An Inference Engine with a Natural Language Interface

Jan van Eijck, CWI

GLLC-16 Workshop on Generalized Quantifiers, 6 March 2009
Overview

- We present a natural language engine for talking about classes.

- http://www.cwi.nl/~jve/cs/
- Demo
- A tentative connection with cognitive realities.
The Simplest Natural Language Engine You Can Get

Questions and Statements (PN for plural nouns):

\[
Q ::= \begin{align*}
\text{Are all PN PN?} \\
\text{Are no PN PN?} \\
\text{Are any PN PN?} \\
\text{Are any PN not PN?} \\
\text{What about PN?}
\end{align*}
\]

\[
S ::= \begin{align*}
\text{All PN are PN.} \\
\text{No PN are PN.} \\
\text{Some PN are PN.} \\
\text{Some PN are not PN.}
\end{align*}
\]
The Simplest Knowledge Base You Can Get

The two relations we are going to model in the knowledge base are that of inclusion \subseteq and that of non-inclusion $\not\subseteq$.

‘all A are B’ $\leadsto A \subseteq B$

‘no A are B’ $\leadsto A \subseteq B$

‘some A are not B’ $\leadsto A \not\subseteq B$

‘some A are B’ $\leadsto A \not\subseteq B$ (equivalently: $A \cap B \neq \emptyset$).

A knowledge base is a list of triples

$$(\text{Class}_1, \text{Class}_2, \text{Boolean})$$

where (A, B, \top) expresses that $A \subseteq B$,

and (A, B, \bot) expresses that $A \not\subseteq B$.
Rules of the Inference Engine

Let \(\tilde{A} \) be given by: if \(A \) is of the form \(\overline{C} \) then \(\tilde{A} = C \), otherwise \(\tilde{A} = \overline{A} \). Let \(A \implies B \) express \(A \subseteq B \). Let \(A \nRightarrow B \) express \(A \nsubseteq B \).

Computing the subset relation from the knowledge base:

\[
\begin{align*}
A \implies B & \quad \implies \quad \tilde{B} \implies \tilde{A} \\
A \implies B & \quad \implies \quad B \implies C \\
A \implies C & \quad \implies \quad A \implies C
\end{align*}
\]

Computing the non-subset relation from the knowledge base:

\[
\begin{align*}
A \nRightarrow B & \quad \implies \quad \tilde{B} \nRightarrow \tilde{A} \\
A \nRightarrow B & \quad \implies \quad B \nRightarrow C \\
A \nRightarrow C & \quad \implies \quad C \nRightarrow D \\
A \nRightarrow D & \quad \implies \quad A \nRightarrow D
\end{align*}
\]

Reflexivity and existential import:

\[
\begin{align*}
A \implies A & \quad \text{A not of the form } \overline{C} \\
A \nRightarrow \tilde{A}
\end{align*}
\]
Implementation (in Haskell)

We will need list and character processing, and we want to read natural language sentences from a file, so we import the I/O-module System.IO.

import List
import Char
import System.IO
In our Haskell implementation we can use \([(a,a)]\) for relations.

type Rel a = [(a,a)]

If \(R \subseteq A^2 \) and \(x \in A \), then \(xR := \{ y \mid (x,y) \in R \} \).

\[
\text{rSection} :: \text{Eq } a \Rightarrow a \rightarrow \text{Rel } a \rightarrow [a]
\]
\[
\text{rSection } x \ r = [y \mid (z,y) \leftarrow r, x == z]
\]

\(\text{Eq } a \) indicates that \(a \) is in the equality class.

