
Thesis Software Engineering

One Year Master Course Software Engineering

'Variability through Aspect Oriented Programming

in J2ME game development'

Sannie Kwakman

Universiteit van Amsterdam

15-08-2006

Not for public use – strictly company confidential and proprietary information

One Year Master Course Software Engineering

Thesis Supervisor: Jurgen Vinju

Internship Supervisor: Ferdy Blaset

Company or Institute: Gamica

Availability: Confidential

Not for public use – strictly company confidential and proprietary information Page 2 of 75

I. Preface
This thesis is part of the graduation project of Sannie Kwakman, currently studying the Master Software
Engineering course at the Universiteit van Amsterdam.

The project was done under supervision of Jurgen Vinju of the Universiteit van Amsterdam.

Research described in this thesis was performed by order of Gamica, a mobile game development company
based in The Hague, Netherlands. The primary contact and supervisor within this company was its main
developer and founder, Ferdy Blaset.

Acknowledgement
During this project, support was received from several persons, who had a positive influence on the quality of
the research. Here I like to thank Mr Vinju and Mr Blaset for their unwavering support and cooperation during
this project. Additionally, I would like to thank Jeffrey Kamermans, a programmer at Gamica for his
assistance during several phases of the research.

Not for public use – strictly company confidential and proprietary information Page 3 of 75

Not for public use – strictly company confidential and proprietary information Page 4 of 75

II.Summary
Problem description
The subject of this thesis is to find a solution to the problem of dealing with variability in the field of J2ME
mobile game development. This variability is required because mobile games are expected to run on a wide
variety of mobile devices. Additionally, games are often highly optimized to smoothly run within this strict
environment, because of limitations of these devices regarding processing speed, heap memory and disk
space. However, introduction of variability often introduces a certain amount of overhead.

In order to introduce variability in mobile games effectively, a variability solution is required that minimizes
any introduced overhead and still keeps the targeted game maintainable and it's source code readable.

The research described in this thesis concerns with finding this solution. Not only is a structural and technical
solution explored, but it should also fit in the process of developing a mobile game. To obtain more detailed
requirements and a basis for a test case, the knowledge and experience of an actual game development
company was utilized. The company in question is Gamica, specialized in J2ME mobile game development
founded in The Hague, Netherlands.

Additional requirements detailed by Gamica were that the solution should work within or alongside Eclipse.
Furthermore, a highly used debugging and code tweaking technique called hot code-replacement should be
supported as well.

Aspect Oriented Programming
In finding a viable variability solution, focus was put on an Aspect Oriented Programming (AOP) approach.
Although AOP is originally intended for other purposes, it can be utilized to introduce variability in which the
targeted application stays oblivious to these changes. The assumption was made that no predetermined
variability points may be required, and no code tags or other kinds of code inserts should be needed to
implement this variability.

Determining required transformations
By utilizing several informal interviews with Gamica's developers and an existing knowledge base at Gamica,
a common set of variations was determined. By applying these variations to existing source code of one of
Gamica's games and in-house developed hardware abstraction libray, a list of required transformations were
extracted. Lastly, these transformations then resulted into a set of variability operations which the variability
solution should support.

Existing implementations and transformation approach
For the implementation of the variability solution several existing Aspect Oriented Programming
implementations were assessed. However, these implementations either weren't efficient enough, or
provided lacked required features.

These solutions were based on changing bytecode to implement any changes to a program. During the
research it was revealed that changing program logic and features at a bytecode level has several limitations
regarding the handling of field constants. As these constants are used extensively in Gamica's games and
library, this method of program transformation could not be used.

As a result of these findings, the earlier determined variability operations were to be implemented using
transformations on a source code level.

Proof-of-concept
A proof-of-concept was developed, which would enable Gamica's developers to apply the earlier determined
variability operations on their games and library. This implementation consisted of an Eclipse plug-in which
utilizes Eclipse's built-in source transformation features. Furthermore, a language was defined in which
developers can target operations to specific parts of game and library source code.

Case study
The proof-of-concept was then used to evaluate the framework's effectiveness, ease-of-use and related
source code maintainability. This was done by partially porting a game and library for a significantly limited
mobile device. Experiences and opinions of developers responsible for the porting were recorded using
informal interviews and a questionnaire.

Results
Although the framework required several additional features to completely implement all required variations,
the approach of the framework was declared a success. Developers were able to implement the variations
effectively. Furthermore, developers found that code readability was increased when compared with earlier
used variability techniques.

Not for public use – strictly company confidential and proprietary information Page 5 of 75

Using this framework, Gamica is now able to support a wide range of devices for their games by introducing
variability using the framework that was implemented in this thesis.

Reflection
The solutions provided in this research were based on code styles and the development process of one
mobile game development company. The solution itself became very dependent on this same code style.
This renders the solution not immediately usable for scenarios with different coding practices.

Furthermore, the assumption that AOP can be used to introduce variability whilst keeping the targeted
program oblivious to any changes, was proven to be incorrect. Because the variability operations required
certain low-level changes to game logic, related game code was required to be isolated in the program code
itself. This removes the earlier mentioned obliviousness of the targeted program.

Not for public use – strictly company confidential and proprietary information Page 6 of 75

Table of contents
I.Preface ... 3

II.Summary .. 5

1. Problem Description ... 9
1.1. Challenges of mobile game development...9

1.1.1. Limited hardware..9
1.1.2. Varying models...9
1.1.3. Languages..10
1.1.4. Distribution channel specific requirements..10
1.1.5. Implications for mobile game development...10

1.2. Current solutions to these challenges...10
1.2.1. Abstracting hardware differences through Java profiles..10
1.2.2. Introducing variability through standard Object Oriented structures..11
1.2.3. Introducing variability through manual code changes...11
1.2.4. Introducing variability through preprocessing..11
1.2.5. Resolving efficiency and maintainability issues..12

1.3. A new, aspect oriented approach..12
1.3.1. What is Aspect Oriented Programming...12
1.3.2. Using Aspect Oriented Programming to introduce variability..13
1.3.3. Requirements...13

1.4. Research Questions...14

2. Background and Context .. 15
2.1. Aspect Oriented Programming..15
2.2. Bytecode Instrumentation...15
2.3. The Eclipse development environment and platform..16

3. Research Plan ... 17

4. Gathering detailed requirements ... 18
4.1. Determining typical variations...18

4.1.1. Sources of information..18
4.1.2. Results..18

4.2. Determine transformations for variability...20
4.2.1. Variability strategy...20
4.2.2. Selection criteria...22
4.2.3. Analysis of variation points..22

Variation A GraphicsLocation...23
Variation B: ResourceLoading...24
Variation C: JavaProfile...27
Variation D: DisabledConnectivity..28
Variation E: Language...31
Variation F: LanguageMenu...32
Variation G: ImageFormat..32
Variation H: SimultaneousAudioSupport..32
Variation I: MidiPlayback..33
Variation J: PauseEventHandling...34
Variation K: AnimationImplementation...34
Variation L: DistributorImage..34

4.3. Summary of required operations...36

5. Assessment current implementations .. 39
5.1. Overview of implementations..39

5.1.1. AspectJ...39
5.1.2. JBossAOP..39

5.2. Implementation efficiency...40
5.2.1. AspectJ...40
5.2.2. JBossAOP..41

Not for public use – strictly company confidential and proprietary information Page 7 of 75

5.3. Implementation functionality...41
5.3.1. Inserting and replacing code inside method bodies..41
5.3.2. Removing methods and related calls..41
5.3.3. Changing superclass definition...41
5.3.4. Replacing values of fields...41
5.3.5. Removing case bodies..42

5.4. Conclusions..42

6. Proof-of-concept ... 43
6.1. Implementing variability operations...43

6.1.1. Source code manipulation in Eclipse..43
6.2. Designing the program transformation language..44

6.2.1. Capability and requirement based variability..44
6.2.2. Designing operation sets..46

Determining language requirements..46
Consequences and limitations...47
Other operations..48
Differences between variability framework languages and other AOP implementations..................49
Towards implementing the framework...49

6.3. Implementing the framework...49
6.3.1. Project layout..49
6.3.2. Build process..50
6.3.3. Target for case study...52

7. Case study ... 53
7.1. Changes to operations..53
7.2. Activities..54
7.3. Support of operations..55

7.3.1. Results..55
7.3.2. Observations...55

7.4. Decreasing bytecode size...56
7.4.1. Results..56
7.4.2. Observations...57

7.5. Ease-of-use, presentation, readability...58
7.5.1. Results..58
7.5.2. Observations...59

7.6. Summary..59

8. Conclusions .. 61
8.1. 'Is AOP efficient enough?'...61
8.2. 'Which exact variations should be supported by the AOP solution?'...61
8.3. 'Can required variations be implemented using AOP and how?'...61
8.4. 'Can the AOP solution be used within Gamica's development process, or what changes are required
to this process to make it possible?'..61
8.5. 'Can Aspect Oriented Programming be applied to introduce variability in J2ME games?'..................62
8.6. Contributions...62

9.Further research and discussions ... 64
9.1. Discussion: The illusion of obliviousness..64

10.Evaluation ... 66
10.1. Successes..66
10.2. Misconceptions...66
10.3. Hindsight...66

11.References .. 67

12.Appendix A: Device capability matrix .. 70
13.Appendix B: Device properties and channel requirements databases ... 71
14.Appendix C: Example buildtargets.xml ... 73
15.Appendix D: Questionnaire ... 74

Not for public use – strictly company confidential and proprietary information Page 8 of 75

1. Problem Description
The subject of this thesis is to find a solution to the problem of dealing with variability in the field of J2ME
mobile game development. This variability is required because mobile games are expected to run on a wide
variety of mobile devices. Additionally, games are often highly optimized to smoothly run within this strict
environment, because of limitations of these devices regarding processing speed, heap memory and disk
space. However, introduction of variability often introduces a certain amount of overhead. As there often are
strict limits on how large a game build may become (sometimes smaller than 100 kilobytes), any overhead
introduced by a variability framework should be kept at a minimum.

In other cases, introduction of variability decreases maintainability and source code readability. Examples of
this are listed in section 'Current solutions to these challenges'.

Finding an efficient and maintainable variability solution
In order to introduce variability in mobile games effectively, a variability solution is required that minimizes
any introduced overhead and still keeps the targeted game maintainable and it's source code readable.

The research described in this thesis concerns with finding this solution. Not only will a structural and
technical solution be explored, but it should also fit in the process of developing a mobile game. To obtain
requirements and a basis for a test case, the knowledge and experience of an actual game development
company will be utilized. The company in question is Gamica, specialized in J2ME mobile game
development founded in The Hague, Netherlands.

1.1. Challenges of mobile game development
Mobile game development is a challenging field. Typical issues are limited hardware and a wide variety of
mobile device specifications requiring an extreme amount of variability.

In addition to hardware related variability, mobile games are often asked to support a wide range of
languages as well. Furthermore, game distribution channels sometimes enforce certain requirements as well.

More details and several examples of these challenges are listed in the following chapters. The last section
titled 'Implications for mobile game development' provides a summary of these challenges and their
implications to the development of mobile games.

1.1.1. Limited hardware
Although a lot of progress has been made in increasing the capabilities and features of mobile devices, they
still impose a severe limiting factor when creating games for them. Some of the more restricting factors are:

– Limited amount of available memory
Depending on the mobile device, games sometimes don't have more than a few kilobytes of heap
memory available for use.

– Limited processor capacity
To preserve battery power and their small form factor, processing power of mobile devices are
relatively low (compared to desktop computers)

– Limited file size
Most mobile devices impose a maximum file size for game packages. Some game publishers also
impose such a restriction in their contracts.

1.1.2. Varying models
There are large numbers of different mobile devices in the market, which all have different form factors,
hardware specifications and other differences. These include:

– Varying processing power

– Varying memory and storage capacities

– Varying device-specific capabilities
Capabilities like camera's, localization units (like GPS), gyroscopes etc.

– Varying screen sizes

Not for public use – strictly company confidential and proprietary information Page 9 of 75

– Varying input methods

– Device-specific specific bugs

– Differences between supported Java profiles
Java profiles are discussed in more detail in chapter 'Current solutions to these challenges'.

1.1.3. Languages
Apart from device variations, mobile games also require the support for multiple language sets. A language
set contains a group of languages targeted at a specific region. For example, a game targeted for western
Europe could contain English, Dutch, French, German and Spanish language texts. While an Asian build
should support various forms of Chinese, Taiwanese, Japanese etc.

1.1.4. Distribution channel specific requirements
As a bonus, some game publishers have certain requirements as well. For instance, a publisher could
require that its logo must be displayed at the beginning of the game.

1.1.5. Implications for mobile game development
The challenges mentioned in the previous chapters are all related to supporting variations in hardware,
channel distributor requirements and languages.

Regarding languages, theoretically it is possible to include support for all possible languages in one game
build. However, as storage and memory capacity is limited, game developers are forced to create separate
game builds for each language set.

All these variations lead to a large number of separate builds per game. For example, when a game should
support 10 language sets, 10 devices for 3 different publishers, 300 different builds of one single game are
required.

Supporting manageable variability
The key factor here is the support of variability. Because of all these differences, a game should be
developed to support the mentioned variations. All without imposing extra restrictions on the already limited
storage, memory and processing capacities.

Additionally, the variability should also be manageable. As will be described in chapter 'Current solutions to
these challenges', certain variability solutions can decrease the readability and maintainability of source
code. This in turn reduces the effectiveness of such a solution.

Development process requirements
Furthermore, if any solution regarding the introduction of variability is to be used in a real-world environment,
it should fit inside the process of developing mobile games. In this research, these requirements are directly
related to Gamica's own development process. These requirements are detailed in chapter 'A new aspect
oriented approach'

Current solutions
The next chapter describes several current solutions to the mentioned challenges. Thereby focusing on
solutions that Gamica already utilizes to (partly) solve issues related to the challenges.

1.2. Current solutions to these challenges

1.2.1. Abstracting hardware differences through Java profiles
In an attempt to ease the creation of applications and games for a mobile environment, Sun Microsystems
[32] provides a Java [4] version specifically targeted for mobile devices. The Java 2 Mobile Edition (or
J2ME) [22] provides a common ground which enables developers to focus on the actual game instead of the
varying hardware platforms. Although this doesn't eliminate the previously mentioned challenges, it does
prevent developers having to manage each and every varying hardware interface.

To manage the variations between device capabilities, J2ME can be used in conjunction with a profile. Such
a profile provides a common interface to devices with similar capabilities. In theory, this means that
developers can develop for a certain profile without having to worry about the devices themselves. Examples

Not for public use – strictly company confidential and proprietary information Page 10 of 75

of these profiles are MIDP 1.0 [6], MIDP 2.0 [7] and DOJA [8].

Issues
Unfortunately, because of the earlier mentioned device specific bugs and capabilities, an absolute usage of
these profiles is not possible. This means that for each game, a separate build must be made for each
device. Furthermore, when a game is to be ported from a MIDP 2.0 to a MIDP 1.0 device, changes are
required to the game as well.

Abstracting profile from game
To fix this issue, Gamica has developed a custom built library in which all profile specific calls are abstracted
from the game. This library, called FALCON, also provides several convenience methods and other functions
in order to separate device specific issues from the game code itself.

This means that with every game Gamica releases, a version of the library specifically built for a targeted is
included.

1.2.2. Introducing variability through standard Object Oriented structures
An object oriented programming language such as Java offers a set of features which can be used to
introduce variability in an application. Through separation of functionality in classes and methods, super
classes, interfaces and abstract classes, certain variable areas (or variability points) can be defined.

However, in an environment where every byte counts, the creation of extra interface and abstract classes
becomes too costly regarding total game size. Therefore, other methods are required that introduce
variability in a more size-efficient way.

Gamica uses several techniques to achieve efficient variability in code. However, these techniques have
certain drawbacks. These techniques are described in the following chapters.

1.2.3. Introducing variability through manual code changes
One simple method to introduce variations in source code, is to manually edit source code for every required
game build. Listed below are several advantages and disadvantages when using this method.

Advantages

– No extra variability overhead: high efficiency in memory, storage and cpu usage of game

– Large amount of freedom regarding changes that can be made in the source code

Disadvantages

– Very inefficient in terms of time and effort

– High amount of build management required

– Higher chance of introducing bugs

Manual editing each build costs a lot of time, especially in a situation where lots of different builds are
required. Also, when a bug has been found in a generic piece of game code, all the other builds need to be
adjusted as well.

Within Gamica, manually editing source code is currently done only in a small number of cases. The
negative aspects of this method makes it unusable when dealing with a high number of builds.

1.2.4. Introducing variability through preprocessing
As was mentioned in section 'Abstracting hardware variations through Java profiles', Gamica uses an in-
house developed hardware abstraction library called FALCON that handles most of the device-specific
variations. Per device, a specific version of the library is built and used when developing games. To
accommodate all the variations in devices, the library code contains certain preprocessing directives (partly
formatted using XML/XSL data) that define which pieces of code are compiled and which omitted from
compilation.

The actual insertion of code related to these directives depends on the currently selected device and certain
properties of this device. These properties are stored in a device capability database, maintained by Gamica.

Not for public use – strictly company confidential and proprietary information Page 11 of 75

Advantages

– Variations can be defined on every location within the code.

– No added overhead to support variability.

– Adjustments can be made according to tag values, which can be linked with a central device
capability repository.

– Existing variability can easily be reused for new mobile device releases, because of the device
capability database.

–

Disadvantages

– Decreased code readability. Tags are placed everywhere, lessening the ability to read which code is
executed and which is omitted from compilation.

– Development environment doesn't understand the preprocessing directives
Gamica uses Eclipse as a development environment. When using this technique, most of Eclipse's
features (like hot code replacement, debugging, code highlighting etc.) are disabled because of the
non-Java nature of the tag descriptions.

This tag based preprocessing technique eliminates most variability problems, without adding any overhead.
However, it does increasingly reduce the readability and maintainability of source code. Because of all the
code inserts and surrounded directives, it becomes increasingly difficult to add new functionality to existing
code. Furthermore, it is hard to see which code is actually executed.

The example below illustrates how complex source code can become when using this method extensively.

//#ifdef DOJA
public final void paint (com.nttdocomo.ui.Graphics graphics)
//#elifdef JAL
public final void update (java.awt.Graphics g)
{

paint (g);

synchronized (m_paintLock)
{

m_maintLock.notify();
}

}

public final void paint (java.awt.Graphics graphics)
//#elifdef MIDP

//#ifdef MIDP_2_0
public final void specialPaint (javax.microedition.lcdui.Graphics graphics)
//#else
public final void paint (javax.microedition.lcdui.Graphics graphics)
//#endif

//#else
!ERROR!
//#endif
{

Example of source code utilizing preprocessing

These problems with preprocessing are similar to preprocessing techniques used in combination with C.
More details about these problems in the context of the C programming language are provided in [23].

1.2.5. Resolving efficiency and maintainability issues
Because the earlier mentioned techniques had issues with either efficiency and/or maintainability, a new
approach is being researched. This approach is described in the next section: 'A new, aspect oriented
approach'.

1.3. A new, aspect oriented approach
Gamica is interested in a fairly recent technique called Aspect Oriented Programming (AOP) [26].

1.3.1. What is Aspect Oriented Programming
The original concept of Aspect Oriented Programming (or AOP)[26] is to provide a solution for so-called
cross cutting concerns. These kinds of concerns are certain responsibilities of application logic that creates
repeating code on multiple locations within an application's source code structure. A typical example of this is

Not for public use – strictly company confidential and proprietary information Page 12 of 75

logging functionality. When a log file is being maintained in which several application activities are stored, it
usually means that the writing to this log file is described in several different locations within an application.

Although conventional object oriented structures are capable of solving this issue in a number of cases,
adjusting the logging features commonly requires adding and altering source code at various parts of an
application. Aspect Oriented Programming provides a method to define (or describe calls to) such a feature
on one location, after which this code can be placed at multiple locations automatically.

More information about AOP can be found in chapter 'Background and context', section 'Aspect Oriented
Programming'.

