
Demo Light for Composing Models

Jan van Eijck

with contributions by Lakshmanan Kuppusamy and Floor Sietsma

October 11, 2011

Abstract

Light version of DEMO for composing epistemic models, based on the code
for the ESSLLI 2008 course on Dynamic Epistemic Logic (see http://
homepages.cwi.nl/~jve/courses/esslli08/) extended with vocabulary
information [EWS10]. Factual change is also treated and the models are
extended with integer registers. There are some examples: the muddy chil-
dren, and hat puzzles, dealing with the interaction of perception and change
[Eijar]. The piece ends with an analysis of the game of Liar’s Dice in the
spirit of [DvESW07].

Contents

1 Models with Vocabulary 1

2 Action Models, Update 28

3 Adding Factual Change 34

4 Change and Perception 48

5 The Muddy Children Puzzle 56

6 The Wise Men Puzzle; or: The Riddle of the Caps 61

7 Liar’s Dice 67

2

module DemoLight

where
import List
import ModelsVocab hiding (m0)
import ActionVocab hiding (upd,public,preconditions,

vocProp,vocReg)
import ChangeVocab
import ChangePerception

3

Chapter 1

Models with Vocabulary

Module declaration. We will use QuickCheck [CH00] for some simple tests.

module ModelsVocab where

import List
import Test.QuickCheck

Binary relations as lists of ordered pairs:

type Rel a = [(a,a)]

Test for equality of relations:

sameR :: Ord a => Rel a -> Rel a -> Bool
sameR r s = sort (nub r) == sort (nub s)

1

Operations on relations: converse Relational converse Rˇ is given by:

Rˇ = {(y, x) | (x, y) ∈ R}

cnv :: Rel a -> Rel a
cnv r = [(y,x) | (x,y) <- r]

Operations on relations: composition The relational composition of
two relations R and S on a set A:

R ◦ S = {(x, z) | ∃y ∈ A(xRy ∧ ySz)}

For the implementation, it is useful to declare a new infix operator for rela-
tional composition.

infixr 5 @@

(@@) :: Eq a => Rel a -> Rel a -> Rel a
r @@ s =
nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Note that (@@) is the prefix version of @@.

Testing for Euclideanness

A relation R is euclidian if ∀xyz((Rxy ∧Rxz)→ Ryz).

In other words: R is euclidean iff Rˇ◦R ⊆ R.

Use this for a test of Euclideanness:

A ⊆ B :≡ ∀x ∈ A : x ∈ B.

2

containedIn :: Eq a => [a] -> [a] -> Bool
containedIn xs ys = all (\ x -> elem x ys) xs

euclR :: Eq a => Rel a -> Bool
euclR r = (cnv r @@ r) ‘containedIn‘ r

Test for Seriality

A relation R is serial if ∀x∃yRxy holds.

Here is a test:

serialR :: Eq a => Rel a -> Bool
serialR r =
all (not.null)

(map (\ (x,y) -> [v | (u,v) <- r, y == u]) r)

Testing for S5 An accessibility relation is S5 if it is an equivalence.

reflR :: Eq a => [a] -> Rel a -> Bool
reflR xs r =
[(x,x) | x <- xs] ‘containedIn‘ r

symmR :: Eq a => Rel a -> Bool
symmR r = cnv r ‘containedIn‘ r

transR :: Eq a => Rel a -> Bool
transR r = (r @@ r) ‘containedIn‘ r

isS5 :: Eq a => [a] -> Rel a -> Bool
isS5 xs r = reflR xs r && transR r && symmR r

3

Testing for KD45

An accessibility relation is KD45 if it is serial, transitive and euclidean.