The composition of two relations \(R \) and \(S \) on \(A \).

\[
(\circ) :: \text{Eq } a \Rightarrow \text{Rel } a \rightarrow \text{Rel } a \rightarrow \text{Rel } a
\]
\[
\text{r } @ @ \ s = \text{nub } [(x,z) \mid (x,y) \leftarrow r, (w,z) \leftarrow s, y == w]
\]
Computation of reflexive transitive closure using a function for least fixpoint. \(RTC(R) = \text{lfp}(\lambda S. S \cup R \cdot S)I.\)

\[
\begin{align*}
\text{rtc} & : \text{Ord a} \Rightarrow [a] \rightarrow \text{Rel a} \rightarrow \text{Rel a} \\
\text{rtc} \; \text{xs} \; \text{r} & = \text{lfp} \; (\lambda s \rightarrow (\text{sort.nub}) \; (s ++ (r@@s))) \; i \\
\text{where} \; i & = [\{(x,x) \mid x \leftarrow \text{xs} \}]
\end{align*}
\]

\[
\begin{align*}
\text{lfp} & : \text{Eq a} \Rightarrow (a \rightarrow a) \rightarrow a \rightarrow a \\
\text{lfp} \; f \; x & \mid x = f \; x = x \\
& \mid \text{otherwise} = \text{lfp} \; f \; (f \; x)
\end{align*}
\]
Assume that each class has an opposite class. The opposite of an opposite class is the class itself.

data Class = Class String | OppClass String
 deriving (Eq, Ord)

instance Show Class where
 show (Class xs) = xs
 show (OppClass xs) = "non-" ++ xs

opp :: Class -> Class
opp (Class name) = OppClass name
opp (OppClass name) = Class name
Declaration of the knowledge base:

\[
\text{type } \text{KB} = [(\text{Class}, \text{Class}, \text{Bool})]
\]
A data types for statements and queries:

data Statement =
 All Class Class | No Class Class
| Some Class Class | SomeNot Class Class
| AreAll Class Class | AreNo Class Class
| AreAny Class Class | AnyNot Class Class
| What Class

deriving Eq
Show function for statements:

```haskell
instance Show Statement where
    show (All as bs) =
        "All " ++ show as ++ " are " ++ show bs ++ "."
    show (No as bs) =
        "No " ++ show as ++ " are " ++ show bs ++ "."
    show (Some as bs) =
        "Some " ++ show as ++ " are " ++ show bs ++ "."
    show (SomeNot as bs) =
        "Some " ++ show as ++ " are not " ++ show bs ++ "."
```
and for queries:

```haskell
show (AreAll as bs) = 
    "Are all " ++ show as ++ show bs ++ "?"
show (AreNo as bs) =
    "Are no " ++ show as ++ show bs ++ "?"
show (AreAny as bs) =
    "Are any " ++ show as ++ show bs ++ "?"
show (AnyNot as bs) =
    "Are any " ++ show as ++ " not " ++ show bs ++ "?"
show (What as) =
    "What about " ++ show as ++ "?"
```
Classification of statements:

isQuery :: Statement -> Bool
isQuery (AreAll _ _) = True
isQuery (AreNo _ _) = True
isQuery (AreAny _ _) = True
isQuery (AnyNot _ _) = True
isQuery (What _) = True
isQuery _ = False
Negations of queries:

neg :: Statement -> Statement
neg (AreAll as bs) = AnyNot as bs
neg (AreNo as bs) = AreAny as bs
neg (AreAny as bs) = AreNo as bs
neg (AnyNot as bs) = AreAll as bs
Use the transitive closure operation to compute the subset relation from the knowledge base.

\[
\text{subsetRel} :: \text{KB} \rightarrow [(\text{Class,Class})]
\]
\[
\text{subsetRel} \ kb = \text{rtc} \ (\text{domain} \ kb) \ (\{(x,y) \mid (x,y,\text{True}) \leftarrow kb \} \ \text{++} \ \{(\text{opp} \ y,\text{opp} \ x) \mid (x,y,\text{True}) \leftarrow kb \})
\]

The supersets of a particular class are given by a right section of the subset relation. I.e. the supersets of a class are all classes of which it is a subset.