1.3.2. Using Aspect Oriented Programming to introduce variability
Apart from it's original intent of solving cross cutting concerns, AOP can also be used to change source code
for the purpose of introducing variability.

Other techniques (like traditional object oriented structures) require that source code is specifically structured
to certain variability points. When applying AOP it might be possible to create variability points without
changing the source code beforehand.

AOP utilizes a 'descriptive' method of defining variations, in which the targeted source code is oblivious to
any changes that may be done to it. Because of this obliviousness it becomes possible to introduce
variations virtually anywhere within the source code, without the need of creating special variability points
beforehand.

Possibility of efficiency
As was mentioned before, traditional object oriented techniques usually introduce some overhead to create a
variability points. With AOP, any place in the source code can be altered to serve as a variability point,
possibly without adding any additional overhead.

Because of the descriptive nature of defining AOP operations, Gamica wants to know if this method can be
utilized to introduce variability within its games and library.

1.3.3. Requirements
In order for AOP to be successfully used by Gamica to introduce variability, the technique should adhere to
the following requirements:

● Minimal overhead
As there are strict limits on how large a game build may become (sometimes smaller than 100
kilobytes), any overhead introduced by a variability framework should be kept at a minimum.

● Should fit within Gamica's development process
Gamica uses the Eclipse [16] integrated development environment, of which several features are
heavily used by developers. Gamica perceives some of these features as an important factor in
terms of developer efficiency, and would not like to give them up. Some of the more important
features are:

○ Hot code replacement
When using this feature, developers can change various pieces of source code while the code is
being executed. Certain changes can therefore be directly viewed and debugged without
restarting the application. This feature is most commonly used to tweak coordinates of various
graphical elements within a game.

○ Debugging
Furthermore, the ability to debug a piece of game or library source code should still be available
when using the variability solution.

Although it isn't required that the solution itself works from within the Eclipse environment, it is
preferred. The solution should at least work nicely alongside Eclipse, without interfering with the
development process when using Eclipse.

● Support all required variability operations in order to change functionality of both library and games.

● Provide an improvement regarding readability of source code over the previously used
preprocessing methods within Gamica

Not for public use – strictly company confidential and proprietary information Page 13 of 75

1.4. Research Questions
In short, the research question which will be answered in this thesis is formulated as: 'Can Aspect Oriented
Programming be applied to introduce variability in J2ME games?'

To answer this question, the following subquestions are to be answered as well:

 1. 'Which exact variations should be supported by the AOP solution?'

 2. 'Can required variations be implemented using AOP and how?'

 3. 'Is there an efficient enough AOP implementation, or can one be created?'

 4. 'Can the AOP solution be used within Gamica's development process, or what changes are required
to this process to make it possible?'

Not for public use – strictly company confidential and proprietary information Page 14 of 75

2. Background and Context
In this chapter, several concepts and techniques are described which are frequently mentioned in this thesis.

2.1. Aspect Oriented Programming
The concept
The original concept of Aspect Oriented Programming (or AOP)[26] is to provide a solution for so-called
cross cutting concerns. These kinds of concerns are certain responsibilities of application logic that creates
repeating code on multiple locations within an application's source code structure. A common example of this
is logging functionality. When a log file is being maintained in which several application activities are stored, it
usually means that the writing to this log file is described in several different locations within an application.

Conventional object oriented structures are capable of solving this issue in a number of cases. However,
adjusting the logging features commonly requires adding and altering source code at various parts of an
application. Aspect Oriented Programming provides a method to define (or describe calls to) code for such a
feature on one location, after which this code can be placed at multiple locations automatically.

Common elements within AOP
Aspect Oriented Programming instructions are defined in so-called aspects, a file in which code and the
target location where the code should be placed is described.

A typical aspect contains the following elements:

● Special well-defined points in the program flow (where alterations can be made) are described
through joinpoints. Examples of joinpoints are method calls, field assignments, exception execution
etc.

● Pointcuts specify which joinpoints are relevant for a certain alteration.

● One or more advices, in which the actual inserted/changed code is described. These advices are
applied when a certain pointcut is reached within the program flow.

When the targeted application is executed or compiled, the created logging advice will be woven onto the
location(s) defined in the pointcuts.

Common elements within implementations of AOP
The actual descriptions of aspects are somewhat different per implementation. The definition described in
this chapter are similar to AspectJ [1], one of the more popular AOP implementations currently available.
More information about this description can be found in references [1], [27] and [28]. An alternative AOP
implementation like JbossAOP, uses similar terms and descriptions but manages the locations of these
descriptions in a different way.

Both implementations utilize bytecode instrumentation to apply variations to an application. More information
about this technique is described in the next section 'Bytecode instrumentation'.

2.2. Bytecode Instrumentation
Overview
Java source files are compiled to bytecode. This bytecode contains generic instructions which can be
translated to platform-specific instructions using a Java Runtime Environment [30]. Bytecode
instrumentation [29] is the act of changing a Java program's logic through the alteration of its bytecode.

Alteration of bytecode is mainly done through the use of specific bytecode instrumentation libraries. Two well
known libraries for this purpose are Javassist [10] and BCEL [11].

Purposes
Changing Java source code and bytecode are two very different concepts and have different purposes.
Source code is mainly meant as a human readable interface for developers to develop applications. While
bytecode is mostly read by other programs and is therefore a lot less readable for regular humans.

Bytecode instrumentation is mainly done to make relatively small changes to a program after compilation.
Possible reasons for this can be because the related source code isn't available. Or the source code is not
supposed to be altered while changes to a program are still required.
Several Aspect Oriented Programming implementations utilize bytecode instrumentation in order to
implement changes to a program defined by aspects.

Not for public use – strictly company confidential and proprietary information Page 15 of 75

For more information about the internal structure of Java bytecode, see reference [31] and [9]. A detailed
knowledge of internal bytecode structure however, is not required for reading this thesis.

2.3. The Eclipse development environment and platform
Overview
Directly quoting from its website [16]:

“Eclipse is an open source community whose projects are focused on providing an extensible development
platform and application frameworks for building software.”.

The main product of this community is the Eclipse platform. This platform is mainly used as a development
environment for developing Java applications. But due to its extensibility and flexibility it can be used for
other languages as well.

Within Gamica's development process, the Eclipse environment is used to develop J2ME games and
Gamica's FALCON library.

Projects
Software development in Eclipse is done in so-called projects. Each project contains several types of
resources required for a developed application (or game) to build and run. Resources can be files containing
source code, images, libraries, xml data files etc. These resources can be ordered through the use of folders.
Whereas source code files which are actively edited and compiled are placed in 'source folders', other non-
source files are placed in 'regular folders'.

Project natures
Certain languages require language-specific elements within projects. For instance, elements related to Java
include packages, .jar libraries and a Java compiler. To support these elements, certain 'project natures' can
be linked to a project through the plug-in system. A project nature can define many things, including how a
project's builder queue should be set up (which defines which compilers are used, and in what order), how
the project's basic structure should look like, which files are required and which project settings should be
set.

Eclipse Java Development Tools and the Abstract Syntax Tree
The mentioned 'project natures' and 'project builders' utilize Eclipse's extension points. Eclipse provides
several extension points for which plug-ins can be written that provide additional functionality at these points.

One example of a set of plug-ins that extend Eclipse's functionality, is Eclipse's own JDT (Java Development
Tools) [20]. The JDT contains a set of Eclipse plug-ins which make it possible to use Java specific tools for
debugging, code analyzing, code completion, automated code refactoring, error detection etcetera.

Another feature provided by the JDT, is the capability of converting a Java source file to an Abstract Syntax
Tree and back again. As explained in [17] and [18], an Abstract Syntax Tree (or AST) is a abstract
representation of source code. Similar to the Document Object Model [19], an AST provides a tree of
elements, which in the case of Abstract Source Trees are specifically used to analyze source code
structures. It is also possible to make changes to this structure and convert an AST back to regular source
code. This feature enables changing source code programmatically, without having to deal with syntax
specific issues such as placing semicolons behind statements, putting curly braces around method bodies
etc.

From within Eclipse, ASTs can be generated from so-called compilation units. A compilation unit is an
element within an Eclipse project which can and should be compiled by a compiler. These compilation units
can be extracted from packages, which in turn reside inside a source folder.

Project structure

Usage of the Abstract Syntax Tree
Currently, the AST is used for a number of Eclipse's internal tools. This includes certain refactor tools in
which certain code changes triggers an event that updates every reference to these changes as well. For
example, when a developer changes the name of a certain class, all references to this class can be updated
through the refactor tools. These tools utilize the AST to implement the refactoring.

Not for public use – strictly company confidential and proprietary information Page 16 of 75

3. Research Plan
In order to answer the questions described in the problem description, the research will be done in several
phases:

1. Gather detailed requirements
This phase focuses on summarizing a set of variation requirements and process requirements of the
variability framework. In this phase, it is determined which kind of variations should be supported by
the framework and how those variations should be organized. This will result in a common variability
model, in which all game and library variations (in the form of variability operations) can be placed.
In this phase, answers will be found to the subquestion ''Which exact variations should be supported
by the AOP solution?'.

This phase is divided into the following steps:

 1.1 Determine typical variations
Using informal interviews with developers and variations encountered in previous projects,
several typical variations will be determined. For example, a typical variation could be 'No
audiosupport', which deals with situations where a mobile device doesn't support the playback of
audio samples and music.

 1.2 Determine transformation operations
Using the variations determined in the previous step, a number of program transformation
operations are distilled. These operations describe how and where both game and library builds
should be changed in order to apply the variation.

 2 Assessment current implementations
An assessment was performed to determine if existing Aspect Oriented Programming
implementations are usable within the field of J2ME game development. Focus on this assessment
was on the introduction of overhead regarding bytecode size and supported functionality. The results
of this evaluation determined if the variability solution will utilize an existing AOP solution or a
custom made solution should be developed.

During this phase, the question 'Is AOP efficient enough' from the problem description is answered,
regarding efficiency of current AOP implementations.

 3 Proof-of-concept
Using the requirements assembled in the previous steps, a technical implementation is constructed.
This implementation will serve as a testbed in order to determine if the requirements are technically
feasible and if the suggested solution actually works in a real world environment.
In this phase, answers will be found for subquestions 'Can these variations be implemented using
AOP and how?' and 'Can the AOP solution be used within Gamica's development process'

This phase is divided into the following steps:

 3.1 Determine implementation of variability operations
In this step, it is determined how the operations are executed. In most of the current AOP
frameworks, these operations are done on a bytecode level, after compilation. But it is also
possible to apply the required operations on a source code level. Both approaches will be
evaluated on feasibility, taking into account the positive and negative side effects of each
approach. Whether or not the observed side effects are significant or negligible is determined by
the organization's demands and wishes. The result in this step is a blueprint of techniques and
methods which will be used to implement the framework.

 3.2 Implement the framework
In this step the proposed framework is constructed, solving various issues surrounding project
structuring, designing a operation declaration language etc.

 4 Test and evaluate the framework
To test the framework's compliance with the requirements, a case study will be done in which several
variability operations will be developed using this framework. These operations will then be applied
to one or more game projects that are completed or currently in development within the organization.

During and after this test case, informal interviews and a survey are performed. Questions asked in
these surround subjects such as usability, readability and maintainability regarding the framework.

Not for public use – strictly company confidential and proprietary information Page 17 of 75

4. Gathering detailed requirements
Activities described in this chapter will attempt to answer the following subquestion from the problem
description: 'Which exact variations should be supported by the AOP solution?'.

First, certain variations that are common within Gamica's mobile development process are determined. The
results of this analysis is then used to form a set of common variability operations which should be supported
by the variability solution.

4.1. Determining typical variations
To determine a set of common variations which must be supported by the variability solution, one of the
company's games currently in development was analyzed. The game in question is called Battleships, which
combines a slotmachine with the battleship boardgame. When completed, Battleships will be made available
to many different mobile handsets. Covering a wide range of models which differ greatly in terms of hardware
capabilities, available amount of memory, screen resolutions and other variations. These characteristics
made Battleships a suitable target for analysis of this subject.

4.1.1. Sources of information
In order to determine the mentioned set of variations, several sources of information were analyzed.

Common variations between devices
Utilizing official specifications and informal interviews with the development team, a cross-section was made
of handsets that are to be be supported by Battleships. Focus in this cross-section was put on the most
different mobile handsets within that range.

Because of time constraints and that some of the listed criteria below aren't described in phone
specifications, the cross-section was limited to the phones which were known by the development team. This
lead to the selection of a set of four handsets. A matrix containing the variations between these handsets can
be found in Appendix A.

Key differences between between these handsets, such as screen resolution or maximum game file sizes,
were recorded.

Existing knowledge bases
Additionally, the existing knowledge base of Gamica was utilized was well. As was mentioned in the problem
description, Gamica maintains a game library in which a large number of variations are already implemented.
These variations, combined with existing developer experiences gathered through informal interviews were
used as well to create the variation set.

The resulting variation set can then used to determine which variations are to be analyzed for determining
required variability operations.

4.1.2. Results
Most of the gathered variations were related to device-specific differences. However, the informal interviews
revealed that several other, non-device specific variations were to be accounted for as well. These two types
of variations are listed below.

Device-specific variations

● GraphicsLocation
Supporting different resolutions means different locations for graphics per build. Some resolutions
can be grouped together. For instance, games on phones with resolutions that are slightly larger
than the reference resolution, could compensate with the difference by drawing a black border
around the game's graphics display.

● MidiPlayback
The development team has learned that the method of playing MIDI files (and in some cases other
audio files as well) differs between mobile phone models. And the required behavior to restart MIDI
playback after a pause event varies as well.

● ResourceLoading

Not for public use – strictly company confidential and proprietary information Page 18 of 75

The required calls to load resources (images, audio etc.) varies between Java profiles. Model-
specific bugs also influence the required operations.

● ImageFormat
Because of the difference in supported image formats, different kinds of files need to be supplied
with certain builds.

● DisabledConnectivity
Especially the 1st generation of the Nokia series 40 mobile phones cause problems regarding making
connections to the Internet. Protocol errors and memory leaks are the most common problems in this
area. This means that in some cases the developers would rather not support online features than
risking a game crash.

● JavaProfile
Variations between supported Java profiles (like MIDP 1.0, 2.0 and DOJA) require different kinds of
method calls and object classes.

● SimultaneousAudioSupport
The support of playing back multiple audio streams at once (2 MIDI files, MIDI combined with
WAV/MP3) varies between mobile phone models.

● AudioFormatSupport
As seen in the capability matrix, support for audioformats varies between mobile phone models.

● AnimationImplementation
Most MIDP phones can implement animation using a 'filmstrip', a sequence of animation frames
contained within one graphics file. But some other phones (mainly those which support DOJA 1.5)
aren't able to 'cut up' the individual frames from a film strip. These models have to resort to loading a
graphics file for each frame, which is a relatively slower operation.

● PauseEventHandling
A 'pause event' is an externally called event which requests (or demands) that the game should set
itself to a paused state and try to minimize consumed resources. Examples of pause events are
incoming phonecalls, low battery warnings or any other warnings issued by the phone's operating
system.

Other, non-device specific variations
Apart from device specific variations, there are also issues surrounding language support and distribution
channel requirements. The former could require a variable language implementation, combined with an
optional language menu. The latter depends on what requirements a distribution channel demands from a
game. Most of the time the requirements are limited to displaying an extra image (the logo of the distributor
for example) when starting/loading/playing the game. Some distributors however, uphold certain usability
guidelines. One example of such a guideline is that the right softkey is always used to go back to a previous
(options) menu or deleting a character from a text input field.

For this research, the most common variation regarding the distributor requirements was chosen.

All these considerations resulted into the following additional variations:

● Language
Certain game builds, localized for a specific region, could support one or more languages.

● LanguageMenu
When more than one language is supported by a game build, display a language menu.

● DistributorImage

Complete results
The compiled list of variations is by no means a complete listing of all possible variations that could be
required when porting a game. Instead it is a list of most common variations, which applies for most mobile
game ports. It is assumed that the manipulations that are required to support these variations represents a
fairly complete set that will also support any future variations that aren't listed.

This assumption is however difficult to be proven correct. On the other hand, one could state that it isn't
possible to guarantee that such a list is 100% complete. By supporting the most common variations, the
resulting variability framework should be applicable for most games. Further verification of this assumption
will be done in the 'Proof-of-concept' stage of the research, described in the chapter 'Proof-of-concept'.

Not for public use – strictly company confidential and proprietary information Page 19 of 75

The next step
In the next step the list of variations will be used to determine which manipulation operations will be required
by the variability framework.

4.2. Determine transformations for variability
Using the list of variations compiled in the previous step, each variation has been evaluated to determine
which transformations are required to implement them. This analysis was performed for both Gamica's in-
house developed library and the Battleships game. This was done by analyzing the source code of the library
and the game, describing which pieces of code needed to be added, removed or replaced. These
manipulations were then translated into operations which should be supported by the variability framework.
How these operations were to be implemented depended on the chosen implementation technique. This was
determined in the next step, which is described in chapter 'Proof-of-concept'.

4.2.1. Variability strategy
Variability can be applied in several stages of development. When variability is applied after development,
variability operations are required to scrape off any unsupported features. However, variability can also be
designed before actual development of games. In this scenario all features could be structured in various
modules which are combined in variations forms for each game build.

This variability strategy has an impact on what kind of variability operations are required. To define which
strategy should be chosen, a choice ranging between two extremes were considered. These extremes were:

● Variability by removal (apply variability 'after the fact')
A game could contain all possible features whereas the variability framework only removed the
features that could not be supported for a certain device.

● Variability by composition (apply variability beforehand)
A game is comprised of several pluggable variability operations which are put together in a generic
game architecture. Every operation deals with a certain feature and/or representation of this feature,
and can be enabled or disabled depending on a device profile.

Strengths and weaknesses of both strategies are listed below.

Strengths of 'variability by removal'

● Clear separation of concerns between source code and variability operations. Code stays in the
original source, only change operations are defined in the variability operations.

● 'Normal' development can be done in the initial stages, whereas the variability operations are defined
and applied after a successful development cycle. This speeds up release of the first few builds.

Weaknesses of 'variability by removal'

● Variability is more of an afterthought. The process doesn't force variability-friendly code, and it can
be expected that certain changes must be made to the code to make it possible to be adjusted later
on.

● Problems with conflicting functionality. When all kinds of functionality are to be applied in a single
implementation, conflicts can arise between certain functions, which makes this method less useful
and applicable.

Strengths of 'variability by composition'

● Variability is directly implemented for a project, which makes code immediately variability-friendly
and faster to port.

● Possible re-use of game and library code, as code is strongly modularized.

Weaknesses of 'variability by composition'

● Game and library code spread out over variability operations.

● Development of first build of game takes more time. Careful variability operation structure design is
needed in order to keep the game maintainable.

● Because of the pluggable structure, more overhead can be expected than the 'variability by removal'
model.

Not for public use – strictly company confidential and proprietary information Page 20 of 75

Strategies and required variability within product lifecycle
When analyzing the mentioned extremes in terms of required effort to implement variability using these
strategies, a curve exists related to amount of effort required and the time within the product lifecycle.

For the 'variability by composition' strategy, the required effort to implement the variability peaks at the
beginning of development. This is because a skeleton of variability points and modules must carefully be
constructed and designed before any actual game code is built.

The 'variability by removal' strategy requires more effort later on, as completed code needs to be carefully
removed without breaking any other features. When this strategy is used more, it becomes more difficult to
remove any other features without breaking something.
These relations between variability effort and the product lifecycle are displayed in the graphs below.

Variability by composition Variability by removal

Variability curve of different strategies

Choosing between extremes
Because of each strategy's weaknesses, both of these strategy extremes aren't applicable for the project. A
pure removal strategy will create conflicts between features that are mutually exclusive. Whereas a pure
composition strategy should handle an impossible amount of modularity in order to guarantee support for all
current and future variability operations. Furthermore, a composition strategy has a high probability of
increased overhead (in terms of memory, cpu and storage requirements) because of its modularity.

The program transformation strategy for the variability framework should therefore be somewhere in the
middle of these extremes. To find this middle ground, it's important to know how the game development
process within Gamica looks like in its starting phase.

