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Abstract

Architecture erosion (AE) arises when the implementation diverges from the prescribed architecture
rules. It increases software complexity and undermines code maintainability. This thesis presents a
method to automate the process of detecting AE in Philips positioning software. To achieve this, a
domain-specific language (DSL) tool has been developed to perform conformance checking between
the software’s implementation and its intended architecture. This tool is called READ (Ruichen erosion
of software architecture detection), consisting of a CMAKE parser, a model generator, a DSL parser and
a rule checker implemented with the meta-programming language RASCAL.

The tool is specific to positioning software in that it provides tailored syntax to define the archi-
tectural rules specified for the software. The language’s expressive nature ensures adaptability to
accommodate future architectural rules. To evaluate the usability of the tool, multiple tests employ-
ing different methodologies were conducted. These tests prompted iterative improvements aiming at
enhancing result accuracy and reducing response time. The conclusive evaluation proves that the tool
provides precise results with respect to disallowed architecture layer dependency and invalid interface
usage. Additionally, it demonstrates usability in identifying disallowed dynamic memory allocation in
the implementation of the positioning software.
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Chapter 1

Introduction

1.1 Motivation

Software is a system that provides functionalities to fulfill the requirements of its stakeholders [6].
Instead of directly inspecting the source code, people can gain insights into the software system by
referring to its architecture. Software architecture manifests the organization of a system, as well as the
relationships among the system components and the environment in which the system operates [17].
It reveals an abstract view of how the requirements are mapped to the components of the resulting
software [6].

Architecture design requires the determination of design decisions, which can be documented as
architecture constraints or architectural rules. These rules guide the developers to develop and main-
tain the software. Next to the source code, explicit architectural guidelines provide an independent
and comprehensible overview of the existing code and the constraints on future adaptations of the
code. It is vital to ensure the software implementation conforms to a well-defined architecture, as
this conformance contributes to high software quality and reliable software performance. However, in
practice, the implemented software often deviates from the designed architecture because these rules
are violated during development. In case of our assignment, multiple architectural rules are designed
for the software under investigation. Nevertheless, these rules are not checked by a compiler in the
integrated development environment (IDE), nor by a continuous integration toolkit. As a result, it is
possible that violations are added during software development and maintainence without being no-
ticed. These violations increase the maintenance difficulty and reduce the software’s coherence and
clarity, further aggravating the architecture problems [32]. Ultimately, the system may fail to provide
the expected functionalities. This phenomenon is commonly referred to as architecture erosion (AE).
It is a metaphor describing software architecture degradation due to the increased divergence between
the architecture design and code implementation during software evolution. The problematic parts,
i.e., the artifacts violating architectural rules, erode over time and deviate from the original design
decisions.

Recognizing that AE can eventually make maintenance and evolution of the software prohibitively
dangerous and/or expensive and hinder the implementation of the new requirements, it is essential
to take measures to manage the erosion. Erosion management consists of two aspects: detection and
elimination. Detection involves identifying the source code which violates architectural rules, while
elimination refers to removing and reimplementing the detected problematic code. In the context of
this assignment, our focus is on detecting AE, with the aim of minimizing erosions in maintained source
code.

This thesis contributes by an early detection mechanism, which can be executed by the CI periodicity
to identify the newly introduced violations since the last checking and deliver the results to Philips’
engineers.

An Automated Approach to Check Software Architecture Erosion 1
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1.2 Problem Description

This master’s assignment is associated with the software group of the mechatronic department at
Philips, a technology company specializing in healthcare. Philips provides integrated solutions for
diagnostic imaging. As a significant part of these solutions, the Image Guided Therapy (IGT) system
is developed to facilitate image-guided interventions, allowing disease diagnosis and treatment to be
performed with minimized invasion [27]. Figure 1.1 illustrates a product line of the IGT system known
as Azurion. Azurion serves to automatically align the X-ray beam with the patient and generate im-
ages for treatment. The mechatronic department is responsible for developing the positioning software
for Azurion, which regulates the functioning of all the movable components within the system. This
software serves as the codebase for our assignment.

Figure 1.1: Philips Azurion System

With respect to the software design, it is organized in a multi-layered architecture with several
modules providing utility and test functionality. Based on this design decision, multiple architectural
rules have been proposed to regulate the behaviors of the source code components within and between
the layers. After decades of development by about 50 software engineers, the software has grown to a
considerable scale with more than one million lines of code. As new code segments have been incre-
mentally implemented along with legacy code, managing dependencies between different components
has become increasingly challenging. Specifically, the prescribed architectural rules are violated due
to the disallowed inter-layer dependencies and the skipping of the intermediate layer. This erosion of
the architecture undermines software quality and hampers the practicability of software maintenance.
Consequently, software architects are seeking a solution to detect the code snippets where AE happens
and guide the developers in implementing functionalities to adhere to the rules. This expectation for-
mulates the primary functional requirement of a tool, which is capable of accurately identifying rule
violations in the source code. Additionally, the tool should support the definition of architectural rules
such that it can be adapted to different checking requirements.

In summary, this assignment aims to design and implement a tool that automatically checks the
conformance between the architectural rules and implementations for Philips’ positioning software
and identifies the architectural violations in an accurate and efficient manner.

2 An Automated Approach to Check Software Architecture Erosion
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1.3 Research Questions

With respect to the theoretical and practical parts of the study, we propose four research questions
(RQs). By answering these questions, we can know how to tackle AE in an industry-scale software
system with meta-programming technologies. Following are the definition and the intuition of RQs:

• RQ1: Which method is suitable to check AE in Philips’ codebase?
The detection of AE has been intensively investigated. We need to select a method specific to
Philips’ codebase, as some architectural rules could be present specifically in this codebase. This
requires a literature study on the related work to filter the feasible solution.

• RQ2: How are the architectural rules formalized in the tool?
The architectural rules are described in natural language. To encode these rules into code, a
mechanism is necessary to represent the elements in rules with code artifacts while maintaining
the semantics accurately.

• RQ3: How is architecture erosion detected by the tool?
The aim of the tool is to detect AE with respect to the given architectural rule. Thus, the design
of a clear flow from the input source file to the desired output is required. This question is closely
related to the design and implementation of the tool.

• RQ4: How is the quality of the developed tool evaluated?
For each rule that is checked by the tool, it is expected to collect a list of violation facts. It is
necessary to test the correctness of the detected violations such that the usability of the tool can
be guaranteed. Therefore, methods to evaluate the tool’s performance need to be proposed.

These research questions are investigated in the following sections: Section 3.1 compares different
approaches for AE detection. Section 4.4.2 describes how architectural rules are implemented. Sec-
tion 4.4 provides a step-by-step description of how a rule is checked. In Chapter 5, different measures
are applied to evaluate the performance of the tool. The answers to all the research questions are
summarized in Chapter 6.

1.4 Thesis Outline

The content of the thesis is structured as follows:

• Chapter 2, Background and Concepts
This chapter introduces the basic concepts related to AE in the content of the assignment. Besides,
it explains the architecture of Philips’ codebase and the technology used for developing the tool.

• Chapter 3, Related Work
This chapter contains a literature study on the state-of-the-art methods for AE detection and the
recent usage of RASCAL for code analysis. This chapter explains the reasoning behind the method
selection of the tool.

• Chapter 4, Design and Implementation
This chapter interprets the workflow of the tool and the checking procedures for each architec-
tural rule.

• Chapter 5, Evaluation and Results
This chapter evaluates the quality of the tool from the aspect of usability and discusses the
causes of inaccuracy. Subsequently, it shows how the implementation is improved iteratively
and derivates the final results.

• Chapter 6, Conclusions and Future Work
This chapter presents the contribution of the thesis with answers for RQs. In the end, it gives
some prospects for future work.
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Chapter 2

Background and Concepts

This chapter introduces the background of the assignment in the context of Philips’ codebase and
interprets the concepts related to AE as well as the theoretical foundation of the technologies used to
develop the tool.

2.1 Software architecture and Architecture Erosion

Software architecture delineates the interactions between software components and their interface
with the external environment in which the software operates [17]. During the design stage of the
software, the architectural rules are proposed to specify the desired software architecture, which serves
as a blueprint for software implementation. Accordingly, the software is expected to be developed
and maintained in adherence to the desired architecture. Nonetheless, as the software evolves, the
actual implementation may violate the prescribed architectural rules, leading to a degradation in the
maintainability and quality of the software.

The cause of such software degradation can be attributed to two factors [36]. One is architectural
drift, which happens when an architectural element not belonging to the planned architecture is intro-
duced into the software. As the introduced element is not documented, it may be used in developing
other modules unintentionally, leading to unexpected behaviors of the architectural components [4].

Another factor is architecture erosion, which is the research object in this assignment. The earliest
usage of the term architecture erosion can be traced back to [32]. The authors interpret architecture
erosion as a violation of architecture. Moreover, in [5], the definition of AE is expanded to introduce the
architecture decision that violates the prescriptive architectural rules. Some other researchers define
the AE phenomenon from another aspect rather than architectural violation: AE is the deterioration of
the software quality during software evolution [10]. The quality metrics of a software system reflect
the erosion in this definition.

In addition to architecture erosion, other terms are proposed to denote a similar phenomenon.
In [37], design erosion represents the eroded software designs that lead to the redesign and rebuild of
a new architecture. Some researchers use architectural decay to describe the architectural degeneration
caused by uncontrolled architectural changes [33]. Although the definitions vary slightly compared
to architecture erosion, the latest systematic mapping study reveals that AE, architecture deteriora-
tion and architecture decay correspond to the same deterioration phenomenon in software architec-
ture [25]. Besides, we find that design erosion and architecture erosion are interchangeable based on
the problems they present.

In the context of this thesis, architecture erosion refers to the violation of the intended architecture
caused by the complex components of the implemented architecture. This definition has the same
meaning as what is defined in [25].
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2.2 Philips Positioning Software

As mentioned in Section 1.2, the codebase under investigation is the positioning software of the Azurion
system. This software coordinates and controls the movements of Azurion’s system components. One
responsibility of the software is to adjust the position of the C-arm such that the radioactive beams
precisely align with the patient’s anatomy. Additionally, the software provides the interface to end
users to control the positions of C-arm and the patient table with joysticks [1].

The software is implemented in C and C++. A brief synopsis for the number of source files is
demonstrated in Table 2.1. This table only summarizes the core part of the codebase, excluding the
dependencies. With respect to the design, the positioning software follows a layered architecture with
five layers and two modules. Following are the descriptions of all the layers and modules [1]:

Table 2.1: A synopsis for the core part of positioning software

C/C++ Header C Source C++ Source CMake

#(Files) 5383 32 5263 599

• Interface layer (A): It is an interface between the clinical users and the internal system of Azurion.
It provides access to positioning functionalities to clinical users and translates the users’ requests
into a sequence of application movements.

• Layer (B): Business logic.

• Layer (C): Business logic.

• Hardware layer (D): This layer translates the movements of axes to the movements across the
three-dimensional coordinates of x, y and z. It also provides an interface to communicate and
control the hardware

• Utility layer (E): This layer offers utilities for tasks including memory management, interprocess
communication, etc., and wrappers for operating system primitives.

• Field Service module (F): This module contains all field service tools to assist the tasks like
position adjustment.

• Test module (G): This is the test module for the implementations in all the other layers and
modules.

Figure 2.1 demonstrates the grouping of the layers and modules of the architecture. It is clear that
all the layers compose the main building block of the architecture. Here, A, B, C and D are presented
with a hierarchy that the layer at the bottom directly controls the hardware while the layer at the
top is exposed to the user interface. The exception is layer E that lays vertically from top to bottom
because this layer is accessible for all the other layers. As for the other two modules, they are grouped
separately.

Each layer or module has a prescribed restriction on which other layers or modules it can depend
on. For example, layer E provides utilities for all the other layers and modules. Therefore, all the other
architecture components can depend on E, while E is not allowed to request service from any other
layers and modules. The restrictions are proposed by the architects based on the functionality of each
layer and may change along with software evolution.

With regard to architecture implementation, each layer and module mentioned above is mapped to
one or multiple folders in the codebase. The folders contain headers and source files written in C and
C++. The architect defines the mapping with a YMAL file by specifying which directories belong to
which layer or module. Additionally, the files generated during software building are placed in Build
folder. A Core folder is constructed to store the source files whose layer has not been determined yet.
The Core and Build folders are not part of the desired architecture. However, the subfolders within
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them are used for the mapping between the architecture and the implementation. Therefore, the YAML
file also contains the directories from these two folders. The files in Core folder will be migrated to
the layer or module corresponding to their functionality in the future.

A

B

C

D

E

F

G

Main building block

Test block 

Layer/module

Service block 

Legend

Figure 2.1: Architecture of the positioning software (adapted from [1])

2.3 Static Analysis

Static analysis is a method to analyze the behavior of a program without its actual execution [11]. It is
a widely used approach to detect defects and predict possible software behaviors. The main advantage
of static analysis is that it automates the processes of checking the problematic code segments in the
program. Here, the problem denotes the implementations are syntactically correct but violate the
prescribed design rules or contain unexpected runtime behaviors [11]. One example in the context of
Philips’ codebase is the use of specific disallowed functions and deadlocks. Compared to other manual
ways to evaluate the implementations, like code review, static analysis is an automated way that covers
the entire scope of the software. This process reduces the time to review the code and also considers
corner cases that humans may neglect.

Depending on the concrete design and implementation of static analysis, the analysis results may
contain problems. An accurate static analysis neither reports code falsely nor misses a true viola-
tion. A static analysis without false negatives typically has some false positives. This is called an
over-appromation [29]. A false positive is the case regarded by the static analysis tool as incorrect
implementation but is actually correct, while a false negative arises when the presence of a fault is not
detected by static analysis. The validation of whether the collected results are real defects involves
manual work, which increases developers’ workload. On the other hand, a static analysis without
false positives typically does not report several false negatives. That is an under-approximation. The
common causes for the false negatives are the flaws in the design and the implementation of the tool.
Therefore, to ensure a static analysis tool contributes to the development and maintenance of soft-
ware, it is important to improve the precision of the tool and develop a scheme to evaluate its quality.
The strategy we used is to implement the tool with as minimal false negatives as possible. Then, the
implementation is improved to remove false positives. The reason for this strategy is we need first to
ensure the usability of the tool in identifying the rule violations. As mentioned in Chapter 1, the tool
must be usable to detect the violations. If the obtained results are all false negatives, the tool is not
capable of capturing the divergence between the actual implementation and intended architecture at
all. Therefore, we prioritized the minimization of false negatives in the implementation of the tool.
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2.4 Metaprogramming and Domain-Specific Languages

Metaprogramming refers to the realization of programs that regulate the behaviors and functionalities
of other programs [23]. In other words, it is a process of code transformation or generation that
uses a language, called metaprogramming language, to modify or generate another language, called
object language [26]. The input of a metaprogram can be a code snippet written in any programming
language, a list of log information stored in plain text, or any other formats representing the data.
The metaprogramming language provides a framework to use abstract and concrete syntax to handle
input data, including matching the patterns presented in the input and applying the transformation
within the desired scope. That means once the syntax is defined, all the patterns matched by the syntax
can be extracted from the source input and further processed with the desired operations. Therefore,
metaprogramming is an efficient way to inspect and maintain programs.

One important usage of metaprogramming is to design domain-specific languages (DSLs). A DSL
is a language applicable to a specific domain. Compared to general-purpose languages, which are
usually designed for a wide range of use scenarios, DSLs merely focus on one domain determined
by the requirements and specified by the language designers. The designers tailor the syntax and
grammar of the DSL such that the users can utilize them to implement functionalities that may be too
cumbersome or impossible to implement with general-purpose languages. DSL is the main method
we used to formulate the architectural rule of Philips’ positioning software and couple it with a rule
checker to identify architectural violations. A detailed description of the use of DSL in our tool is
in Chapter 4.

2.4.1 RASCAL

RASCAL1 is a metaprogramming language for source code analysis and transformation [22]. It provides
a flexible mechanism for the users to design languages, conduct static analysis and generate code. It
is a modular language like Java that enables the desired modules to be imported and extended. Like
other high-level programming languages, it offers primitives to manipulate data structures like set, list
and map. Besides, it supports functionalities, such as pattern matching, comprehension, switching and
visiting, to facilitate the programming process [22].

One application scenario of RASCAL is to design and implement DSLs. RASCAL provides context-free
grammars (CFGs) to define the DSL syntax. The design of the syntax depends on the requirements of
the language, which determines the layout and the language components of the DSL instance. Then,
the instance is parsed by a built in parser provided by RASCAL to build a concrete syntax tree (CST). CST
is a tree-like representation of the instance, which is constructed by parsing the language components
with CFG and regular expression. Based on CST, further operations can be applied to complete specific
tasks such as code analysis and code generation.

RASCAL also provides the mechanism to map the concrete syntax to abstract syntax, which is a
more abstract and generic view of the source code. Listing 2.4.1 is an example of abstract syntax
defined in RASCAL. This example illustrates how a statement in a certain programming language can
be mapped by abstract syntax to form an abstract syntax tree (AST). Depending on whether it is an
assignment or if or for or switch statement, different components are extracted from the source
code as parameters to form the abstract statement.

Listing 2.4.1 A RASCAL snippet to define the abstract syntax [22]

1 data statement =
2 assignmentStat(Id name, Exp exp)
3 | ifStat(Exp cond, list[Stat] thenBody, list[Stat] elseBody)
4 | forStat(Exp cond, list[Exp] body)
5 | switchStat(Exp exp, list[Stat] body)

1https://www.rascal-mpl.org
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After the instance is transformed into an AST, the subsequent operations are performed on the
constructors and fields of the data type defined in the abstract syntax. Depending on the intention of
the DSL tool, these operations could be checking processes that validate whether rules and constraints
are fulfilled. It could also be a transformation process that translates the input language into another
desired language.

2.4.2 CLAIR

CLAIR2 [2] [3] is a RASCAL extension that analyzes C and C++ source code based on Eclipse CDT3 [35].
As the standard library of RASCAL does not support parsing C and C++ code, CDT is integrated into
CLAIR to parse and translate the code to an AST. AST is an internal and compact representation of
the source code. To construct an AST, the source code is first tokenized to remove information like
whitespace. Then, a parser analyzes the tokens to determine the syntactic relationship and represents
them and their relationships in an AST. In this way, each node of the AST is a token that contains only
the required information for the compiler to work. However, the ASTs generated by CDT cannot be
directly read by the developer. Thus, one responsibility of CLAIR is to transform CDT ASTs to CLAIR
ASTs to make the tree readable in text and to further process with RASCAL code [27].

Another task of CLAIR is extracting a so-called M3 model from the ASTs. The M3 model is a RASCAL

data type that consists of a set of binary relations derived from the AST. In other words, each relation
is a higher-level abstraction of an intended part in AST. The composition of these relations extracted
from many different C++ files makes M3 model a database that reflects the static semantics of the
source code [7]. The following Table 2.2 lists multiple key relations in M3 models. The completed list
of relations in CLAIR is in Appendix A. Note that the specifier loc in the ’Data Structure’ column refers
to location, which is a RASCAL data type representing either a physical part of a file or a logical
“qualified” name of a declared entity in the source code [7].

Table 2.2: Relations of the M3 model in CLAIR

Field Data Structure Description

containment rel[loc from, loc to] Mapping from the logical name of
the container, such as class, function,
method, to the logical name of the arti-
fact that is contained, such as method,
fields and parameter.

declarations rel[loc name, loc src] Mapping from the logical name of the ar-
tifact to the location where the artifact is
declared.

uses rel[loc src, loc name] Mapping from the physical location
where the artifact is used to the logical
name of the artifact. Note that "artifact"
refers to any declared C and C++ artifact
like a compilation unit, a package, a class,
a method, a function, a parameter, a field
or a local variable, etc..

2https://github.com/usethesource/clair
3https://projects.eclipse.org/projects/tools.cdt
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callGraph rel[loc caller, loc callee] Mapping from the location where the
function is called (caller) to the location
where the function is provided (callee).
Note that the term “function” in the C++
M3 model refers to C++ functions, meth-
ods and constructors.

methodOverrides rel[loc base, loc override] Mapping from the logical name of the
function defined in the base class to the
logical name of the function in the de-
rived class which overrides the function
in the base class.

functionDefinitions rel[loc name, loc src] Mapping from the logical name of the
function to the location where it is de-
clared

requires rel[loc includer, loc includee] Mapping from the location of the source
file (includer) to the location of the
header file (includee) included in the
source file

includeResolution rel[loc directive, loc resolved] Mapping from the logical name of the
header to the physical location where the
header locates

includeDirectives rel[loc directive, loc occurrence] Mapping from the logical name of the
header to the physical location where it
is included

As shown above, each relation is constructed for a specific relationship between the artifact, vary-
ing from class, and function, to macro and variable. We can also find the definition of some relations
overlapping with each other. For example, callGraph and methodinvocation has the same de-
scription, containing information about calls between the functions. This is because the relations in
the M3 models are built in two ways. Specifically, methodinvocation is an initial syntactical collec-
tion of the raw data in AST while callGraph is a secondary result based on interpreting the earlier
syntactical information including methodInvocation and methodOverrides.