\[
\text{supersets} :: \text{Class} \rightarrow \text{KB} \rightarrow \text{[Class]}
\]
\[
\text{supersets} \ cl \ kb = \text{rSection} \ cl \ (\text{subsetRel} \ kb)
\]
Computing the non-subset relation from the knowledge base:

\[n\text{subsetRel} :: KB \rightarrow [(\text{Class,Class})] \]
\[n\text{subsetRel} \ kb = \]
\[\text{let} \]
\[r = \text{nub} \ [(x,y) \mid (x,y,\text{False}) \leftarrow \ kb] \]
\[++ [(\text{opp y},\text{opp x}) \mid (x,y,\text{False}) \leftarrow \ kb] \]
\[++ [(\text{Class xs},\text{OppClass xs}) \mid \]
\[\quad \text{(Class xs,_,_)} \leftarrow \ kb] \]
\[++ [(\text{Class ys},\text{OppClass ys}) \mid \]
\[\quad (__,\text{Class ys,}_) \leftarrow \ kb] \]
\[++ [(\text{Class ys},\text{OppClass ys}) \mid \]
\[\quad (__,\text{OppClass ys,}_) \leftarrow \ kb] \]
\[s = [(y,x) \mid (x,y) \leftarrow \text{subsetRel} \ kb] \]
\[\text{in } s \circledast r \circledast s \]
The non-supersets of a class:

\[
\text{nsupersets} :: \text{Class} \rightarrow \text{KB} \rightarrow [\text{Class}]
\]

\[
\text{nsupersets cl kb = rSection cl (nsubsetRel kb)}
\]
Query of a knowledge base by means of yes/no questions is simple:

\[
derv :: \text{KB} \rightarrow \text{Statement} \rightarrow \text{Bool}
\]

\[
derv \text{ kb (AreAll as bs)} = \text{elem bs (supersets as kb)}
\]

\[
derv \text{ kb (AreNo as bs)} = \text{elem (opp bs) (supersets as kb)}
\]

\[
derv \text{ kb (AreAny as bs)} = \text{elem (opp bs) (nsupersets as kb)}
\]

\[
derv \text{ kb (AnyNot as bs)} = \text{elem bs (nsupersets as kb)}
\]

Caution: there are three possibilities:

- \(derv \text{ kb stmt}\) is true. This means that the statement is derivable, hence true.

- \(derv \text{ kb (neg stmt)}\) is true. This means that the negation of \(\text{stmt}\) is derivable, hence true. So \(\text{stmt}\) is false.

- neither \(derv \text{ kb stmt nor derv kb (neg stmt)}\) is true. This means that the knowledge base has no information about \(\text{stmt}\).
Open queries (“How about \(A? \)”) are slightly more complicated.

We should take care to select the most natural statements to report on a class:

\(A \subseteq B \) is expressed with ‘all’,

\(A \subseteq \overline{B} \) is expressed with ‘no’,

\(A \not\subseteq B \) is expressed with ‘some not’,

\(A \not\subseteq \overline{B} \) is expressed with ‘some’.

\[
\begin{align*}
\text{f2s :: (Class, Class, Bool) -> Statement} \\
\text{f2s (as, Class bs, True) } &= \text{ All as (Class bs)} \\
\text{f2s (as, OppClass bs, True) } &= \text{ No as (Class bs)} \\
\text{f2s (as, OppClass bs, False) } &= \text{ Some as (Class bs)} \\
\text{f2s (as, Class bs, False) } &= \text{ SomeNot as (Class bs)}
\end{align*}
\]
Get the domain of a knowledge base:

```haskell
domain :: [(Class,Class,Bool)] -> [Class]
domain = nub . dom where
dom [] = []
dom ((xs, ys, _):facts) =
    xs : opp xs : ys : opp ys : dom facts
```

Check whether a class \(A\) is mentioned in the knowledge base:

```haskell
mention :: Class -> (Class, Class, Bool) -> Bool
mention xs (ys, zs, _) =
    elem xs [ys,zs] || elem (opp xs) [ys,zs]
```

