs) and the variables with high loadings we will use
varimax rotated components, following the method described by Briand et al. (see Section 2.4 for
more information). Rather than selecting all n PCs, we consider only the PCs whose eigenvalue is
larger than 1.0.

Briand et al. suggested that it would be interesting for a replication study to see which dimensions
would also be observable in other systems, and to find possible explanations for differences in the
result. They expected to see consistent trends across systems for the strong PCs which explain a
large percentage of the dataset variance. We will compare the findings of Briand et al. their PCA
with ours and reflect on their expectations.

The Principal Component Analysis will be done using R and the principal function from the psych
package?. Varimaxi rotations will be applied, requesting the maximum number of principal compo-
nents. We only consider the Principal Components that have an eigenvalue larger than 1.0.

4.3.4 Prediction model construction

In this study, a logical regression model will be used to classify classes as fault-prone or not fault-prone.
Logistic regression is a standard technique based on maximum likelihood estimation for estimating the
likelihood that an event will occur (see Section 2.5). The selection of metrics described in Section 4.2
will be used as predictors and the binomial value, fault-proneness, will be used as outcome variable 4.

The goal is to build a prediction model with the best accuracy possible using a minimum number
of predictors. The strategy to achieve this goal consists of two parts:

o Minimize the number of independent variables in the model. Too many independent variables
negatively affects the estimated standard error of the model’s prediction and makes it more
dependent on the data. To minimize the number of independent variables in the model, Briand
et al. used forward selection with significance levels for entering and exiting the model of
Qenter = .05 and ez = 0.10, and tested the significance of a variable by using a log-likelihood
ratio test. Instead of using only forward selection we use both forward and backward selection.
This is because Briand et al. also intended to use both strategies, but could not fit the backwards
selection function to the data. Moreover, we will use a AIC test instead of the log-likelihood
ratio test to compare the models; both tests produce the same results only log-likelihood is only
valid for nested models, whereas AIC has no such restrictions. The lower the AIC the lower the
loss of information, relative to the actual model.

e Reduce multi-collinearity in the model. Reduce the number of predictors which are highly corre-
lated. The result is that the model is more easy to interpret. Briand et al. used the predictors
their eigenvalues from the Principal Component Analysis as a conditional number and excluded
all predictors whom’s conditional number exceeded 30. However in the initial study,no signifi-
cant difference was observed as result of preselecting predictors using PCA as a heuristic. Briand
et al. chose not to use PCA to preselect the predictors at all. Based on this decision, we will
also not use the PCA to exclude variables.

The result of the model selection procedure is a logical regression model with the best AIC score.
This model is used for further analysis.

On implementation level, we will make use of the software platform for statistical computing and
graphics, named R°. The model is build using glm® and is used to fit the logistic model. The
"binominal’ family is used to describe the link function and error distribution. A binary value to
indicate fault-proneness (the class contains at least a single fault or non at all) is used as outcome

Shttps://cran.r-project.org/web/packages/psych/index.html

4In the initial study, linear regression and logical regression are mixed up. However, these methods differ significantly
from each other and only one of the two is actually used in the study. Based on their exploratory study [14] where is
referred to by the initial study and the scale of their dependent variable, we assume they used logical regression instead
of linear regression.

Shttps://www.r-project.org

Shttps://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html

35

https://cran.r-project.org/web/packages/psych/index.html
https://www.r-project.org
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html

variable. All other variables of the dataset are used as independent variables. For the stepwise model
selection method we used stepAIC” from the MASS package. The optimal model is selected using
the forward selection strategy and the generalized Akaike a Information Criterion (AIC) for a fitted
parametric model. AIC is a relative and generalized method of comparing fitted parametric models
and is similar to the log-likelihood ratio. stepAIC takes a parametrized glm as input.

4.3.5 Model evaluation

In the initial study, the model’s prediction capabilities were measured in terms of precision and recall.
We included another measure, called accuracy, because this measures tells more about the overall
effectiveness of the model.

e Precision. Precision is defined as the number of classes correctly classified by the model divided
by the total number of classes that are classified as fault-prone by the model. A low precision
means that a lot of fault-prone classes identified by the model are false positives.

e Recall. Recall is defined as the number of faults in classes classified as fault-prone divided by
the actual number of faults in the system. A low recall indicates that a lot of faults were not
detected by the model.

e Accuracy. Accuracy is defined as the number of correctly classified fault-prone and non fault-
prone classes divided by all classes. A low accuracy means that the model incorrectly classifies
classes as fault-prone or not fault-prone.

To perform these measures, the trained models must be applied to a new dataset and the results
compared to the actual observations. To answer Hypothesis H1, only the cross-system precision and
recall scores are needed, and could be obtained using a cross-system validation technique. To answer
Hypothesis H2, the cross-system precision and recall scores as well as the single-system precision
and recall scores are needed. To obtain the two measures, two techniques will be used (for more
information about those techniques see Section 2.5):

o Single-system wvalidation. To establish a base rate, the prediction capabilities of the fault-
proneness prediction models are validated using a single-system, that is the same system it
was trained with. For this purpose we use k-fold cross-validation