Compared to AST, an advantage of the relation representation is that it is supported by RASCAL

primitives. That means the operations on relation and set, such as subtraction, composition, transitive
closure, etc., also apply to the M3 model [7]. In this way, developers can write different queries to fetch
facts from the model and perform further operations with RASCAL build-in functions. This reduces the
time complexity for querying facts compared to traversing the AST. Additionally, the M3 model is also
advantageous with respect to storage space usage. Because it is a more compact representation of the
source code than AST, it requires less space to store the information. This feature increases the usability
of the M3 model, especially when the codebase contains millions of lines of code. On the other hand,
the M3 model also has some limitations. As mentioned beforehand, it is a further abstracted view of
the source code. The abstraction level is in the direction of architectural models, which contain the
source code components that interact with each other but not specifically inside method bodies on the
statement and expression level. Nevertheless, if the target under investigation requires information
related to the method body, then the M3 model may not be useable. For example, we can neither
know the order of the statements and expressions in the source file nor the content of the looping and
conditional statements. If these fields are the targets of static analysis, then AST would be a more
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informative data source.

2.4.3 TYPEPAL

TYPEPAL4 is a RASCAL library that analyzes the type and the role of the name declared or used in the
language. It also enables language users to perform well-formedness checking. In this assignment,
as we developed REAL with a DSL to formulate the architectural rule, TYPEPAL is included in the
DSL to better regulate the formulation of the DSL instance. The concrete use case will be introduced
in Section 4.4.2.

TYPEPAL utilizes a CST to check the language instance. In the CST, the internal nodes of the tree
correspond to the non-terminal, while the leaf nodes contain the information of the terminals. In
comparison with an AST, a CST has the same semantics as AST but with more information about the
instance, as shown in Figure 2.2. In RASCAL, the CST also contains textual information such as layout,
separators and brackets, while in AST this information is removed. As the checking in TYPEPAL is based
on CFG, and languages may have designs for a constrained layout like indentation, CST instead of AST
is used as the checking target for TYPEPAL.

2 x 7 + 3

expr

+term term

factor factor factorx

2 7 3

+

x

2 7

3

Concrete Syntax Tree
(CST)

Abstract Syntax Tree
(AST)

Figure 2.2: Comparision between CST and AST for the same expression

The functionalities of TYPEPAL are realized by a collect-solve mechanism. Specifically, TYPEPAL pro-
vides collect function to define the allowed action of a syntax component, such as define and use.
The effectiveness of these actions can be constrained by giving a scope. Within the scope, users can
specify the accessibility and behaviors of the names. In this way, concrete rules like no-use-before-
define and no-duplicated-declaration can be implemented. The constraints defined in collect func-
tion are executed only after a solver is called. This solver solves the constraints to compute a role, a
qualified name and optionally a static type for every entity in the CST.

4https://github.com/usethesource/typepal
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Chapter 3

Related Work

This chapter introduces the study of the previous work related to detecting AE and using DSLs to
investigate software architecture. Furthermore, the cases of using RASCAL for source code analysis are
summarized. With the related work, we interpret why a metaprogramming solution implemented by
RASCAL is selected for the tasks proposed by Philips.

3.1 Detection of Architecture Erosion

As the main task of this assignment is to collect the eroding code segments from the codebase, we
decided to study the mainstream methods developed for detecting AE. We expect this theoretical study
will provide valuable insights into AE management and inspiration for designing our tool.

The majority of the detection methods for AE are based on architecture conformance checking.
More specifically, it verifies the mismatching between the intended and actual architecture abstracted
from the source code implementation. One intensively used technique in this field is DSLs for express-
ing design rules. Haizer and Zdun developed a semi-automated method with a DSL to specify the
architectural rules and compare the rules with the abstracted representation of the source code ex-
tracted from the Unified Modeling Language (UML) [19]. Similarly, Gurgel et al. proposed a DSL tool
named TamDera to define the architectural rules and detect architectural violations. Another widely
used method is the reflexion model introduced by Murphy et al. [30]. This method compares two mod-
els —, a source model abstracting the information in source code and a high-level model representing
the design decisions —, to determine the gaps between design and implementation. Apart from per-
forming checks directly on the architecture, plugin dependency [16] and exception control flow [12]
are also used by researchers as the target of architecture-level consistency checking.

In addition to architecture conformance checking, AE can be detected by tracing the relationships
between the artifacts during software evolution. Hassaine et al. present a method called ADvISE, which
generates a class diagram for each release of the software through reverse engineering. The diagrams
of the adjacent releases are then compared with the designed metrics to explore architectural drift and
erosion [20]. Besides, defects such as code smells are used by some researchers as indicators for AE.
Bertan determines that architectural violations correlate strongly with some smells, including the god
aspect and long method. Based on this fact, several metrics are proposed to indicate the degree of AE
by quantifying the smells [8].

3.2 Domain-Specific Languages for Architecture Analysis

As Section 3.1 mentions DSLs are a technique widely used for architecture conformance checking. To
further investigate the usability of DSL in checking the consistency between rules and architecture
artifacts, we study six state-of-the-art DSLs. Table 3.1 gives an overview of these DSLs.
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From the table, we can perceive that all these DSLs can explicitly describe the constraints on the
implementation architecture that could be violated. If we explore deeper for each tool, we can find
that although the implementations of the six DSLs are all based on conformance checking, the details
differ depending on the requirements. The most common way is to declare the architectural rules with
the designed DSL and compare the source code with these rules to check AE. However, other types of
input data are also applicable to DSL tools. For example, the object for checking in Architecture
abstraction DSL is in the format of a UML class diagram [19]. Besides, the implementations of
DepCoL and ArCatch are not based on architectural rules. Instead, the rules are derived from the
plugin dependencies and exception handling respectively. For example, in [12], a software with a
Model-view-controller (MVC) architectural pattern was inspected. Rules are defined to regulate the
specific exceptions that can only be raised by Controller and only handled by View. To summarize,
these tools prove that the DSL methodology is a common solution to analyze erosion on the level of
software architecture, especially to detect AE. The language provides the flexibility to be tailored for
specific analysis targets by accepting various formats of source data as input.

Table 3.1: Description of six state-of-the-art DSLs

DSL Features Advantages Disadvantages

Architecture
abstraction
DSL [19]

Mapping the UML class
diagram of a program to
the architectural rules
declared by the DSL to
generate a view of the
architectural element

Increased traceability,
Verified usability

Input format limited in
UML

TamDera [18]
Declaring architectural
rules with DSL to de-
tect the architectural vi-
olation and drift at the
same time

Improved modulariza-
tion, High reusability

Limited expressiveness

Dictō [9]
Connecting the DSL
with a third-party tool
through a customized
adaptor to complete
various checking tasks

Improved modulariza-
tion, High reusability

Adaptors as the manda-
tory components
between DSL and ex-
tension

DepCoL [16]
Using the dependency
relationships between
the plugins as the rules
to check architectural
violations

Easy to learn, High ex-
tensibility

Exclusive for plugin-
based systems, Low
portability

DCL 2.0 [34]
Declaring the rules in a
modular manner to an-
alyze architectural vio-
lations with an external
checker

High reusability, High
expressiveness

Input source code lim-
ited in Java

ArCatch [12]
Using exception han-
dling workflow as rules
to check architecture
components violating
the rules

Effective for exception
handling checking

Limited usability
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3.3 Code Analysis and Transformation with RASCAL

Since a DSL has been regarded as a reliable solution for AE analysis, we would like to explore further by
investigating a specific metaprogramming language. Here, we choose RASCAL as it has been extensively
studied for a wide range of tasks related to source code operations. On the one hand, it has forward
engineering features for making the syntax and semantics of the DSL. In [27], a DSL is designed to
modernize the legacy code with RASCAL. With the DSL, users can formulate the transformation rules,
which specify how the legacy code should be updated.

On the other hand, RASCAL has the reverse engineering features for extracting the information from
the source code that is needed to execute the code analysis, transformation and generation. Back to
[27], the implemented DSL is coupled with the reverse engineering features of RASCAL to modernize
the legacy code. This process includes inputting the legacy code into the RASCAL program, match-
ing source code with the components used by transformation rules, and generating the modernized
artifacts based on the rules. Additionally, in [35], RASCAL is used to migrate test code. The origi-
nal test code implemented within the STX framework is transformed to the new code conforming to
GoogleTest APIs. This transformation includes the conversion of C to C++, the replacement of head-
ers, and the rewriting and refactoring of CMAKE files. Similarly, [21] reveals how a concise RASCAL

script takes Java source code as input and performs complex refactoring with Eclipse Java Development
Tools(JDT) within a short time.

Combining the forwarding and reverse engineering features, RASCAL allows the users to implement
the DSL as well as to conduct C++ source code analysis in the same framework. As a summary of the
above studies, we can find that RASCAL enables DSL users to have an efficient and flexible solution to
analyze the source code and transform the input code while maintaining the semantics.

If we explore these related cases at a higher level of abstraction, we can find a common paradigm
when designing and implementing RASCAL programs for code analysis and transformation tasks. This
paradigm is summarized in [23] and called the EASY paradigm. It contains three steps: extract, analyze
and synthesize. As shown in Figure 3.1, the source data is extracted and abstracted only to maintain the
relevant information. Here, RASCAL accepts a wide range of source data types as input, including source
code, logs, documents, etc. Then, the intermediate data undergoes multiple iterations of analysis and
transformations based on the requirements of the tasks. Ultimately, the results are synthesized into the
desired format to output.

Source data Internal Data
Representation

Extract desired
information Synthesize

Process

Legend

Input Entity Datastore Output Entity

Analyze

Violations

Figure 3.1: Data-flow diagram of EASY paradigm for the design of DSL tooling with RASCAL (adapted
from [23])
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3.4 Rule Formalization with DSL Syntax

The previous two subsections have revealed the power of explicit design rule formulation with DSLs
for analyzing software architecture and performing modifications on the source code. It seems DSL is a
desirable candidate to tackle Philips’ tasks of detecting AE. The last part we must investigate is whether
the design rule formalization is competent in implementing architectural rules. In Section 3.2, we have
ascertained that DSLs can be used to define the rules by designing a context-free grammar ([18], [34]).

Furthermore, we find a common pattern they used to define the syntax. Figure 3.2 is the pattern
summarized in [34]. The architectural rules can be generalized with two modules and one constraint.
Here, modules are artifacts, such as functions, classes and packages, representing the rule’s subject
and object. The constraints are the modifiers defined in DSL syntax that constrain the behavior of
the modules. By composing two modules with the constraint, a statement of the architectural rule is
generated. This is a unified way to formalize the rules regarding the DSLs we studied.

Rule subject Rule object

access
implement
declare

define
create

depend
derive

extend
throw
handle

can

cannot

must

only
module

constraint

Legend

Figure 3.2: A common pattern for architectural rule language design (adapted from [34])

As suggested by some researchers ([18], [9] and [34]), this pattern can be further modularized by
encapsulating the rule declaration into a package. This package is then imported into other indepen-
dent files. This design increases the reusability of the DSL and the conciseness of the rule definition.

3.5 Conclusions

The above literature study provides us with a clear view of which state-of-the-art methods are being
applied to analyze software architecture and detect AE. After weighing the usability and practicability
of all the above methods, we decided to use DSLs to solve the problems in Philips’ codebase. The main
reason for choosing this method is that architecture conformance checking requires the formulation of
the architectural rules, while the literature studies show with a DSL, the rules can be explicitly formu-
lated. These use cases give us confidence that DSL is also a feasible solution for Philips’ case. Another
factor contributing to our decision is the ability of DSL to express the architectural rules. Methods other
than DSL, like reflexion model, are also capable of AE detection. However, the assignment’s goal is
not only conformance checking but also representing the rule in a formalized and human-readable for-
mat. To implement this requirement, a DSL implemented with RASCAL is a suitable approach RASCAL

provides both forwarding engineering features in language design for rule formulation and reverse
engineering features to analyze the C and C++ code. From the technical perspective, we consider
RASCAL a suitable tool to implement the DSL because the EASY paradigm offers a feasible template for
our tool design. The study on related work with RASCAL has also proven that this metaprogramming
language is practical for large-scale source code analysis [35].

In addition, the extensibility of the DSL retains the potential for adapting the developed tool to
the new requirements proposed in the future. The implementations in [35] and [27] show that DSL
performs well for both AE detection and code refactoring. Once the AEs in the codebase were expected
not only to be detected but also to be managed and eliminated, a DSL-based tool could still be extended
to meet the requirements. In comparison, the usability of the other mentioned methods is limited as
they only focus on AE detection.

In conclusion, considering the feasibility, expressive capacity, practicability, usability and extensi-
bility, we believe a DSL toolkit implemented in RASCAL is a suitable solution to check AEs in Philips
Positioning Software.
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Chapter 4

Design and Implementation

In this section, we elaborate on how our tool READ is designed and implemented to check AEs in Philips’
codebase. Specifically, the first subsection describes the procedures for tool development and outlines
the structure of the tool. Then, each part of the tool is elucidated in the subsequent subsections. In the
end, we summarize the overall design and propose future work based on the current implementation.

4.1 Development Procedures

As illustrated in Figure 4.1, the development of the DSL tool is comprised of several steps. Before
the start of the procedures, it is essential to have a clear delimitation of what system is under study
in this thesis. During the development phase, the entire Philips’ positioning software is the target for
investigation. In other words, all the C and C++ source and header files, the CMAKE files, are the
objects of READ to analyze and identify architectural violations. As for the evaluation phase, we use
the same system to evaluate the READ’s implementation and the quality of the checking results. Instead
of directly on the source code and CMAKE files, the resources used for evaluation may be abstract, such
as M3 models and the extracted include paths, based on the content of the evaluation. We will interpret
it in detail in Chapter 5.

As the goal is to develop a tool that is capable of executing automated checking on a codebase
to collect the artifacts that violate the architectural rules, we need first to collect the requirements by
interviewing Philips’ engineers. Then, we need to have knowledge about the rules before starting to
design the tool. These rules are then deconstructed and represented by the components in the source
code. This process requires us to have prior knowledge about the codebase such that we can map
the rule subject, object, and constraints to concrete code components. In this way, we can have a
preliminary idea about how to describe the rules with DSL grammar and how to check the rule with
RASCAL.

As READ is developed to formulate and check the architectural rules, the first two steps of tool
development are to identify the requirements and the architectural rules. These two steps are comple-
mented by interviews with the architects and the developers. Additionally, some architectural rules are
also recorded in the software design documents [1]. After a list of architectural rules is obtained, we
prioritize the rules and check the rules based on the prioritized order. It is necessary to have a priority
of the rules as we can only check a limited number of rules within the given time. The criterion of the
prioritization will be discussed in Section 4.3.

When the preparation work for architectural rules is finished, we employ an iterative and incre-
mental strategy to develop the tool. More specifically, every time a rule is selected, we design how to
express the rule in the DSL and decide how the check should be implemented for this specific rule. The
outcome is a list of violations from the source code. Based on the accuracy of the results, the imple-
mentation of the rule checking is iteratively evaluated and improved. More specifically, the inaccuracy
can be both from imprecise rule definition and imprecise rule checking. The former requires a more
precise rule description and refinement of DSL syntax, while the latter requires bug inspections. After
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finishing the checks on one rule, we progress toward the next rule. The reason we adopt an incremen-
tal way of development is that we would like to check the feasibility of the design with regard to the
whole workflow. That means when the first rule is checked and the implementation is validated to be
correct, we are confident that the implementation of other rules can follow a similar pattern without
radical changes in the design.

Once the tool is capable of performing conformance checking for multiple rules, it is deployed and
executed from the command line periodically to detect the violated segments from the newly modified
source codes.

Start

Activity Decision

Legend

Collect
Requirements

Collect architectural
rules

Prioritize architectural
rules

Implement one rule

Obtain the checking
results

Evaluate the results

More rule to
check?

Improve the tool

Deploy READ in the
production environment

More to
evaluate?

Yes

Yes

No

No

End

Figure 4.1: A UML activity diagram illustrating steps to develop the DSL tool

4.2 Requirements

To develop a tool that can identify architectural violations and deliver the results to the users automat-
ically, we need first to collect and analyze the requirements. In this assignment, the requirements were
collected by interviewing the Philips engineers. In the following, we will present the requirements.

REQ1 The tool must be able to formulate the architectural rules decided to be investigated in this as-
signment.
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It is expected to collect a set of architectural rules defined for Philips’ positioning software. Nev-
ertheless, due to the limitation of time and the workload required to implement each rule, it
may not be possible to implement all rules. That’s why the rules are prioritized before the im-
plementation of the tool. We must ensure that for rules selected to be checked, the syntax of the
implemented DSL must be expressive enough to describe the rule precisely.

REQ2 The tool must be expressive and extensible to define other architectural rules.
In terms of the architectural rules that are not selected in this thesis to be implemented in the
tool, it would be best if they could be formulated with the already designed DSL syntax. In case
the DSL syntax is not expressive enough to describe the rule, the tool must support the DSL users
to extend the syntax to accommodate the new rules.

REQ3 The tool must be able to report accurate results of architectural violations with respect to each
architectural rule.
We need to ensure that the tool is reliable and that the identified violations are indeed violations
of the rules. The false negatives in the results mean the tool fails to detect the existing violations,
while the false positives mean the tool reports the facts that are actually not violations. Both two
kinds of false results should be avoided as much as possible to improve the reliability of the tool.
Otherwise, we are not confident with the checking results, and the tool is not usable.

REQ4 The tool must be able to be integrated into the production environment of the positioning soft-
ware.
The ultimate target of the tool is to facilitate architects’ work in maintaining the architecture of
the codebase and notifying the developers of the newly introduced violations after they change
the code. Therefore, the tool must be able to be deployed on the server and deliver the new
results when the source code is changed.

REQ5 The tool must be able to deliver the checking results within a reasonable time. As a lowest re-
quirement, if the tool is running overnight, then the results should be available the next morning.
The tool is expected to be efficient in reporting the violations. Otherwise, new changes may be
introduced in the source code during the long execution time of the tool. In this case, the results
may be outdated, reducing the usability of the tool.

4.3 Architectural Rules

Collecting architectural rules is the premise for all of the subsequent design and implementation work.
The rules are mainly proposed by architects responsible for designing and maintaining the positioning
software. Additionally, some rules are also mentioned in the internal documentation [1]. In the follow-
ing, we will introduce the first three of the prioritized architectural rules collected through interviews
with three architects. The complete list of the architectural rules can be found in Appendix B. Each
rule description is attached with the rationale for why these rules are proposed specifically for Philips’
codebase.

Table 4.1: Dependency relationships between the layers

Dependent Layer A B C D E F G

Dependee Layer B, E C, D, E D, E E - B, C, D, E D, E

RULE 1 Each layer must only depend on the other allowed layers. The prescribed dependen-
cies are demonstrated in Table 4.1 and Figure 4.2.
In the dependency table, dependent means the layer requiring the services from the other
layer. Dependee denotes the layer that provides services to the dependents. The E layer is
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Figure 4.2: Visualization of the desired layer dependency

not allowed to have any dependee as it is a utility layer that cannot rely on the implemen-
tation of all the other layers. As mentioned in Section 2.2, the layers are presented in a
vertical order. This rule is necessary to be able to guarantee uni-directional data flow, but
not enough to guarantee it by itself. In other words, this rule contributes to avoiding invalid
data access and layer skipping. Overall, the intuition of this rule is to decouple the layers
and ensure each layer is only responsible for its designed functionality.

RULE 2 The communication between the layers must be conducted exclusively through the
interfaces defined in pub folder.
In Philips’ codebase, the header files are categorized into two groups based on their scopes:
public headers in pub folders and included headers in inc folders. The public headers can
be accessed by the external modules or layers, while the included headers are exclusively
for internal usage. As the interface is designed as an adaptor for the external modules
to access the components defined in the module that provides the interface, it belongs to
the public header. This rule is designed to maintain layer decoupling and control the hide
implementation so that only the interfaces defined as public are visible to external users.

RULE 3 It is not allowed to have dynamic memory allocation after the startup phase of the
applications.
Each layer of the positioning software has its own application, which is a C++ class imple-
menting the same abstract class. The life cycle of the application includes a startup phase,
an execution phase, and a shutdown phase. Each phase is characterized by one or multi-
ple functions declared in the abstract class. This rule specifies dynamic memory allocation
based on functions alloc, malloc, calloc, or operator new is only permitted during the
startup phase. This rule is proposed to prevent the applications from crashing during clinical
use, which corresponds to the application execution phase. If dynamic memory allocation
is allowed in the execution phase, the related functions may be called depending on the
real operation scenario. In this case, the exact amount of memory utilized is unknown. It
is possible that memory exhaustion occurs, leading to the termination of clinical operations
due to application crashes. Prohibiting all memory allocation in the execution phase forms
a stronger guarantee that such a calamity will never happen.

By comparing all the rules, we can find some rules, like RULE 1 and 2, are generic and can be
directly reused in other software, while some are highly specific to a module in Philips’ positioning
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software, such as RULE 3. In summary, among the 13 collected architectural rules, four rules are
specific to the codebase, and nine rules could be applicable and reusable to constrain the architecture
of other software.