Filter the facts from the knowledge base that mention a class \(A\):

```haskell
filterKB :: Class -> KB -> KB
filterKB xs = filter (mention xs)
```
Tell about a class A by listing what the knowledge base says about A:

tellAbout1 :: KB -> Class -> [Statement]
tellAbout1 kb as = map f2s (filterKB as kb)
Giving an explicit account of a class:

tellAbout :: KB -> Class -> [Statement]
tellAbout kb as =
 [All as (Class bs) |
 (Class bs) <- supersets as kb,
 as /= (Class bs)]
++
 [No as (Class bs) |
 (OppClass bs) <- supersets as kb,
 as /= (OppClass bs)]
A bit of pragmatics: do not tell ‘Some A are B’ if ‘All A are B’ also holds.

++

[Some as (Class bs) | (OppClass bs) <- nsupersets as kb, as /= (OppClass bs), notElem (as,Class bs) (subsetRel kb)]

Do not tell ‘Some A are not B’ if ‘No A are B’ also holds.

++

[SomeNot as (Class bs) | (Class bs) <- nsupersets as kb, as /= (Class bs), notElem (as,OppClass bs) (subsetRel kb)]
To **build** a knowledge base we need a function for updating an existing knowledge base with a statement.

If the update is successful, we want an updated knowledge base. If it is not, we want to get an indication of failure. The Haskell `Maybe` data type gives us just this.

```haskell
data Maybe a = Nothing | Just a
```
The update function checks for possible inconsistencies. E.g., a request to add an $A \subseteq B$ fact to the knowledge base leads to an inconsistency if $A \not\subseteq B$ is already derivable.

\[
\text{update} \quad :: \quad \text{Statement} \rightarrow \text{KB} \rightarrow \text{Maybe (KB,Bool)}
\]

\[
\text{update (All as bs) kb}
\quad | \quad \text{elem bs (nsupersets as kb)} = \text{Nothing}
\quad | \quad \text{elem bs (supersets as kb)} = \text{Just (kb,False)}
\quad | \quad \text{otherwise} = \text{Just (((as,bs,True): kb),True)}
\]
A request to add $A \subseteq \overline{B}$ leads to an inconsistency if $A \not\subseteq \overline{B}$ is already derivable.

```haskell
update (No as bs) kb
  | elem bs' (nsupersets as kb) = Nothing
  | elem bs' (supersets as kb)  = Just (kb,False)
  | otherwise                   =
                               Just (((as,bs',True):kb),True)

where bs' = opp bs
```
Similarly for the requests to update with $A \not\subseteq \overline{B}$ and with $A \not\subseteq B$:

```haskell
update (Some as bs) kb
| elem bs' (supersets as kb)  = Nothing
| elem bs' (nsupersets as kb) = Just (kb,False)
| otherwise                   = Just (((as,bs',False):kb),True)
where bs' = opp bs

update (SomeNot as bs) kb
| elem bs (supersets as kb)   = Nothing
| elem bs (nsupersets as kb)  = Just (kb,False)
| otherwise                  = Just (((as,bs,False):kb),True)
```
Use this to build a knowledge base from a list of statements. Again, this process can fail, so we use the Maybe datatype.

\[
\text{makeKB :: [Statement] -> Maybe KB}
\]

\[
\text{makeKB = makeKB' []}
\]

where

\[
\text{makeKB' kb [] = Just kb}
\]

\[
\text{makeKB' kb (s:ss) =}
\]

 \[
 \text{case update s kb of}
 \]
 \[
 \text{Just (kb',_) -> makeKB' kb' ss}
 \]
 \[
 \text{Nothing} \rightarrow \text{Nothing}
 \]
Preprocessing of strings, to prepare them for parsing:

```haskell
preprocess :: String -> [String]
preprocess = words . (map toLower) .
   (takeWhile (\ x -> isAlpha x || isSpace x))
```

This will map a string to a list of words:

Main> preprocess "Are any women sailors?"
["are","any","women","sailors"]
A simple parser for statements:

```
parse :: String -> Maybe Statement
parse = parse' . preprocess
  where
    parse' ["all",as,"are",bs] =
        Just (All (Class as) (Class bs))
    parse' ["no",as,"are",bs] =
        Just (No (Class as) (Class bs))
    parse' ["some",as,"are",bs] =
        Just (Some (Class as) (Class bs))
    parse' ["some",as,"are","not",bs] =
        Just (SomeNot (Class as) (Class bs))
```
and for queries:

```haskell
parse' ["are","all",as,bs] =
  Just (AreAll (Class as) (Class bs))
```

```haskell
parse' ["are","no",as,bs] =
  Just (AreNo (Class as) (Class bs))
```

```haskell
parse' ["are","any",as,bs] =
  Just (AreAny (Class as) (Class bs))
```

```haskell
parse' ["are","any",as,"not",bs] =
  Just (AnyNot (Class as) (Class bs))
```

```haskell
parse' ["what", "about", as] = Just (What (Class as))
```

```haskell
parse' ["how", "about", as] = Just (What (Class as))
```

```haskell
parse' _ = Nothing
```
Parsing a text to construct a knowledge base:

```haskell
process :: String -> KB
process txt = maybe [] id
    (mapM parse (lines txt) >>= makeKB)
```

This uses the `maybe` function, for getting out of the `Maybe` type. Instead of returning `Nothing`, this returns an empty knowledge base.

```haskell
maybe :: b -> (a -> b) -> Maybe a -> b
maybe _ f (Just x) = f x
maybe z _ Nothing  = z
```
mytxt = "all bears are mammals\n"
 ++ "no owls are mammals\n"
 ++ "some bears are stupids\n"
 ++ "all men are humans\n"
 ++ "no men are women\n"
 ++ "all women are humans\n"
 ++ "all humans are mammals\n"
 ++ "some men are stupids\n"
 ++ "some men are not stupids"

Main> process mytxt
[(men,stupids,False),(men,non-stupids,False),
 (humans,mammals,True),(women,humans,True),
 (men,non-women,True),(men,humans,True),
 (bears,non-stupids,False),(owls,non-mammals,True),
 (bears,mammals,True)]
Now suppose we have a text file of declarative natural language sentences about classes. Here is how to turn that into a knowledge base.

```haskell
getKB :: FilePath -> IO KB
getKB p = do
    txt <- readFile p
    return (process txt)
```

And here is how to write a knowledge base to file:

```haskell
writeKB :: FilePath -> KB -> IO ()
writeKB p kb = writeFile p
    (unlines (map (show.f2s) kb))
```
The inference engine in action:

```haskell
chat :: IO ()
chat = do
    kb <- getKB "kb.txt"
    putStrLn "Update or query the KB:"
    str <- getLine
    if str == "" then return ()
    else do
        case parse str of
            Just (What as) -> let info = tellAbout kb as in
                if info == [] then putStrLn "No info.\n"
                else putStrLn (unlines (map show info))
            Just stmt ->
                if isQuery stmt then
                    if deriv kb stmt then putStrLn "Yes.\n"
```
else if deriv kb (neg stmt)
 then putStrLn "No.\n"
 else putStrLn "I don’t know.\n"
else case update stmt kb of
 Just (kb’,True) -> do
 writeKB "kb.txt" kb’
 putStrLn "OK.\n"
 Just (_,False) -> putStrLn
 "I knew that already.\n"
 Nothing -> putStrLn
 "Inconsistent with my info.\n"
 Nothing -> putStrLn "Wrong input.\n"
chat
main = do
 putStrLn "Welcome to the Knowledge Base."
 chat
Demo

...
Conclusions

• What is the use of this?
• Cognitive research focusses on this kind of quantifier reasoning . . .
• Can this be used to meet cognitive realities?
• Links with cognition by refinement of this calculus: the ‘Battaglini’ calculus*
• Towards Rational Reconstruction of Cognitive Processing

* Fabian Battaglini, Inference and Interpretation, PhD Thesis under construction.