Finding a middle ground through development process requirements
Game development at Gamica is usually done by order of a game publisher. When Gamica starts developing
a game for such a publisher contracts usually state that in the first run, the game should be compatible for
limited number of devices. Development is therefore initially focused on making the game work on those
devices. Porting issues will be dealt with after the first batch of working game builds are delivered.

In light of this development process, it is required that the first build of a game is finalized quickly in order to
adhere to the terms of the contract. This means that the chosen strategy should not slow down the
development of a initial build of a game.

When comparing this conclusion with the earlier described variability/lifecycle analysis, the ''variability by
removal' strategy is preferred when it comes to game development. However, because of the problems with
functionality conflicts weakness of the removal option, a pure version of this strategy is not realistic. To
remedy this, a more agile strategy has been chosen, in which operations both add and remove code from a
source base.

An add/remove strategy
In this add/remove strategy, game code consists of a set of functionality usable for a certain build, whereas
variability operations will change its code to be compatible with other devices.
Advantages of this strategy are:

● First source code version is relatively fast to create, as little variability-specific structuring is
enforced (or required) beforehand

Not for public use – strictly company confidential and proprietary information Page 21 of 75

● Conflicting features can be placed in separate modules

This strategy however, has also its weaknesses:

● Separation of concern becomes an issue: where will the code be placed? When is removal or
addition of code preferred?

● Variability is more of an afterthought. The process doesn't force variability-friendly code, and it can
be expected that certain changes must be made to the code to make it possible to be adjusted later
on.

In the listed weaknesses of this strategy several questions are raised. Answers about where actual inserted
code will be placed, is answered at the implementation stage. More details about this can be found in
chapter 'Proof-of-concept'.

To determine when removal or addition of code is preferred, certain selection criteria of manipulations are
defined. These are discussed in the next section 'Selection criteria'.

4.2.2. Selection criteria
The execution of a certain program transformation can be done in several ways. When selecting a method of
transformation (hereby called, a 'transformation operation'), the choice would depend on the following
criteria:

● Efficiency
The transformations should introduce a minimum amount of introduced variability overhead,
regarding an increased size of compiled code (related to total game size).

● Utilize 'descriptive manipulation'
Descriptive manipulations change code without any pre-insertions inside the original source code.
This way, the original source code can stay oblivious to any future variability changes. When
determining the manipulations this descriptive method is, when possible, preferred.

● Number of required changes to code and code structure
Some manipulations could require prior changes to related source code and its structure before they
are applied. When these changes are significant and spread out through the game's code, they
could introduce new bugs in otherwise stable code. Complex and wide ranging manipulations could
also conflict with other manipulations. Therefore, the manipulation which requires the least amount of
changes to the original source code, and/or upholds most of the source code's original structure has
the highest preference.

As said, the manipulations and the resulting variability operations are done through analysis of source code
and required changes to this code in order to implement the variations. The resulting set of operations will be
used to evaluate if a certain technical implementation technique supports the required variations.

Because these operations are based on source-code manipulations, it is very possible that techniques which
rely on bytecode manipulations work better with operations which are implemented differently. The resulting
operations from this analysis will therefore be mainly used as a guideline for the technical evaluations. If a
certain operation doesn't work well with a certain technique, an alternative operation will be determined
whilst still holding to the requirements and issues surrounding the original operation.

4.2.3. Analysis of variation points
On the next pages are the aforementioned variations and the required transformation operations in order to
implement the variation. Per variation a number of elements are listed:

● Previous method
The method previously used in order to support the variation, and the problems that have been
observed using this method

● Required source code transformations

● Proposed improvements

● Proposed transformation operations.
The ultimate goal is to create a limited set of transformation operations, in which all variations can be
implemented.

The results of this analysis are two sets of data, which are displayed in tables in chapter 'Summary of

Not for public use – strictly company confidential and proprietary information Page 22 of 75

required operations'. The first table maps variations and required operations to implement these variations. A
second table provides a summary of all required transformation operations including names, preconditions,
postconditions and required parameters of each operation.

Variation A GraphicsLocation

Previous method

Locations of various graphics were previously done by generating a so-called ProjectStub java source file,
using a custom made ANT [5] buildscript. In this buildscript, a large list of variable names and values were
manually inserted and maintained in XML notation. The ant script then generated a java source file which
contained the source for a static class. This ProjectStub class contained all variable names and values listed
in the ant script, typed as constant values. In Java, this means the variables had a static final prefix.
This method had the following advantages:

● Easily to find and change values
All graphics locations were defined on one location, making them easy to locate and to change.

● Optimized bytecode by use of static final prefix.
Because all variables were defined as a constant, the Java compiler can then apply a optimization
technique called 'constant inlining'. This process removes the reference to the projectstub variable,
replacing it with the actual value of the variable. For example, consider the following source code:

a = ProjectStub.LOCATION_X;

In this piece of code, a variable named 'a' gets the value of the constant LOCATION_X of the
ProjectStub class. In this class, the constant variable has the value 10. After the Java compiler has
compiled this piece of code, the code was compiled as if it was like this:

a = 10;

As the example illustrates, the compiler has removed the reference to ProjectStub, and replaced it
with the actual value that was referenced. Using other optimizers like ProGuard [24], it becomes
possible to completely remove the ProjectStub class from the class files when a game is distributed,
as it is no longer being used. As well as maintaining a central location for placing varying values of a
game between build targets, this method also contributes in minimizing the distributed game file size
because of Java's constant inlining optimization.

● Tweakable values through hot code replacement
Java's runtime environment supports a technique called 'Hot code replacement', in which code
changes can be applied at run-time. Changes to code are compiled into new .class files, and these
.class files can be reloaded into an already running environment. The changes can then be directly
applied to the running application, where the developer can observe the effects of the changes.
Although this method has some limitations (for example, a class can only be reloaded if the
signatures the class' methods and members aren't altered), Gamica makes frequent use of it. The
ProjectStub class can be used in combination with hot code replacement, to test and tweak various
values at run-time.

But this ProjectStub method also has its drawbacks:

● Tedious management of multiple ProjectStubs
The current method works pretty well when working with one single ProjectStub. But when
implementing several ProjectStubs, the ant script increases in size or gets different versions. When
increasing or decreasing the number of variables defined in the ProjectStub, all other ProjectStubs
need to be changed as well.

● Changes made to the ProjectStub aren't directly applied to the create-script of the class
When a change has been made to the ProjectStub's source, the changes must be applied to the ant
script that created the ProjectStub as well. Otherwise the changes have the risk of being overwritten
by another ant ProjectStub build.

Proposed improvements

Combining efficiency and ease of use
In normal circumstances, extending the reference ProjectStub with another class using traditional object

Not for public use – strictly company confidential and proprietary information Page 23 of 75

oriented methods could suffice. But as this method creates some additional overhead in the form of extra
class definitions, this traditional method does not meet the requirements. Other methods which include a
generic class containing getter methods doesn't apply either, as the newly introduced methods will also
generate a greater bytecode size.

The most efficient method is already used, as a single ProjectStub file containing constants combined with
constant-inlining removes the need for additional classes, methods etc. The problem here is managing
multiple versions of the ProjectStub. As a developer tweaks and sets the right values when running and
debugging a game, the resulting values should later be re-inserted in an ant script.

What is required, is a method in which any changes made to the ProjectStub are directy applied and saved
(without any need to reapply the values somewhere else), while still being able to use a single ProjectStub in
a game build to reduce overhead.

Optimized inheritance
The proposed solution for this, is to create a single ProjectStub file (the reference) which can be extended by
multiple versions. These versions only describe which values are changed in relation to the reference. Any
newly introduced values are described in the reference and then changed in one of the replacing versions.

This method is very similar to traditional object oriented inheritance. In order to optimize it for minimal
overhead, a new ProjectStub could be generated at build time which contains all variables of the reference,
and the values of the required version.

With these improvements, the ant script generating the ProjectStub isn't necessary anymore. All changes to
a ProjectStub reference and versions are applied and saved directly, without having to revert them back to
the ant script. Furthermore, changing and editing different ProjectStub versions becomes easier to do and to
maintain, while still able to utilize hot code replacement.

Proposed transformation operations

This 'overriding' of fields and their values of a reference class by another class, resulting into a single class
could be implemented in a manipulation hereby called OverrideFieldsOperation. As the overriding of fields is
expected to be used for multiple fields per class, the operation will be executed per class, instead of on a
per-field basis.

OverrideFieldsOperation

Parameters

Victim class (class of which its fields will be overridden)

Invader class (class of which its fields will be placed in the victim)

Preconditions

Both Victim and Invader class should exist. For the operation to be meaningful, the Invader class should
contain several field members.

Postconditions

Every field which is declared in the Invader class is inserted into the Victim class. When a Victim class' field
name matches with one of the Invader class, its value is replaced by that of the Invader class field. After all
other operations are completed, the Invader class is discarded. This depends on whether the Invader class
is placed among the reference source code or not (this decision is made in 'determine technical approach')

Note that this operation is different from traditional object oriented inheritance. Whereas inheritance still
makes it possible to access the original values of the Victim class (which is called a 'superclass' in object
oriented terms), with the OverrideFieldsOperation all original field values are lost.

Variation B: ResourceLoading

Previous method

Code for loading of resources (images, audio files etc.) tends to differ between Java profiles, used
(proprietary) APIs and in some cases even between devices. Most of these operations are executed within a
single method of a Loader class within Gamica's in-house developed generic library. In this method, a loop
iterates through all types of resources. Per type, a switch statement handles every type of resource
encountered. To accommodate the various ways of loading a resource, preprocessing directives denote the

Not for public use – strictly company confidential and proprietary information Page 24 of 75

variations that occur within the switch cases. Depending on the current build settings, code related to a
specific tag are inserted into the source code just before compilation.

This method has the following advantages:

● Small, fast alterations possible
It is relatively easy to add a new variation to source code. Inserting a new tag with new code is a
more direct approach then describing a variation using aspects.

● Variations can be defined everywhere, using the tags.

● Small footprint
Code for loading all the various types of resources could be separated by using methods, but this
adds overhead because of method descriptions. Keeping it all inside a switch statement therefore
decreases the total size of compiled bytecode.

There are also some problems observed when using this method:

● Disabled Eclipse functionality
Because of the tags, most of Eclipse's java editor functionality is disabled. Eclipse does apply code
highlighting, but any code completion, refactoring and debugging isn't possible. This is mainly
because the tags are against standard Java conventions.

● Decreased maintainability
Within a single switch case, multiple versions of code are placed underneath each other. This is
done at various points within the method as well. This makes it difficult to manage, as it becomes
increasingly unclear which code will actually be applied at compile-time.

Required source code transformations

Any variability operations in for this variation will require changing code within a case body. Changing the
entire method in which the mentioned switch block is located will not do, as code around the switch is
generic enough to be applied for many variations.

When considering replacing the entire switch statement, it was found that this method isn't efficient as well.
This is because device specific APIs and capabilities sometimes have both similarities as differences in the
required calls to load resources. For example, a certain device could require a specific order of API calls to
load an audio file (to adhere to its specification, or to work around a known bug), but could very well use
generic image loading calls which are similar to other device builds.

To prevent placing duplicate code in various variation descriptions (which could lead to editing several
variation descriptions in order to fix a bug in a set of generic code), the variability framework should be able
replace code within a switch case.

Proposed improvements

Staying within context
Code within a switch case could reference class members, methods, imports and any variables declared
within the method in which the case was defined. These elements could be defined as 'the context' in which
the code of the switch case is placed.

When a change is made to this context, there's a good chance the code of the switch case should be
changed as well. When the switch case's code can be defined by one of several variability-operations, it is
very likely that more than one of said operations are subject to change. Determining which variability
operations are relevant to a certain context changes and making sure that the operations still work after a
context change can become an increasingly difficult and time consuming process.

Changing blocks of code
A proposed transformation operation should address a code block which is as self contained as possible.
When dealing with changing case bodies, it means the code within the bodies should have a minimized
relation to the code's context. While that is the case in this variation as only calls to certain APIs are made, in
other situations applying the variability operation at this level could require additional restructuring of the
reference source code.

Locating target code
Another issue is locating the code that is to be changed. For this, a certain unique identification should be
used. For example, when changing code of a method, the signature of the method (name and parameter
types) can be used. When finding a case body, the following information is needed: method signature in
which the switch statement is used, the switch statement's expression and the switch case's expression.
When creating a variability operation which depends on these three factors, a change to any of these factors

Not for public use – strictly company confidential and proprietary information Page 25 of 75

would require a change to the operation as well.

Isolating code for transformation
To circumvent these issues, the following solution is proposed. As a small restructuring effort, the case
body's code is placed within a separate method (using method parameters to handle any relations to the
case body's context). The method's body can then be replaced by using an method-specific version of the
previously described OverrideFieldsOperation, in which methods are overridden. This means that when a
certain operation defines a method and issues a (hereby named) OverrideMethodOperation on a certain
reference class, the defined method's body will be placed in the method of the reference class that matches
its signature. This technique is very similar to the Template design pattern [25].

Optimizing code isolation
But like the Template design pattern, this technique introduces additional overhead because of the newly
introduced method. The design pattern itself doesn't function well either, as the introduction of an abstract
class will add overhead as well. To counter this, a new operation could be introduced, which uses 'method
inlining'. Similar to constant inlining, method inlining places the body of the relevant method to the place
where it is called. This way the method definition can be removed and no additional overhead is introduced.

While this variation mainly addresses changing code within a case body, the proposed solution can be
applied to just about every location. This method can thereby account for any out-of-the-ordinary situations
where pieces of code should be changed without being inside a clearly defined block.

Proposed transformation operations

An new type of override operation called OverrideMethodsOperation will be able to override methods within a
targeted class, in the same way as the OverrideFieldsOperation does with fields.

OverrideMethodsOperation

Parameters

Victim class (class of which its methods will be overridden)

Invader class (class of which its methods will be placed in the victim)

Preconditions

Both Victim and Invader class should exist. For the operation to be meaningful, the Invader class should
contain several methods.

Postconditions

Every method which is declared in the Invader class is inserted into the Victim class. When a Victim class'
signature (a combination of name, parameter types and return value type) matches with one inside the
Invader class, its body is replaced by that of the Invader method. After all other operations are completed,
the Invader class is discarded. This depends on whether the Invader class is placed among the reference
source code or not (this decision is made in 'determine technical approach').

Additionally, another operation is introduced which provides method inlining for specific methods. This
operation will be called InlineMethodOperation

InlineMethodOperation

Parameters

Name of the class in which the targeted method is located

Signature of the method

Preconditions

For the operation to be executed, the targeted class should contain a method that matches the given
signature. To avoid duplicate code, this operation should only be applied in situations where methods are
called once, for example when creating a variation for a certain block of code.

Postconditions

The body of the targeted method will be placed at the location(s) where the method was called inside the
class. After the operation is completed the method calls and the method definition itself is removed from the
class.

Not for public use – strictly company confidential and proprietary information Page 26 of 75

Variation C: JavaProfile

Previous method

Differences between Java profiles are abstracted from game code by Gamica's own in-house developed
library. This library provides several generic methods and classes which in turn make the profile-specific
calls. Most profile specific code is located in separate classes, but in some cases several variable calls are
placed within one class or method and are marked and separated by tags. One particular example of this, is
the library's main class: FalconApp, which serves as the execution point of every one of Gamica's games
which use the library. To be an execution point within a J2ME environment, the related class should extend
either MIDlet (for MIDP profiles) or IApplication (for DOJA profiles). Next to this variability, the class contains
several profile specific methods and members, as well as generic methods and members that apply to every
profile.

Although a variable profile has a big influence on the library itself, most of these can be dealt with by
exchanging classes in which profile specific operations are isolated. Here, the focus lies on changing the
parts where both generic and profile specific variations are found the most. In this case, that will be
FalconApp.

The already mentioned positive and negative points surrounding using the preprocessing directives can be
applied in this situation.

Required source code transformations

To be able to exchange the usage of classes, certain classes should be removed from the library when they
are not used. This can be done by using an optimizer (such as Proguard [24]), but in some cases a more
direct approach is required in which a variability operation explicitly removed an entire class.

Apart from that, several profile specific methods and members need to be introduced into classes which
contain both generic as profile specific code.

To support the mentioned superclassing of either the MIDlet or IApplication class, the 'extends' parameter of
a class definition should be able to be changed as well.

Proposed solution

Most of the required source code manipulations can be done using the already defined
OverrideMethodsOperation and OverrideFieldsOperation. Profile specific code is easy to isolate in this
situation, and can therefore be placed inside a separate class, which will be used to override an already
existing library class if it is required to combine generic code with profile specific code.

Managing imports
One extra problem with this is the used parameters at the 'import' field of a class. When a profile specific
class uses a profile specific version of an Image object, this usually is referred to within the import directives.
In this situation, a profile-specific class which is going to override a library class, should also override any
import directives. This means that if a reference source imports java.awt.Image and an overriding class
imports javax.microedition.lcdui.Image, then the latter should overwrite the former within the
reference source. Any additional imports that weren't already defined inside the reference source will be
added as well.

Removing obsolete classes
In other cases, classes who are not required (classes that contain code for another profile) should be
removed. In this case, it is assumed that all profile-specific classes are included in the library's source tree.
This hasn't been decided yet at this stage though, but for completeness sake, removal of classes will be
added to the list required manipulations. When more details of the technical implementation are being
determined, which happens later in the research, will the usage of this manipulation be re-evaluated.

Proposed transformation operations

For this variation, the OverrideMethodsOperation and OverrideFieldsOperation can be utilized extensively.
To account for any conflicting or unknown type names, the import directives of the Victim class are to be
overridden by these operations as well.

To account for changing the superclass definition, an OverrideExtendsOperation could be introduced. This
operation will change the superclass definition to that of another class. This operation can only be used in a
limited amount of situations however, because replacing any existing superclass definitions in a Victim class
could invalidate certain code that relies on the original superclass relation. In some cases this can be averted
by replacing the invalidated code through OverrideMethodOperations, if the relation can be easily broken.

Not for public use – strictly company confidential and proprietary information Page 27 of 75

As this operation is expected to be done in conjunction with other class-wide operations, the
OverrideExtendsOperation is done on a class level as well.

OverrideExtendsOperation

Parameters

Victim class (class of which its superclass relation will be overridden)

Invader class (class of which its superclass relation will be placed in the victim)

Preconditions

Both Victim and Invader class should exist. For the operation to be meaningful, the Invader class should
have a superclass relation. For the end result to be valid, the Victim class should not have a superclass
definition on which its non-overridden code depends on.

Postconditions

The superclass relation of the Victim class is now the same as that of the Invader class. After all other
operations are completed, the Invader class is discarded. This depends on whether the Invader class is
placed among the reference source code or not (this decision is made in 'determine technical approach').

To remove any unused classes, another new operation called RemoveClassOperation is introduced.
Although this operation is still under advisement, as the actual requirement of this operation depends on the
technical implementation and design.

RemoveClassOperation

Parameters

Targeted class name

Preconditions

The targeted class should exist.

Postconditions

The class is removed. In order for the resulting build to be valid, the issuer of this operation should make
sure that the class isn't relied upon.

Variation D: DisabledConnectivity

Previous method

Disabling connectivity for a certain build of a game requires changes to both game and library code. In the
library only certain connectivity related classes are to be removed. For game, features that require
connectivity should be removed. Also, any menus, options or other elements that link to those features
should be altered to remove the links.

This variation is currently implemented in the library by using the aforementioned preprocessing directives.
The game specific changes are done manually, but the tag method could also be applied. Again, the same
strong and weak points are related to this method, as were mentioned in previous variations.

Required source code transformations

Changing the library is a relatively simple process, as only the removal of certain classes is required to
minimize unused code in the library, further minimizing the total file size of the game.

Changing the game however, is a total different matter. The locations of connectivity-related code can vary
greatly between games. As an base for analysis, the earlier mentioned game Battleships is used.