As mentioned earlier, the architectural rules are prioritized for subsequent development. The pri-
ority is determined by three factors: the risk associated with the rule violation, the practicability of rule
definition and violation checking with a DSL tool, and the availability of ground truths to evaluate the
implementation quality. For instance, we decided to prioritize placing the rule related to layer depen-
dency in the first position, as the architect has already developed another tool to check it. Thus, we can
use the results of the architect’s tool as ground truth to evaluate the accuracy of our implementation.
With regard to the risk of violation, the rule with high impact on the operation of the software. For
example, a rule associated with deadlock is assigned high priority as it may lead to a system freeze.
Regarding the relevance to analysis on an architectural view, some rules are ranked lower. This is es-
pecially the case for the last rule aiming at avoiding hardcoded passwords. The hardcoded passwords
are hidden below the architectural level of the source code, while the target of this assignment focuses
on architecture erosion. Therefore, this rule is out-of-scope and assigned the lowest priority.

4.4 Workflow

Given that we have collected all the architectural rules, we proceed to the design and implementation
of the DSL tool. In this section, we first illustrate a high-level view of the DSL tool with respect to
workflow and data flow. Then, the detailed design of each tool component is interpreted in several
subsections.

CMake files

Architectural
rules

Collection of
include paths

M3 models

Rascal
data structure

READ
instance

Parsed by  a
CMake parser

Combined to
generate

models by a
generator

C/C++
source files

C/C++
headers

Identifying
violations by a

checker

Parsed by  a
DSL parser Violations

Process

Legend

Input Entity Datastore Output Entity

Figure 4.3: Data-flow diagram of the DSL tool

Since the study on the related work promotes the use of the EASY-paradigm [23] is an effective
design for a DSL tool aiming at software static analysis. We decided to follow this paradigm to construct
our own tool to check rule violations. As depicted in Figure 4.3, this tool operates mainly with four
components: a CMAKE1 parser, a model generator, a DSL parser and a violation checker. DSL parser is
a context-free grammar written in RASCAL that generates a parser. A parser translates the input source
text to parse trees, from which the desired rule components can be extracted for further analysis.

1https://cmake.org/
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The model generator and violation checker are the components that complete extraction, analysis and
synthesis. The generator extracts architectural information and composes it into models while the
checker inspects problematic code segments and summarizes violation facts. As for the other two
components, they make the preparation for the work by transforming the source data into desired
formats. With the cooperation of these four components, the DSL tool is capable of completing tasks
for rule violation checking.

From the aspect of data flow, the execution of the tool requires three kinds of data. The first one is
the C and C++ header and source files provided by the codebase. They are the research subjects of this
project. The second type of data is the paths collected from the CMAKE files. These CMAKE organize
the source files in the codebase and facilitate the build process. The last essential data source is archi-
tectural rules. We need to apply domain knowledge about the positioning software to resolve the rules
and map the important rule information to a representation described with the DSL. In Figure 4.3, we
can find two parallel dataflows starting from the codebase and architectural rules, respectively, even-
tually converging at AE-checker for violation checking. That means the checker essentially compares
code implementations and rule designs to find the divergences in between. Overall, the implemented
tool accepts the CMAKE files, C/C++ code and the architectural rules are input and exports the rule
violations as output.

To have a better understanding of how the tool composes the data together to derive the violation
facts, a concrete example is illustrated in Figure 4.4. In this example, a rule specification is implemented
aiming at checking the disallowed dependency of a module called C. This module is permitted to include
the headers from two folders in module A and one folder in module B. The checks are expected to be
performed on the C++ files. With the DSL parser, the instance is parsed to build a CST, which is further
abstracted and stored in RASCAL data structures. Here, the single string in the instance is reserved as
a string, while the variables in the instance, such as directories and functions, are converted into a
binary relation. In this way, we have an internal representation of the instance input.

Abstract Syntax
Tree

m3(

 macroExpansions={},

 methodInvocations={

   <|cpp+method:///demo/setter()|,

      |cpp+function:///root/C/impl/src/demo.cpp/getAData()|>,      

   <|cpp+method:///demo/setter()|,

      |cpp+function:///root/C/impl/src/demo.cpp/printDConfig()|>},

 requires={

   <|file:///root/C/impl/src/demo.cpp|,|file:///root/A/view/inc/utils.hpp|>,

   <|file:///root/C/impl/src/demo.cpp|,|file:///root/D/config.hpp|>

 },

    ...

)

checkDependency(rule_name, dependent_model, dependees)

#include "..\A\view\inc\utils.hpp"
#include "..\D\config.hpp"
#include <iostream>
class demo{
private:
    int val;
public:
    demo(int val) {this->val = val;};
    ~demo(){};
    void setter();
};
void demo::setter(){
    val = getAData();
    printDConfig();
    std::cout << "set value" << std::endl;}

alias{
    APaths: Directory [A/view/inc, A/platform/model]
}
check{
    rule name: moduleDepRule{  
        depend{
            source: Directory [C/impl/src]
            header: APaths, Directory [B/service]
        }
    };
}

set[loc] APaths= {
    |file:///root/A/view/inc|, 
    |file:///root/A/platform/model|
};
str rule_name = "moduleDepRule";
rel[str, str] dependents = {
    <"Directory", "file:///root/C/impl/src">};
rel[str, str] dependees = {
    <"Directory", "file:///root/A/view/inc">, 
    <"Directory", "file:///root/A/platform/model">,
    <"Directory", "file:///root/B/service">
};

Checker module

Source File: root\C\impl\src\demo.cpp

Rule Instance in DSL

Concrete Syntax
Tree

M3 Model (dependent_model)

Data Structure in Rascal

Figure 4.4: A concrete example of architectural rule checking

As the target of this rule is to check the invalid inclusion in the source files of module C, the checker
checks the source files within the specified dependent folder one by one. In Figure 4.4, a source file
named demo.cpp is checked. This file includes a header from module D, which is a violation as it
builds a disallowed dependency between module C and D. To mine this violation, the source file is first
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parsed to an AST and then composed to a M3 model, in which the requires field contains the fact of
violation. In the last step, a checking function is implemented to compare the data in the requires
field with the allowed dependees specified in RASCAL data structure. In this way, the disallowed
headers are extracted and stored.

Having known the workflow of the DSL tool, we can now have a detailed view of the aspect of
the implementation from READ’s UML package diagram in Figure 4.5. This figure reveals how the
project is organized and how the modules relate to each other. Here, a module is a term in RASCAL

denoting the collection of codes in the source file. Each source file is encapsulated as a module that
can be imported by the other source files. For the sake of simplicity, the main function that includes
all the modules is not depicted in the figure. This function determines the direction of the data flow
and the execution order of the modules. As shown in the figure, the DSL tool is composed mainly of
two packages. The CMAKE parser package contains a syntax module to match the lexical grammar and
syntax of the CMAKE. The matched CMAKE elements are extracted and composed to a CST by a built-in
parser in RASCAL. As the operations of the include path extractor are based on the AST of the CMAKE

code, the generated CST is further transformed to an AST through the RASCAL function implode. This
function generates an abstract view of the CST such that the nodes are presented with RASCAL built-in
types or data structures. They are then used to extract the include paths to collect the directories of the
source files, headers and include paths. Although RASCAL also supports code analysis directly on CST,
our CMAKE parser’s implementation relies on the AST. The decision was made during the development
stage when we were unaware that the include paths could be directly extracted from the CST. As
transforming the implementation from being based on AST to CST would require considerable effort,
we decided to stick with the original AST-based implementation. To summarize, the CMAKE parser
takes the CMAKE files as input and exports the desired directories as output from the extractor to the
external modules.

In terms of the DSL, a syntax file is implemented such that the architectural rules can be formulated
with the provided grammar. Another source of the input, C/C++ source files and headers, is forwarded
to the model generator module, which requires the include paths from the CMAKE parser to transform
the source files to M3 models. The DSL parser, on the one hand, receives a DSL instance of the ar-
chitectural rules and parses the content to build a CST. This process is the same as the parsing phase
of the CMAKE parser. On the other hand, every time a rule is parsed, the parser requests the checker
to check the rule by calling the related checking functions. In the checker module, multiple checking
functions are implemented to collect violations by comparing the rule constraints with the facts in M3
models. Here, no explicit dependency between the model generator and the checker exists because all
the generated models are saved to disk during model generation and read from the disk during rule
checking. Each parsing process is followed by a checking process until all the rules are parsed and
checked. Eventually, a list of violations is collected. Additionally, a language register is implemented
to register the DSL and provides some IDE features in the instance, such as syntax highlighting and
code navigation, enabled by the standard libraries in RASCAL and TYPEPAL. We also implemented an
internal utility package for the DSL modules. This package offers functions facilitating the filtration on
the fields of the M3 models and the generation process for the paths and models.

Except for the two main packages mentioned above, a utility package accessible for both packages
is implemented. Besides, three standard libraries or extensions of RASCAL are required for the tool’s
implementation. RASCAL library is the foundation of all the implementations, while modules from
TYPEPAL and CLAIR are imported depending on the specific requirements of the DSL. The implemen-
tation of the CMAKE parser is maximally decoupled from the DSL tool, with only the path extractor
providing all the necessary data to the external modules. As the CMAKE parser merely depends on the
RASCAL library and custom utilities functions, it may be reused in other CMAKE projects that have a
similar naming convention as the codebase.

4.4.1 Model Generation

This section demonstrates how the M3 models are generated given the C and C++ source files. It
consists of two components: a CMAKE parser to collect the include paths for each source file and a
model generator that extracts information from source code and transforms it into M3 models.
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Figure 4.5: UML package diagram of READ

CMAKE Parser

The goal of model generation is to transform source code into M3 models. This process mainly relies on
the functions CreateM3FromCFile and CreateM3FromCppFile provided by CLAIR. The functions
require not only the directory of the source file but also the include paths used by the source file.
For C and C++ programs, include paths are the directories to the folders that contain the header files
included by the source file. These paths are equivalent to the parent directories of the headers specified
with #include syntax in C and C++ source files. Include paths are important for the accuracy of READ
because name resolution and type resolution for source code artifacts will be incomplete without an
accurate include path. Incompleteness will lead to both false positives and false negatives in the design
of rule violation detection, with unknown quantities.Therefore, to successfully construct M3 models,
we need first to collect include paths.

The include paths can be characterized by three data sources: codebase header files, headers of
the third-party dependencies and the standard libraries. As the include paths are required by the pre-
processor during the compilation, we decided to parse the CMAKE files to extract the paths. CMAKE is
a tool to construct compilation commands and manage building processes with a C++ compiler [28].
It enables the developers to use CMakeLists.txt to describe the build configurations by specifying the
include path, source files and compiler options. These configurations are grouped within a CMAKE

project, which is the elementary unit in CMAKE that determines the scope of the defined variables and
paths. Software may contain multiple CMAKE projects, which are connected by calling the command
add_subdirectory. Each project represents a target, which can be a library or an executable. They
are a composed representation of the specified, include directories and dependencies. In Philips’ code-
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Listing 4.4.1 An example of CMakeLists.txt in the codebase

1 project(A)
2 set(TARGET_NAME A)
3 set(${TARGET_NAME}_IDE_FOLDER "A")
4 add_subdirectory(SubA)
5

6 set (${TARGET_NAME}_DIRS
7 ${EXTERNAL_PATH}
8 ${EXTERNAL_PATH}/tools
9 ${A_PATH}/service

10 )
11

12 set(${TARGET_NAME}_SOURCES
13 ${A_PATH}/include/AConfig.hpp
14 A.hpp
15 A.cpp
16 )
17 configureLibrary(${TARGET_NAME} FLAG)
18

Common

A B

ROOT

C D E

F Core Legacy

Legend

Folder in Philips'
codebase

G

Figure 4.6: A illustration of part CMAKE tree in Philips’ codebase

base, the CMAKE projects are eventually encapsulated into a Visual Studio Solution, which leverages
Visual Studio’s build system to build and execute the program. Listing 4.4.1 is a simplified CMakeList.txt
in the codebase. Here, a project named TEST with the target name and required include directories as
well as source files are defined. The specified paths are further encapsulated into a library. The project
is linked to another subproject SubTest such that the whole software is configured recursively. That
means, to collect all the include paths, we need to start from the root project and build a CMAKE tree
as illustrated in Figure 4.6. The tree traversal is a depth-first search (BFS) process which we only begin
visiting a subtree when the include paths at all the leaf nodes of the last subtree are extracted. In this
way, the parsing process starts from folder A and ends with the folder for legacy code.

From a practical standpoint, the implementation of the CMAKE analyzer should simulate the work-
ing process of CMAKE based on the BFS algorithm. We first implement a syntax file in RASCAL to match
the CMAKE grammar and build a parse tree. In this way, each component presented in CMAKE text is
mapped to a node in CMAKE AST. After that, operations are applied on specific AST nodes. Figure 4.7
reveals the workflow when parsing the files. As the CMAKE project determines the visibility and ac-
cessibility of the include paths and source files indicated in the CMAKE files, we use a tree to store
the defined variables by projects. Specifically, the project name is the key of the outer map, while the
variable name and a list of values constitute the pair of the inner map. Besides, we construct another
map to record the project hierarchy with the name of the child project as key and the parent project
name as value. A third map is created to store the specified directories by CMAKE file. In this way,
every time a add_subdirectory command presents in a CMAKE file, a new key-value pair is added
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Figure 4.7: The simplified flowchart for CMAKE parsing process constructed in accordance with ISO
5807 [13]

to the maps. This is a recursive process until a leaf CMAKE file is reached.
Moreover, CMAKE allows the directories to be specified with variable references, as shown in lines

7 to 9 in Listing 4.4.1. The resolution of the references is achieved by checking the key-value pair of
the current project in the data map. In case the reference is not defined in the current project, the
parser will proceed to search the paths provided in the parent projects successively until reaching the
root project. At the end of the analysis, each CMAKE project is transformed into a list of directories
representing the include paths and source files. These lists are forwarded for the model generation
process described in the next subsection.

Model Generator

After identifying the include paths for each source file, a model generator is implemented to build
M3 models by applying the functions CreateM3FromCFile and CreateM3FromCppFile provided
by CLAIR. Internally, both functions forward the directory of the source file and are required include
paths to Eclipse CDT to parse the C or C++ code in the source file. As a result, each source file is
transformed into a single CLAIR AST. However, AST is not an optimal representation of the source code
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as it is time-consuming to visit all ASTs, considering a large number of source files in the codebase.
Besides, compared to the M3 model, AST is a large and dense data structure that requires a larger
space to store the data. Thus, the CLAIR ASTs are further extracted and composed into M3 models.
M3 models provide us with the flexibility to search for different kinds of source code information with
RASCAL primitives. Eventually, each source file corresponds to a M3 model, which is stored as a binary
file for efficient IO operations. We also build for each layer a composed M3 model with the function
composeCppM3 to prepare for the layer-based analysis in the checking phase.

Algorithm 1 M3 model generation

Input:
A {sourceToIncludePath} map with source file location as key and a list of include paths as
value
A {sources} list containing the location of all the C and C++ files in the codebase
A {stdLib} list containing all the locations of all standard libraries required by the source files
A {defaultIncludePaths} list containing the default include paths

Output:
Binay files of M3 models

1: for each s ∈ sources do
2: model ← emptyModel()
3: if s ∈ sourceToIncludePath.ke ys then
4: if s is a C file then
5: model ← createM3FromCFile(s,stdLib,sourceToIncludePath[s])
6: else
7: model ← createM3FromCppFile(s,stdLib,sourceToIncludePath[s])
8: end if
9: else

10: if s is a C file then
11: model ← createM3FromCFile(s,stdLib,defaultIncludePaths)
12: else
13: model ← createM3FromCppFile(s,stdLib,defaultIncludePaths)
14: end if
15: end if
16: path← createSavePath(s)
17: writeBinaryFile(path, model)
18: end for

Algorithm 1 provides a more concrete view of the implementation for the model generation process.
As mentioned in the last subsection, each source file is mapped to a list of include paths after the CMAKE

parsing process by implementing the data structure sourceToIncludePath. However, not all source
files are presented in CMAKE, as some source files are directly used to build a solution or generated
during the build process. Therefore, a default list of include paths defaultIncludePaths is prepared
for these undetected source files.

Moreover, the C and C++ standard libraries are excluded from the CMAKE files because the paths to
these libraries are, by default, included in the compiler search space. To enable the model generation,
these paths, stored in the list stdLib, are forwarded explicitly to CLAIR. From the algorithm, it is clear
that each source file is evaluated whether it is detected by the CMAKE parser. If so, then the M3 model
is generated with the corresponding collected include paths. Otherwise, the default paths are used. In
the end, the generated M3 models are written to disk as binary files for subsequent checking processes.

While generating the models, RASCAL may report messages that certain include paths for a specific
source file are missed. The possible causes could be that the CMAKE parser does not parse the paths
correctly, or some CMAKE features defining include paths are not discovered by the CMAKE parser.
To diagnose the problems, we compare the parsing results with the corresponding CMAKE files and
improve the implementation iteratively. This process contributes to the minimized number of missed
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include paths and enables the M3 models to present more comprehensive information given the source
files.

4.4.2 Design of the Domain Specific Language

Apart from converting source code into M3 models for better information querying, another prepara-
tion work for rule checking is to translate the representation of architectural rules from natural lan-
guage expression to data structures readable for RASCAL. In the context of this assignment, we mainly
focus on the implementation of the first three architectural rules listed in Section 4.3. By applying
incremental development, we initially designed the DSL syntax for the first rule and then extended it
to accommodate the description of the other rules. To facilitate the description of the DSL design, we
first demonstrate the overall language structure with a DSL instance. Then, the functionality of each
language component is interpreted.

Language Layout

A READ instance is comprised of three blocks: an alias block, a template block, and a checking block.
As presented in Listing 4.4.2, the alias block allows the user to define an alias name for a list of vari-
ables. The declaration of the variable is associated with the type, including function, operator, macro,
string, file and directory. It is allowed that aliases represent multiple types of variables as the sub-
ject and object of an architectural rule may be related to different kinds of source code components.
By replacing complex and lengthy statements with an alias, the long lists representing the code arti-
facts like directories and function names can be avoided. This mechanism contributes to the enhanced
readability of the program.

As revealed in the example in Listing 4.3.2, READ supports two kinds of statements —depend- and
use-statement —to specify the rules. Additionally, a template block is provided to reuse the body of a
rule definition. Following is a brief description of the syntax features of READ. A detailed discussion
about them is given in the next subsections.

• Depend-statement describes the intended dependency between the files. A dependency is built
when a source file includes a header file. The checker inspects all the included headers to deter-
mine whether they are the allowed dependencies of the given source file.

• Use-statement is related to the function calls in the program. If a function invokes in its defi-
nitions another function, then the caller function uses the callee function. The use-statement is
used to specify the allowed pairs of caller and callee, while the unspecified pairs are regarded as
violations by the checker.

• Combinators are used for both depend and use primitive to formulate rules. These combinators
include:

– Negation is used in depend-statement to indicate whether the dependent is allowed or
not allowed to depend on the dependee. If it is allowed, further checking on the allowed
public interface could be performed. Otherwise, it makes no sense to check the interface
as the dependency is already not allowed. Negation is also used in use-statement with the
combination of ANY and EXIST.

– Keywords ANY and EXIST are used in use-statement to constrain the users. Combining
with negation, four use cases are supported by the language: ’ANY user not use target’
means any one of the specified users cannot use all the listed targets. ’ANY user use target’
means any one of the specified users must use at least one of the listed targets. ’EXIST user
not use target’ means at least one of the specified users does not use all the listed targets.
’EXIST user use target’ means at least one of the users uses at least one of the targets.

• Template block serves as a modularization part in DSL to improve code reusability. Each template
consists of a template name, one or more parameters, and a template body. It works like defining
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macro functions in C programming which a rule template is defined with the given parameters.
The parameters are marked with a pair of angle brackets, indicating that they can be replaced
by arguments in template invocation to formulate different rules. This block enables multiple
similar rules to be declared in a compact way.

