Errata ‘The Haskell Road’, First Edition

Page 6, fourth line from above. Replace

“Thus, LDF(k)(n) is the least divisor of n that is \geq k”

by

“Thus, LDF(k)(n) is the least divisor of n, provided n has no divisors < k.” (With thanks to Max Eckenbach.)

Page 7, line 22: Replace “This is indicated by means of the Haskell reserved keyword otherwise.” by “This is indicated by means of the Boolean constant otherwise, defined in the Prelude as True. The use of otherwise helps to make guards more readable.” (With thanks to Brian Lewis.)

Page 25, top of page: “The problem is . . .” Change this sentence to: “The problem is that for values other than 0 the definition of h1 does not give a recipe for computing a value, and similarly for h2, for values greater than 0.” (With thanks to Carl Meijer.)

Page 91, middle of the page:

‘To be proved: \( \forall x (P(x) \Rightarrow Q(x)) \)’

Add closing parenthesis.

Page 127, fifth line from bottom: Replace \( \subseteq \) by \( \supseteq \):

Page 135, sixth line from top: Replace \( \subseteq \) by \( \supseteq \):

Page 165, exercise 5.32. The definition of a path \( a_1, \ldots, a_n \) should include the condition that in the sequence \( a_1, \ldots, a_n \) every \( a_i \) occurs only once.

Page 196, section 5.7, second line:

Replace ‘For example, the four integer partitions of 4 are . . .’ by ‘For example, the five integer partitions of 4 are . . .’.

Page 197, eighth line from below: Replace ‘The partition that follows (k,x:xs) is generated by packing (k+x,x:xs) for maximum size x-1.’ by ‘The partition that follows (k,x:xs) is generated by packing (k+x,xs) for maximum size x-1.’

Page 230, sixth line from bottom: Replace ‘Section 7.2’ by ‘Section 8.3’.

Page 271, exercise 7.57.

Replace ‘with \( n - k \) odd’ by ‘with \( n - m \) odd’.

Page 281: 

\texttt{Nats.hs} as listed in the book does not conform to the Haskell standard. Corrected with help from Aaron Denney and Ralf Laemmel. The website has the corrected module.
Page 369, fourth line from top: Replace ‘2. If $p \xrightarrow{a} p'$ then there is a $q' \in Q$ with $p \xrightarrow{a} p'$ and $q'Rp$’ by ‘2. If $p \xrightarrow{a} p'$ then there is a $q' \in Q$ with $q \xrightarrow{a} q'$ and $q'Rp$’.

Corrections are due to: Aaron Denney, Max Eckenbach, Ralf Laemmel, Brian Lewis, Torsten Marek, Carl Meijer, Wieslaw Poszewiecki, John Rood, J.A.Zaratiegui.