Removal types
Battleships contains a highscore feature in which the player's scores can be posted and synchronized with
an online scores list. When removing this feature from the game, two kinds of removals should be done:

● Removing access to said functionality

● Removing code that implements the functionality

Not for public use – strictly company confidential and proprietary information Page 28 of 75

Access to the connectivity features are given through option menus. In Battleships, the contents of option
menus are defined by a multi dimensional array. Using this array as input, standard library functionality is
used to create the visuals and interaction handling of the menus.

Removing access
So to remove access to the connectivity features, the array containing an option to synchronize the
highscore list should be altered. This means that a certain value from the array should be removed and that
an entire option menu contents should be emptied. This last transformation poses a problem however,
because it causes displaying an empty menu which would only confuse players. To counter this, the call
which displays the related option menu should be replaced as well.

Removing inaccessible code
Removing the connectivity code itself is somewhat more tricky. Battleships (as all other Gamica games) uses
several game states to define how the game should behave and what graphics should be displayed. These
states are checked in a switch statement, of which it's case bodies contain the code that should be executed
when the related game state is active. Every game state is associated with an integer constant which is
defined as a class member. This class member is therefore only used to determine if the current gamestate
matches the value of the member. This gives the opportunity to locate the related game state switch case
which matches the class member to a game state, independent of the case's context. When a case defined
by the gamestate member can be found, the body is to be removed. This is a relatively safe operation, when
all access to the setting of that particular game state has been removed.

Some code however uses exceptions to this rule, introducing more complicated if statements to execute
code that is relevant to multiple game states. The code itself cannot be removed in these cases, as they're
still relevant to other cases. Part of the if statement's evaluation expression could be removed, if the
implementation technology supports it.

Removing game states
When all access to the state has been removed, and all evaluations that include the state member value are
removed as well, it becomes possible to actually remove the state value altogether. This will depend heavily
on the used code style, as the game state member should only be used in a small number of ways, if it is to
be removed completely.

The analysis of determining which code grants access to which game states and what code can be safely
deleted, lies in the hands of the developer him/herself. Although determining access to game states is
relatively easy because of the straightforward state handling within the game code, certain knowledge about
the code is preferred when altering the game code at his level. Again, strict code styles can help in
structuring these kinds of variations. For now, the developer should thoroughly check if a certain variation
creates errors or other problems. By limiting him/herself to only changing game states and access to these
states, human errors can be prevented as these operations are relatively simple and easy to check.

These issues do open up another discussion about how this code style should look like in order to work best
with these kinds of variability operations. This topic is further discussed in chapter 'Further research'.

Obsolete classes
Lastly, Battleships has two classes containing methods specifically handling the parsing of externally
imported highscore data. As only the game states related to the connectivity features used these methods,
one of these classes can be safely removed. The other class contains a combination of both connectivity
features as 'offline' highscore features, that are still required when no connectivity is provided. To remove the
connectivity aspect of this class, several methods should be removed from it. As no other code within this
class required these methods, removing the methods is sufficient.

Proposed solution

This variation requires several operations manipulating small pieces of code on a low level within the source
code. In previous variations, efforts have been made to handle blocks of code instead of individual parts, but
in this case tinkering with individual statements and expressions cannot be avoided.

Changing arrays
The first required manipulation in which this becomes apparent, is removing access to the connectivity
feature of Battleships. As mentioned in the previous paragraph, certain values of an class field array need to
be removed. One easy way to do this is to replace the entire array altogether using the aforementioned
OverrideFieldsOperation. But this method can easily conflict with other similar operations, as the operation
itself defines what other values the array should contain. When a similar operation overrides the array values
again, any previous changes will be lost.

Therefore a new operation is required in which an array value can be changed, only in the locations where
the change is required. This new ChangeArrayOperation should be able to replace certain parts of a single

Not for public use – strictly company confidential and proprietary information Page 29 of 75

or multidimensional array, without breaking the array's structure.

Altering single statements
Also mentioned in the previous paragraph, a single statement has to be removed in order to disable access
to the game's connectivity features. This can be done using a combination of the OverrideMethodsOperation
and the InlineMethodOperation. By placing the offending statement in a separate method, the method can be
overridden with an empty method. After inlining the method, the statement is effectively removed from the
game's flow. Another approach would be to remove the method using a new RemoveMethodOperation,
which also removes any calls made to the method. This technique is a bit more efficient, as it only requires
the execution of one, possibly simpler to implement operation, instead of two. It also will not require any
additional classes which define the emptied method that should be used in conjunction with the
OverrideMethodsOperation.

The RemoveMethodOperation will have some limitations. In situations where a return value of the method is
used as part of a formula or as part of an evaluation, removal of the method call will most certainly break
game logic. And possibly syntax as well. This operation should therefore only be applied in cases where the
method can be safely removed without it being used for the described purposes.

Removing case bodies
Removing a complete case body from a switch statement block hasn't been done in any of the previous
variations. Therefore a new operation is required, which is named RemoveCaseBodyOperation. In this
variation the related case body can easily be located because the bodies are marked using a constant class
field value, of which every occurrence of this value should be removed.

In the previous paragraph, it was mentioned that removing a class field that relates to a certain game state,
and removing all elements that accesses this field could also be considered. One problem with this are if
statements and expressions where the field value is used in some sort of mathematical formula or array
identifier. Because the removal of field access from these kind of uses is a relatively complex operation,
which has a high probability of breaking code syntax and structure, a possible 'RemoveFieldOperation' is left
out of the manipulations. If a technical solution can be found to solve or circumvent these complexities, it will
be reconsidered.

Removing obsolete connectivity code
Finally, removing the connectivity classes from both Battleships and the library, can be done by a
RemoveClassOperation.

For the special case of one class in Battleships that combined 'offline' and 'online' features, the removal of a
select set of methods is required. This can be done by either a set of RemoveMethodOperations, or by
seperating the offline and online features and use OverrideMethodsOperation and OverrideFieldOperation to
include them when connectivity is possible. From a maintainability perspective, the latter seems the most
appropriate, as further changes to the separated classes won't intervene with the variability operations.

Proposed transformation operations

For this variation, the following operations are proposed:

A ChangeArrayOperation to replace or remove array values from an array field.

ChangeArrayOperation

Parameters
Class name in which the array is defined
Array name
Needle string (the value or values that are to be replaced)
Replacement string (the new values of the needle string)

Preconditions
For this operation to be applied, both class, array and needle string should match.

Postconditions
The array values are changed. In order for the resulting code to be valid, the replacement string should
contain a string which should generate a valid array definition.

Not for public use – strictly company confidential and proprietary information Page 30 of 75

A RemoveCaseBodyOperation to remove a case (including its body) from a switch statement.

RemoveCaseBodyOperation

Parameters
The ideal usage of this operation is to only require two parameters, class name and case expression. This
leads to the removal of all case bodies which evaluate the given case expression. The alternative is to
include method name and switch statement expression. But this will introduce a stronger dependency on
the context of the case body. As the variation described above only requires a case expression to be
successful (in which the case expression matches a state field name) the current operation parameters will
only include classname and case expression. If other uses of this operation requires the inclusion of context
specific parameters, the definition of this operation is subject to change.
So for now, the operation parameters are:

Class name
Case expression

Preconditions
In order to apply this operation, both class name and case expression should match.

Postconditions
The matched case expressions are removed. Their bodies are also removed in case these are only related
to the given case expression. Access and other relations to this case body should be removed or disabled
as well, in order for the game's logic and code to remain valid.

A RemoveMethodOperation which removes a method from a class.

RemoveMethodOperation

Parameters
Class name in which the array is defined
Method signature

Preconditions
For this operation to be applied, both class and method signature must find a match

Postconditions
The method definition, its code and all calls to it are removed. Except when the method is called from within
a formula or evaluation expression, as this most certainly will break application/game logic and possibly
code syntax.

Variation E: Language

Previous method

Supporting multiple languages is currently implemented by defining a class containing a large number of
static string array members. For every piece of text (varying from the text of an 'ok' button, to complete
character dialog) a new string array is constructed, in which every element contains the text in a different
language. To display the texts, game classes directly reference these arrays using the element number
defined as the currently selected language. The class containing the string array members is generated from
an ant script. In this ant script, every language text is described using XML. When generating the class
source, the ant script converts any non-ASCII characters to a Unicode definition which will be placed in the
member declaration.

This method has no observed problems at this point. Inserting new language definitions is done within the
XML file, without having to handle any Unicode specific markups. Hot code replacement to enable runtime
tweaking, as with the GraphicsLocation variation, isn't required for this variation. Translated text strings are
delivered by a specialized translation company. Gamica doesn't have enough domain knowledge to manually
abbreviate texts when they are too large. This removes the need for runtime tweaking, making an aspect-
based solution for this variation unnecessary. Therefore, this variation will not be implemented using the
aspect framework.

Not for public use – strictly company confidential and proprietary information Page 31 of 75

Variation F: LanguageMenu

Previous method

When multiple languages are supported, a language menu should be inserted into the game code. This
enables the player to manually select his/her preferred language. Currently, this language menu is
implemented using a standard menu framework implemented in Gamica's library. The contents and
availability of such a menu would depend on the number of languages defined in the language definition
class. This ensures a minimized amount of introduced overhead.

The currently used method for implementing a language menu doesn't have any significant drawbacks. This
leads to the conclusion that an aspect-based implementation of this variation isn't required.

Variation G: ImageFormat

Previous method

Handling differences between image format support (.gif, .png and others) is mainly done on a resource
level. For certain builds, a special version of a resource file needs to be created in which the standardly used
.png files are switched with .gif or other versions.

The code to load these resources is not different for each image format however. Supported image formats
varies mostly among J2ME profiles (MIDP, DOJA etc.). Such a variation will fall under Variation C:
JavaProfile.

In some cases device specific bugs prevent the usage of .png, in which the build should fall back to .gif
support. But in these cases the actual calls to load the image will stay the same.

Because this variation doesn't require any additional variability that is not handled in other variations, no
additional manipulations are required.

Variation H: SimultaneousAudioSupport

Previous method

This variation is actually comprised of two parts. One parts concerns playing multiple audio streams
simultaneously, while the other concerns playing different kinds of audio (WAV, MIDI) simultaneously. The
first part will be dealt with in Variation I: MidiPlayback. The second part is dealt with in this variation.

Preparation of the FALCON library for playing different kinds of audio simultaneously, is done based on the
loaded resources. Within the resource file's structure, every piece of audio data contains a flag determining
whither the audio is used for background music or sound effects. When creating this resource file, sound
effects and/or background music resources are created according to device specifications. As with the
ImageFormat variation, no library changes are required here.

There are however some changes expected for games, as they will require a separate volume slider option
when multiple forms of audio is supported.

Required source code transformations

Within the Battleships game, sound volume options are placed inside a special option menu. As was
mentioned in Variation D: DisabledConnectivity, the contents of this option menu is determined by an array
filled with option description constants. For this manipulation, this array needs to be altered to add or remove
the necessary menu options.

As the user is browsing through the option menu, the menu maintains several 'option states' in which the
current possible input and reactions to this input is determined per option. These states are, like the earlier
mentioned game states, located in a switch statement. The state which handles input during an option
selection, needs to be added or removed to the state switch statement as well.

Lastly, drawing the menu slider needs to be added or removed. This code is placed within a certain method
and needs to be altered.

Proposed solution

It is proposed to include the additional volume slider inside the original game source, and isolate the related
code using a separate methods. As with Variation D: DisabledConnectivity, a combination of
ChangeArrayOperations and RemoveCaseBodyOperations can be executed to perform the required
manipulations. To remove the slider drawing, the draw code should be isolated in a method, and be removed

Not for public use – strictly company confidential and proprietary information Page 32 of 75

using RemoveMethod and InlineMethodOperation.

Proposed transformation operations

For this variation, no new types of operations are required. The already mentioned InlineMethodOperation,
RemoveMethodOperation and ChangeArrayOperation can be utilized.

Variation I: MidiPlayback

Previous method

For most of Gamica's games, MIDI files are used to provide background music for games. As these files
utilize a device's internal MIDI sequencer, MIDI files only contain data describing when and which note of
which internal instrument should be played. Because of the relatively small amount of data required to play
several minutes of music, the format is fairly suitable to use in a restrictive environment of mobile game
development.

In J2ME, playing back a MIDI file consists of creating a Player object in which the MIDI file's contents are
'prefetched'. When the object has finished prefetching, the object can start playing back the file. When an
object is subject for removal to save up memory or in situations where the game is certain not to play the
MIDI file for some time, the player object can be disposed.

Midi playback device types
Although this process sounds relatively simple, its implementation sadly isn't. Several devices have widely
different problems, bugs and other issues regarding playing back MIDI files. In the current version of
Gamica's FALCON library, mobile devices are ranked in three different categories regarding MIDI playback:

● Type A
Type A devices have the most problematic MIDI playback issues. For devices of this type, every time
a MIDI file is played, the mentioned player object needs to be disposed, recreated and prefetch the
MIDI file. This procedure is highly unwanted however, as it creates a delay between calling for
playback and actual playback. For games as Battleships where MIDI files are also used for playing
back sound effects, this introduces a delay for several user actions.

● Type B
Type B devices can handle multiple active player objects, but only one can be playing back a file at
the time. This means that additional checks are required in the library to make sure a certain MIDI
file can be played back, and other player objects have stopped playing.

● Type C
Type C devices have the best implementation of midi playback, as they support playing back multiple
MIDI streams.

In its current form, Gamica's FALCON library manages these differences by adding a high number of
preprocessing directives within the related source code. Because multiple versions of code exist in several
parts of this code, and the versions of code need to communicate with other variable code at other locations,
reading the source file becomes increasingly difficult.

Required source code transformations

Playing back MIDI files is contained within three methods. The create method creates player objects when
the midi playback class is constructed. As this pre-construction isn't required for Type A devices (as these
objects are rebuilt per playback action) parts of this method are to be removed.

Another method, play(), is used to actually play back the midi file. As this code is the same for all types of
devices, this method will remain unaltered.

Lastly, there is a stop() method, in which a midi file is stopped. For Type A devices, a stopped file also means
it should be disposed. Type B and C devices however, will only be disposed when it is explicitly stated it
should be disposed (by using a method parameter). The related code is resided in an if statement, which
should be moved outside the statement for Type A devices.

Proposed solution

Most of the required manipulations can be done using combinations of OverrideMethod and InlineMethod.
Disabling the dispose if statement will require several additional methods however. The case study will
determine if this doesn't affect readability and maintainability too much. If this is the case, a new kind of
operation will be required.

Not for public use – strictly company confidential and proprietary information Page 33 of 75

Proposed transformation operations

For this variation, no new types of operations are required. The already mentioned InlineMethodOperation
and OverrideMethodOperation can be utilized.

Variation J: PauseEventHandling

Previous method

Handling differences between pause events ultimately boils down to differences between Java profiles, as
the events only differ between these profiles. Namely pause events between DOJA and MIDP differ greatly
from each other.

On the library level, these differences are dealt with by replacing code within several generic methods using
preprocessing directives, and introduce some DOJA specific classes within the library.

Variations in pause events aren't handled within games. Gamica's current code style for games require a
specific game state in which a pause event is handled. In this, the type of pause event doesn't make any
difference.

Required source code transformations

Required source manipulations are restricted to replacing code of several methods and introducing some
DOJA specific classes inside the library.

Proposed solution

The source manipulations can be handled through OverrideMethodOperations

Proposed transformation operations

For this variation, no new types of operations are required. The already mentioned OverrideMethodOperation
can be utilized.

Variation K: AnimationImplementation

Previous method

Variations in the implementation of loading and displaying an animation depend on the available Java profile.
MIDP 1.0, MIDP 2.0 and DOJA profiles all provide different means to implement animations. This means that
this variation is actually part of the JavaProfile variation described earlier in this chapter.

Currently, variations between implanting these differences are done by a set of preprocessing directives
within a single class responsible for image animation preparation and displaying. Whereas this project is
trying to remove the dependency on these code polluting tags, another method is devised.

Required source code transformations

In one single class, the contents of several methods are entirely replaced. As the methods' signature stay the
same, calls to these methods will not need any alterations.

Proposed solution

A set of OverrideMethodOperations can implement these manipulations.

Proposed transformation operations

For this variation, no new types of operations are required. The already mentioned OverrideMethodOperation
can be utilized.

Variation L: DistributorImage

Previous method

Displaying a distributor-specific image is done inside the game's code. For this, a special game state is
constructed in which the image is displayed. Changing the contents of the image is done on a resource level.

When no distributor image is required, the code is changed manually or using preprocessing directives.

Required source code transformations

In cases where a special distributor image is required, the game's source code should contain the required

Not for public use – strictly company confidential and proprietary information Page 34 of 75

game state. Furthermore, the game state should be included in the game's flow (in other words. the state
should be reached through the call of a setState method). When no such image is required however, the
gamestate and its access can be removed.

Proposed solution

For this variation, changes are only required when there is no specific distributor image to be displayed. In
such a case, a size reducing optimization can be done. This is possible by removing the related game state
case block and replacing the call to the game state.

These kind of manipulations have been already been discussed in previous manipulations, and were solved
using a combination of OverrideMethodOperations , InlineMethodOperations and a
RemoveCaseBodyOperation.

Proposed transformation operations

For this variation, no new types of operations are required. The already mentioned
OverrideMethodOperation, InlineMethodOperation and RemoveCaseBodyOperation can be utilized.

Not for public use – strictly company confidential and proprietary information Page 35 of 75

4.3. Summary of required operations
The analysis of required manipulations on existing source code, resulted in a set of common source
operations, which are used as a requirement for the variability framework.

In the next pages, two tables display the required operations per variation and a summary of descriptions of
these operations.

Variation Operations Rationale

Variation A: GraphicsLocation OverrideFieldOperation Change values of static constants

Variation B: ResourceLoading OverrideMethodOperation
InlineMethodOperation

Replace code within a switch case body

Variation C: JavaProfile OverrideMethodOperation
OverrideFieldOperation
OverrideExtendOperation
RemoveClassOperation

Insert profile-specific code into methods
which also contain generic code.
Introduce profile-specific code.
Define profile-specific superclass.
Remove classes which are not required
for certain profiles.

Variation D:
DisabledConnectivity

ChangeArrayOperation
RemoveCaseBodyOperation
RemoveMethodOperation
InlineMethodOperation
OverrideMethodOperation

Remove array values to remove menu
options.
Remove code related to game and
option menu states. Often found in
switch case bodies.
Remove calls to these game and option
menu states.
Remove connectivity related methods
and calls to these methods.

Variation E: Language none

Variation F: LanguageMenu none

Variation G: ImageFormat none

Variation H:
SimultaneousAudioSupport

RemoveCaseBodyOperation
ChangeArrayOperation
RemoveMethodOperation
InlineMethodOperation

Remove array values defining game
option regarding an unused volume
slider.
Remove related game and option states
and their code from switch statement
bodies and methods bodies.

Variation I: MidiPlayback InlineMethodOperation
OverrideMethodOperation

Place code within certain parts of
method bodies.

Variation J:
PauseEventHandling

OverrideMethodOperation Replace code of several methods

Variation K:
AnimationImplementation

OverrideMethodOperation Replace code of several methods

Variation L: DistributorImage OverrideMethodOperation
InlineMethodOperation
RemoveCaseBodyOperation

Remove game state related code (from
a switch statements) and paths to the
game state.

Required operations per variation

Not for public use – strictly company confidential and proprietary information Page 36 of 75

OverrideMethod Description
Places a method in a so-called 'victim class'. When this victim class already has a similar method it is
overwritten.

Parameters
Victim class (class of which its methods will be overridden)
Invader class (class of which its methods will be placed in the victim)

Preconditions
Both Victim and Invader class should exist. For the operation to be meaningful, the Invader class should contain
several methods.

Postconditions
Every method which is declared in the Invader class is inserted into the Victim class. When a Victim class'
signature (a combination of name, parameter types and return value type) matches with one inside the Invader
class, its body is replaced by that of the Invader method.

OverrideField Description
Places a field in a so-called 'victim class'. When this victim class already has a similar field it is overwritten.

Parameters
Victim class (class of which its fields will be overridden)
Invader class (class of which its fields will be placed in the victim)

Preconditions
Both Victim and Invader class should exist. For the operation to be meaningful, the Invader class should contain
several field members.