Listing 4.4.2 An example of READ instance
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alias{

 DMA: Function [alloc, malloc, calloc], Operator [new, new[]], Macro [CREATE,
 ARRAY_ALLOCATE];

 startupPhase: Function [appInit, appPrepare, appStart];
 execPhase: Function [appRefresh, appRefreshFrgnd2, appExecute, appExecuteFrgnd2];
 iLayerD: Directory [
 D/samc/pub, D/interface/pub, D/configuration/pub, D/filter/pub,
 ];

}

// templates for rule definition 
rule templates{

dependency(ruleName, dependent, dependee, allowedInterfaces, allowedFormat){
 rule name: <ruleName>{
 depend{
 dependent: <dependent>
 depend on: <dependee>
 interface: <allowedInterfaces>
 }
 format of files to be checked: <allowedFormat>
 }

noUse(ruleName, sources, constraint, user, target){
 rule name: <ruleName>{
 check source files: <sources>
 constraint{
 <constraint> user in: <user>
 not use target: <target>
 }
 }
}

check{
dependency(Str [layerE_Rule], [Layer [layerE], Directory [layerD/pub]], NONE, NONE,
 Format [cpp]);
noUsage(Str [sleep_Rule], Directory [layerE/application.cpp], ANY, ALL, Function
 [sleep]);

rule name: layerC_Rule{
 depend{
 dependent: Layer [layerC]
 depend on: Layer [layerD, layerE]
 interface: iLayerD
 }
 format of files to be checked: Format [cpp] 
};

rule name: dynamicMemory_Rule{
 check source files: ALL
 constraint{
 ANY user in: execPhase
 not use target: DMA
 }
};
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The checking block is responsible for the execution of rule checkings. The DSL supports two meth-
ods to execute the checking processes. One is calling the rule templates with arguments. The argument
can be either an alias defined in the alias block or concrete variables. As shown in lines 36-39 and 51
of the instance, the DSL provides built-in keywords NONE and ALL to specify a rule that is applicable
for none or any case. For example, we can specify all of the source files to be checked by using ALL in
line 51. Similarly, the dependee in depend-statement can be set to None to indicate that the dependent
is not allowed to depend on any layer. Besides, the language offers a list of predefined variables with
the type Layer for the user to implement layer-dependent rules. The reason for this predefinition is
that layer-based checkings require composed layer models, which entails a significant time investment
in the model composition process. To mitigate the response time during the checking, we decided to
construct the layer models during the model generation phase. Another way to check the rules is to
directly define the rules in this block. The rules are automatically checked after definitions. This cor-
responds to lines 40-61 in the instance that layerC_Rule and dynamicMemory_Rule are checked
subsequently after they are defined.

As mentioned in the description of the syntax features, the language enables the combination of
negation and constraints to formulate the rules. Depend-statement allows the use of negation to in-
dicate whether the dependency is permitted or not. In terms of Use-statement, as mentioned before,
it requires the combination of negation and the keywords ANY and EXIST to specify the constraint.
Once any fact is identified that does not satisfy the constraint, the checking function will return a false
value, and the checker records a violation.

Having described the functionality of each block, we will now proceed to demonstrate the structure
of the DSL syntax with UML class diagrams. Although in RASCAL language syntax is not grouped in
classes, we find class diagram a suitable approach to model the relationships between syntax compo-
nents. Specifically, each class corresponds to a syntax definition, which can be either a nonterminal
or a terminal in a context-free grammar. Each syntax definition can be refined by the composition of
other nonterminals and terminals, which can be illustrated by the aggregation notation in the class
diagram. Additionally, RASCAL supports declaring alternatives for syntax definitions. This feature can
be mimicked by the inheritance relationships between the blocks. Based on this mapping, we trans-
form the textual syntax definition into a graphical representation. The class diagram of the entire DSL
syntax is in Appendix C. As a part of the language, Figure 4.8 illustrates how the syntax definitions
are derived from the root syntax. The language syntax diverges from the start point Build, forming
the syntax definitions of the three blocks. Moreover, we distinguish the definition with different colors
to indicate whether it is a nonterminal or terminal. For example, an alias statement is a pair of alias
names and a list of values. Similar to AiasPair, TemplateStatement and CheckStatement are
also associated with a subtree of syntax definitions, which will be discussed in the subsequent sections.

Build

AliasPair CheckStatement

1

0..* 0..* 0..*

TemplateStatement

AliasName

name: string

AliasValue

val: string

1

1..*1
Terminal

Nonterminal

Legend

Figure 4.8: Syntax structure of the three blocks
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Depend-statement

In the following two subsections, we demonstrate the syntax design for CheckStatement. This syntax
definition is the core of the DSL where architectural rules are defined. The statement consists of
two variants: depend- and use-statement. The former one is interpreted in this subsection, which is
designed to implement RULE 1 and 2. Both rules constrain the dependency relationships between
the layers. Thus, the headers included by the source files are the targets for investigation. To design
the depend-statement, we first analyze the rule descriptions to extract the rule subject and object and
determine the constraints with the required dependency. With the abstracted rule content, we then
design the statement layout to formulate concrete rules.

As a result, as shown in lines 40-47 of Listing 4.4.2, the rule contains two components dependent
and depend on specifying which components depend on which components. Here, we compose the
definition of RULE 1 and 2 into one rule definition within the depend-statement. To define RULE
2, an optional interface statement is proposed to describe the directories of the allowed interfaces.
Additionally, as both C/C++ source files and CMAKE files provide the information about which headers
are required, the checks of RULE 1 and 2 can be conducted on two kinds of input files. Thus, the syntax
contains a choice to indicate which types of source data to check.

In terms of syntax structure resolved from CheckStatement, Figure 4.9 and Listing 4.4.3 illus-
trate that depend-statement is composed of two nonterminals to describe allowed and disallowed
dependency. These nonterminals have the same structure consisting of four terminals RuleName,
Dependent, Dependee and Format to formulate the skeleton of the rule. Optionally, the nontermi-
nal InterfaceStatement can be added to declare the allowed interface of the source files under
investigation.

TerminalNonterminal

Legend
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Figure 4.9: Definitions of depend- and use-statement in DSL syntax
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Listing 4.4.3 Syntax of template invocation, use- and depend-statement

1 syntax Statement
2 = tplInvocation: TemplateInvocation
3 | dependDef: Depend
4 | useageDef: Use
5 ;
6 syntax TemplateInvocation = tmpInvoke: TplName templateName "(" {ArgumentValue ","}* argVal
7 !>> "," ")" ";" ;
8 syntax Depend = depend: "rule" "name" ":" Id ruleName "{" DependStatementContent content
9 "format" "of" "files" "to" "be" "checked" ":" "Format" "[" {Format ","}+ formats !>>

10 "," "]" "}" ";";
11 syntax DependStatementContent
12 = dependStatement: DependStatement
13 | notDependStatement: NotDependStatement
14 ;
15 syntax DependStatement = dependStat: "depend" "{" "dependent" ":" {ComponentStat ","}+
16 dependentCompStat !>> "," "depend" "on" ":" {ComponentStat ","}+ dependeeCompStat
17 !>> "," InterfaceStat? interfaceStat "}";
18 syntax NotDependStatement = dependStat: "not" "depend" "{" "dependent" ":"
19 {ComponentStat ","}+ dependentCompStat !>> "," "depend" "on" ":"
20 {ComponentStat ","}+ dependeeCompStat !>> "," "}";
21 syntax Use
22 = simpleUse: "rule" "name" ":" Id ruleName "{" "check" "source" "files" ":"
23 {ComponentStat ","}+ sources !>> "," "constraint" "{" UseStatementContent content "}" "}"
24 | conditionalUse: "rule" "name" ":" Id ruleName "{" "check" "source" "files" ":"
25 {ComponentStat ","}+ sources !>> "," IfStatement+ statements "}"
26 ;
27 syntax UseStatementContent
28 = useStatement: User user "use" "target" ":" Modifier? modifier {ComponentStat ","}+
29 usedCompStat !>> ","
30 | notUseStatement: User user "not" "use" "target" ":" Modifier? modifier
31 {ComponentStat ","}+ usedCompStat !>> ","
32 ;
33 syntax IfStatement = ifStat: "if" "(" IfCondition condition ")" "{" "constraint" "{"
34 UseStatementContent content "}" "}" ;
35 syntax IfCondition = use: UseStatementContent content;

Use-statement

The use-statement is specifically designed to describe the constraints between the functions. Com-
pared to depend-statement, which relies on the checking of directories of the layers, the use-statement
possesses finer granularity and inspects the function calls or variable usages within the defined scope.
Therefore, when a specific architectural rule is to be checked, we must first distinguish whether the
rule constrains the relationships between the files or function calls. This distinguishment enables us to
determine which syntax statement to construct the rule in the DSL instance.

The objective of the use-statement is to verify, for each specific source file, whether at least one of
the target functions is subsequently called after calling a user function defined in this file. The design
workflow of use-statement is the same as depend-statement in that we resolve the architectural rules
suitable to be described with use-statement and design a generalized layout to present the rules. For
example, RULE 3 and RULE 5 can be formulated with the use-statement. A concrete example is between
lines 49 and 55 in Listing 4.4.2. This example shows a fundamental structure of use-statement layout
consisting of a collection of source file directories, target functions and user functions that invoke other
functions. To ensure unambiguous constraint definition, it is mandatory to specify the modifier ANY or
EXIST before the statement of the user in the DSL. This modifier clarifies that the constraint is fulfilled
either when all the using functions in the source file conform to the rule or when at least one user
adheres to the rule.

Concerning syntax structure, Figure 4.9 and Listing 4.4.3 provide an elucidation of the use-statement,
comprising two nonterminals denoting "use" or "not use" scenarios. Both of them are composed of five
mandatory terminals, namely (RuleName, Sources, User, Target and Modifier). Additionally,
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two optional terminals, Descriptor and Except, are designed to facilitate flexible filtration of user
functions. The DSL also allows the incorporation of pre-conditions in a use-based rule by employing
IfStatement. It consists of a condition and a body, enabling the reuse of the use-statement. This
syntax is implemented to define the improved formulation of RULE 3, which will be discussed in Sec-
tion 5.2.3.

Modularization

To enhance code reusability, we introduce a template block in language syntax that enables the user to
define the architectural rules in a more modular and compact way. As illustrated in Figure 4.10, a rule
template consists of a template name, a list of parameters and a body RuleTplDefineStatement rep-
resenting the content of the rule template. The templates present a similar layout as the rules defined
with use- and depend-statements, except that rule subjects and objects are replaced with parameters.
Therefore, a RuleTplDefineStatement can be resolved into four types of template bodies based on
the content of the desired rule. In this way, a rule can be implemented with template reference, which
favors code reuse and improves maintainability.

By combining Figure 4.9 and Figure 4.10, we can find the template invocation is linked with the
template definition through the unique template name. When the template name is matched, the
parameters are mapped to the arguments based on the order they are declared. This matching process
requires additional checking, which will be introduced in the next subsection.
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Figure 4.10: Definitions of template block in DSL syntax

Well-formedness Checking of READ Instance

A static semantics is regarded as well-formed if it conforms to the prescribed syntactic rules. If a READ
specification is not well-formed, then its execution is undefined. Therefore, before checking the rules,
the rule formulation must be well-formed. The goal of the checkings mentioned in this subsection is to
restrict the input code and avoid any unnecessary overhead for solving ambiguity and type mismatch
problems in the phase of violation detection. In terms of the READ instance we implement, the following
rules are defined:

• No duplicated declarations of an alias name, template name and architectural rule name;
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• No use of alias before they are defined;

• No use of rule template before they are defined;

• The Paths specified with the type Directory and File must exist in file system;

• The supported formats for depend-statement are limited to C, C++ and CMAKE;

• The inspection targets specified in the depend-statement must be within the types: Layer,
Directory and File;

• The number of the arguments in template invocation must be equivalent to the number of the
parameters declared in the template.

The well-formedness of the DSL is checked by investigating the CST of the inputted DSL instance.
The first three rules are comparatively more straightforward to verify by using some features in TYPE-
PAL. For example, Listing 4.4.4 checks use-before-define violations in the instance. When parsing the
AliasPair syntax, a collector defines the alias name to be a role alias(). In the case the alias
name is called, the collector states this use case with the role of the alias. Through this define-use
mechanism, TYPEPAL checks whether the required alias is already defined.

Listing 4.4.4 Implementation of no-use-before-define rule with TYPEPAL

1 void collect(current: (AliasPair) `<Id name> : <{ComponentFull ","}+ aliasComp> ;`,
2 Collector c){
3 c.define("<name>", aliasId(), current, defType(aliasType("<aliasComp>")));
4 collect(aliasComp, c);
5 }
6

7 void collect(current: (ComponentAlias) `<Id compAlias>`, Collector c){
8 c.use(compAlias, {aliasId()});
9 }

10

Compared to the first three rules, the implementation of the remained rules is independent of TYPE-
PAL. While matching the instance with syntax, we extract the nodes containing the statements related
to directories and verify their existence. Similarly, we query the nodes representing depend-statement
to analyze whether the specified depended components and source data formats comply with the rules.
As for the last rule, we compare the parse tree of TemplateStatement and TemplateInvocation
to ensure the number of arguments is identical to the number of parameters. This rule can also be
implemented with TYPEPAL but at the time of development, we were learning this library and unaware
of this feature.

4.4.3 Architecture Erosion Checking

In this section, we will explain the last but also the most significant component of the DSL tool, namely a
checker for AE detection. The implemented checker is mainly for the checks on the three architectural
rules mentioned in Section 4.3 but is also useful and extensible for the other rules. The checking
process can be summarized as a comparison between the source code facts in M3 models and the rule
constraints in the data structure generated during DSL instance parsing. As mentioned in Section 4.4.1,
the source code is transformed into M3 models, which are stored as binary files on disk. Each checking
process mentioned in this section requires reading the models to memory and performing the analysis
on the models. In the following section, the design and implementation of the checker are elaborated
on rule by rule.
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Disallowed Layer Dependency

As stated in RULE 1, the dependencies between the layers are restricted to the explicitly specified
directories. If a source file includes a header defined in another layer, then a dependency between the
layer of the source file and the layer of the header is established. Therefore, to identify the violated
dependency relationship, the included headers of the source files need to be checked. This goal can be
realized either by directly checking the source files or analyzing the CMAKE files. In the following, we
explain the implementation of both methods with the example shown in lines 40-47 in Listing 4.4.2.
In this example, it is defined that the C layer can only depend on D and E. As the preparation work, a
composed M3 model dependentModel for all the source files defined in C is constructed.

Algorithm 2 Checking of the disallowed layer dependencies

Input:
A {isAllowed} bool variable indicating the dependency is allowed or not allowed
A {dependentPaths} set containing the directories of all the source files specified for the depen-
dent
A {dependeePaths} set containing the directories of all the source files specified for the dependee
A {dependentModel} M3 model representing the data of all the source files specified for the
dependent
A {allPaths} set containing the directories for inspection

Output:
Violations represented in a binary relation with the scheme <source file in dependent, header file
in dependee>

1: violations← emptyRelation()
2: sourceToIncludedHeader← dependentModel.requires
3: for each < source, header >∈ sourceToIncludedHeader do
4: if isAllowed is t rue then
5: if header ∈ (allPaths\union(dependeePaths, dependentPath)) and source ∈ allPaths then
6: violations.add(source, header)
7: end if
8: else
9: if header ∈ dependeePaths and source ∈ allPaths and header ∈ allPaths then

10: violations.add(source, header)
11: end if
12: end if
13: end for
14: return violations

If the source files are the focus of inspection, we query the requires field, which is a binary relation
presenting a mapping from the source file to its includes from the composed M3 model to extract all
the included headers of C. Subsequently, the violations are determined by identifying the intersection
between the extracted headers and the headers defined in D and E. To implement this design, we have
developed Algorithm 2, which offers a more generalized solution to check layer dependencies. This
algorithm requires five input parameters. The first three are directly obtained from the parsing results
of the DSL instance, while the last two data structures are generated prior to the checking process. The
allPaths set restricts the scope of checking, as not all the source files and headers in the codebase
need to be examined. The isAllowed indicates whether the rule defines an allowed or a disallowed
dependency. If the dependency is allowed, then we filter out any included headers that are not part of
the dependee and dependent. Conversely, if the dependency is not allowed, we inspect all the headers
provided by the dependee.

If the CMAKE files are the source data for dependency checking, then a similar process is applied
to the CMAKE files. The CMAKE files are categorized into different layers. The specified header files in
each CMAKE file are compared against the set of disallowed directories to obtain the ones resulting in
violations.
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Non-public Interface Usage
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Figure 4.11: Folder structure of the code base

In the codebase, each layer comprises multiple modules organized with similar folder structures.
As illustrated in Figure 4.11, C and C++ source files are grouped in src folder. As for header files,
they are segregated into inc and pub based on their purpose. Headers indented for inclusion in the
source files from the same module are stored in inc, while headers specific to external source files
from other layers are placed in pub.

It is important to note that the examination of RULE 2 always follows RULE 1. When there are no
violations of RULE 1, this allows us to have the assumption that disallowed dependencies would not
exist in the system when checking the use of non-public interfaces. Considering Figure 4.11, if it is
specified that Layer B is permitted to depend on Layer A but not on Layer C, then the source files in
Layer B can only access the headers in the pub folder of Layer A and none headers from Layer C. With
the assumption made above, we only need to focus on whether non-public interfaces are present in
the set of included headers provided by Layer A.

Algorithm 3 Checking of the uses of non-public interface

Input:
A {isAllowed} bool variable indicating the dependency is allowed or not allowed
A {interfaces} set containing the directories of all the source files specified for the dependent
A {dependeePaths} set containing the directories of all the source files specified for the dependee
A {dependentModel} M3 model representing the data of all the source files specified for the
dependent
A {allPaths} set containing the directories for inspection

Output:
Violations represented in a binary relation with the scheme <source file in dependent, header file
in dependee>

1: violations← emptyRelation()
2: sourceToIncludedHeader← dependentModel.requires
3: for each < source, header >∈ sourceToIncludedHeader do
4: if isAllowed is t rue then
5: if header ∈ (allPaths \union(interfaces, dependentPath)) and source ∈ allPaths then
6: violations.add(source, header)
7: end if
8: else
9: if header ∈ interfaces and header ∈ allPaths and source ∈ allPaths then

10: violations.add(source, header)
11: end if
12: end if
13: end for
14: return violations
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Algorithm 3 provides a description of the implementation of this rule. It is almost the same as RULE
1 in that we query the requires relation of the dependent’s M3 model to filter the include paths that
do not serve as a public interface. In addition to source files, the algorithm can also be applied to
CMAKE files to investigate the violations.

Dynamic Memory Allocation

As described in RULE 3, dynamic memory allocation is only allowed during the application startup
phase. To clarify the implementation of the rule, we need to answer three questions:

• How is dynamic memory allocation implemented in C and C++?

• How are the startup and execution phases defined in the codebase?

• How to define the boundary after which the startup phase ends?

The first question is solved with the documentation that in C++ and C, dynamic memory is al-
located by using the functions alloc, malloc, calloc, and the operator new. In the codebase,
a macro, which serves as a wrapper for alloc, is defined to complete dynamic memory allocation.
In Listing 4.4.2, an alias called DMA is defined to refer to the built-in operator and functions responsi-
ble for dynamic memory allocation. Therefore, the rule conformance checking is converted to explore
the presence (and absence) of the calls on these functions or operators after the startup phase.

To answer the second question, we investigated the codebase and found that the phases of an ap-
plication can be characterized by the specific functions called in this phase. At lines 3-5 in Listing 4.4.2,
two aliases startupPhase and execPhase are specified to represent a list of functions invoked in
the corresponding phase, respectively. All of these functions are declared as virtual functions in an
interface of Layer E. The implementation of these virtual functions varies based on the requirements
and expected functionalities of the application in different layers.

As for the third question, the operations in the startup phase involve three steps, starting from
initialization to preparation and ending up with application start. Following the start, the application
enters the execution phase by calling the execution and refresh functions. Therefore, we can check
the functions defined in the execution phase whether they invoke the functions or use the operators
that indicate dynamic memory allocation. Here, the method invocation includes not only the methods
directly called in the definition of execution functions but also the transitively called ones.

Having determined the answers to the questions, we designed the rule checking by querying the
data in the M3 models. As shown in Algorithm 4, our target is to extract all the function calls with the
logical names starting with the cpp+new scheme or ending in the function name malloc, alloc and
calloc. The extraction is performed on the call graph of each M3 model, in which the functions of
the execution phase are defined. This is equivalent to checking all the source files where the virtual
functions in execPhase are implemented to investigate whether the DMA functions are reachable.
Practically, we construct the transitive closure of the codebase’s call graph and query all reachable callee
functions by inputting the execPhase functions. If any DMA function is present in the collected callees,
it is considered a violation. This is the initial implementation to check RULE3, which formulates the
foundation of this rule checking. A series of improvements are performed based on this implementation
in the evaluation phase (Section 5.2.3) to enhance the accuracy of the results.
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Algorithm 4 Checking of the dynamic memory allocation in the execution phase of the application

Input:
A {model} M3 model representing the source file for inspection
A {userFunction} set containing the name of the user functions defined in the execution phase,
including appRefresh, appRefreshFrgnd2, appExecute and appExecuteFrgnd2
A {targetFunction} set containing the name of all functions for dynamic memory allocation,
including alloc, malloc and calloc
A {targetScheme} set containing all the schemes corresponding to the operators for dynamic
memory allocation, including cpp+new
A {transitiveClosure} relation representing the transitive closure of the call graph of the entire
codebase, serving to obtain all the reachable callees given a caller function

Output:
Violations represented in a binary relation with the scheme <user function, target function>

1: violations← emptyRelation()
2: callGraph← model.callGraph
3: for each < cal ler, _>∈ callGraph do
4: if cal ler.file ∈ userFunction then
5: candidates← transitiveClosure[cal ler]
6: for each cCallee ∈ candidates do
7: if cCallee.file ∈ targetFunction or cCallee.scheme ∈ targetScheme then
8: violations.add(cal ler, cCallee)
9: end if

10: end for
11: end if
12: end for
13: return violations

4.5 Deployment

After the completion of tool implementation, READ is deployed on a server. Then, it is executed from
the command line automatically through Jenkins. Jenkins2 is an automation server designed to handle
task scheduling and automate program execution. In the case of READ, a new Jenkins job is created to
orchestrate the READ’s operations. The tool is configured with multiple build steps, including CMAKE

parsing, model generation, READ parsing and rule checking, along with a target location for execution
results. Based on this configuration, the Jenkins job is scheduled as a daily routine that runs overnight
and delivers the outcome the next day. The results are written to the server’s disk and can be accessed
by the tool users through the network. Jenkins also offers a dashboard that presents the successful and
failed job executions. This dashboard provides the user with a lucid overview of the progress of rule
checking and the final status of the execution.
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Figure 4.12: Execution steps of the tool on Jenkins

2https://www.jenkins.io/
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Figure 4.12 illustrates how READ is executed as a Jenkins job. Before starting READ, the software
must be built. This process includes downloading and installing the dependencies and generating
some source files. This process is executed before the tool starts, as some generated files are required
by the architectural layers. After the build, READ starts to process the CMAKE files and source code
to generate the models and identify the violation by checking the architectural rules. By the end of
the checking, the results are written to the disk of the server. As the last step, the execution status is
reported on the Jenkins dashboard. If no error arises, then the dashboard reports a green sign with
the execution time. Otherwise, the dashboard shows a red sign and an error message.

The execution results contain a collection of M3 models and the violations in the current codebase.
As for the detected violations, they consistently align with the latest version in the central source code
repository of the positioning software. Therefore, by comparing the violations between consecutive
days, we can find the impact of the recent code changes on the architecture erosion in the codebase.
Based on the currently detected violations, we can make an exception list, which allows the focus to
be solely on newly arising rule violations attributed to the most recent changes in the source files.

4.6 Conclusions

Based on inspiration from literature ([19], [18], [9], [16], [34], [12], [27] and [35]) and concrete
examples proposed in the meetings with Philips engineers, a DSL was designed to express 13 important
architectural rules for the positioning software. Combining the DSL with a checker, a toolkit called
READ was built that used Three high-priority rules to steer the design of the internals and to test the
implementation on the actual code of the positioning software.

Additionally, the development of the tool verifies that the DSL can be implemented using Clair M3
models as input facts about the code and executing the semantics of the patterns against them to detect
violations.

Moreover, READ can be deployed in a continuous integration environment like Jenkins to provide
relatively early and automated feedback to the engineers. This feedback helps the engineers to gain
knowledge about the newly introduced violations and to reduce the violations in future development.
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Chapter 5

Evaluation and Results

To deliver a tool fulfilling the requirements mentioned in Section 4.2, it is important to evaluate the
tool’s performance. The evaluation enables us to have a qualified and quantified understanding of
the tool and find the deficiencies in READ. To cope with deficiencies, improvement measures may be
proposed to fix the tool components where unexpected behaviors or unsatisfied results arise. The eval-
uation commences with three fundamental evaluation questions. We propose the following evaluation
questions, coupled with their respective motivations:

• What is the quality of the generated M3 models?
To identify the rule violations in the architecture, instead of directly inspecting the source code,
we build a M3 model for each source file as it is a more compact and efficient representation for
information querying. As a result, all detected violations are facts filtered from the M3 models.
However, this transformation is based on the assumption that the generated models can correctly
and completely represent the data in the source code. In case the information related to the rules
is incorrect or missing, our results are inaccurate. This deteriorates the fulfillment of REQ3.
Therefore, it is necessary to evaluate the quality of the models to ensure the models, as the
foundation of the subsequent checkings, are correct.

• How accurate are the reported violations with respect to each architectural rule?
As mentioned in Section 1.2, the tool is expected ired to be reliable so that the false positives
and false negatives in the results are minimized. Moreover, as stated in REQ3, a tool incapable
of reporting correct results is unreliable and useless. Therefore, this evaluation question aims at
exploring the preciseness of READ, proving that the collected violations are accurate and enabling
the architect to maintain the architecture relying on the tool results.

• How efficient is the DSL tool?
This evaluation question aims at analyzing READ whether it fulfills REQ5. We would like to
reduce the overall execution time of READ as much as possible. In this way, less time is required
for the users, and the user experience is improved. Therefore, in practice, the response time in
each stage of the tool execution needs to be calculated and evaluated. Based on the evaluation
results, measures may be proposed to enhance the execution efficiency and reduce the overall
operation time of the tool.

The above three evaluation questions provide us with a guiding framework to design the experi-
ments and assess the tool’s performance. Depending on the objects on which the tests are conducted,
these questions may be further divided into several subquestions. In the subsequent subsections, we
will elaborate on the procedures and outcomes of each evaluation experiment.
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5.1 Quality of the M3 Models

As mentioned in the last section, the M3 models are the foundation for rule checking, as the problematic
or missing model data may eventually lead to incorrect results of architectural violations. Specifically,
if data is missing, then the results are under-approximated as some facts in the source code are not
represented in the models. This leads to more false negatives for positive rules and more false positives
for negative rules. Conversely, if data is superfluous, then there would be more false positives for
positive rules and more false negatives for negative rules. The quality of the model is determined
during the model generation when the include paths are required by the Eclipse CDT parser. Here,
quality can be represented by the number of names in the source code which are correctly resolved. If
a name fails to be resolved, it will be marked as a problem in the model. In case this name is a fact
violating a certain architectural rule, then it becomes a false negative in the results obtained from READ.
Therefore, the evaluation in this section focuses on the problems that arose in the model generation
phase. During the development and maintenance of the tool, we found two factors negatively influence
the generation of the models: one is the quality of the CMAKE parser, which may fail to parse the CMake
file and extract the include path. Another is the possible include paths required by the source files but
erroneously collected by the CMAKE parser. Subsequently, we propose the evaluation question for each
causal factor and describe the evaluation design as well as the results.

5.1.1 Parsing of the CMAKE Files

Evaluation-1: Syntax of the CMAKE Parser

Introduction and Evaluation Question
In this thesis, a CMAKE parser is implemented to parse the CMAKE files and extract the facts. Its
main contribution is to obtain a collection of include paths for the source files specified in the CMAKE

files. The parsing is based on the syntax that matches the code in the CMAKE files and transforms the
code into CSTs. However, the syntax requires continuous maintenance, as a full and perfect CMake
parser can not be made after one iteration of work. This is because we will only know whether and
which include paths are missed by the CMAKE parser after the parser is executed. Therefore, we have
to start with an imperfect prototype, which needs multiple rounds of execution and improvement to
become more complete. Besides, the usage of new grammar or the definition of new functions may be
introduced into the CMAKE files during the codebase evolution. If the updates of the syntax fall behind
the changes in the CMAKE files, the paring may fail, leading to the termination of the tool operation.
To avoid severe termination, the syntax should be sufficiently general such that it still works for the
future evolution of the CMAKE files. Therefore, we propose an evaluation question: How general is
the grammar for parsing CMAKE files we use in READ?

Evaluation Method
The generality of the syntax can be characterized by the number of times when the CMAKE parser fails
in parsing the CMAKE files during the evaluation of the codebase. The test set is composed of all of
the CMAKE files in the codebase. Specifically, the CMAKE syntax was implemented in the first month
of the assignment. This implementation was capable of successfully parsing all the CMAKE files in
the codebase. Then, for each subsequent new version of the codebase, we tested whether the same
implementation of the parser can still parse all the CMAKE codes, especially the newly added ones.
The added codes include the codes not present in the previous CMAKE files and the small modifications
on the existing codes. We count the number of lines of code leading to failed parsing as the metric to
evaluate the quality of the parser.

Evaluation Results
Table 5.1 demonstrates the changes in the codebase with the number of failures. During nearly five
months of development, the up-to-date codebase contains 619 CMAKE files. Compared to the version
based on which our CMAKE parser was implemented, 19 new files are added to the codebase. The
modification in all the CMAKE files contributes to 3208 lines of added code. The number of removed
codes is not counted as they have no impact on the operation of the parser. The result is that the CMAKE

parser failed three times due to parsing errors. One error is attributed to the changed signature of a
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custom macro function. The other two problems are because the implemented syntax cannot match
the parameters of some built-in macro functions. For example, source_group is a CMAKE function
that organizes a group of source files. This function offers optional parameters that vary depending on
the specific use scenario. Macro functions are hard-wired into the grammar since otherwise, parsing
CMake files would be Turing complete, as knowing what the input syntax is requires the execution of
the macro function. Thus, our CMAKE parser supports only a subset of all parameter combinations and
fails when an unimplemented parameter list is requested.

Table 5.1: Performace of the CMAKE parser during software evolution

#(CMAKE files) #(Added CMAKE files) Lines of added code Lines of code failed to parse

619 19 3208 3

Conclusions and Possible Threats to Validity
From the aforementioned experience, we can find that our CMAKE parser is capable of dealing with
most parsing tasks while the software evolves while 0.09% of the lines of added code lead to parsing
failures. This is because, on the one hand, no radical change has been made in the CMakes files during
the five-month development. On the other hand, the syntax we developed is generic in most cases,
even though changes are introduced into the files.

The fail cases show that the CMAKE parser is vulnerable to the changed or newly implemented
macro functions, as we cannot expect what those functions will be like. To mitigate this negative
impact, we generalized the syntax implementation of the built-in macro functions used in the codebase.
As for the issues caused by custom functions, they can only be fixed after a parsing error arises.

5.1.2 Evaluation of Include Path Extraction

The DSL tool we implemented requires two kinds of source data: C/C++ code and architectural rules.
The CMAKE parser is the entry point to process the source data and prepare for the subsequent check-
ings. It is designed to collect the include paths of each source file by parsing the CMAKE files of the
codebase. These include paths are essential as they determine the accuracy of the model with respect
to the syntax, static semantics and dynamic semantics of the code. When the include paths are missing,
it leads to the failed name resolution of the source code. This occurs because the Eclipse CDT parser is
unable to find the headers where these names are declared and defined. These failures are marked as
problem in the M3 model. That means the names in the source code cannot be correctly resolved and
are not presented in the models. As our analysis is based on the M3 models instead of the source code,
unresolved names make the models less informative and useful in architectural violation checking.

Evaluation-2: Impact of not found include paths on violation checking

Introduction and Evaluation Question
The first evaluation question related to include paths is how impactful the include paths are on the
results of the rule checking. The motivation for this question is that we would like to know what the
most severe problems the not found include paths can cause with respect to the accuracy of violation
identification. As the ultimate goal of the tool is to detect AE in the codebase, if the detection is
influenced significantly by the absent include paths, then measures must be proposed to solve the
problems.

Evaluation Method
To perform the evaluation test, we collect all the source files in which AE is identified with respect to
the three architectural rules checked in this assignment. The source files are grouped by architectural
rules. Then, for each group, we removed an include path from the collection, which is used to generate
the models of the collected source files. The criterion to select the include path is we chose the include
path, which leads to the header files that are most frequently present in the violation results as we
inspect the worst case when a path is missing. After the removal, we generated the new models and
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verified whether the violation could still be detected. Eventually, we calculated the difference between
before and after the removal as the metrics to indicate the impact of the not found include paths.

Evaluation Results
Having performed evaluation tests, we obtained the results that in the ideal case, a not found include
path has no impact on the final results of the identified architecture erosion, as the artifacts in the
headers led from the include paths are irrelevant to the architectural rule. In comparison, in the worst
case, if we remove a specific include path for all the source files during the model generation, the
number of detected violations is decreased, as revealed by Table 5.2.

The evaluation result is specific to the architectural rule as the violation results of some rules may
be derived from a common header such that if its include path is removed, then the detected viola-
tions decrease dramatically. This is the case for RULE 2, which checks the use of non-public interfaces
between the layers. As most of the violations are due to the invalid inclusion of a header, if the in-
clude path of this header is removed during model generation, then 60.94% of the results disappear.
Similarly, the number of violations of RULE 3, which restricts the use of dynamic memory allocation,
is reduced by 90.48% if the include path of a header responsible for creating instances is removed.

Table 5.2: The worst case results of the identified violations after the removal of an include path

RULE 1 RULE 2 RULE 3
Layer Dependency Public Interface Dynamic Memory Allocation

#(Violations before removal) 32 94 21
#(Violations after removal) 25 37 2
Reduction (%) 21.88 60.64 90.48

Conclusions and Possible Threats to Validity
This experiment reveals that a missing include header can significantly deteriorate the usability and
reliability of the checker. Without an accurate include path, READ does not function at all since, in the
worst case, 9 out of 10 true positives are lost, and the false negative rate increases dramatically. Thus,
the number of not found include paths must be minimized.

Evaluation-3: Not found include path during model generation

Introduction and Evaluation Question
During the phase of model generation, CLAIR proposes the messages when a header file required by
a source file is not found due to an absent include path. In this section, we use these messages to
evaluate the quality of the models.

First, we discuss four causes of the not found include paths as follows:

• Non-existent headers in codebase: These headers are the files required by the source files but
absent from the codebase. The positioning software is implemented for both Windows and Vx-
Works systems. VxWorks1 is a real-time operating system used by Philips positioning software
in the production environment. However, some header files only exist and are used in a specific
OS. In the context of this assignment, the codebase is installed and built in Windows. Therefore,
the headers of VxWorks cannot be found in the file system. Even though in the source code
some VxWorks headers are conditionally included, the CDT parser analyzes the source code stat-
ically and requires all the header files specified with #include to be provided without checking
whether the condition is fulfilled. Another case is due to "dead inclusion" — the header file is
deprecated and removed from the codebase, but the inclusion is not deleted from the source file.
As a result, warnings are generated indicating that include paths are missing during the phase
of model generation.

1https://www.windriver.com/products/vxworks
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• Incomplete default include paths: Not all source files are collected by the CMAKE parser. Some
source files are used to create Visual Studio Solution2 without being specified in CMAKE files.
As a result, we do not have a list of include paths for these source files. To tackle this issue,
we create a list of default include paths for the not found source files. This default list requires
consistent maintenance as the positioning software evolves. In case the list is out-of-date, the
newly added headers are marked as not found include paths during model generation.

• Bugs: The CMAKE parser may contain bugs that the header files failed to be added to include path
list, even though the headers are specified in the CMAKE files. This is usually caused by dynamic
path concatenation when the path of the header files in CMAKE is presented in a complicated
format with multiple variables and strings.

• Not found headers in CMAKE: While the source file is specified in the CMAKE, its required
headers may not be fully detectable. In this case, our CMAKE parser builds an incomplete list
of include paths for the source file. However, our CMAKE parser does not parse the definition
of macro functions because the function body can be too complicated to maintain the semantics
after parsing. It is possible that some unknown mechanism in CMAKE is applied to include the
headers but is not covered by our parser. For example, when designing the CMAKE parser, we
assumed that the paths of all the header files are explicitly specified in the CMAKE text by checking
the keyword DIRS. However, further investigation enables us to find that some source headers are
included implicitly by calling a custom macro function. This function is newly introduced during
the evaluation of the CMAKE files and include header files with dynamic path concatenation. As
a result, when some include paths are specified in these functions, our parser is incapable of
detecting them.

Based on the causal factors described above, we propose for each causal factor an evaluation ques-
tion:

• How impactful are the non-existent headers in relation to not found include paths?

• How impactful is the incomplete default include paths in relation to not found include paths?

• How impactful are the bugs in relation to not found include paths?

• How impactful are the not found headers in CMAKE in relation to not found include paths?

The motivation of this evaluation is to categorize the records of the absent include paths based on
the causing factors in each source folder of the positioning software. Then, for each category, we
may develop a generic solution to reduce the presence of absent include paths and improve the model
quality. As we apply the same evaluation method by labeling the not found include paths with the
causal factors, these four evaluation questions are merged into one evaluation experiment.

Additionally, as the number of not found include paths is categorized by the source folder of the
positioning software, we assume that the number of not found include paths is positively related to the
number of source files in the folder. Therefore, it is necessary to normalize the number of not found
include paths with respect to the number of source files in the folder such that we can know which
causal factor is most impactful.

Evaluation Method
The evaluation is based on the output log prompted in RASCAL terminal after the CLAIR function
createM3FromCppFile or createM3FromCFile is called. Specifically, the include paths for each
source file are collected by the CMAKE parser and forwarded to the model generation functions. While
generating the models, RASCAL prints the output log about the generation information. We then parsed
the log with the keyword ’not found’ to extract all the not found headers and categorized the results
with the four causes. The experiment was conducted for all the source files except for the legacy code.
The source files are grouped by folders. Each layer or module corresponds to a folder in the codebase.

2https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file?view=vs-2022
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Additionally, two other folders, Core and Build, store the source files that have not been assigned to
a specific folder yet and the source files generated during the software build, respectively.

As for the normalization of the number of not found include paths with respect to the number of
source files, we calculate the ratio between the number of the not found include paths and the number
of source files in each folder. It is essential to note that a folder is not equivalent to a layer in the
architecture. A layer comprises the source files in the folder with the same name as the layer and the
source files from the Core folder.

Evaluation Results
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Figure 5.1: Number of not found headers of each folder of source files categorized by four causing
factors

Figure 5.1 illustrates the number of not found include paths categorized by causal factors in each
folder. It is clear that most not found headers are collected during the model generation for the source
files in folder D, E, G, and Core. The main reason for the higher value of not found headers in these
four modules is they contain more source files, which account for nearly 90% of the total files. It is clear
in the figure that incomplete default include paths is the dominant factor leading to not found include
paths for G and Core. In comparison, non-existent headers contribute to half of the not found issues in
D. Although the non-existent headers account for more than one-third of the not found include paths,
we consider it has no impact on the operation of the software. The reason is non-existent headers
are either dead inclusions or headers of VxWorks that do not influence the execution of the system.
Besides, the software is built successfully even though these headers are required but do not exist.
Therefore, we believe the non-existent headers can be excluded from our investigation.

Table 5.3: Comparison of source files with not found headers to the total number of source files cate-
gorized by folder

Folder A B C D E F G Core Build

#(Filtered sources with not found include paths) 1 0 1 78 36 3 88 58 0
#(Total source files) 85 0 51 924 783 236 535 1498 120
Percentage (%) 1.18 0.00 1.96 8.44 4.60 1.27 16.45 3.87 0.00
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Moreover, Table 5.3 compares the number of source files with at least one header missed during
model generation to the total number of source files. Here, the source files with not found headers are
filtered as the results resulting from the non-existent headers are excluded. Each source file may have
more than one absent header, and each not found header may appear during the model generation of
more than one source file. We can find that the values of B consistently remain at zero since this folder
contains no source file. Comparing the number of filtered source files to the total number, the folder G
possesses the highest percentages of the impacted source files (16.45%), while the percentages of the
source files with absent include paths are all below 9%.

Conclusions and Possible Threats to Validity
We can draw a conclusion based on Figure 5.1 that the most not found include paths are in folder
D, E, G and Core. The most impactful causal factors in these folders are non-existent headers and
incomplete default include paths.

From Table 5.3, we can conclude that the proportion of the not found headers is relatively low.
Therefore, even though Evaluation-2 shows not found include path can be a severe problem in iden-
tifying architectural violations, considering the scale of the entire codebase and low ratio of the not
found include paths, we know that the generated M3 models already present most of the information
in the source codes. Thus, these models are reliable for the subsequent rule checking. As mentioned
before, not found headers deteriorate the name resolution of the source code, leading to more ’prob-
lems’ marked in the M3 models and reducing the usability of READ. A low proportion of not found
include paths means limited negative impacts on the usability and reliability of the tool.

Evaluation-4: Not found include path during the model generation after im-
provement

Introduction and Evaluation Question
The last evaluation test has shown that not found include paths exist during the model generation
phase, especially for the source files from the folder D, E, G and Core. To mitigate the failed name
resolution and improve the usability of the M3 models, measures must be taken to reduce the number
of not found include paths. This evaluation is about how the not found include paths can be reduced
and what impacts the reduction has.

Evaluation Method
To mitigate the influence of the not found headers, measures are proposed based on the category of
the causing factors as follows:

• Non-existent headers in codebase: No measure is proposed for this cause as the required
headers are absent in the codebase.

• Incomplete default include paths: We update the list to make it aligned with the newest code-
base. The paths are added iteratively as some new not found path warnings may arise after one
include path is added due to transitive inclusion.

• Bugs: The bugs are attributed to the problems in the path concatenation of the parser or incorrect
resolution of the CMAKE built-in variable PROJECT_BINARY_DIR. Based on these causes, the
bugs are solved.

• Not found headers in CMAKE: We investigate the possible approaches that include paths that
are introduced but not captured by the parser. For example, checking the implementation of the
macro functions to find whether include paths are specified in the function body.

After applying these measures, we performed the same evaluation as the last evaluation. The
intuition of this evaluation is to explore to which degree the missed include paths are solved and what
factors leading to not found include paths require more effort for enhancement. We used the same test
sets and method in this evaluation and obtained the results revealed in Figure 5.2.