Postconditions
Every field which is declared in the Invader class is inserted into the Victim class. When a Victim class' field
name matches with one of the Invader class, its value is replaced by that of the Invader class field.

OverrideExtends Description
Places a superclass directive in a so-called 'victim class'. When this victim class already has a superclass, it's
directive is overwritten.

Parameters
Victim class (class of which its superclass relation will be overridden)
Invader class (class of which its superclass relation will be placed in the victim)

Preconditions
Both Victim and Invader class should exist. For the operation to be meaningful, the Invader class should have a
superclass relation. For the end result to be valid, the Victim class should not have a superclass definition on
which its non-overridden code depends on.

Postconditions
The superclass relation of the Victim class is now the same as that of the Invader class. After all other
operations are completed, the Invader class is discarded. This depends on whether the Invader class is placed
among the reference source code or not (this decision is made in 'determine technical approach').

InlineMethod Description
Copies a method's body to the place(s) where the method is being called. Afterwards, the method and calls are
removed.

Parameters
Name of the class in which the targeted method is located
Signature of the method

Preconditions
For the operation to be executed, the targeted class should contain a method that matches the given signature.

Postconditions
The body of the targeted method will be placed at the location(s) where the method was called inside the class.
After the operation is completed the method calls and the method definition itself is removed from the class.

ChangeArray Description
Replaces values within an array

Parameters
Class name in which the array is defined
Array name
Needle string (the value or values that are to be replaced)
Replacement string (the new values of the needle string)

Preconditions
For this operation to be applied, both class, array and needle string should match.

Not for public use – strictly company confidential and proprietary information Page 37 of 75

Postconditions
The array values are changed. In order for the resulting code to be valid, the replacement string should contain
a string which should generate a valid array definition.

RemoveCaseBody Description
Removes a case body block

Parameters
Class name
Case expression

Preconditions
In order to apply this operation, both class name and case expression should match.

Postconditions
The matched case expressions are removed. Their bodies are also removed in case these are only related to
the given case expression. Access and other relations to this case body should be removed or disabled as well,
in order for the game's logic and code to remain valid.

RemoveClass Description
Removes a class

Parameters
Targeted class name

Preconditions
The targeted class should exist.

Postconditions
The class is removed. In order for the resulting build to be valid, the issuer of this operation should make sure
that the class isn't relied upon.

RemoveMethod Description
Removes a method and all calls to the method.

Parameters
Class name in which the array is defined
Method signature

Preconditions
For this operation to be applied, both class and method signature must find a match

Postconditions
The method definition, its code and all calls to it are removed. Except when the method is called from within a
formula or evaluation expression, as this most certainly will break application/game logic and possibly code
syntax.

Summary of operations

After the operations were determined, work began on a proof-of-concept in which the operations were
implemented.

Not for public use – strictly company confidential and proprietary information Page 38 of 75

5. Assessment current implementations
In this chapter, two of the currently most popular existing AOP implementations are analyzed. During this
analysis, the implementations are evaluated in terms of efficiency and the support of required functionality.
The results of this analysis will party answer two of the subquestions from the problem description, relating to
current AOP implementations: 'Can required variations be implemented using AOP and how?' and 'Is there
an efficient and functional enough AOP implementation, or can one be created?'

5.1. Overview of implementations
The AOP implementations that were analyzed are:

● Eclipse's AspectJ[1]

● JbossAOP[2]

This section provides a short overview of both implementations.

5.1.1. AspectJ
AspectJ is an Aspect Oriented Programming implementation developed and maintained by the Eclipse
community. AspectJ provides plug-ins for the Eclipse development environment, which ease the creation and
management of aspects. AspectJ also provides command-line tools for applying and running aspects outside
the Eclipse environment.

Definition of aspects
AspectJ's definition of aspects comprises mainly of advices, pointcuts and joinpoints defined in a custom
language. This language is somewhat similar to Java. Regardless of this partial similarity, it is possible to use
regular Java code alongside aspect definitions.

An example of how AspectJ's custom language look like is displayed below.

aspect SimpleTracing {

 pointcut tracedCall():
 call(void FigureElement.draw(GraphicsContext));

 before(): tracedCall() {
 System.out.println("Entering: " + thisJoinPoint);
 }
}

Example of an aspect definition using AspectJ

Applying aspects
AspectJ applies aspects through bytecode instrumentation. An AspectJ compiler is provided which applies
(or weaves) the changes defined in the aspects to previously compiled bytecode.

5.1.2. JBossAOP
JBossAOP is part of the JBoss application framework. Like AspectJ, it provides a plug-in for integration in
Eclipse. Also, it offers a set of command-line tools which can be used separately from Eclipse and JBoss'
application framework.

Definition of aspects
JBossAOP defines aspects in two separate locations and language definitions. Whereas AspectJ both
defines advices and pointcuts in the same definition, JBossAOP uses XML for pointcuts and regular Java
code for the rest.

An example of how JBoss' pointcut definition looks like is displayed below.

Not for public use – strictly company confidential and proprietary information Page 39 of 75

<bind pointcut="public void com.mc.BankAccountDAO>withdraw(double amount)">
 <interceptor class="com.mc.Metrics"/>
</bind >

Example of an pointcut in JBossAOP

Advices in JBossAOP can be defined by providing Interceptor classes or regular classes containing
specifically crafted methods. These classes contain regular Java code, utilizing JBossAOP's API.

An example of an Interceptor class is displayed below.

public class Metrics implements org.jboss.aop.advice.Interceptor
{
 public Object invoke(Invocation invocation) throws Throwable
 {
 long startTime = System.currentTimeMillis();
 try
 {
 return invocation.invokeNext();
 }
 finally
 {
 long endTime = System.currentTimeMillis() startTime;
 java.lang.reflect.Method m = ((MethodInvocation)invocation).method;
 System.out.println("method " + m.toString() + " time: " + endTime +
"ms");
 }
 }
}

Example of an Interceptor in JBossAOP

Applying aspects
Like AspectJ, JBossAOP utilizes bytecode instrumentation for applying aspects. An aspect compiler is
provided which weaves these aspects into targeted bytecode.

5.2. Implementation efficiency
Within game development, great care is given to the visual and audio representation of games. This often
asks for several space consuming resources such as images and audio files. This leaves out a relatively
small amount of space for game code. And because of the already strict space requirements existing in
mobile game development, a variability solution used in mobile gaming should have a minimal impact on
total game bytecode size.

In this chapter, both mentioned AOP implementations are assessed on their impact on total game bytecode
sizes.

5.2.1. AspectJ
When applying aspects on bytecode using AspectJ, an increase of bytecode size can be expected. However,
the code that is being inserted or changed isn't the only element that increases bytecode size.

In order to accommodate for a wide range of possible scenarios, AspectJ can include additional elements in
bytecode that aren't defined in the related aspects themselves. It also adds a dependency to several AspectJ
API classes. The full set of API classes has a size of approximately 112 Kb. However, when optimized it's
size can be decreased down to 651 bytes.

Impact on bytecode size
In [3] a measurement of bytecode sizes has been made when handling variability using traditional object
oriented structures and AspectJ. It mentions that a 15% increase in bytecode size was measured when using
AspectJ, compared with an object oriented solution (which was downsized to 10% after using optimizers).

Traditional object oriented solutions were discarded in the problem description earlier in this thesis, because

Not for public use – strictly company confidential and proprietary information Page 40 of 75

of its inefficiency. A solution that creates a higher amount of overhead should thereby not be acceptable as
well. However, as the overhead is not very significant, it may be still possible to further optimize the output of
AspectJ.

Should this solution be chosen for further examination however, it should at least support the required
functions listed earlier. This part of the assessment is described in section 'Implementation functionality'.

5.2.2. JBossAOP
With JBossAOP, similar increases of class files have been recorded in self conducted smaller scale tests.
However, JBossAOP creates dependencies in the targeted bytecode. After using JBossAOP, the targeted
bytecode becomes dependent to a large amount of API classes. Unoptimized, these classes require
approximately 2,1 Mb of disk space. When using the Proguard optimizer[24] a decrease to +/- 500Kb was
achieved.

While this optimization is significant, the size of these classes is still way too much for it to be of any use
within mobile game development. This leads to the conclusion that in its current state, JBossAOP is not
usable for introducing variability in mobile games.

5.3. Implementation functionality
In this chapter an assessment is made regarding if AspectJ contains the functionality required. The functions
which were used in this assessment are listed in a previous chapter 'Gathering detailed requirements'. Key
features assessed were:

● Inserting and replacing code inside method bodies

● Removing methods and related calls

● Changing superclass definition

● Replacing values of fields

● Removing case bodies

5.3.1. Inserting and replacing code inside method bodies
AspectJ supports inserting code at the beginning or the end of a method. Alternatively, it can replace the
entire body of a method as well. However, AspectJ cannot place code at an arbitrary location within the
method body.

Although, the proposed inlineMethod operation can be implemented if the method's code is defined in the
aspect itself. By using a 'call' pointcut, code can be inserted at the location where a certain method is called.
If this code can implemented inside the aspect itself (because of a total replacement of a method body) the
InlineMethod operation can be realized.

5.3.2. Removing methods and related calls
Within AspectJ it is possible to remove the contents of a method body. Secondly, it is possible to target all
calls to a certain method, and replace them with nothing. When using these techniques in combination with
an optimizer, the empty methods are removed as well.

5.3.3. Changing superclass definition
Using the declare parents declaration of AspectJ, it is possible to change the superclass definition of a class.

5.3.4. Replacing values of fields
AspectJ supports changing values of fields. However, it has a significant limitation when such a field is
defined as a constant. AspectJ is unable to target a field constant in a pointcut, and is therefor not able to
make any changes to it.

This is mainly because the Java compiler uses a technique called 'constant-inlining'. In this technique, the
value of a constant is moved to the location where it is read. This makes it impossible for other bytecode-

Not for public use – strictly company confidential and proprietary information Page 41 of 75

level frameworks to find references to a constant value.

Usage of constants
As mentioned before, mobile games are heavily optimized and a heavy usage of constant values is one of
these optimizations. One of the prime examples of using constants is mentioned in section 'Variation A:
GraphicsLocation' in chapter 'Gathering detailed requirements'. In this variation, a separate class filled with
constant values is used for defining locations of graphic elements. Because all these values are defined as
constants, the entire class can be removed from the game at build time. This is because of the compiler's
constant-inlining.

Furthermore, the usage of constant values for graphics locations makes very effective when used with hot
code replacement. Because all values are placed directly at the locations where they are needed, hot code
replacement immediately applies any changes made to them. These changes are directly displayed at run-
time.

Consequences
When these constant values cannot be used anymore, both an important optimization and a tool for efficient
tweaking of field values is lost. This decreases the applicability of AspectJ for use in a variability solution
targeted at mobile game development. Further discussion regarding this issue is described in section
'Conclusions' of this chapter.

5.3.5. Removing case bodies
It is currently not possible to target specific case bodies for removal in AspectJ. Furthermore, case bodies
are labeled through a constant value. This can be a literal number or a reference to a constant.

As the operation listing in section 'Summary of required operations' shows, removing of case bodies is often
done for the purpose of removing game states. Game states are referred to as constant values.

 As is determined in the previous section, constant values cannot be targeted or influenced by AspectJ.
Therefor, this operation cannot be implemented in AspectJ as well.

5.4. Conclusions
Based on the analysis and results presented in the previous sections, it can be concluded that none of the
analyzed implementations are fit for usage as a variability solution.

JBossAOP introduces a significant amount of kilobytes to the size of a game. This makes it impossible for
game developers to create a game that fits inside 200 or even 100 kilobytes.

AspectJ is more efficient in this regard, although it does produce more bytecode than a traditional object
oriented solution. Furthermore, it has been determined that AspectJ doesn't support all required functions in
order to be used as a variability solution. Functions regarding placing code at arbitrary locations within a
method and influencing constant fields are limitations that are not acceptable for this research project.

Alternative solution
As current implementations are lacking in efficiency and features, an alternative solution is required. This
solution should apply manipulations directly without having to introduce additional methods and other
classes. This to minimize any introduced variability overhead. Furthermore, it should be able to support the
features mentioned in previous sections and chapters.

This customized solution is to be targeted specifically at J2ME game development, also taking Gamica's
specific process requirements into account. The design and implementation of this domain-specific solution
is further detailed in the next chapter: 'Proof-of-concept'.

Not for public use – strictly company confidential and proprietary information Page 42 of 75

6. Proof-of-concept
In this phase, a proof-of-concept was constructed which will support the previously mentioned variability
operations. While developing this proof-of-concept certain issues surrounding implementation of the
operations are explored and discussed.

The goal of the proof-of-concept is two-fold:

1. Determine if the operations are technically possible.
Answering subquestion 'Can these variations be implemented and how?'

2. Determine if the resulting implementation really does work within Gamica's game development
process when porting its games to different devices.
This will answer subquestion 'Can the solution be used within Gamica's development process, or
what changes are required to this process to make it possible?'

The first goal will be dealt with while implementing the framework. After a first implementation is completed,
the results will be used as a case study. In this case study, Gamica's developers will use the implementation
to port Battleships and Gamica's library to several different devices. Experiences and issues regarding the
usage of the implementation will then be recorded and analyzed. Using the results of this case study it
should be possible to determine if the framework actually works within the process of game development and
if there are any early signs of maintainability issues.

Implementation issues
In this chapter, various issues regarding the implementation of the variability framework are discussed.
These issues are discussed in the following sections:

● Implementing variability operations
Describes which techniques are to be used for implementing the required variability operations.

● Designing the program transformation language
Details design decisions regarding how developers will apply the variability operations

● Implementing the framework
Describes how the framework is implemented within the targeted environment

6.1. Implementing variability operations
As was stated in chapter 'Assessment of current implementations', bytecode instrumentation was deemed
too limited to be used for the variability framework. As a result, the framework will apply changes to game
and library functions at a source code level.

Dangers of source code transformations
One of the dangers of programmatically transforming source code, is the source parser and transformer.
Because source code can be structured in many different ways, source code parsing becomes a complex
task, which can be error prone.

Currently there are several software project dedicated to source code parsing and manipulation, including
JavaCC [12] (which can be used to generate source code parsers) combined with JTB [13], BeautyJ [14],
SableCC [15], Eclipse's internal source parser based on Abstract Syntax Trees [17, 18] and more.

Because it is currently very difficult if not impossible to determine which one of these methods will generate
the least errors, the answer to which one is going to be used is decided from the development process
perspective.

All development within Gamica is currently done using Eclipse, and Eclipse itself extensively uses its own
source parser for debugging and source information displays. Because the variability framework is to work
with or alongside Eclipse, the decision was made to create a plugin for Eclipse which utilizes Eclipse's
source analysis and manipulation capabilities.

6.1.1. Source code manipulation in Eclipse
As was mentioned in chapter 'Background and Context', certain features of the Eclipse development
environment can be used to do program transformations at a source code level. The variability framework
can utilize this functionality in order to implement the required operations.

Not for public use – strictly company confidential and proprietary information Page 43 of 75

Creating a custom plug-in
When creating a variability framework that works alongside the usage of Eclipse as a development
environment, extensions and changes are required to that environment. As said, Eclipse has a flexible
structure for which several extensions (or 'plug-ins') can be developed. For the variability framework, this
means that a new 'project nature' and 'builder' needs to be inserted which, using Eclipse's AST API, makes
adjustments to certain pieces of source code prior to regular Java building and compilation.

This custom builder will require certain data to determine which source files should be altered, what kind of
alterations should be applied and where to place the results. This requires a language in which the variability
operations are described. The design of this language is discussed in the next section, 'Design of the
program transformation language'.

6.2. Designing the program transformation language
The currently defined operations are mainly designed for doing one or a very restricted set of transformations
at once. For a description of variability operations, it will be required to define sets of operations, similar to
'aspects' in current AOP solutions. In these 'sets', several operations are described, which will account for a
certain piece of variability.

Required elements
To determine how the various variability operations are declared, it is required to determine what common
information is needed to execute the sets of operations. This information should be described in addition to
operation-specific parameters, which were already determined in chapter 'Gathering detailed requirements'.
This required additional data is as follows:

● A unique identifier (ID), which the set of operations can be called or referred to

● A description determining when or if the operation set should be applied.

● A description of location(s) within source code (class name, method signature, field name, statement
signature etc.) where the operation or operation set should be applied in the source code. This
information is (partly) stored in an operation's parameters.

● A description of what kind of operations are applied.

In the following chapters, the language describing when (or if) and where the operation sets should be
applied is discussed. The when/if is discussed in chapter 'Capabilities and requirement based variability',
whereas the where and what will be described in 'Designing operation sets'.

6.2.1. Capability and requirement based variability
As was briefly mentioned in the problem description, Gamica maintains a database of device specific
capabilities, specifications, bugs and other issues, which is used to apply certain device specific alterations
to games and its library. The variability platform can utilize this information to determine which operations
should be applied for a certain build. For example, when a device has a display resolution of 200 by 400
pixels, the relevant variation operations should be applied that implement the relevant graphics locations for
such a resolution. Example content of these database are listed in Appendix B: Device properties and
channel requirements databases.

Relating variations to capability and requirements
A relationship between a device capability database, a channel requirements database and sets of variability
operations could create an environment in which variability is determined by specifically described
requirements and device capabilities.

When new mobile devices are released or channel operators change their requirements, changes made to
the relevant databases should automatically change or add new builds for games and the library. But only if
enough already created operation sets were available to support any new device properties or changed
requirements.

This means that the creation of a new game build based on new device specifications, could be done by only
changing the device database if the changes aren't radically different from other devices. In such a case, the
creation of several new operation sets is required.

Structuring the relations
This relation between capabilities, requirements and operations can be roughly done in three ways:

1. Capability and requirement databases contain Ids of operation sets, whereas these sets are

Not for public use – strictly company confidential and proprietary information Page 44 of 75

oblivious to the databases

2. Capability and requirement databases remain oblivious to operation sets, whereas the sets
themselves contain references to capabilities and requirements for which they should be applied. In
this structure, databases are oblivious to operation sets.

3. Make both databases and operation sets oblivious to each other, linking the relation in a separate
description.

A decision between these options would depend on how the databases and operation sets are expected be
used within the game development process.

Considering databases that refer to operation sets (option 1)
As was mentioned in an earlier chapter, development of Gamica's library and games are done separately.
Both elements however, do require a high level of variability. The same capability and requirements
databases are used for both library and games, but the operations required to implement any variations
regarding capabilities and requirements are different between library and each game.

This means that any relationship between databases and operations should be oblivious to the databases,
as the operations differ between development projects. This rules out option 1.

Considering total separation of operations and databases (option 3)
Option 3, in which relations between databases and operation sets are declared separately, is a bit overkill
for this project. When a new requirement or capability is introduced which requires a new operation set to be
implemented, both the link description and the operation set need to be maintained.

Option 3 does offer effective reuse of operation sets, but as these sets are expected to be different for each
development project, option 3 only adds an extra maintenance level with no added benefits. Reuse of
operation sets could become possible when Gamica enforces a strict code style and structure policy for each
game. With such a policy, certain operation sets can be applied to different games because of enforced
similarities in locations and structures for certain common features. But as this is not yet the case, option 3 is
ruled out for the moment.

Considering operations that refer to relevant database values (option 2)
This leaves out option two, in which the related requirements and device capabilities are listed in the
operation sets themselves. Using this structure, it becomes possible for Gamica to manage device
capabilities and distribution requirements separately from variability operation sets. This enables a certain
freedom when defining a base set of features and capabilities for a game and determining how variations
should be and structured for each game.

From a technical standpoint, the above conclusions create the requirement for an extra parameter for
operation sets, in which the relationship with a certain capability or distributor requirement is described. The
query syntax and underlying technology is discussed in the next section 'Querying device capabilities and
channel requirements'.

Querying device capabilities and channel requirements
Operation sets are required to use the data stored in the XML formatted databases (see Appendix B: Device
properties and channel requriements databases for examples) to determine if the set should be applied. For
this, a specialized query technique will be used, called XPath [21]. XPath enables simple querying of XML
formatted data, using a special query language. By using XPath queries, operation sets can determine the
existence of certain currently applicable device property, capability or channel requirement. When the query
matches, the operation set should be applied. If no matches have been found, the operation set is disabled.

For example, when a certain operation set should only be applied when a device's resolution is between
240x300 and 250x350, the following XPath query is required.

//capability[@refid = 'j2me_screen']/property[@name = 'width' and @value > 100]

Example XPath query, in which a screen width of more than 100 pixels is matched

As this query will match multiple devices, the variability framework should prepend the query to make sure
the query will try to match with values related to the currently selected device. For example, when a
developer is currently creating or testing a build for a Nokia 6230, the XPath query will be internally formatted
as follows:

Not for public use – strictly company confidential and proprietary information Page 45 of 75

/gdr/device[@id = 'nokia_6230']/capability[@refid =
'j2me_screens']/property[@name = 'width' and @value > 100]

Example XPath query, in which a screen width of more than 100 pixels is matched, combined with a match with a certain device

When the above query matches, the operation set will be applied to the base source code of a game or
library.

Determining what and where apply operations
It is hereby determined how the when or if of a variability operation set description will be defined. What is
left is to design a language in which is described what and where operations should be applied. This will be
discussed in the next chapter 'Designing operation sets'.

6.2.2. Designing operation sets
In this chapter, a language is proposed which can be used by developers to target and apply variability
operations using the variability framework.

Determining language requirements

Developer preferences and requirements
Using informal interviews, several preferences and requirements were discussed to which the description
should adhere to from a developer's perspective. One of the most important issues that was raised was that
it should have simple description. 'Simple', meaning that the number of possible commands, tags or
structures should be as low as possible. The main developer therefore requested a low entry-barrier for
developers to use the variability framework and its descriptions.

To this end, it was preferred that the description would match a standard language convention, which uses or
works similar as language conventions which were already known to the development team. The description
should also have a low probability of errors. And if it is possible, any automated refactoring made to the
original source code in Eclipse, should also be applicable to the description itself. This would prevent any
additional maintenance when the original source code undergoes some structural refactoring.

Keeping variability code in context
It became apparent that a method using standard Java conventions and language structures was preferred.
This preference stemmed from a wish to develop source code which is inserted by a variability operation,
while still being able to do context specific lookups, error checks etc.

One problem with the operation language of AspectJ for example, is that most added source code is placed
inside an AspectJ specific context. Any relations with the location(s) where this code ends up is non existent.
This is mainly because the code could be placed into several different contexts. In this variability framework
however, most operations are applied at it's own specific location. It should therefore be possible for
developers to develop the code while working inside the context of the targeted location.

Focus on highly used operations
By analyzing the manipulations required for various variations, the operations which are expected to be used
most and which define newly inserted code, are both OverrideFieldsOperation and
OverrideMethodsOperation. It is also expected that both these operations will often be used in conjunction
with each other. Because of these expectations, efforts were made to make the declarations of these
operations as easy and simple as possible.

To this end, it was decided that a conventional Java structure was used to describe the operations and
operation sets. Annotations were utilized to define certain parameters and other elements which cannot be
defined using normal Java language conventions.

Utilizing conventional Java language structures
In the earlier mentioned example of the ProjectStub, the OverrideFieldsOperation is used multiple times to
define new values for a high number of class fields. To ease the creation of this operation for the developer,
the definition of these values should therefore be simple and straightforward. This is accomplished by
defining the OverrideFieldsOperations as regular field definitions in a normal Java class. An annotation at the
class definition level then describes for which class these new fields should be overridden, and when the
variation should be applied (using an earlier mentioned XPath query). The name of the class definition
functions acts as a identifier which carries the name of the operation set.

Not for public use – strictly company confidential and proprietary information Page 46 of 75

@Variation (class="com.gamica.anygame.AnyGame"

query=”//capability[@refid = 'j2me_screen']/property[@name = 'width' and @value
> 100]”)

public final void class ExampleVariation

{

int STATE_RETRIEVE_HISCORES = 10;

int STATE_POST_HISCORES = 10;

}

Operation set in which two fields are overridden in class AnyGame

The same is done for the OverrideMethodsOperation.

@Variation (class="com.gamica.anygame.AnyGame" query=”//capability[@refid =
'j2me_screen']/property[@name = 'width' and @value > 100]”)

public final void class ExampleVariation

{

public void showMessage()

{

System.out.println(“Message”);

}

}

Operation set in which a method is overridden in class AnyGame

Consequences and limitations

This definition has several consequences. Firstly, the mixture of a variation description and class definition
makes it impractical to create an operation set in which multiple classes are altered. Although multiple class
definitions can reside within one source file, the operation set's readability and maintainability will suffer when
doing so. Also because of this strong linkage, it becomes impossible to reuse any code that was defined in a
certain operation set, to be used in another set.

Methods to counter the side effects
These side effects can be countered by separating the Invader class code from the variability descriptions.
The Invader class code could be placed in a separate source file, whereas the operation set only describes
the OverrideFieldsOperation and/or OverrideMethodsOperation itself, instead of also defining the overriding
code. Reuse will become possible with such a construction as well.

The description should be both easy to create, as to provide a conveniently arranged structure in which
already entered data can be easily be found, read and understood. Although the last mentioned description
method does sound the most sensible at first, making a decision about how to define and structure variability
descriptions will depend on how the variability framework is expected to be used.

The necessity of counter measures
As said, the negative side effects of the currently described method of variability description, is that it doesn't
support handling multiple classes per description and doesn't support reuse of invader classes. Question is,
are these properties really required? An analysis of the earlier described variations didn't indicate any
scenarios where invader classes can be reused. Furthermore, the number of classes which are required to
be altered per variation is relatively low, for both the FALCON library as the Battleships game. No more than
a maximum of 4 different classes are required to change per variations.

When the mentioned separation is introduced, developers have to maintain two sets of data. One set in
which all descriptions are placed, and another set in which invader classes are coded. As the relationship
between these two types of data is one-to-one (as no reuse is expected), it only creates an additional layer of
obscurity for the developer. Both while implementing the variability and reviewing it.

Not for public use – strictly company confidential and proprietary information Page 47 of 75

This leads to the conclusion that although the described separation of class definition and variability
description can be seen as a common practice, it isn't required in this situation. A higher preference is given
to ease of development, in which variability description and invader class definition are combined.

Other operations

As the other operations which were defined in chapter 'Gathering detailed requirements' are expected to be
used a lot less than the earlier described operations, most of them are described in the form of annotations.
Examples of these descriptions are displayed in the following examples.

@RemoveCaseBody(case=”STATE_SETAUDIO”)

RemoveCaseBodyOperation

@ChangeArray(arrayName=”AVAILABLE_OPTIONS”,

 needle=”OPTION_AUDIO”,

 replacement=””)

ChangeArrayOperation

Because of certain limitations in Java's annotation features, it isn't possible to use multiple annotations of the
same type within one description. To solve this, the mentioned annotations can be stacked using a parent
annotation type, in which the actual annotations are placed within an array value of the parent annotation. An
example of this is displayed below.

@RemoveCaseBodies({

@RemoveCaseBody(case=”STATE_SETSFX”),

@RemoveCaseBody(case=”STATE_SETMUSIC”),

})

Stacking of multiple RemoveCaseBody operations

Other operations can take advantage from the Java language based description, by using normal Java
constructions as parameters. For the RemoveMethodOperation and the InlineMethodOperation, this can be
used as such:

@Remove public void showConnectionStatus(){}

RemoveMethodOperation

@Inline public void showVolumeSlider(){}

InlineMethodOperation

Issues when using multiple similar annotations
However, a problem occurs when the above annotation-based operation descriptions are used. As was
mentioned in chapter 'Gathering detailed requirements', a combination of OverrideMethod and InlineMethod
operations are expected to be commonly used. In the annotations described previously, this combination isn't
possible. This is because the description can only describe if a method is inlined or overridden.

While it is possible to simply add code to the method declaration annotated with @inline, this will conflict in
cases where only an inline is needed. So, in order to support a combined Inline and OverrideMethod
operation, a new kind of annotation is introduced: @InlineAndOverride.

Not for public use – strictly company confidential and proprietary information Page 48 of 75

@InlineAndOverride public void showMessage()

{

 System.out.println(“message”);

}

Combined Inline and OverrideMethod operation

Differences between variability framework languages and other AOP
implementations

Features
The main difference between the earlier mentioned AOP implementations and the described operation
declaration language, is that the number of supported transformations is more limited. Because of the focus
on minimizing overhead, only a limited number of operations are supported in which detailed transformations
can be done without introducing this overhead.

Language structure
On the language side, this means that there are no distinct joinpoints in the language definition if the
variability framework. Instead of offering a set of operations that can be targeted at a wide range of
joinpoints, these operations are limited to certain code structures. These limitations operate within Gamica's
code style practices and can therefore offer the required optimizations.

When finding similarities between the language definitions, AspectJ's aspects can be seen as variations
within the custom variability framework's language. Advices are a bit more difficult to isolate however, as
they're mostly intwined within transformation operations.

Towards implementing the framework

In the next section, the implementation of the framework is described. Internal procedures of the framework
will be mentioned. Additionally, the features of the variability framework offered through the Eclipse plug-in
interface are discussed.

6.3. Implementing the framework
As was mentioned earlier, the framework will be implemented as an Eclipse plug-in. The Eclipse plug-in will
provide a new project nature and builder, which can be linked to an existing Eclipse project. The project
nature will mark and setup a project to be used to implement variability, and the builder will add the variability
operations to the project's build process.

6.3.1. Project layout
Standard project layout
Gamica maintains a strict policy on project layout, as their ANT build scripts depend on a certain project
folder structure. A typical project layout for a game looks like this:

Project tree of regular Gamica game project

In this layout, all source code of a game (or FALCON library for that matter) is placed inside a source folder

Not for public use – strictly company confidential and proprietary information Page 49 of 75

called 'src'. Files that are created when building the source, are placed in a 'bin' directory. This directory
contains the various builds per device, language and distributor, separated in different subfolders.

This project can be built in two ways. An Eclipse build will only compile the source to be able to run it through
a J2ME emulator. There is also an ANT build script, in which a generic resource file is compiled (in which all
audio, images etc. are stored) and all compiled .class files are obfuscated and optimized using ProGuard
[24]. Libraries which are required to compile and run the game are stored in the 'libs' folder.

Variability project layout
This project tree is used when a game is being developed for its first release, mostly supporting a very
limited amount of devices. When this development phase is completed, the variability framework comes into
play, in which variations of the game's source are created.

For this purpose, the variability framework's plug-in will slightly change the project tree structure. This is done
to accommodate the variability operation definitions and different builds. As such:

Project tree of Gamica game project using the variability framework

In this new tree, some elements are added to the project tree. A new source folder is created called
'variations'. In this folder all variation descriptions (in the form of operation sets) are stored as java source
files. Operation sets which are related to each other are grouped in packages.

Separating sources
Another alteration to the original project tree is the type of the 'src' folder. Whereas this folder was previously
a 'source folder' (containing files which are compiled in every Eclipse build), this folder is now turned into a
regular folder. The folder which contains the source files which will be compiled, is one of the subfolders of
the 'builds' directory. In 'builds', all variations of the original source code are stored. The currently 'active' one
(which is compiled and can be run for testing) is set as source folder.

Capability and requirement databases
There are also some .xml files added to the project tree. In gdr.xml (which stands for Global Device
Repository), all device specific properties are stored. As mentioned in section 'Capability and requirement
based variability'', this file is used to determine which variations are to be applied.

Also, the file gcr.xml is added to the project tree. This file (of which its name stands for Global Channel
Repository) contains descriptions of channel specific requirements.

Buildtargets
Lastly, a third 'buildtargets.xml' file is added. This file contains the supported devices, language sets and
channels for a project. Additionally, any project specific variation properties which could not be described in
the gcr.xml and gdr.xml, can be listed in buildtargets.xml as well. As these last two files are designed to be
used for every game, buildtargets.xml will handle any project specific properties, if any. This means that for
every project, a different buildtargets.xml is to be defined.

Example content of this buildtargets file can be found in Appendix C: Example buildtargets.xml.

6.3.2. Build process
Within Eclipse, certain user actions can trigger a 'build', depending on current settings. When a setting called
'automatic build' is turned on for example, alterations to files that reside in source folder will trigger a build.
When this option is turned off, users need to click on a build button to trigger a build.

Not for public use – strictly company confidential and proprietary information Page 50 of 75

A 'build' in Eclipse will activate 'builders', which are associated with a project. This association is usually
created by the earlier mentioned project natures. In normal Java projects, only one builder is present: the
Java builder. One of the tasks of this Java builder, is to compile .java source files to .class bytecode and
display any error messages when something went wrong.

A custom builder
For the variability framework a custom made builder is required, which alters .java source files prior to
compilation. This means that the custom made builder should precede the Java builder in the project's build
process.

This custom builder will have to do several tasks, which are outlined in the figure below.

Reference
source DLC selection

GDR

GCR

buildtargets

operation
pool

create
reference source

copy

determine
program

transformations

execute
program

transformations
ref src copy

Trigger

JavaBuilder

Custom Builder

Transformation
operations

transformed
source code

Build activities variability framework

Although the collected data and described activities from the above figure are required for each build, the
process can be optimized. As Eclipse maintains change delta's in which every change since the last build are
recorded, some of the data can be cached if the related files haven't been subject to change.

Selecting device, language and distribution channel (DLC)
The determination of the currently set device, language and channel combination, is evaluating a value set
by the developer currently working with the platform plug-in. To let developers change this value, the plug-in
provides a special menu, in which all available devices, channels and languages from the GDR and GCR
can be selected.

Selecting current device, language and distributor channel

Not for public use – strictly company confidential and proprietary information Page 51 of 75

6.3.3. Target for case study
In order to test this framework's effectiveness, a case study was performed in order to test its effectiveness.
Details regarding this case study are described in the next chapter: 'Case study'.

Not for public use – strictly company confidential and proprietary information Page 52 of 75

7. Case study
In order to evaluate the effectiveness and usefulness of the variability framework, a case study was
preformed. In this study, the following issues were focused on:

● Does the framework indeed supported enough operations to implement the required variability?

● Can the framework be effectively used to decrease bytecode size?

● Are there any hurdles regarding ease-of-use, presentation and code readability when developing
variations using the framework.?

For the case study, the framework was used to implement variability in Gamica's FALCON library and
Battleships, for the purpose of porting both products to other devices. The implementation of the variations
was performed in cooperation with two of Gamica's developers. Reactions, experiences, problems and other
issues were recorded through personal sit-throughs and a questionnaire.

The results of this case study are used to answer the following questions from the problem description: 'Can
required variations be implemented using AOP and how?' and 'Can the AOP solution be used within
Gamica's development process, or what changes are required to this process to make it possible?'.

This chapter will first describe a couple of changes that were made prior to this case study, suggested by
Gamica's main developer. Following, the case study scenario and activities are described. Finally, the
questions raised above are discussed and answered in sections 'Support of operations', 'Decreasing
bytecode size' and 'Ease-of-use, presentation, readability'. A short summary of this can be found in section
'Summary'.

7.1. Changes to operations
When discussing the previously listed operations with Gamica's main developer, some changes to the
operations were proposed.

Removing game states
One of these changes was combining the RemoveCaseBodyOperation and ChangeArrayValueOperation
into one operation in which a field is removed. These operations are mainly used to remove (access to) a
certain game or menu option state. As these states are defined by a constant integer field defined at class
level, this field can be removed as well. When removing the field, all elements that use the field should be
removed as well. This means that switch cases that use the field to define code for a certain state is
removed, as well as array values which determine menu options related to a certain state.

Problem with this approach is that when the field is used in other elements such as IF statements, it cannot
be removed safely in some cases without breaking the logic of the if statement. Also, when the field is used
in certain statements or in formulas, removing it also isn't possible without breaking game code syntax and
logic. This problem is seen by the main developer as signs that the reference source code requires
restructuring, in which the field shouldn't be used in other situations than switch cases and array values.

This will mean a new operation is required in which a field definition is removed, and any related array values
and switch case bodies with it. This new operation is named RemoveFieldOperation.

Lessening complexity
Another issue brought up by the main developer, is added complexity of introducing new methods to
reference source code to isolate variable code. This complexity stems from management of both
OverrideMethod and InlineMethod operations. Although this is acceptable in some cases, when this isolated
code only consists of one statement which requires changing, this is considered overkill. For these cases, a
new operation is required in which the single statement is isolated and replaced or removed.

Locating a single statement through an operation description creates a situation in which an operation
becomes very context sensitive. When something changes in the code surrounding the statement, the
operation becomes invalid. As this is highly possible in such an operation, a different method is required.

Thus, for this special case, a special marker requires to be placed within the reference code. Although this is
against the descriptive nature of the variability framework, it is required for the cases where a purely
descriptive method becomes too complex and context sensitive. This new operation (ReplaceAtMarker) will
search for a certain marker in the code (in the form of a label), and will replace the associated code.

Not for public use – strictly company confidential and proprietary information Page 53 of 75

7.2. Activities
Taxonomy of targeted source code
A full sized FALCON library specifically targeted to MIDP 2.0 consists of 10 Java classes, containing 4704
lines of source code. For Battleships, two of these classes aren't used. The standard implementation of the
Battleships game has 8 classes, comprised of 8501 lines of source code. The number of source code lines
mentioned include commentary.

The reference build of Battleships was targeted for the Nokia 6600, and was about 113 kb in total file size.

Scenario
The test case is based on a real-life scenario in which a game is to be ported to a more limited mobile
device. Whereas Battleships was originally targeted for the Nokia 6600, the test case will focus on porting
this game to an older Nokia 6100 model. Key differences between these devices are listed in the following
table.

Capabilities Nokia 6600 Nokia 6100

Model series Series 60, second edition Series 40, first edition

Screen resolution 176x208 128x128

Heap memory Approx. 3 mb 200 kb

Java Profile MIDP 2.0 MIDP 1.0

Multimedia support MMAPI Nokia specific (Nokia sound API, Nokia
UI)

Max. file size - 64 kb

Key differences between Nokia 6600 and Nokia 6100 devices

Two main issues in this porting process, are downsizing the game's distribution binary and memory usage in
order to fit inside the Nokia 6100's maximum file size limit and heap space. Because of time constraints, the
test case was focused on minimizing the game's file size.

Additionally, Gamica's FALCON library was required to support MIDP 1.0 and include code using Nokia
specific API's.

Applied game variations
In order to support the Nokia 6100 with its limited maximum file size, certain non-essential elements of
Battleships needed to be downsized or removed. These changes were implemented through variations using
the framework.

The variations applied to Battleships were:

● Remove audio support
To minimize file size, audio resources and code were to be removed.

● Change graphics locations
Because of the smaller resolution, smaller graphics with different screen locations were required.

● Remove scrolling and interpolated paths
Battleships utilizes a specific library class which creates interpolated paths used for smooth scrolling
and sprite movement. When removing dependencies on this class, the class itself can be removed,
thus further minimizing file size.

● Simplify graphics
Examples: create a grid graphic manually using code, instead of using an image.

● Remove special effects
Certain background animations were removed to speed up the game and lower the game's file size.

Some of these variations were anticipated in the earlier mentioned variation list in chapter 'Gathering
detailed requirements'. However, other variations were not previously been anticipated. This scenario
presented a test to see if the previously determined operations were enough to implement these unexpected
variations.

A complete port would also remove any unnecessary code from the FALCON library. Although some unused
code is automatically removed through the usage of optimizers such as ProGuard[24], the creation of
variations for the library's code would would result in a more thorough optimization.

Not for public use – strictly company confidential and proprietary information Page 54 of 75

Applied library variations
Variations applied to the FALCON library were limited to create support for J2ME profile MIDP 1.0, instead of
the default supported MIDP 2.0. Because of time constraints this variation could only be implemented party,
mainly dealing with converting functions related to displaying graphics. The focus here lied on converting the
library's functionality, rather than decreasing it's size.