Evaluation Results
It is evident that all the not include paths caused by the bugs or incomplete lists of default paths are
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solved after the improvements. All the records due to non-existent headers illustrated in Figure 5.1
remain unchanged as no measure is performed for it. If the non-existent headers are not considered,
the total number of absent headers is decreased from 165 to 25. Moreover, the number of absent
headers resulting from not found headers in CMAKE is reduced by 43.18%. The most absent cases are
still in the folder E. As mentioned in Evaluation-3 that not found headers in CMAKE can be due to some
unknown mechanism introducing the include paths. It is possible that even though we have discovered
some of them, it still other mechanisms that we are not aware of and should be implemented in future
work.
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Figure 5.2: Number of not found headers of each folder after the improvements categorized by four
causing factors

Conclusions and Possible Threats to Validity
From this evaluation, we can conclude that the improvement measures are effective in reducing the
number of the not found include paths, contributing to higher quality of the generated M3 models.
Additionally, more investigation needs to be conducted for the case that the required headers exist in
the codebase but are not collected from the CMake files.

5.2 Implementation of Architectural Rules

READ is designed and implemented to check at least three architectural rules. In the following subsec-
tions, we will evaluate the checking processes of each rule and discuss the final results obtained after
multiple iterations of improvement.

5.2.1 Disallowed Layer Dependency

This rule specifies which layers a given layer can depend on. The checking is based on the header files
included by the source files of the given layer. If a required header is from a disallowed layer, it is
counted as one violation. In this way, we obtain the initial lists of violations, which are demonstrated
in the first row of Table 5.4. It is clear that layer A accounts for more than half of all the detected
violations, followed by layer D and module G.
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Table 5.4: Number of layer dependency violations in each layer or module before and after improve-
ments

A B C D E F G sum

#(initially detected violations) 784 1 48 196 26 0 288 1343
#(violations in production code) 10 1 0 31 1 0 288 331
#(violations in production code of VxWorks) 0 1 0 31 0 0 1 33

Evaluation-5: Evaluation of the initial implementation of RULE 1

Introduction and Evaluation Question
With the initial implementation, we propose an evaluation question of how accurate the results are with
respect to the violated dependencies between the two layers. The motivation is we must ensure that the
obtained results are precise so that the architect can manage the architecture based on these results.
The inaccuracy of the checker reduces the reliability and usability of the tool. We regard violation
detection as a binary classification problem. The inaccuracy is derived from the false positive and false
negative in the results. In the context of RULE 1, false negative means the undetected dependency
violation between the layers. In terms of the false positive, it means the checker considers some results
as a fact of violation between the layers while they are actually not. Both cases can be caused by defects
in the implementation of the checker and an incorrect understanding of the architectural rule.

Evaluation Method
The accuracy of the results is characterized by the ratio of false negatives and false positives in the
results. The following results presentation only focuses on false negatives because we do not compare
the results with the ground truth in this evaluation test. Therefore, we have no idea whether the results
contain false negatives. As for false postives, they can be obtained by comparing the results before and
after the first improvement. To explore the problems in the results, we inspected all the collected
violations, which are a collection of pairs from the source file to a disallowed header. The inspection
lets us find that some source files in the result set are implemented for tests. As the architectural rule
is specified for the production code, the results related to the source files specific to the test code are
false positives. Based on this fact, we designed an evaluation experiment that takes all the pairs of
the source file and the disallowed header as a test set and checks if the source file is part of the test
code. A source file is labeled as test code during the parsing of the CMAKE files when it is only used to
configure the test libraries. Therefore, the false positives resulting from the test code are eliminated
by verifying whether the source file is labeled as test code.

Evaluation Results
As shown in Table 5.4, the total number of violations is reduced by 76% to 331. Except for module G,
the number of violations originating from all the other layers is decreased. As for module G, although
it is the codebase’s test module, some of its source files are required in production. Therefore, we can
still find violations from this module even though the source files for the test code are excluded.

Conclusions and Possible Threats to Validity
The initial improvement for the implementation of RULE 1 contains a large number of false positives
due to the test code. It is vital to remove this part of the code from the research scope as we cannot
know whether the results reported by READ are real violations or not. In other words, a high number
of false positives reduces the confidence in using READ, and thus, must be mitigated.

Evaluation-6: Evaluation of the first improved implementation of RULE 1

Introduction and Evaluation Question
A further evaluation based on the above filtration is to compare the obtained violations with the ground
truth. The ground truth is from another tool developed by the architect for daily architecture monitor-

An Automated Approach to Check Software Architecture Erosion 49



CHAPTER 5. EVALUATION AND RESULTS

ing of the same architectural rule. With the ground truth, we can have a knowledge of false positives
and false negatives in the results after the first improvement. This knowledge promotes the evaluation
question: How close are our results to the ground truth?

Evaluation Method
The design of the evaluation is straightforward in that we converted the ground truths to the same
format as the representation of the results returned by our checker. In this way, we got two sets of
results, with one containing the ground truth and another containing the detected results. Then, we
computed the difference between the two sets.

Evaluation Results
As a result, we have about 300 hundreds more violations than the ground truths. We ascertained that
the architect’s tool only covers part of the codebase used for VxWorks, leading to fewer violations than
our results. This does not mean that our results contain false positives. The reason for the difference is
the constraints based on which the two tools are implemented are different. The positioning software
is designed for both Windows and VxWorks. The implementation of the architect’s tool focuses only on
the code related to VxWorks, while our tool checks all the code. The architect’s design is because most
of the development work is made for VxWorks currently. As the goal is to prevent the new changes
in the source code from violating the architectural rules, we focus more on the part of the codebase
that is actively modified. Besides, as the entire codebase may contain many violations, starting from a
part of the codebase is a more feasible approach to analyze the erosions in the architecture. Based on
these two reasons, the checks of the architect’s tool are only conducted on the source code related to
VxWorks.

Conclusions and Possible Threats to Validity
The first improvement for the implementation of RULE 1 contributes to the removal of a large number of
false positives by excluding the source files for the test code. This improvement is proposed because the
initial implementation is imprecise and also includes the test code. However, the results that deviated
from the first improvement may still contain false positives. This requires further improvements in the
tool implementation to align the final results with the ground truths.

Evaluation-7: Evaluation of the second improved implementation of RULE 1

Introduction and Evaluation Question
The last evaluation shows the gap between the first improvement of the tool and the architect’s tool
because our implementation covers both Windows and VxWorks, while the architect’s tool checks only
the VxWorks part. To align our checking with the architect’s tool design, we added one more filter
to extract the violations from the source files used for VxWorks. This filtration is implemented with
the CMAKE parser. When configuring the libraries, CMAKE requires a flag to be specified for different
compilation configurations. We collect all the libraries configured with the flag OBJ_VXWORKS and
regard the source files in these libraries as designed for VxWorks. Ultimately, we obtained a subset of
the violations collected after the first improvement. We will discuss these violations in the subsequent
sections.

As the alignment with the architect’s tool is completed, we decided to compare the results with the
ground truth again because we need to investigate whether our design of the checker leads to correct
results when checking layer dependency. Due to this reason, we designed the third evaluation to verify
the correctness of the implementation.

Evaluation Method
The design of the evaluation is the same as the last evaluation in that we compared our results with
the ground truth. The test set is the violations collected by our checker.

Evaluation Results
The evaluation result is our checking results are the same as the outcomes from the ground truths.
By comparing the content of the 33 detected violations, we know that these violations are exactly the
same as the ground truths. That means no false positives and false negatives remain in the result set
constructed by this implementation. The checking results are presented in the last line in Table 5.4.
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This verifies our tool fulfills the requirement of detecting disallowed layer dependency and providing
accurate information on rule violation.

Table 5.6: Confusion matrix for the first implementation of RULE 1

Total Predicted Positives Predicted Negatives
N/A 1343 N/A

Actual Positives
33

Actual Negatives
N/A

Additionally, we construct a confusion matrix (Table 5.6) to illustrate the changes in the detected
violations before and after the improvements of the checking implementation. In the matrix, the term
’positive’ denotes the cases where RULE 1 is violated, while ’negative’ indicates the implementation
conforms to the rule. It is evident that the result of the first implementation contains 1310 false
positives, while the eventual 33 layer dependency violations are the true positives. These true positives
are identified in the last implementation, wherein violations originating from test code and Windows-
specific code are removed. As these 33 violations are also the same results that deviated from the
architect’s tool, the number of false negatives is 0. Besides, as the goal of the checker is to identify
all the rule violations in positioning software, which are presented as positive results in the confusion
matrix, obtaining the number of true negatives by counting the number of header inclusions is out of
the scope of the implementation of the checker. That is why the number of true negatives is marked
as ’N/A’ in the matrix.

Conclusions and Possible Threats to Validity
After two iterations of improvements, we can conclude that the implementation of RULE 1 meets REQ3
to obtain the correct number of violations in Philips’ positioning software.

It is important to note that the construction of the confusion matrix is specific to the definition
of ground truths. Table 5.6 is created based on the ground truths from the architect’s tool, which
categorizes the violations resulting from the production code of the Windows part as false positives,
given the architect’s exclusive investigation on the VxWorks part. If the definition of the ground truths
covers the production code of both OS, then the number of false positives will be reduced.

To summarize, we adopted two improvements in the implementation of checking disallowed layer
dependency. We have the first improvement because our initial implementation, covering both produc-
tion and test code, is imprecise. The second improvement tackles the problems caused by the different
rule definitions between our and the architect’s tool design. These improvements led our tool to be
aligned with the architect’s tool, proving the correctness and accuracy of the implementation of the
rule checking.

Checking Result Discussion
Figure 5.3 shows the layer dependency violations after two iterations of improvement. We used

the same layout as Figure 2.1 to indicate the hierarchical order between the layers and modules. This
figure reveals that nearly all of the violations exist in layer D that illegally requires the headers defined
in module G. Within layer D, most violations are from the source files implementing the motion con-
trol interfaces. Additionally, three violations occur when the header files in the service module F are
included by the disallowed layers. These violations have been verified by the architect to be true vio-
lations existing in the codebase. Some of them are caused by the source files from the Core folder. As
mentioned in Section 2.2, this folder contains the source files whose layer is known but is not assigned
to the corresponding folder designed for the layer. In the future, the architect will fix these source files
by moving them to the folder they should belong to. In this way, the detected violations are expected
to be removed.
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Figure 5.3: Violations of disallowed dependency between layers or modules

5.2.2 Non-public Interface Usage

Evaluation-8: Evaluation of the implementations of RULE 2

Introduction and Evaluation Question
As the mechanism to check the violations of RULE 1 and RULE 2 is the same, the evaluation concerning
RULE 2 regulating the utilization of the specified interfaces between the layers is the same as RULE 1.
We also completed two improvements regarding the test code and the VxWorks part of the codebase
to align our results with the ground truths. After that, we propose the evaluation question: How is the
accuracy of the results of each implementation for RULE 2?

Evaluation Method
We used the same method as the evaluation of RULE 1 to evaluate the accuracy of the results of RULE
2. Specifically, we compare the results before and after each improvement and also with the ground
truths from the architect’s tool to obtain the number of false positives and false negatives. The first
two evaluations contribute to two iterations of improvement to filter the violations resulting from the
production code used for VxWorks. The test set of both evaluations is composed of the violations
collected by the checker.

Evaluation Results
As shown in Table 5.8, the first improvement enables us to remove nearly 1500 false positives from
the result set, with the most false positives from layer A and module G. After the second improvement,
the total number of violations was reduced to 94. These two improvements reveal that most of the
violations collected in the initial implementation are false positives from the test code. This is especially
the case for module G as it is the test module of the codebase. The final set of violations is the same
as the results obtained from the architect’s tool, verifying that the implementation of this architectural
rule is precise and reliable.

Similar to RULE 1, a confusion matrix (Table 5.10) is built for RULE 2 to present the true and false
positive results of the initial implementation. We use the same definition for positives and negatives as
the matrix of RULE 1. Again, the ground truth is from the architect tool targeting the violations caused
by the production in the VxWorks part of the codebase. It is clear that the results from the first imple-
mentation contain a large number of false positives due to the test code. After the evaluation process,
the number of true positives decreases to 94 after the second. The negative results are unknown as the
checkings only investigate the violations in the codebase.
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Table 5.8: Number of non-public interface violations in each layer or module after improvements

A B C D E F G sum

#(initially detected violations) 795 2 204 0 0 91 1408 2500
#(violations in production code) 10 2 15 0 0 63 835 925
#(violations in production code of VxWorks) 0 2 15 0 0 63 14 94

Table 5.10: Confusion matrix for the first implementation of RULE 2

Total Predicted Positives Predicted Negatives
N/A 2500 N/A

Actual Positives
94

Actual Negatives
N/A

Conclusions and Possible Threats to Validity
Similar to the evaluation of RULE 1, we can conclude that the implementation of RULE 2 meets REQ3
because the final collected violations are the same as the ground truths provided by the architect.

The results are also under threat that they are dependent on the definition of the ground truth. If
the ground truth contains not only the implementation of the positioning software for Windows OS,
then the number of false positives will be reduced.

Checking Result Discussion
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Figure 5.4: Violations of non-public interface usage between layers or modules

Figure 5.4 is a graphical representation of the inclusion of non-public interfaces between the layers.
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98% of the violations are because of the invalid inclusion of the headers from layer D. Specifically, 67%
of the violations are from the module F that includes the disallowed headers from layer D. All of these
violations are caused by the same source file in module F. Moreover, the headers in D are also frequently
invalidly included by Layer C and G. It is possible that the developers suppose some source files belong
to layer D while they may pertain to other layers or modules in reality. Similar to RULE 1, some of the
violations are caused by the source files from the Core folder and may be fixed after these files are
moved to the folder that represents the layer these files belong to.

Additionally, we have observed certain violations that exist in both the rule checking of disallowed
layer dependency and non-public interface use. This is because the definition of the two rules overlaps
partially. If a layer illicitly depends on another layer, the header files it includes from this dependee
layer must be a disallowed interface.

5.2.3 Dynamic Memory Allocation

Check execution
phase
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NoExist memory
allocation
function?

Not a violation

Violation

Check startup phase

Is the same
object created?
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Figure 5.5: Workflow of checking dynamic memory allocation
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This architectural rule forbids the dynamic memory from being allocated after the startup phase of the
application. In this section, we count and investigate the false positives and the false negatives in the
detected violations.

The goal of RULE 3 is to detect the use of dynamic memory allocation functions or operators in the
body of the functions belonging to the execution phase of the applications in the positioning software.
However, an important fact to note is although the functions for dynamic memory allocation are used
in the execution phase of the application, they may not be executed during the runtime. This is be-
cause dynamic memory allocation is always associated with the instantiation of the new object in the
codebase, and the instantiation of the object is conditioned by the singleton pattern. Therefore, if we
ignore the singleton pattern and assume all dynamic memory allocation functions must be executed
in runtime, the results of the rule checking may contain false positives. As for the false negatives,
they correspond to the case that the memory is allocated in the execution phase but not captured by
our checker. This section will proceed with the evaluation of RULE 3 from the two aspects mentioned
above.

To implement READ, we query the call graph of the target source file to check if malloc, alloc
and the new operator are called in the execution phase of the applications. This formulates the initial
implementation as illustrated in the blue components in Figure 5.5. This implementation equates with
the definition specified in Listing 4.4.2.

Table 5.12: Number of violations of dynamic memory allocation collected in each implementation

Initial Implementation First Improvement Second Improvement

#(Violations) 45 21 1

|cpp+method:///layerD/ApplicationD/
appRefresh()|

|cpp+method:///layerD/Target/getInstance()|

|cpp+new:///layerD/Target/TargetObject()|

void ApplicationD::appRefresh(){
    ...
    Target::getInstance().setInstanceState(1);
    ...
}

TargetObject& TargetObject::getInstance(){
    if (instance == nullptr){
        instance= new TargetObject();
    }
    return instance
}

// Constructor
TargetObject::TargetObject(){
    initialize();
}

Figure 5.6: An example of the violation results for RULE 3 (Left: results in RASCAL; Right: source code
in C/C++)

As shown in the first column of Table 5.12, we obtain 45 violations from seven source files. In each
source file, one or more functions in the execution phase are implemented. These functions invoke
other functions, reaching the dynamic memory allocation functions or the new operator. An example
of the violation can be found in Figure 5.6, which illustrates a chain of the function calls from a function
of the execution phase through multiple intermediate function calls and, finally, to a call on the new
operator. This chain can be verified by inspecting the corresponding C/C++ source code, as shown

An Automated Approach to Check Software Architecture Erosion 55



CHAPTER 5. EVALUATION AND RESULTS

on the right side of the figure. We mapped the logical representation of the function to its physical
location in the source files. It validates the existence of the chains obtained from the checker.

Evaluation-9: Evaluation of the initial implementation of RULE 3

Introduction and Evaluation Question
The memory is allocated to prepare the space for one or multiple objects. The allocation process is
usually along with the invocation of the constructor, as shown in the last function call in Figure 5.6.
However, if we observe the function call in which the new operator is used, we can find the objects
are created with the Singleton pattern. A comprehensive investigation of the checking results shows
that for all of the collected violations, the objects are created with the Singleton pattern. The singleton
pattern is a common design pattern in software development to ensure only one instance of the target
class is created [14]. In the context of our codebase, if the object is created before the application’s
execution phase, then even though dynamic memory allocation functions are used in the definition
of functions of the execution phase, they are not executed in the runtime. Therefore, we need to
filter the case that the functions for dynamic memory allocation are actually not called because of the
singleton pattern after the positioning software is compiled and executed. These filtered results are
false positives in our checking results and must be removed. Based on the analysis, the first evaluation
question of RULE 3 is proposed: How many false positives resulted from the singleton pattern do the
results contain?

Evaluation Method
The test set is all the source files in the result set collected by the initial implementation. The design of
the evaluation is to check the definitions of the startup phase functions and whether the same objects
created in the execution are already created in the startup phase. The green part in Figure 5.5 reveals
the logic of the checks related to the object creation before the execution phase. Specifically, we check
the startup phase and extract all the instantiated objects. Then, we build the AST of the source file
to validate if the objects created in the execution phase conform to the singleton pattern. Here, the
validation relies on the AST instead of the M3 model because the model does not contain information
about the content of the condition in the if-statement. If the AST demonstrates that the same object is
expected to be created in the execution phase but with a singleton pattern, then it is not a violation,
as the statement with dynamic memory allocation will not be executed.

Evaluation Results
The evaluation result is the outcomes of the initial implementation contain 24 false positives. As
revealed in Table 5.12, the number of violations reduces to 21. This means that the singleton pattern
indeed influences the instantiation of the objects in the runtime stage and should be considered in the
checking phase.

Conclusions and Possible Threats to Validity
In the initial implementation of RULE 3, the singleton pattern is not considered, leading to false posi-
tives in the checking results. The first improvement of the implementation is a process of refining the
definition of the rule in READ. This process requires the inspection of the source code and extension
of the DSL syntax. From this improvement, we learn that it is important to notice the difference be-
fore and after the code is compiled and executed. Our tool should simulate the real execution of the
positioning software to obtain the real violations.

Evaluation-10: Evaluation of the first improved implementation of RULE 3

Introduction and Evaluation Question
Based on the results of the first improvement, we have another round of evaluation. The intuition is
that the startup phase is not the initial entry point of the applications. In the positioning software, a
source file known as Entry.cpp is implemented to launch the applications of all the layers. In other
words, it is the entry point of all the applications, and the functions defined in this file are invoked
before the functions in the startup phase. Therefore, we proposed the evaluation question of whether
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the objects supposed to be created in the execution phase are already created before the startup phase
in Entry.cpp.

Evaluation Method
The test set of this evaluation is all the source files where the violations are collected in the first im-
provement of the implementation and the Entry.cpp. The yellow part in Figure 5.5 demonstrates
the workflow of the evaluation. The logic is similar to the first evaluation in obtaining the objects
constructed both in the Entry.cpp and the execution phase. If the obtained object is constructed in
the execution phase with the singleton pattern, it is a false positive and removed from the result set.

Evaluation Results
As a result of the evaluation, the number of violations decreases to 1, as shown in Table 5.12. To verify
its correctness, we construct a call chain, like in Figure 5.6, starting from the function in the execution
phase to the location where the memory is allocated. This is the final result of the checking of the
dynamic memory allocation rule.

Table 5.14: Confusion matrix for the first implementation of RULE 3

Total Predicted Positives Predicted Negatives
N/A 45 N/A

Actual Positives
1

Actual Negatives
N/A

Table 5.14 reveals the confusion matrix of RULE 3 with regard to its first implementation. As
shown in Figure 5.6, we obtain one truth positive after two improvements of the initial implementation,
while the remaining 44 violations collected by the initial implementation belong to the false positives.
Nevertheless, as the ground truth is absent for this rule, we have no idea about whether some violations
are undetected by our tool, leading to ’N/A’ in the ’negatives’ column. In fact, we identified some
factors causing false negatives in the result set by analyzing the source code and discussing it with
Philips engineers. These factors will be discussed in Evaluation-14.

Conclusions and Possible Threats to Validity
In conclusion, to evaluate the accuracy of the results, we investigated the source files and proposed
two improvements to filter the false positives resulting from the singleton pattern. The reason for
both improvements is that the previous implementations are imprecise as the knowledge about the
codebase was insufficient. Additionally, both improvements are specific to the codebase such that they
may not be reusable for the other projects. However, the lesson we learned from the singleton pattern
is applicable in the research of other codebases. As it is a widely used design pattern, when we analyze
the call graph to extract the calls on the constructors, we may need to consider the singleton pattern,
which determines whether the constructor is executed.