As was mentioned in the problem description, the current method to introduce variability into the FALCON
library was based on preprocessing directives combined with xml/xsl transformations. In this part of the test
case it was examined if the variations provided by the variability framework were any improvement over the
usage of these directives, regarding code readability and maintainability.

Evaluation
During and after the test case, several informal interviews took place in which the experiences of the
developers using the framework were evaluated.

Additionally, developers were asked to fill in a questionnaire after the test case. This questionnaire contained
questions regarding the usability of the framework and the maintainability and readability of related source
code when the framework is used. The questions asked in the questionnaire can be found in Appendix D:
questionnaire.

The results of these activities can be found in the next sections, in which every issue mentioned at the
beginning of this chapter is discussed. These sections are named: 'Support of operations', 'Decreasing
bytecode size' and 'Ease-of-use, presentation, readability'.

7.3. Support of operations

7.3.1. Results
During the test case it became apparent that the operations implemented in the variability framework weren't
enough to implement all listed variations in the previous section 'Activities'. Certain changes were required to
the set of supported operations in order to implement the variations successfully.

However, this issue was relatively simple to solve by adding (additional) parameters to existing operations
and adding new operations. These changes are further discussed in the next section 'Observations'.

7.3.2. Observations
The following changes to the framework's operations were required in order to implement the variations
listed in section 'Activities'.

RemoveFieldOperation
The RemoveFieldOperation originally removes a field from a class and all references to this field within the
same class. However, when removing references to resources, certain field references need to be removed
across several classes. An additional parameter was required in which the range of the field removals could
be determined.

Although it seems logical to always remove all field references across different classes, the relatively high
complexity of this operation introduces an increased duration of source code processing. To optimize the
framework's source code processing, developers can determine the range in which a field reference can be
removed.

RemoveMethodOperation
Furthermore, for the implementation of the 'Remove scrolling and interpolated paths' variation, it was
required that the number of parameters for a certain method were decreased.

This can be implemented by removing the original method and introducing a method with different
parameters into the source code. The calls to the method were altered through a RemoveFieldOperation to
make them compatible with the new method parameters.

However, a removal of a method includes removing all calls to this method. This means that the calls to the
method should not be removed along with the method declaration.

Thus, the implementation of this variation required a new parameter for the RemoveMethodOperation, in
which the removal of related method calls can be toggled.

SetFieldValueOperation

Not for public use – strictly company confidential and proprietary information Page 55 of 75

In order to determine the current screen resolution, mobile game developers can utilize certain J2ME
features that provide this information. However, these functions do not always work correctly. For example,
there are certain mobile devices which return a resolution of -1*-1 when retrieving this information using
standard J2ME functions.

Because of this, the FALCON library usually places the device's resolution in hard-coded variables. When
using the variability framework, this would normally mean that a specific OverrideFieldOperation is required
for each device resolution. This in turn requires an increasing amount of variations, which can become
increasingly difficult to manage.

To solve this, a new SetFieldValueOperation was introduced. This new operation can target a class field and
providing it a new value. The contents of this value is retrieved from the earlier mentioned Global Device
Repository (GDR) by using earlier mentioned XPath queries.

OverrideImplements
For certain variations regarding Java profiles and event handling, it became necessary to change the
inheritance definition ('implements..'), similar to the OverrideExtends operation.

InsertBefore and InsertAfter operations
During the implementation of Java profile related variations for the FALCON library, it became apparent that
the contents of a certain constructor required multiple changes throughout different variations.

As the standard OverrideMethodOperation only supports completely replacing a method's body, other
techniques were required. For instance, adding new method calls to the constructor, filling these methods
with variable source code and inlining them later on is a possible way of implementing such a variation.
However, this required the introduction of several new methods and a separate variation which always inline
these methods regardless of the actions of other variations. This implementation would therefor require
several variations, new methods and other elements which increase the effort of managing the variations.

A more elegant and easier to use operation was required in order to add new contents to a method without
having to introduce new methods and multiple new variations. A solution to this was proposed in the form of
InsertBefore and InsertAfter operations. These operations can be targeted at methods, which insert a certain
piece of code at the beginning or the end of a method.

InsertBefore and InsertAfter: similarities with AspectJ
The InsertBefore and InsertAfter operations are very similar to the before() and after() pointcuts of AspectJ.
Additionally, AspectJ defines an around() pointcut, in which an entire jointpointpoint can be overridden. When
using around(), an optional proceed() call is provided to return to a joinpoint's normal execution.

This around() pointcut is partly emulated by the OverrideMethodOperation. Most other constructions can be
done by the earlier mentioned InsertBefore and InsertAfter operations.

Operation complete
Efforts have been made to create a relatively difficult scenario in which a game is to be severely downsized.
Such a scenario requires a wide range of variations, which would test the operation-completeness of the
variability framework. However, it is difficult to determine if the (newly) listed operations will be enough for
future variations. On the other hand, it is possible to implement new operations into the framework if it is
required.

7.4. Decreasing bytecode size

7.4.1. Results
Variations applied to Battleships
The table below displays the sizes on total game size after variations were applied.

Not for public use – strictly company confidential and proprietary information Page 56 of 75

Variation Operations Effect

Change graphics and locations - Swap graphics with lower resolution versions
- Change locations of these graphics

32,887 bytes smaller

Remove audio support - Remove audio resources
- Remove references to these resources
- Remove calls to audio methods
- Remove related menu options and game states

6,876 bytes smaller

Remove special effects - Remove method and call to method in which a background animation is
generated
- Remove code which let lights blink in intro screen

1,059 bytes smaller

Remove scrolling and
interpolated paths

- Isolate and replace all usage of InterpolatedPath object with static
coordinates
- Remove several if statements regarding waiting for scrolling to end

1,639 bytes smaller

Simplify graphics - Isolate and replace image usage with several calls to graphics-draw
methods.

3,554 bytes smaller

Applied variations and their influence on total game size

The listed variations managed to downsize Battleships to 70,312 bytes. While this is still not enough to
support the Nokia 6100, results so far indicate that the game could be fit inside the 64 kb limit by applying
more variations.

7.4.2. Observations
From the results given in the previous section it can be concluded that the framework is able to introduce
variability, while at the same time decrease total bytecode size. Because virtually no overhead is introduced,
bytecode downsizing can be performed effectively.

These same results show that variations which only change source code don't have a significant effect.
Variations which influence other resources such as images and audio seem to have the most effect.
However, in a situation where every saved kilobyte counts, variations that only remove code can still be
considered relevant.

Missing resource management features
Variations which require the actual removal of several game resources from the game's distribution binary
revealed a missing feature of the framework regarding resource management.

As was mentioned in chapter 'Gathering detailed requirements', game resources such as audio and image
files are stored in a single binary file. When porting a game to another device requires a different set of
resources, this resource file needs to be regenerated specifically for that port.

It was assumed that Gamica's current solution (generation of the resource file by using an Ant script) could
be slightly altered outside the framework to support these different resource files. During the test case this
assumption was proven to be incorrect.

The assumption was based on the idea that game resources are solely dependent on screen resolution.
However, the variations applied within the test case were also weren't only related to screen resolution, but
also to memory specific issues.

For instance, a device with the same resolution as the Nokia 6100 could very well have a higher maximum
file size, allowing certain additional graphics files to be included. This means that the addition or removal of
these files aren't related only to the screen resolution, but to other variability factors as well.

Proposed solution
Currently, variations can only be apply changes to Java source code. In order to improve support for
variations which require changes to game resources, the framework should also be able to influence the
creation of the earlier mentioned resource file.

In order to provide some consistency when creating variations, an ideal solution would be to implement the
resource changes in the same way as the regular source code variations. To implement this, the generation
of the resource file could be done through specifically formatted Java source code. This Java code could be
changed through regular variations, and later be interpreted by the framework to generate the resource file.

This solution however has not been implemented or tested during this research because of time constraints.
Because of this, the solution remains target for further research.

Not for public use – strictly company confidential and proprietary information Page 57 of 75

7.5. Ease-of-use, presentation, readability

7.5.1. Results
Although the developer's experiences with the framework was limited, the experiences with the framework
thus far resulted in the following opinions.

Debugging, finding bugs, fixing bugs
Because all existing Eclipse functionality regarding debugging was still in place, debugging wasn't seen as a
problem. Finding and fixing problems created by variations weren't seen as problematic as well.

There are however some issues with hot code replacement, in which code can be replaced while running a
game (which can be used as a debugging effort). Both developers have observed a relatively slow compile
process when using the framework, which makes hot code replacement less effective.

Additionally, one developer had problems with seeing the difference between a variation, reference source
file and generated source file. It was suggested that creating small differences in the presentation of these
types of files could resolve this issue.

Readability game source
According to the developer who was in charge of creating variability for Battleships, readability of the
reference source code was slightly decreased because of added methods and markers to achieve variability.
Especially methods that are inlined later on and markers that reside within the reference source code are
found to cause some confusion.

One developer proposed a policy in which these added methods and markers are specifically commented.
This to mitigate any confusion and to ensure that future developers understand their existence.

Readability library source
The developer who created variability for the FALCON library had a somewhat different view. The
implementation of variability in this library was previous achieved by using several preprocessing directives.
These directives severely decreased the readability when a high number of variations and code insertions
were applied.

From this previous experience, the developer saw a great improvement in readability when using the
variability framework. It was found that the framework provided a clearer overview of variations and better
options to structure the variations and related operations. Furthermore, basic Eclipse features that were
previously disabled because of using the tags, like debugging, code highlighting, error detection etcetera
were again possible with the framework. This was seen as a great improvement over the previous situation.

Managing variations
Managing variations was found to be relatively easy, but only if a decent naming of variation sets (ordered in
packages) was applied. One developer noted that an overview of which variation was actually applied for a
combination of language-device-channel was preferred.

Another developer cited that it was difficult to tell the different types of files apart (generated sources,
reference sources, variation descriptions). The previously mentioned presentation issues and possible
solution apply here as well.

Modularity
Source code responsible for key input and displaying graphics were previously done in the same class,
mainly to minimize bytecode size and optimize execution time. By structuring the required operations into
variation sets, the responsible developer was able to introduce a certain modularity in the code without
needlessly increasing the total bytecode size. Additionally, the developer found that managing the different
pieces of code became easier.

Encountered issues and problems
There were also some issues noted regarding the usage of the framework.

Display applied variations
One missing feature that frustrated the developers, was that the framework didn't supply a list of variations
that were applied for a certain combination of device, channel and language set. Although this list could be
obtained manually, an automatic display of applied variations was preferred.

Telling apart different types of source code
Another issue that came up was that developers had trouble telling apart different parts of source code. For
instance, when a developer had several versions of the same class opened in Eclipse it was difficult to
determine which version came from the reference source, generated source or variability descriptions. This

Not for public use – strictly company confidential and proprietary information Page 58 of 75

scenario is shown in the image below.

Different versions of the same class opened in Eclipse

One developer proposed color coding the background of source file presentation elements, in order to tell
these elements apart.

Speed and instability
Because of the prototypic nature of the framework implementation, little attention was given to speed and
memory optimization of the framework itself. This lead to a significant slow-down of compiling and building
source code. And because the framework currently requires large amount of memory for certain variations,
the overall stability of Eclipse was negatively influenced as well.

Handling of 'outside elements'
For several variations it was required that code introduced by a variation consisted of relations with objects
and methods that were defined outside the variation definition itself. This presented a problem as Eclipse's
source viewer generated errors because the referenced methods and fields (the 'outside elements') weren't
known in the context of the variation.

This issue was partly solved by adding special @Ignore annotations to these 'outside elements', which were
ignored by the variation operation parser. A more ideal solution would be to always include all methods and
fields of a targeted class inside the variation, but making them invisible for the developer. When such an
element is mentioned in an operation (like an override or remove), the element could be automatically
removed from the hidden part of the variation.

Overall
In overall, the questioned developers found that the framework was easy to use and effective in its usage.
One developer found that the framework did have a steeper learning curve when compared to the earlier
mentioned preprocessing technique. Although using preprocessing was found to be easier to learn, it's
effectiveness and readability decreases when introducing a certain amount of variability. According to the
developer, the steeper learning curve of the framework earned itself back in terms of clear structuring and
readability of variations and related source code.

7.5.2. Observations
The overall opinion of developers regarding the framework's ease-of-use, presentation and maintainability
were positive. There were however, some differences in opinion between both developers regarding
readability.

Readability
The developer who worked on variations of Battleships, found that the readability of its source code was
slightly decreased when using the framework. On the other hand, the developer responsible for library
variations saw an increase of readability.

This can be explained by the different types of source code of the game source and library source. Source
code of Battleships was constructed using traditional object oriented structures. Whereas the library contains
numerous preprocessing directives, significantly decreasing its readability.

From this difference, it can be stated that the framework's readability lies below traditional object oriented
structures. However, it is found to be an improvement over previously used preprocessing directives.
Additionally, the availability of Eclipse's code presentation and debugging features further increased code
readability.

Presentation issues
Although the overall opinion was positive, some issues were raised regarding presentation and other issues.

Because these issues have a negative impact on the efficient and effective usage of the framework, they
should be solved in later development cycles.

7.6. Summary
In summation, it can be determined that the framework does have the potential to meet the challenges

Not for public use – strictly company confidential and proprietary information Page 59 of 75

described in the problem description. Although the variations targeted in the test case do not represent the
complete spectrum of possible variations, it does prove that the framework can be used effectively in a real-
life scenario.

However, care must be taken when implementing the variations. Because variations can not only influence
the original source code but the effects of other variations as well, variations are required to be structured
and implemented carefully. This to prevent variations to impede on each others territory and creating invalid
or incorrect code.

Furthermore, additional work is required to increase the effectiveness of the framework. Especially regarding
resource management and presentation of source code and variations.

Not for public use – strictly company confidential and proprietary information Page 60 of 75

8. Conclusions
The research described in this thesis has tried to find a balance between introducing variability in a mobile
J2ME application while minimizing the introduction of additional overhead to maintain this variability.
Additionally, keeping source code readable and maintainable was also a focus point on this research.

In this chapter, the conclusions regarding this research are described by answering the questions asked in
the problem description.

8.1. 'Is AOP efficient enough?'
Current implementations of Aspect Oriented Programming introduce a significant amount of overhead mainly
regarding total file size, which makes it unusable in the context of mobile game development. The main
cause of this, is that these implementations attempt to apply variability operations on a wide variety of
situations, which in most cases requires the inclusion of several additional methods and classes.

However, this doesn't mean that Aspect Oriented Programming itself is inefficient. By creating an
implementation which focuses on requirements enforced by mobile game development this inefficiency is
greatly minimized.

This efficiency is achieved by only supporting a limited set of variability operations, which are applicable for a
specific number of cases. These operations do however have a certain dependency on code style and
structure, for which the operations are tailored.

Thus, answering the question 'Is AOP efficient enough?': not in current implementations, but it can be made
efficient by specifically creating an implementation which focuses on efficiency.

8.2. 'Which exact variations should be supported by the AOP solution?'
A list of variations were derived from known common variations that exist between mobile devices, and
certain issues the Gamica development team has been confronted with in the past.

This list of variations can be found in chapter 'Determining typical variations'.

8.3. 'Can required variations be implemented using AOP and how?'
Operations
A set of common operations was created which can be used to implement the variations. These are mostly
similar to standard object oriented solutions, however their implementations are optimized so that the end
result doesn't introduce any additional classes and methods. The list of operations can be found in chapter
'Summary of required operations'.

During the test case however, it became apparent that the operations listed in the previously mentioned
chapter weren't enough for certain variations. These additional operations are described in section 'Further
required changes to operations'.

Technical approach
Because bytecode instrumentation was deemed too restrictive in order to execute the operations, program
transformations are done at a source code level. Using Eclipse's features to alter source code using Abstract
Syntax Trees, a custom plug-in was created in which developers can manage the operations and the
resulting source code.

More details on the actual implementation of the resulting variability framework can be found in chapter
'Proof-of-concept'.

8.4. 'Can the AOP solution be used within Gamica's development
process, or what changes are required to this process to make it
possible?'
As the implementation could be used in conjunction with Eclipse and supports hot-code replacement,
technical requirements regarding Gamica's development process were met.

Not for public use – strictly company confidential and proprietary information Page 61 of 75

Questions regarding if the implementation could actually implement the variations and if the end result
remains easy to manage for developers were answered through a case study. In this study, a proof-of-
concept implementation was used to introduce variability on both a game currently in development and
Gamica's in-house developed library.

Case study
This case study revealed that the framework did fit within Gamica's development process regarding source
code transformations. Because transformations were directly related to device and channel properties, it
became possible to create and manage generic variations which can be reused when new devices are
released. This made it easier for Gamica to manage different builds and variations of their games and library.

Shortcomings
However, the framework did fall short regarding the management of varying resources. When certain game
builds require a different set of resources (such as low-detailed images for limited devices), the framework
didn't provide any functions to implement this. This decreased the effectiveness of the framework. More
details regarding this and other issues are described in section 'Decreasing bytecode size' of chapter 'Case
study'.

Additionally, certain presentation issues prevented optimal usage of the framework. These issues are further
detailed in section 'Ease-of-use, presentation, readability' of chapter 'Case study'.

8.5. 'Can Aspect Oriented Programming be applied to introduce
variability in J2ME games?'
The main question asked in the problem description, can be answered as such: 'Yes, but carefully'.

Granularity
As was previously discussed in this thesis, the solution provided by this research is strongly related to code
style and structuring. The reason from this originates from the strict requirements regarding minimizing
introduced overhead. the applicability of the variability framework was lessened. This requirement makes it
necessary to include transformations on a low level within the source code. These 'low level' transformations
include affecting switch statements, specific lines of code within a method, if statements etc. Because of this
level of granularity, the effectiveness of the solution becomes depended on code style. A detailed discussion
of this topic can be found in the discussions section: 'The illusion of obliviousness'.

Structuring
Furthermore, variations need to be implemented carefully to prevent any unintended effects to the original
source code and transformations of other variations. This requires the programmer to carefully create
variations that don't impede on each others territory or create invalid or incorrect code.

Readability and maintainability
One challenge regarding the introduction of variability, as was described in the problem description, was
readability and understandability of the variations and their related source code. The method used previously
by Gamica (preprocessing directives combined with xml/xsl data) introduced a significant decrease of code
readability. One of the goals of the variability framework was to improve this situation.

The test case revealed that the perceived readability and maintainability was increased in this regard. But
observations to include that the variations are required to be applied cautiously. As it is very easy to
implement variations that break code logic or introduce errors, developers are required to use caution in
creating and managing these variations.

Because the test case was done in a limited amount of time, any effects of long term usage of the framework
could not be measured. Further research would be required to determine if the proposed solutions still
maintain an acceptable level of of readability and maintainability in a longer timespan.

8.6. Contributions
The research described in this thesis provide an alternative method of achieving variability whilst keeping
any introduced overhead to a minimum. Although the solutions provided in this research are very dependent
of a certain code style and structuring, the described framework could be utilized for another custom set of
operations which can be applied for other code styles.

Furthermore, the proposed solutions provides a way of structuring these variations in a maintainable way,
whilst providing a relatively high degree of readability amongst related source files.

This thesis also mentions some of the shortcomings of Aspect Oriented Programming and it's current

Not for public use – strictly company confidential and proprietary information Page 62 of 75

implementations. Also, certain shortcomings regarding the usage of bytecode instrumentation are discussed.

Not for public use – strictly company confidential and proprietary information Page 63 of 75

9.Further research and discussions
Using addition
In this research, a decision was made to base variability operations on existing code because this matched
Gamica's game development process. But it could be interesting to see how the variability framework would
look like if variations were based on empty class skeletons, in which code is inserted through different
modules. Although this might introduce overhead in order to link these modules together, further research in
this area could improve reuse of certain variable code and code structures.

This method was partially used when creating the library variations described in the chapter 'Case study'. But
a more thorough experimentation using this method could shed more light on how effective the method can
be utilized.

Defining a code style
Mentioned in previous chapters and further discussed in section 'The illusion of obliviousness', successful
usage of the described variability platform relies on code style and structuring. Further research into how this
code style would look like and what kind of structuring works best with the variability framework could be
utilized to further enhance the usage of the framework.