Evaluation-11: Evaluation with the Top-down Mutation Testing for RULE 3

The above-described measures promote the decrease of false positives in the detected violations for
RULE 3. However, the result set may still contain problems as the false negatives are introduced
while the rule is checked. We did not discuss the false negatives in the previous two rules because
the comparison with the ground truths has verified the number of false negatives remains 0. In terms
of Rule 3, false negative means the functions and operator executing dynamic memory allocation are
used in the execution phase but not detected by our tool. To fulfill REQ3, we must investigate the
possible false negatives contained in the results. In this subsection, we explain how the false negatives
are analyzed and evaluated with mutation testing.
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Mutation testing is a well-known method for assessing the quality of software testing. The testing
relies on introducing mutants into the program’s source code. These variables are artificial defects or
can eventually lead to problems. The program with the defects is called a mutant. The target is to
use the test suite to detect the introduced defects in the mutants. To quantify the test result, a term
mutation score is proposed. It is the ratio between the number of detected mutants and the total
number of injected mutants. The higher this score is, the more intentionally inserted problems are
captured by the test suite [31]. In our setup, every mutant that is not detected is a false negative that
can be counted for our evaluation.

Introduction and Evaluation Question
The evaluation question is whether the call graphs, based on which the checking for RULE 3 is per-
formed, miss the information of the source code, leading to undetected violations. The motivation
has been discussed above that the false positives have been eliminated from the results obtained from
the initial implementation of RULE 3, while the false negatives may happen during the rule checking,
which could be detected by mutation testing.

Evaluation Method

declarationStatement(
  simpleDeclaration(
    namedTypeSpecifier(
      [],
      name(
        "MyClass",
        src=|file:///root/test.cpp|(208,7)),
      src=|file:///root/test.cpp|(208,7),
      decl=|cpp+class:///MyClass|),

Target AST

. . . . . .

simpleDeclaration(
  namedTypeSpecifier(
    [],
    qualifiedName(
      [name(
          "view",
          src=|file:///root/Core/inc
               /Package.h|(701,3))],
      name(
        "Data",

    view::Data& Package::getData()
    {
        return mPackage->getData();
    }

Insert

Source Code To InsertTarget Function

New AST

M3 Model
cppASTToM3

AST to Insert

. . . . . .

MyClass *p = new MyClass(1);

Figure 5.7: Design of the top-down mutation test

The design of the mutation testing is as follows: In the context of this assignment, the functions
and operator for dynamic memory allocation, like new operator, is the variant of the test. We plan to
manually add dynamic memory allocation to the source code so the modified programs become mu-
tants. To design the mutation test, we choose a function appRefresh from the execution phase of an
application in the codebase and inject a line of C++ code with new operator into the definition of some
functions. These functions are deliberately selected so that they must be invoked after appRefresh
is executed. Figure 5.7 illustrates the implementation of our idea. Here, instead of direct operation
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on the source code, we manipulate the ASTs to inject the new operator. Specifically, we transform the
line of code with new into an AST and insert this AST into the AST of the target functions, which are
reachable from the appRefresh. This operation with AST is equivalent to adding the source code
with new into the function body of getIApp. The benefit is it is a more convenient way to add the
mutant without changing the source code. Eventually, a new AST is generated and transformed into a
new M3 model. The final step is to check whether it exists at least one path in the call graph starting
from appRefresh to the added new operator. As we have ensured the source code used for insertion
does not exist anywhere in the codebase before the injection, if the desired new operator is found, then
its appearance must be due to the mutation test.

Evaluation Results
The result is shown in Table 5.16. We inserted the new operator into nine functions, seven of which
were found in the chain of function calls starting from appRefresh. The mutation score for our test
is 0.78. The function call chains of two functions are disrupted halfway for the same reason. The
intermediate function, where the chain is broken, is not successfully resolved such that in the call
graph of the M3 model, the logical name of the function is marked as a problem. The failed function
resolution is caused during the model generation when a list of standard libraries is required to parse
the built-in functions and artifacts used in the codebase source files. However, the standard library
has multiple different implementations, such as MSVC from Visual Studio and implementations from
the compilers. If a wrong implementation is provided to the Eclipse CDT parser, the function cannot
be resolved, leading to the problem messages in the M3 models. To avoid this problem, we tried
the combination of different standard library combinations in different orders. The order plays an
important role because, in our standard library list, two implementations may implement the same
function, and we need to ensure the correct one has higher priority for use when the source code is
parsed. In this way, a new list of standard libraries is determined and used to regenerate the models
for the source files containing parsing problems. This improvement enables all nine insertions to be
detected in the call graph.

Table 5.16: Results of the top-down mutation testing

#(Mutants) #(Killed mutants) Mutation score

9 7 0.78

Conclusions and Possible Threats to Validity
In conclusion, mutation testing is an effective method that enables us to find false negatives in the
collected checking results. These false negatives are caused by the implementation of RULE3. More
specifically, the problem happens when another instance of the include path is used to resolve the C
and C++ artifacts defined in the standard library.

In Evaluation-2, Evaluation-3 and Evaluation-4, we have investigated the impacts of not found
include paths on the final checking results. However, these evaluations did not inspect the include
paths of the standard libraries. In this evaluation, it is more clear that unexpected different header
files for different compiler versions of C and C++ can lead to resolution problems, further leading to
unresolved messages in the M3 models and increasing the number of false negatives in the checking
results. Therefore, this evaluation not only improves the implementation of RULE 3 but also improves
the overall quality of the M3 models.

Evaluation-12: Evaluation of the Problems in the M3 models

Introduction and Evaluation Question
This mutation test is not specific to the checking of the dynamic memory allocation rule. Instead, it
is a generic way to evaluate the quality of the M3 models. A higher number of problem messages in
the model indicates more parsing problems during model generation. In the last test, we learned that
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the correct implementation and the order of the standard libraries have a significant impact on the
generated call graphs, contributing to the lower number of problems in the model. This lesson inspires
us with a new evaluation question: How will the quality of the M3 models be improved if we improve
the list of standard libraries for all the source files during the model generation?

Evaluation Method
The test targets in this evaluation are all the source files, excluding the legacy code stored in the
Legacy folder. The metric to evaluate the quality of the M3 models is the number of records marked
as a ’problem’ in the models. As discussed in Evaluation-11, the problems in the M3 models can be
caused by false include paths of the standard libraries. We regard these include paths as an old list of
include paths. The models were improved and updated by using a new list of include paths that point
to the correct implementation of the standard libraries. The process to update the models is described
by the pseudocode in Algorithm 5. When generating the models, we always use the new list of include
paths for the standard libraries first. If a parsing error arises, then we replace the new list with the old
list to get the models. The error happens here because the new list of standard libraries may not be
suitable for all the source files. Certain source files may require the standard libraries from the old list.
After all the models were updated, we counted the number of the problem messages ’Attempt to use
symbol failed’ of all the models and compared the value with the one from the old models.

Algorithm 5 Model generation with the improved list of standard libraries

Input:
A {source} location to the C++ source file
A {stdlib_new} list containing the new composition of the standard libraries
A {stdlib} list containing the standard libraries used for previous model generation
A {includePath} set containing the include paths of the given source file

Output:
A M3 model corresponding to the given source file

1: model← emptyM3Model()
2: try
3: model← createM3FromCppFile(source,stdlib_new,includePath)
4: catch Exception
5: model ← createM3FromCppFile(source,stdlib,includePath)
6: end try
7: return model

Evaluation Results
The comparison result is revealed in Table 5.18. The total number of problem messages in the 4232
M3 models is decreased by 62%. This is a significant improvement in the model quality. Despite the
improvement, the total number of problems still remains high. The possible reason is that the new list
of standard libraries is still not ideal for all the source files, and thus, some artifacts of the standard
libraries are incorrectly resolved. Nevertheless, considering the total number of source files, it is im-
practical to determine the most suitable list of standard libraries such that the number of problematic
function calls is minimized.

Table 5.18: Number of distinct problems before and after the improvement of the list of standard
libraries

Before the Improvement After the Improvement

#(Problems in the call graph) 406715 154233

Conclusions and Possible Threats to Validity
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In conclusion, the improved list of include paths for C and C++ standard libraries contributes to fewer
problems in M3 models. This improvement enhances the model quality and may also contribute to the
checking of other architectural rules as the failed resolved names are now presented in the models.
Despite the significant improvement, it still problems in the model, which require further investigation
to fix them.

Evaluation-13: Evaluation of Checking Results with the New M3 Models

Introduction and Evaluation Question
In Evaluation-12, we generated a new collection of models which contains significantly fewer prob-
lems. As these problems may lead to false negatives in the results, the removal of these problems may
contribute to the identification of new violations. Due to this reason, we conducted an evaluation with
the question: Do we get more violations with respect to each architectural rule after the quality of the
M3 models is improved?

Evaluation Method
The test targets are all source files in the codebase. We checked RULE 1 and RULE with the new models
and the rule implementation after the second improvement. As for RULE 3, We checked the dynamic
memory allocation with the improved implementation of the checker, as illustrated in Figure 5.5. The
results of each rule were compared with the results obtained before the models had been updated.

Evaluation Results
The results of this evaluation are that the number and the content of the violations of each rule are the
same before and after the update of the M3 models. This means although the old M3 models contain
a large number of problems, these problems do not eventually influence the checking process.

Conclusions and Possible Threats to Validity
In conclusion, the checking results of all three architectural rules are not affected by the failed name
resolution contained in the old M3 models.

Evaluation-14: Evaluation with the Bottom-up Reachability Test for RULE 3

Introduction and Evaluation Question
In the above mutation test, we start from the appRefresh function and explore whether the inserted
new operators can be detected. In this process, data is from the caller at the top to the callee functions
at the lower side. Next, we interpret another evaluation test in which the data flows from the bottom
(callees) to the top (callers). Essentially, this is not a mutation test, as no mutant is injected into the
source code. Nevertheless, the design of the test is similar to the mutation testing. Therefore, we
introduce the test in this section.

The intuition of this test is that we have assumed that the Entry source file is the entry point of
the codebase applications. Each application is implemented in a single source file. To express RULE 3,
we’ve had to assume that all the functions defined in these source files are reachable for the functions
defined in Entry file. That means, for all of the function call paths ending at a function defined in an
application source file, at least one path starts from Entry. These assumptions need to be tested for
validity: whether all the functions defined for the applications of the positioning software are reachable
from the functions defined in Entry?

Evaluation Method

In this case, the test set is the application file in which an application is implemented with the
startup and execution phase functions. The Entry.cpp is another target for testing. The workflow
of the experiment is illustrated in Figure 5.8. Assume we select a source file containing the definition
of functions in different application phases. This source file is designated as a target source. Then,
we build an inverted call graph from the callee function to the caller function for the entire codebase.
We calculate the transitive closure of this call graph such that with a given callee, we can immediately
obtain all the reachable callers. In the next step, we query the callers of each function defined in the
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Figure 5.8: Workflow of the bottom-up test

target source and compare these callers with the function defined in Entry. If none of the callers
belongs to Entry, the initial callee is then unreachable from the entry point of applications.

Evaluation Results

Table 5.20: Results of the bottom-up reachability test

Category Number

#(Failures due to function pointer) 8
#(Failures due to template) 7
#(Failures due to calls from another entry point) 16
#(Failures due to destructor) 4
#(Failures due to defined-not-used) 7
#(Total failures) 42
#(Total functions for test) 227
#(Failure rate) 18.5 %

As demonstrated in Table 5.20, we tested 227 functions defined in three source files, each of which
implements an application. For 18.5 % of the functions, no path from the bottom callee to the top
caller was found. We summarize the reasons for the unreachability into five categories:

• Function pointer: With static analysis, it is difficult to know the exact executed function when a
function pointer is called. This is especially the case for the interprocess communication module
in the codebase, in which the callback function is registered through a function pointer. As a
result, the function is called but not recorded in the call graph in the M3 models. In our test,
eight failures belong to this category.

• Template: The C++ template is tricky to resolve. In our test, all constructors failed to have a
path leading to the top caller. The reason is the constructors are invoked implicitly through the
C++ standard library function make_unique<constructor_name>. The constructor is used
for the template argument of make_unique, which is not captured in the M3 models.

• Calls from another entry point: Our assumption that Entry.cpp is the sole entry point of
the applications is not always true. The software allows users to operate it through an external
console by inputting commands. Through analyzing the name of the failed function, we found
that some of them are designed to support the external console. In other words, these functions
may be called through external commands, and the top callers should be from the modules of
the external console.

• Destructor: The destructors are invoked implicitly. As a result, they are absent in the call graph
of the M3 models.
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• Defined-not-used: Some functions are defined in the source files but not used anywhere in the
codebase. A possible cause is the bugs that some features are not correctly implemented, and
the defined function is not used.

Above are five factors that lead to the broken paths between the bottom callees at the application
source files and the top callers in ENTRY.CPP. These broken paths may finally lead to false negatives for
RULE 3. It is evident that the first two factors are due to the limitation of the M3 model and the parsing
capability of CLAIR. Consequently, no measure is proposed to improve the evaluation results. As for
the broken chains due to function calls initiated from the external console, we could consider it as the
second entry point to use the applications. The broken chains resulting from the last two factors could
be omitted as the problems are not due to incorrect implementation or the limitation of the method.

Conclusions and Possible Threats to Validity
Similar to Evaluation-12, this test is also a generic method that enables us to understand why the
chains of function calls are broken in the call graph. The main causes include the use of function
pointers, templates and external inputs for function invocation. This test provides us with a lesson
about the limitation of the call graph in processing function pointers and templates. We also have
a deeper understanding of the coverage of the method we applied to analyze the function uses that
Entry file is not the only entry point of the application functions.

The results from the second test may contain false positives. In the call graph of the M3 model,
if a method, which is an implementation of a virtual method, is called, its logical name in the call
graph is the same as the one of the virtual method. This is because the virtual function may have
multiple implementations. When it is non-deterministic, which implementation is used as the callee, it
is presented as the same as the virtual method in the call graph. However, we need the actual method
to build the call chains. Otherwise, the chains may terminate at the virtual methods. To tackle this, we
replace the virtual methods with all the possible actual methods in the call graph. This measure favors
the composition of the function calls but also introduces a problem. When the callee is used to join
two chains of function calls in an implementation of a virtual method, we may select an actual method
different from the one in the runtime. As a result, we may obtain results that are actually unreachable
and thus lead to false positives in the detection of RULE 3.

Evaluation-15: Expressiveness of the DSL Syntax

As part of the evaluation of the implementation of the architectural rules, we also have a test for the DSL
syntax, as it regulates how the architectural rule is formulated and integrated into our tool. We would
like to check whether the DSL fulfills REQ1 and REQ2. The evaluation is mainly on the expressiveness
of the syntax.

Introduction and Evaluation Question
The syntax of the READ specification language is deliberately tailored to define at least the three re-
quired architectural rules. Nevertheless, it is also applicable to the formulation of additional rules
without modifications to the existing syntax or rule checker. To explore to which extent the language
can formulate the other rules, we proposed the evaluation question: How expressive is the current DSL
syntax?

Evaluation Method
The expressiveness of READ syntax is measured by to which degree the current syntax can describe
the other unchecked architectural rules. The test set comprises all the unimplemented architectural
rules mentioned in Appendix B. For example, we can implement RULE 5, which forbids the use of
the built-in sleep function in the codebase, with the use-statement. Listing 5.2.1 as a naive imple-
mentation of this rule. It specifies for all of the source files in the codebase, all the functions except
TOS_p_TSK_sleep are not allowed to call sleep and Sleep functions. Due to the unavailability of
ground truths for unchecked rules, evaluating the results remains infeasible. Nevertheless, based on
the current definition of RULE 5, the tool yields outcomes consistent with our expectations.
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Listing 5.2.1 DSL instance implementing the checking on function sleep

1 rule name: sleepRule{
2 check source files: ALL
3 constraint{
4 ANY user in: ALL except Function [TOS_p_TSK_sleep]
5 not use target : Function [sleep, Sleep]
6 }
7 }

Evaluation Results
As a result, except for the already implemented rules, if we have the information about the objects and
subjects of the rule as well as the mapping between the objects and subjects, the current syntax supports
a naive implementation similar to Listing 5.2.1 for RULE 5, 7, 8, 9, 11, and 12. The description of the
rules is in Appendix B. Although the actual implementations may be significantly different from this
naive implementation if the rules are further refined with deeper investigation, the syntax reveals its
expressiveness in defining 60% of the remaining rules based on the current rule descriptions.

Conclusions and Possible Threats to Validity
In conclusion, the DSL syntax demonstrates a certain degree of expressiveness by describing the rules
beyond the scope of this assignment. Some rules cannot be fully implemented with the current syntax
as they require checks on the level of the source code for code smell detection, such as RULE 13.
However, READ is a tool specialized in inspecting the violations at the architecture level. Extending
READ from architecture erosion to smell detection would entail changing several design decisions.

5.3 Response Time

Regarding the third aspect for evaluation and REQ5, we explore the response time of the tool. The
operation of the tool mainly consists of four phases: CMAKE parsing, model generation, model com-
position, and rule checking. The time to parse the CMAKE files is much shorter than the other three
phases that it takes less than one minute to parse 606 CMAKE files. Therefore, in the following, we
mainly discuss the time required by the other three phases.

Evaluation-16: Impact of the search space of the include paths

Introduction and Evaluation Question
Model generation has a significant impact on the overall response time as it is the most time-consuming
process in the workflow. With a machine with 48 GB memory (12 GB for Java virtual machine (JVM))
and six cores, generating a M3 model needs an average of 12 seconds. As one factor, the generation
time is positively correlated to the file size of the source code. The file size can be represented by the
LOC, including the headers included by the source files, as the content of the headers is copied to the
source files at the beginning of the parsing. As the file size is an inherent property of the source file
that cannot be changed, no improvement is proposed with respect to this factor. The evaluation in this
subsection focuses on another factor: include paths.

In this assignment, a CMAKE parser is implemented to extract include paths for the generation of
the M3 models. Another approach to obtain the include paths is to construct a list containing all the
directories in the codebase. The directories here mean the locations of all the folders in the codebase.
This approach is more straightforward and simple as it does not require the implementation of a CMAKE

parser. Besides, as it contains all the directories, it is supposed that the not found include paths do
not appear during model generation. Nevertheless, it does not mean the second approach is more
efficient, as this set contains a large number of irrelevant include paths for the specific source file for
model generation. When the parser parses inclusion in source files, it will search the paths until it
finds the matched one. That means a higher number of irrelevant paths in the search space prompts a
longer time of parsing and model generation. Therefore, the evaluation in this section is to compare
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the time of model generation supported by include paths collected by CMAKE parser and by a general
set of all the directories.

Evaluation Method
To implement the evaluation plan, we used the CMAKE parser to extract a list of include paths for
each source file. Also, we stored all the directories in the codebase as a list, which serves as a general
collection of the include paths. Then, 100 source files are sampled from the codebase. The sampling
is conducted by the RASCAL function sample. This is a simple random sampling process that selects
100 source files randomly from all the source files that require a M3 model. The two sets of directories
were used to generate the M3 models for these 100 source files, respectively.

Evaluation Results
We recorded the time of model generation in both cases, which is revealed in Table 5.22. It is clear the
model generation with a list provided by CMAKE parser takes 6.7 minutes to generate 100 models for
the sampled files, while it takes about 12 times the time to generate the models with the general list
of directories.

Table 5.22: Comparison of the time required to generate the models for 100 sampled source files with
different sources of include paths

Source of include paths Paths collected by CMAKE parser All directories in the codebase

Time of model generation (minutes) 6.7 79.4

Conclusions and Possible Threats to Validity
In conclusion, using the include paths from the CMAKE parser is a much more efficient solution than
the other method. This means the list of directories in the second method, although it is a generic
solution for include paths and prevents the absent paths from happening, contains too much irrelevant
information such that the parser needs much more time to find the matched path. This evaluation
reveals the necessity of the CMAKE parser, which provides a tailored list of include paths for each
source file.

Evaluation-17: Impact of the partial composition of the M3 models

Introduction and Evaluation Question
As for the time of model composition, it depends on the size of the model. The models are required to
be composed into layer models when RULE 1 and RULE 2 require checks based on models. As each M3
model contains 24 fields with sets of possibly 10,000 of tuples, the composition of the complete model
can be time-consuming. A possible improvement for time and space efficiency is only to compose
the fields of the M3 models, which are required by the rule checking while leaving the other fields
unaffected. Then, an evaluation question is proposed: How is the efficiency of READ improved if only
the selected fields are composed as the layer models?

Evaluation Method
For this evaluation test, all the M3 models formulate the test set. We compose the complete fields and
the selected fields and calculate the time used for model composition, respectively.

Evaluation Results
In Table 5.23, it is evident that each layer or module requires less time to generate a composed model
when only a subset of the fields are required for model composition. The composition time of the
partial model is nearly 30% less than the composition of the entire model.