9.1. Discussion: The illusion of obliviousness
The theory
The research described in this this thesis has tried to find a balance between introducing variability in a
mobile J2ME application while minimizing the introduction of additional overhead to maintain this variability.
Additionally, keeping source code readable and maintainable was also a focus point on this research.

Through the use of specific manipulations structured similarly to aspect oriented programming, an attempt
was made to achieve this balance. The main assumption based on this attempt was, that aspect oriented
programming could be utilized to introduce variations in an application, without the need of preconditioning
the application to support the variations.

As most other variability techniques require a certain application structure (or variability points) to apply
variations, these methods are limited in use because all variation points need to be known in advance prior
to development time. Using AOP, it might have been possible to keep the application code oblivious to any
introduced variability, by describing variation operations separately from the application itself. By inserting
and removing pieces of code, an application could support variability without any predefined structuring.

The reality
Because of the strict limitations in which mobile game are developed, fine grained manipulations are required
to introduce any meaningful variability within a game. It is this granularity which makes some of these
manipulations very context sensitive. This means that certain manipulations are heavily related on
surrounding code structures and style. When something in this context changes later on, the manipulation
quickly becomes invalid and can break game code syntax or intended logic.

To minimize manipulation dependency on context, manipulations should only be done on isolated structures,
which can be altered with a minimum amount of context relations. In current Java language structures, the
body of a method is ideally suited for this purpose. But determining which pieces of code should be isolated
within a method to support variability, requires information which mostly isn't available at development time.

While the purpose of using AOP like structuring for introducing variability is to keep applications oblivious to
changes and not having to predefine any variability points, in practice the application must become aware of
them anyway. Although using certain operations to optimize the result of the manipulations minimizes any
introduced overhead, the application doesn't stay oblivious to these changes. When isolating a certain piece
of code for variability while the code structure itself doesn't really require a separate method, the application
(and developer of the application) loses obliviousness to variability.

Statement
To summarize: in order to apply variability 'virtually everywhere' using AOP, certain low-level changes require
isolating pieces of code that normally aren't required to be isolated in traditional development. This means
that a traditionally developed application should explicitly isolate these pieces of code, in order to apply
variability later. This defeats the assumption where code can stay oblivious to any later introduced variability.

This kind of variability framework can therefor not be seen as a silver bullet which can be used on any form
of application, but requires a certain code style (depending on the required operations) to be successfully
used. This makes the method not that different from other techniques that require preconditioning of source

Not for public use – strictly company confidential and proprietary information Page 64 of 75

code. But the techniques mentioned in this thesis does has some methods to optimize the result, without
introducing any variability overhead in terms of compiled byte size.

Not for public use – strictly company confidential and proprietary information Page 65 of 75

10.Evaluation
This chapter evaluates the conclusions and the process of the research described in this thesis.

10.1. Successes
Variability framework
The research described in this thesis resulted in an implementation of a variability framework, in which
variability can be introduced in an application with a minimal amount of introduced overhead. Although this
implementation is a bit rough around the edges (as it is mainly meant as a proof-of-concept), it has proven to
be usable to introduce variability to games and an in-house developed library for Gamica.

As was mentioned in earlier sections of this thesis, the developers' overall response to the framework was
positive. Although there are some improvements to be made at certain points, Gamica's main developer is
confident that the framework can be of great value for Gamica's porting activities.

Communication
Because of the relatively small size of Gamica's organization, lines of communication between researcher
and developers at Gamica were short. Ad-hoc discussions about issues surrounding manipulations,
variations and code style were possible and small non-technical evaluations of variation descriptions weren't
a problem as well. Additionally, Gamica's main developer manage to provide a considerable amount of time
for whiteboard discussions and other talks regarding the research. These informal discussions did speed up
the research and improved communications between researcher and developers. This also lead to a growing
awareness of the functions and capabilities as well as acceptance of the framework within the company,
which eased the execution of the test case considerately.

10.2. Misconceptions
In the initial phase of the research, it was assumed that the variability framework would be based on
bytecode instrumentations. Possibly through existing AOP solutions (like AspectJ), or through manual
instrumentations using specialized libraries such as BCEL or Javassist. A large amount of time was
consumed in finding solutions to certain limitations encountered with these methods (these limitations are
described elsewhere in this thesis), but ultimately they were proven to be unavoidable. Primarily, the
requirement in which any additional overhead should be minimized invalidated the use bytecode
instrumentation.

The decision to implement variations through descriptive source manipulations did offer the granularity
required to manipulate games and the library using the defined operations. While not completely without
bugs, the Eclipse platform's source manipulation framework did provide a decent ground for introduction of
variability.

Not all goals and hypothesis are met in this framework, as a pure descriptive method of variability operations
was found to be too restrictive and too context dependent in certain cases. Also, the assumption that
descriptive operations can be applied to an application that stays oblivious to the variations was found to be
incorrect as well (as is explained in section 'The illusion of obliviousness').

As an end result, the implemented variability framework doesn't have much in common with AOP as it was
originally intended. It isn't used to place recurring code in various parts of an application, and the targetted
source code doesn't stay completely oblivious to these changes. Therefor, it can be stated that AOP isn't that
usable for porting games and introducing variability in a library, but a derived technique provided by the
variability framework does offer some options.

10.3. Hindsight
In hindsight, far too much time was spent on implementation-specific issues, finding solutions to limitations of
techniques and other technical difficulties. While these activities were required to implement a proof-of-
concept and to become familiar with bytecode instrumentation, AOP and AST concepts, it did put a lot of
stress and pressure on the research time table. The end result became very specifically targeted at Gamica's
development process and code policies. To generate a more generic solution, more details about how code
should be structured for the variability operations is required. As there wasn't any time left to research
compatible code styles, this question remained unanswered.

Not for public use – strictly company confidential and proprietary information Page 66 of 75

11.References
[1] AspectJ
A seamless aspect-oriented extension to the Javatm programming language
http://www.aspectj.org

[2] JbossAOP
JBoss AOP is a 100% Pure Java aspected oriented framework
http://labs.jboss.com/portal/jbossaop/index.html

[3] Developing Adaptive J2ME Applications Using AspectJ
Ayla Dantas, Paulo Borba
Informatics Center, Federal University of Pernambuco
Recife, Pernambuco, Brazil

[4] Java Technology
http://java.sun.com

[5] ANT
A Java based build tool.
http://ant.apache.org

[6] Mobile Information Device Profile (MIDP 1.0)
Sun Microsystems
http://java.sun.com/products/midp/

[7] What's new in MIDP 2.0
Sun Microsystems
http://java.sun.com/products/midp/whatsnew.html

[8] About DOJA
http://www.doja-developer.net/about/

[9] The Java TM Virtual Machine Specification, Second Edition
Tim Lindholm
Frank Yellin
Sun Microsystems

[10] Load-time structural Reflection in Java (An overview of Javassist)
Shigeru Chiba
ECOOP 2000 -- Object-Oriented Programming, LNCS 1850, Springer Verlag, page 313-336, 2000.

[11] BCEL
The Byte Code Engineering Library is intended to give users a convenient possibility to analyze, create, and
manipulate (binary) Java class files (those ending with .class).
http://jakarta.apache.org/bcel/

[12] JavaCC
A parser/scanner generator for Java
https://javacc.dev.java.net

[13] Java Tree Builder (JTB)
A syntax tree builder to be used with the Java Compiler Compiler (JavaCC) parser generator.
http://compilers.cs.ucla.edu/jtb/jtb-2003/

Not for public use – strictly company confidential and proprietary information Page 67 of 75

http://compilers.cs.ucla.edu/jtb/jtb-2003/
http://java.sun.com/

[14] BeautyJ
A source code transformation tool for Java source files
http://beautyj.berlios.de

[15] SableCC
An object-oriented framework that generates compilers (and interpreters) in the Java programming language.
http://sablecc.org/

[16] Eclipse
An open source community whose projects are focused on providing an extensible development platform
and application frameworks for building software.
http://www.eclipse.org

[17] 'What is an Abstract Source Tree?'
Eclipse FAQ
http://wiki.eclipse.org/index.php/FAQ_What_is_an_AST%3F

[18] Higher-order abstract syntax
F. Pfenning
C.Elliot
Carnegie Mellon University, Pittsburgh, PA

[19] Document Object Model (DOM)
http://www.w3.org/DOM/

[20] Eclipse Java Development Tools
http://www.eclipse.org/jdt/

[21] XML Path Language (XPath) - W3C Recommendation
http://www.w3.org/TR/xpath

[22] Java ME Technologies
http://java.sun.com/javame/technologies/index.jsp

[23] #ifdef Considered Harmful, or Portability Experience With C News
Henry Spencer
Zoology Computer Systems
University of Toronto

Geoff Collyer
Software Tool & Die

Summer '92 USENIX 1992

[24] ProGuard
Java class file shrinker, optimizer, and obfuscator
http://proguard.sourceforge.net/

[25] Wikipedia: Template Design Pattern
http://en.wikipedia.org/wiki/Template_method_pattern

[26] Aspect-Oriented Programming
Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, John Irwin.
Published in proceedings of the European Conference on Object-Oriented Programming (ECOOP),
Finland. Springer-Verlag LNCS 1241. June 1997.

Not for public use – strictly company confidential and proprietary information Page 68 of 75

http://java.sun.com/javame/technologies/index.jsp

[27] Aspect-Oriented Programming wth AspectJ
Kiselev
Sams Publishing

[28] AspectJ In Action
Laddad
Manning Publications

[29] Instrumenting Java Bytecode
Jari Aarniala
Seminar work for the Compilerscourse, spring 2005
Department of Computer Science
University of Helsinki, Finland

[30] J2SE platform at a glance
Sun Microsystems
http://java.sun.com/j2se/1.5.0/docs/index.html

[31] Java bytecode: Understanding bytecode makes you a better programmer
Peter Haggar
Senior Software Engineer, IBM
IBM DeveloperWorks

[32] Sun Microsystems
http://www.sun.com

Not for public use – strictly company confidential and proprietary information Page 69 of 75

12.Appendix A: Device capability matrix

Phone
model

Profile Heap
memory

Max.
file
size

Proprietary
APIs

Screen
resolut

ion

Color
depth

Graphic
s file

support

Audio
file

support

Number of
simultaneo
us streams

Method of
implementing

animation

Handling
of pause

event

Nokia
series
40 1st

gen:
6610

MIDP
1.0

195 kb 63 KB NokiaUI 128x12
8

12 bit .PNG Own
format,
limited
MIDI

1 Filmstrip No pause
event

available

Motorola
E398

MIDP
2.0

800 kb 128
KB

- 176x22
0

16 bit .GIF
.PNG

WAV
MIDI
MP3

2 Filmstrip Standard
Java
impl.

Nokia
Series
40 3rd

gen.:
6270

MIDP
2.0

2 Mb 500
KB

- 240x32
0

18 bit .GIF
.PNG

WAV
MIDI
MP3

unknown Filmstrip No pause
event

available

DOJA
1.5

handset:
NEC
n341i

DOJA 800 kb 30 KB
for

classe
s, 100
KB for
other
resour

ces

- 162x18
0

16 bit .GIF Own
format
(MFI
3.2,

SMF 0i)

1 Separate
graphics files

DOJA
specific,
'forced'
pause *

* MIDP based pause events send a pause event to an application, requesting to minimize its resource
consumption. DOJA based pause events cut off several IO channels, forcing the application to minimize
its resource consumption.

Not for public use – strictly company confidential and proprietary information Page 70 of 75

13.Appendix B: Device properties and channel requirements
databases
As was mentioned in other chapters of this thesis, Gamica maintains a device capability database in which
certain properties of devices are stored. The device capability database and distribution channel requirement
database are based on this work, and were slightly refined for use in the variability framework.

Data regarding the capabilities and requirements are stored in XML formatted text files. Below are two simple
examples of the formatting of each of these databases.

<gdr version="0.1"> <! GDR >

<capabilities>

<capability id="j2me_screen"> <! CapabilityDefinition >

<property name="width"/> <! Property >

<property name="height"/>

<property name="colors"/>

</capability>

</capabilities>

<device id="nokia_6600"> <! DeviceDefinition >

<capability refid="j2me_screens"> <! DeviceCapability >

<property name="width" value="176" /> <! Property >

<property name="height" value="208" />

</capability>

</device>

<device id="nokia_4000"> <! DeviceDefinition >

<capability refid="j2me_screen"> <! DeviceCapability >

<property name="width" value="1076" /> <! Property >

<property name="height" value="208" />

</capability>

</device>

</gdr>

Example layout GDR.xml

Not for public use – strictly company confidential and proprietary information Page 71 of 75

<gcr version="0.1"> <! GCR >

 <requirementsdefinitions>

 <requirement id="max_filesize"> <! RequirementDefinition >

 <property name="max_filesize" /> <! Property >

 </requirement>

</requirementsdefinitions>

<requirements>

<requirement id="MAX_60K" refid="max_filesize">

 <property name="max" value="60000" /> <! Property >

</requirement>

</requirements>

 <channels>

 <channel id="vodafone"> <! ChannelDefinition >

 <device id="nokia_6600"> <! ChannelDevice >

 <requirement refid="MAX_60K"/> <! RequirementReference >

 </device>

 </channel>

 </channels>

</gcr>

Example layout GCR.xml

Not for public use – strictly company confidential and proprietary information Page 72 of 75

14.Appendix C: Example buildtargets.xml

<buildtargets version="0.1" id="battleships"> <! BuildTargets >

<channels>

 <channel id="vodafone"> <! ChannelReference >

 <device id="nokia_6600"/> <! ChannelDevice >

 <device id="nokia_6610"/>

 <device id="nokia_6640">

 <requirement refid="MAX_60K"/>

 </device>

 <device id="nokia_6650"/>

 </channel>

 <channel id="preminet">

 <device id="nokia_6100"/>

 <device id="nokia_6600"/>

 </channel>

 </channels>

 <languages>

 <languageset id="nlfr">

 <language id="nl"/>

 <language id="fr"/>

 </languageset>

 <languageset id="chtw">

 <language id="ch"/>

 <language id="tw"/>

 </languageset>

 <languageset id="en">

 <language id="en"/>

 </languageset>

 </languages>

</buildtargets>

Example content of buildtargets.xml

Not for public use – strictly company confidential and proprietary information Page 73 of 75

15.Appendix D: Questionnaire
Note that the proof-of-concept of the variability framework was codenamed 'SVMode' within Gamica.

This survey is a short questionnaire in which the opinion of application programmers is asked in
terms of code maintainability and readability. To this end, several questions are asked relating to a
software project after SVMode is applied to it (such as Battleships and the FALCON library).

Each statement listed below can be answered by highlighting the level of agreement with the
statement. For each statement it is asked to give an explanation to why you agree or disagree with it.
If possible, please explain the main factors which influenced your opinion regarding the statement.

Filling in this form shouldn't take longer than 15 minutes.

Any further questions about the statements can be directed to Sannie Kwakman, email:
sankwak@instantstuff.net or mobile phone: 0623435902.

When a bug is encountered in the
reference build, it is easy to find and
fix the problem.

Completely
disagree

Somewhat
disagree

Somewhat
agree

 Completely
agree

Why?

When a bug is encountered in a
variation build, it is easy to find and
fix the problem.

Completely
disagree

Somewhat
disagree

Somewhat
agree

 Completely
agree

Why?

It is difficult to let someone else take
over this project.

Completely
disagree

Somewhat
disagree

Somewhat
agree

 Completely
agree

Why?

Letting someone take over this project
became harder after SVMode was
applied tot the project.

Completely
disagree

Somewhat
disagree

Somewhat
agree

 Completely
agree

Why?

Not for public use – strictly company confidential and proprietary information Page 74 of 75

mailto:sankwak@instantstuff.net

Game/Library code was better readable
before using SVMode

Completely
disagree

Somewhat
disagree

Somewhat
agree

 Completely
agree

Why?

Extending the features of the
game/library became easier after
applying SVMode to the project

Completely
disagree

Somewhat
disagree

Somewhat
agree

 Completely
agree

Why?

Managing different variations is
difficult using SVMode.

Completely
disagree

Somewhat
disagree

Somewhat
agree

 Completely
agree

Why?

My experience with SVMode was:
Why?

What elements of SVMode do you wish to see improved? And in what direction?

Not for public use – strictly company confidential and proprietary information Page 75 of 75

	1. Problem Description
	1.1. Challenges of mobile game development
	1.1.1. Limited hardware
	1.1.2. Varying models
	1.1.3. Languages
	1.1.4. Distribution channel specific requirements
	1.1.5. Implications for mobile game development

	1.2. Current solutions to these challenges
	1.2.1. Abstracting hardware differences through Java profiles
	1.2.2. Introducing variability through standard Object Oriented structures
	1.2.3. Introducing variability through manual code changes
	1.2.4. Introducing variability through preprocessing
	1.2.5. Resolving efficiency and maintainability issues

	1.3. A new, aspect oriented approach
	1.3.1. What is Aspect Oriented Programming
	1.3.2. Using Aspect Oriented Programming to introduce variability
	1.3.3. Requirements

	1.4. Research Questions

	2. Background and Context
	2.1. Aspect Oriented Programming
	2.2. Bytecode Instrumentation
	2.3. The Eclipse development environment and platform

	3. Research Plan
	4. Gathering detailed requirements
	4.1. Determining typical variations
	4.1.1. Sources of information
	4.1.2. Results

	4.2. Determine transformations for variability
	4.2.1. Variability strategy
	4.2.2. Selection criteria
	4.2.3. Analysis of variation points
	Variation A GraphicsLocation
	Variation B: ResourceLoading
	Variation C: JavaProfile
	Variation D: DisabledConnectivity
	Variation E: Language
	Variation F: LanguageMenu
	Variation G: ImageFormat
	Variation H: SimultaneousAudioSupport
	Variation I: MidiPlayback
	Variation J: PauseEventHandling
	Variation K: AnimationImplementation
	Variation L: DistributorImage

	4.3. Summary of required operations

	5. Assessment current implementations
	5.1. Overview of implementations
	5.1.1. AspectJ
	5.1.2. JBossAOP

	5.2. Implementation efficiency
	5.2.1. AspectJ
	5.2.2. JBossAOP

	5.3. Implementation functionality
	5.3.1. Inserting and replacing code inside method bodies
	5.3.2. Removing methods and related calls
	5.3.3. Changing superclass definition
	5.3.4. Replacing values of fields
	5.3.5. Removing case bodies

	5.4. Conclusions

	6. Proof-of-concept
	6.1. Implementing variability operations
	6.1.1. Source code manipulation in Eclipse

	6.2. Designing the program transformation language
	6.2.1. Capability and requirement based variability
	6.2.2. Designing operation sets
	Determining language requirements
	Consequences and limitations
	Other operations
	Differences between variability framework languages and other AOP implementations
	Towards implementing the framework

	6.3. Implementing the framework
	6.3.1. Project layout
	6.3.2. Build process
	6.3.3. Target for case study

	7. Case study
	7.1. Changes to operations
	7.2. Activities
	7.3. Support of operations
	7.3.1. Results
	7.3.2. Observations

	7.4. Decreasing bytecode size
	7.4.1. Results
	7.4.2. Observations

	7.5. Ease-of-use, presentation, readability
	7.5.1. Results
	7.5.2. Observations

	7.6. Summary

	8. Conclusions
	8.1. 'Is AOP efficient enough?'
	8.2. 'Which exact variations should be supported by the AOP solution?'
	8.3. 'Can required variations be implemented using AOP and how?'
	8.4. 'Can the AOP solution be used within Gamica's development process, or what changes are required to this process to make it possible?'
	8.5. 'Can Aspect Oriented Programming be applied to introduce variability in J2ME games?'
	8.6. Contributions

	9.Further research and discussions
	9.1. Discussion: The illusion of obliviousness

	10.Evaluation
	10.1. Successes
	10.2. Misconceptions
	10.3. Hindsight

	11.References
	12.Appendix A: Device capability matrix
	13.Appendix B: Device properties and channel requirements databases
	14.Appendix C: Example buildtargets.xml
	15.Appendix D: Questionnaire