Conclusions and Possible Threats to Validity
In conclusion, composing the models with only the required fields is an effective approach, contributing
to reduced execution time. Additionally, it is important to note that the effectiveness of this improve-
ment may be reduced as READ is extended for more rule checking and requires more fields for model
composition.
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Table 5.23: Comparison of the time required to compose the models between partial and complete
model fields

Layer/Module A B C D E F G sum

Time of partial model composition (minutes) 0.11 0.72 0.61 3.12 0.51 0.13 1.09 6.29
Time of complete model composition (minutes) 0.15 1.04 0.86 4.37 0.78 0.18 1.55 8.93

Evaluation-18: Impact of AST cache for checking RULE 3

Introduction and Evaluation Question
The time of rule checking varies on which architectural rule is inspected by the checker. Generally, the
time required by RULE 1 and 2 is less than RULE 3 because the checking of the first two rules only
depends on the requires field in the model, which is convenient to retrieve. In comparison, RULE
3 requires the visit of the AST to verify whether the dynamic memory is allocated with the singleton
pattern. This process involves the construction of the AST, which is time-consuming and could be the
bottleneck of rule checking. With further investigation, we found that some files are frequently used to
construct the ASTs as they implement the functions responsible for creating the instances. Therefore,
to improve efficiency, an AST cache is constructed to store the most recently used 20 ASTs. This is an
in-memory cache that is built by a set in RASCAL that allows a maximum of 20 ASTs to be stored. Once
the capacity of the set is reached, the earliest inserted AST will be removed. This improvement leads
to an evaluation question: how much time is saved by applying the improvement?

Evaluation Method
The test set of this evaluation consists of all the source files in the codebase, as we need to inspect
all source files to check if dynamic memory allocation exists in the execution phase of the application.
The design of the evaluation is as follows: We use the same implementation of RULE 3 mentioned in
Evaluation-10 twice. The variant is the AST cache. The first test was conducted with the AST cache,
while the second was without.

Evaluation Results
Table 5.24 illustrates that the rule-checking process for over 4000 source files without the cache re-
quires about 14 minutes. In comparison, checking with the AST cache contributes to a 25% reduction
in time consumption.

Table 5.24: Comparison of the time required to check RULE 3 with and without the AST cache

With cache Without cache

Time for rule checking (minutes) 10.56 14.10

Conclusions and Possible Threats to Validity
The facts in Table 5.24 prove that AST cache is a practical improvement when a large number of
source files are inspected continuously. This measure contributes to the reduced overall execution
time required by READ.

5.4 Anecdotal Evidence

In this section, we will discuss the feedback from Philips engineers who have knowledge of or have
already used READ. The target of READ is to formulate the architectural rules and compare the source
code represented by M3 models against the rule definitions to collect the violations. As mentioned
in Section 4.5, READ is deployed on Philips’ server and executed as a Jenkins job. The architect main-
tains this Jenkins job and checks the results collected by the tool.

From the perspective of the architect, READ reports accurate violation results for RULE 1 and 2,
consistent with his own tool. While fewer violations of RULE 3 are identified than expected considering
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the software’s scale, the collected violation is considered to be correct. Moreover, Jenkins’ dashboard
facilitates the presentation of the checking results from READ and improves the user experience. The
architect also sees potential in using the generated M3 models to analyze and maintain the architecture
of the positioning software.

Another feedback received from the developers shows some concerns about the maintenance of the
tool. As READ is implemented in RASCAL, fixing the problems in the CMAKE parser as software evolves
and accommodating the DSL syntax to new architectural rules require the knowledge and experience
of using RASCAL. However, it’s worth noting that these concerns could be mitigated as the developers
of the software group are acquiring proficiency with RASCAL.

5.5 Conclusions

In this section, we investigated the usability of the DSL tool by evaluating the accuracy and efficiency
of its individual components. Usability was primarily gauged based on the model quality, accuracy
of checking results and the time required to identify the violations in adherence to architectural rules.
The model quality was evaluated and further iteratively improved by counting the number of not found
include paths.

To evaluate the accuracy, multiple evaluation tests were designed for each architectural rule. These
tests enable us to find the problems in the implementations and improve the accuracy of the rule
checking. Consequently, the evaluation provides evidence of the correctness of the correctness of the
implementation for RULE 1 and 2. Furthermore, with the evaluation of RULE 3, we continuously
enhanced the preciseness of rule definition and implementation, leading to improved result accuracy.
With the mutation test and reachability test, the problems in the M3 models were deeply investigated.
These problems are either from the model generation phase due to incompatible implementation of
the standard libraries or the nature of the CLAIR that it under-approximates function pointers and
templates, leading to false negatives in call edges. The lesson enables us to improve the model quality
and have a better understanding of the limitations of the method used.

As for response time, it was calculated for each execution phase with the comparison of the im-
provement measures. The calculation results demonstrate our measures regarding reducing the overall
execution time are effective.

In conclusion, the evaluation allows us to have a better understanding of the performance of each
tool component from different aspects. It also promotes better design and implementation of the tool
such that the tool becomes more accurate and efficient.
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Conclusions and Future Work

6.1 Conclusions

In this thesis, we propose an automated method for identifying architecture erosions in the Philips
positioning software. This method is implemented with the meta-programming technology RACAL and
its extension CLAIR, which enables the formulation of architectural rules in a DSL and the conformance
checking on the abstraction of C/C++ source code. Users can easily define architectural rules with the
DSL syntax, while the checkings are performed by the tool automatically. The tool is assessed evaluating
the accuracy of the checking results and response time of the entire checking process. Based on the
evaluation findings, new designs and implementations are proposed to eliminate the false results from
the detected violations and enhance the checking efficiency. As a result, the implemented tool proves
to be usable and reliable in identifying the violations of RULE 1 and RULE 2. As for RULE 3, an
effective approach is proposed and implemented to detect the violations, while the obtained results
may represent a subset of the ground truth due to the limitations in checking function pointers and
templates. Overall, the tool’s development and evaluation contribute to an improved understanding
of manipulating DSL and M3 models for architecture conformance checking, as well as revealing the
gap between the designed architecture and the actual software structure.

The tool’s correctness in identifying rule violations proves that meta-programming is a more effec-
tive method for tasks required by Philips than the other technologies we studied during the literature
study. For example, compared to the reflexion model, which may involve manual construction of the
mapping between the intended architectural model and the actual implementation model [24], our
DSL tool automates the checking process once the rule is expressed with the DSL syntax. Additionally,
to implement the rule conformance checking, the reflexion model requires a one-to-one mapping be-
tween the components in the architectural model and the implementation model. This mapping limits
the reusability of the models in dealing with different architectural rules [38]. In comparison, the DSL
syntax can be reused to define rules with similar formulations. Hence, in the context of this assign-
ment, a DSL-based method provides much more flexibility to restrict the behaviors of the architectural
components.

Our work’s major contribution is a DSL-based approach, which automates the processes of checking
architectural rule violations in positioning software consisting of more than one million lines of code
and provides results concerning architectural violations. Although the language is designed for rules
specific to the codebase, it is generic and expressive to formulate other unchecked rules. Moreover,
to the best of our knowledge, this thesis represents the first utilization of mutation testing to evaluate
the quality of architecture conformance checking using a RASCAL-based tool. While some researchers
proposed a tool to generate mutation tests for arbitrary DSLs [15], our requirement on the mutation
tests differs as we focus on the investigation of missing information in the call graph. Through the mu-
tation test, we successfully identified the flaws in model generation and the limitations in constructing
chains of method calls within our tool.

Finally, we draw a conclusion for each research question proposed in Section 1.3:
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• RQ1: Which method is suitable to check AE in Philips’ codebase?
In this assignment, we determine that DSL is the most suitable solution for architecture confor-
mance checking for Philips’ codebase. This decision is based on the literature study that DSL has
been successfully used to validate the conformance between software architecture and actual
implementations. It provides language grammar such that the users can translate the architec-
tural rules described in natural language into a programming language. In comparison, other
methods do not provide the flexibility for implementing rules closely specific to the codebase.
Additionally, we selected RASCAL to develop the DSL because previous experience with the same
codebase has proven that RASCAL is a feasible solution for source code analysis. Combining the-
oretical study and practical experience, we are convinced a DSL implemented with RASCAL is an
ideal solution to identify AE in the codebase.

• RQ2: How are the architectural rules formalized in the tool?
The architectural rules are formalized with the DSL syntax. The formulation of the rule conforms
to a basic scheme that each rule must contain three elements: a rule subject, a rule object and
a modifier, which are implemented with algebraic data type in RASCAL. Additional conditions or
conditions may be required depending on the concrete definition of the rule. Therefore, a final
definition of the rule in the DSL requires a pre-investigation of the rule content and scope, as the
plain description in natural language can be ambiguous and informal. The investigation includes
analyzing the purpose of the rules from the view of the architects and the related code snippets
in the codebase.

• RQ3: How is architecture erosion detected by the tool?
The essence of AE in the context of positioning software is the conformance checking between
the implementation and the designed software architecture. As the foundation of the detection,
a CMake parser was implemented to collect the include paths. These paths are essential as they
indicate the locations of the headers required by the source files. To perform the checking, the
C/C++ source code, coupled with the include paths, is transformed into a M3 model, which is a
generic representation recognized by RASCAL. Then, the violations are collected by querying the
models against the DSL instance, in which the architectural rules are defined.

• RQ4: How is the quality of the developed tool evaluated?
The evaluation of the tool mainly focuses on the usability of the DSL tool. We investigated
three aspects to explore the tool’s usability: accuracy, response time and DSL expressiveness.
The accuracy of the checking results was evaluated by comparing the collected violations with
the ground truths provided by the architect. In case the ground truth is unavailable, mutation
tests are designed. For the rule checking based on the call graph, mutation testing reveals the
function calls that are supposed to be present but actually absent. As for the response time, the
execution time of model generation, composition and rule checking was calculated, prompting
the improvement of design for enhanced efficiency. The DSL expressiveness was evaluated by
testing its applicability with other unchecked architectural rules using the implemented language
syntax.

6.2 Future Work

In this assignment, we collect 13 architectural rules through interviews with architects. The first three
of these rules are implemented and checked in our tool. The ultimate goal of our tool is to check all
the architectural rules defined for the positioning software. During the evaluation of the DSL syntax,
we found the current DSL syntax already supports a basic implementation of some rules, as these rules
possess similar patterns that can be formalized in the DSL. The future work for rule checking could be
based on our basic implementation and may involve further investigation and refinement of the rules.
As discussed in the evaluation section, the imprecise definition of the architectural rule can lead to
increased false results. Hence, it is of great importance to have a precise rule definition and determine
the mappings between the rule components and source code artifacts before implementing the rule.
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Additionally, the DSL syntax may be extended such that it can describe the rule components which
cannot be specified by the current syntax designs.

Additionally, during the evaluation of RULE 3, we identified some limitations of using CLAIR in
analyzing templates and function pointers. It would be advantageous if improvements could be incor-
porated into CLAIR such that it could present the information about templates and function pointers in
M3 models. By achieving this enhancement, we anticipate more violations concerning RULE 3 would
be detected, further enhancing the tool’s performance and usability.
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Appendix A

Description of M3 Model Fields

Field Data Structure Description

callGraph rel[loc caller, loc callee] Mapping from the location where the
function is called (caller) to the location
where the function is provided (callee).
Note that the term “function” in the C++
M3 model refers to C++ functions, meth-
ods and constructors.

uses rel[loc src, loc name] Mapping from the physical location
where the artifact is used to the logical
name of the artifact. Note that "artifact"
refers to any declared C and C++ artifact
like a compilation unit, a package, a class,
a method, a function, a parameter, a field
or a local variable, etc..

partOf rel[loc decl, loc file] Mapping from the logical name of the
artifact to the physical directory of the
source file in which the artifact is used.

containment rel[loc from, loc to] Mapping from the logical name of
the container, such as class, function,
method, to the logical name of the arti-
fact that is contained, such as method,
fields and parameter.

declarations rel[loc name, loc src] Mapping from the logical name of the ar-
tifact to the location where the artifact is
declared.

implicitDeclarations set[loc] A set of the implicit declarations of the
C++ new operator.

declarationToDefinition rel[loc decl, loc impl] Mapping from the physical location of the
function/method declaration to the phys-
ical location where it is defined.
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functionDefinitions rel[loc name, loc src] Mapping from the logical name of the
function to the physical location where it
is declared.

methodInvocations rel[loc caller, loc callee] Mapping from the logical name of
the method (caller) requiring another
method to the logical name of the re-
quired method (callee).

methodOverrides rel[loc base, loc override] Mapping from the logical name of the
function defined in the base class to the
logical name of the function in the de-
rived class which overrides the function
in the base class.

macroExpansions rel[loc file, loc macro] Mapping from the location where a
macro is expanded to the logical location
of the macro.

macroDefinitions rel[loc macro, loc src] Mapping from the logical name of the
macro to the physical location where the
macro is defined.

requires rel[loc includer, loc includee] Mapping from the location of the source
file (includer) to the location of the
header file (includee) included in the
source file.

includeResolution rel[loc directive, loc resolved] Mapping from the logical name of the
header to the physical location where the
header locates.

includeDirectives rel[loc directive, loc occurrence] Mapping from the logical name of the
header to the physical location where it
is included.

inactiveIncludes rel[loc directive, loc occurrence] Mapping from the logical name of the
unused header to the physical location
where it is included.

unresolvedIncludes rel[loc directive, loc occurrence] Mapping from the logical name of the un-
resolved header to the physical location
where it is included. A include is unre-
solved if its include path is not found dur-
ing model generation.

extends rel[loc directive, loc occurrence] Mapping from the logical name of the
parent class to the logical name of the
child class.

declaredType rel[loc decl,TypeSymbol typ] Mapping from the logical name of an ar-
tifact to the corresponding part in the ab-
stract syntax tree where it is declared.
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modifiers rel[loc directive, loc occurrence] Mapping from the logical name of
the artifacts, including field, parameter,
method, etc. to its modifier, such as
public, virtual, const, etc.

memberAccessModifiers rel[loc directive, loc occurrence] Mapping from the logical name of a
method or field or constructor to its mem-
ber access modifier, including public
and private.

comments list[loc] A list of physical locations of the com-
ments in the source code.
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Appendix B

List of Architectural Rules

Following is the description of all the architectural rules. As the first three rules have been discussed
in Section 4.3, this appendix mainly focuses on the remaining ones. At the end of each rule, we use the
letter S and G to denote whether the rule is specific to the investigated codebase or generic to different
software.

RULE 1 Each layer must only depend on the other allowed layers. (G)

RULE 2 The communication between the layers must be conducted exclusively through the interfaces
defined in pub folder. (G)

RULE 3 It is not allowed to allocate dynamic memory after the startup phase of the applications. (S)

RULE 4 Deadlock must be avoided in remote procedure calls (RPC). (G)
Deadlock happens when a process requests resources from a remote process while the remote
process also waits for the resource provided by the first process. When both processes are
blocked, severe problems in the system operation arise, leading the system to become unrespon-
sible and inefficient. Therefore, it is necessary to set a rule to detect the circular dependency
between the processes and prevent deadlock in RPCs from happening.

RULE 5 The C++ built-in function Sleep is not allowed to be used in any context except in
TOS_p_TSK_sleep. (S)
Sleep function can suspend a thread or process for a specified time interval. The function name
and type of the parameter vary across different operating systems. In the case of positioning soft-
ware, the system is executable in both Windows and VxWorks. To make the program compatible
with different operating systems, a wrapper function TOS_p_TSK_sleep is implemented, which
provides a uniform interface for different operating systems and makes the software more main-
tainable. Thus, instead of Sleep, this wrapper is expected to use anytime a thread or process
needs to be suspended.

RULE 6 Every time a new class is created in the production code, a test class must be implemented to
test it. (G)
The rationale of this rule is to ensure the functionality and quality of the implemented segments
in production code. It is necessary to have a test class for the production class to detect bugs
and unexpected behaviors before the code is deployed to the production environment. Compared
with fixing the problems in production code after the delivery, it is more cost-effective to improve
the implementations during the development phase.

RULE 7 It is not allowed to create new threads in the application execution phase. (S)
Essentially, creating a new thread involves dynamic memory allocation, which cannot happen
during the execution phase, according to RULE 3. Therefore, thread creation is only allowed
during the startup phase and must be avoided during the execution phase.

An Automated Approach to Check Software Architecture Erosion 81



APPENDIX B. LIST OF ARCHITECTURAL RULES

RULE 8 The newly implemented part of the codebase is not allowed to use the utilities specifically de-
signed for the legacy code. (G)
As the software evolves, the programs implemented with C are migrated to C++. During this
evolution, the software is characterized by two part: the new implementation and the legacy
code that is or will be deprecated. That means the utilities designed for legacy code will be
gradually disposed of and cannot be included in the new implementations.

RULE 9 If the same functionality is implemented in new and legacy code, always use the new methods.
(G)
The newly implemented part of the codebase contains refactoring and rewriting of the function-
alities implemented in the legacy part. As the legacy code will be eliminated eventually, future
implementations must be based on the new functions or methods; otherwise, the software be-
comes difficult to maintain.

RULE 10 Timeouts on the connections must be avoided. (G)
Timeouts can cause unexpected problems during the operation of the system. Assume a connec-
tion timeout is set for the connecting process between the software and a system component.
In case of a system component crash, the software starts timing until the timeout is reached.
However, it is possible that the system component finishes restarting after the timeout, but the
software does not try to reconnect it anymore after a timeout. This timeout mechanism is not
reliable and needs to be avoided. A better solution is to check the availability of the service by
polling constantly.

RULE 11 All the operations requiring OS primitives should use the implemented wrappers. (G)
In the software, an abstracted layer for OS primitives, such as read and write, is implemented to
provide uniform interfaces for function invocation, disregarding which OS the software runs on.
This abstraction promotes the maintainability of the software. Thus, instead of OS primitives,
the wrappers must be utilized for manipulations on OS.

RULE 12 The calls on the component for interprocess communication should be via wrappers rather than
the native functions. (S)
Similar to OS primitives, the software contains an abstracted layer implemented for the functions
defined in the interprocess communication component. These wrappers are expected to use for
better code maintainability.

RULE 13 Hardcoded passwords are not allowed. (G)
Some services in the codebase require a password for login authentication. Although embedding
the plain text passwords into source code is a practical measure, it exposes the system to the
threat of password guessing attacks, resulting in bypassing the authentication process. Therefore,
this rule is proposed to minimize and eliminate the usage of hardcoded passwords.
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Structure of DSL Syntax

An Automated Approach to Check Software Architecture Erosion 83



A
PPEN

D
IX

C
.

STR
U

C
TU

R
E

O
F

D
SL

SYN
TA

X

Build

AliasPair Statement

1

0..* 0..* 0..*

TemplateInvocation

TemplateStatement

1

TemplateName

name: string

ArgSingleCompVal

arg: string

ArgListCompVal

arg: string

ArgListFormats

format: string

1

Parameter

para: string
RuleTplDefineStatement

1

DependTemplate NotDependTemplateUseTemplate NotUseTemplate

Dependent

entity: string

DependStatement NotDependStatement SimpleUSe ConditionalUse

Dependee

entity: string

InterfaceStatement

Location

location: string

Format

format: string

1..* 1..*

1
1..*

Sources

location: string

Target

entity: string

1..* 0..1

1

1..*

1
1

AliasName

name: string

AliasValue

val: string

1

1 1..*

0..* 0..* 0..*

1
1 1

1..*

InterfaceTemplate

1

1
0..1

1..*

1

Terminal

Nonterminal

Legend

RuleName

name: string

1

1

1..*

Except

entity: string

1 1 1 1

UseStatement

User

entity: string

Descriptor

desp: string

Modifier

modi: string

1..*

0..11 0..11..*

NotUseStatement

1

UseStatementContent IfStatement

1

IfCondition IfBody

1 1..*

1

1 1
1 1

1

1..*

84
A

n
A

utom
ated

A
pproach

to
C

heck
Softw

are
A

rchitecture
Erosion


	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Introduction
	Motivation
	Problem Description
	Research Questions
	Thesis Outline

	Background and Concepts
	Software architecture and Architecture Erosion
	Philips Positioning Software
	Static Analysis
	Metaprogramming and Domain-Specific Languages
	Rascal
	ClaiR
	TypePal


	Related Work
	Detection of Architecture Erosion
	Domain-Specific Languages for Architecture Analysis
	Code Analysis and Transformation with Rascal
	Rule Formalization with DSL Syntax
	Conclusions

	Design and Implementation
	Development Procedures
	Requirements
	Architectural Rules
	Workflow
	Model Generation
	Design of the Domain Specific Language
	Architecture Erosion Checking

	Deployment
	Conclusions

	Evaluation and Results
	Quality of the M3 Models
	Parsing of the CMake Files
	Evaluation of Include Path Extraction

	Implementation of Architectural Rules
	Disallowed Layer Dependency
	Non-public Interface Usage
	Dynamic Memory Allocation

	Response Time
	Anecdotal Evidence
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix
	Description of M3 Model Fields
	List of Architectural Rules
	Structure of DSL Syntax