isKD45 :: Eq a => Rel a -> Bool
isKD45 r = transR r && serialR r && euclR r

Representing Epistemic Models: Agents

An infinite number of agents, with names for the first five of them:

data Agent = Ag Int deriving (Eq,Ord)

a,alice, b,bob, c,carol, d,dave, e,ernie :: Agent
a = Ag 0; alice = Ag 0
b = Ag 1; bob = Ag 1
c = Ag 2; carol = Ag 2
d = Ag 3; dave = Ag 3
e = Ag 4; ernie = Ag 4

instance Show Agent where
show (Ag 0) = "a"; show (Ag 1) = "b";
show (Ag 2) = "c"; show (Ag 3) = "d" ;
show (Ag 4) = "e";
show (Ag n) = ’a’: show n

Representing Epistemic Models: Basic Propositions

4

data Prp = P Int | Q Int | R Int deriving (Eq,Ord)

instance Show Prp where
show (P 0) = "p"; show (P i) = "p" ++ show i
show (Q 0) = "q"; show (Q i) = "q" ++ show i
show (R 0) = "r"; show (R i) = "r" ++ show i

Representing Epistemic Models: Basic Propositions

Registers are variables that can hold a number.

data Reg = Rg Int deriving (Eq,Ord)

instance Show Reg where
show (Rg n) = ’R’: show n

A Datatype for Epistemic Models

The model has a vocabulary of propositions and registers. Each state has a
list of propositions that are true and a list of registers and their values.

data EpistM state = Mo
[state]
[Agent]
[Prp]
[Reg]
[(state,[Prp])]
[(state,[(Reg, Int)])]
[(Agent,state,state)]
[state] deriving (Eq,Show)

Example Epistemic Model

5

s5example :: EpistM Integer
s5example =
Mo [0..3]

[a,b,c]
[P 0, Q 0]
[Rg 0]
[(0,[]),(1,[P 0]),(2,[Q 0]),(3,[P 0, Q 0])]
[(0,[(Rg 0, 0)]), (1,[(Rg 0, 1)]),
(2,[(Rg 0, 2)]), (3,[(Rg 0, 3)])]
([(a,x,x) | x <- [0..3]] ++
[(b,x,x) | x <- [0..3]] ++
[(c,x,y) | x <- [0..3], y <- [0..3]])
[1]

Extracting domain, vocabulary, relations, and valuation from an epistemic
model

6

dom :: EpistM a -> [a]
dom (Mo states _ _ _ _ _ _ _) = states

rel :: Agent -> EpistM a -> Rel a
rel ag (Mo _ _ _ _ _ _ rels _) =

[(x,y) | (agent,x,y) <- rels, ag == agent]

valuationProp :: EpistM a -> [(a,[Prp])]
valuationProp (Mo _ _ _ _ valprop _ _ _) = valprop

valuationReg :: EpistM a -> [(a,[(Reg, Int)])]
valuationReg (Mo _ _ _ _ _ valreg _ _) = valreg

vocabProp :: EpistM a -> [Prp]
vocabProp (Mo _ _ props _ _ _ _ _) = props

vocabReg :: EpistM a -> [Reg]
vocabReg (Mo _ _ _ regs _ _ _ _) = regs

valPropStat :: Eq a => a -> EpistM a -> [Prp]
valPropStat x (Mo _ _ _ _ valprop _ _ _)

= [z | (state,y) <- valprop, state == x, z <- y]

valRegStat :: Eq a => a -> EpistM a -> [(Reg, Int)]
valRegStat x (Mo _ _ _ _ _ valreg _ _)

= [z | (state,y) <- valreg, state == x, z <- y]

valRegSet :: Eq a => EpistM a -> [(Reg, Int)]
valRegSet (Mo _ _ _ _ _ valreg _ _)

= nub ([y | (state,x) <- valreg, y <- x])

vcbPropSet :: Eq a => EpistM a -> [Prp]
vcbPropSet (Mo _ _ _ _ valprop _ _ _)

= nub ([y | (state,x) <- valprop, y <- x])

vcbRegSet :: Eq a => EpistM a -> [Reg]
vcbRegSet (Mo _ _ _ _ _ valreg _ _)

= nub ([y | (state,x) <- valreg, (y,z) <- x])

actual :: EpistM a -> [a]
actual (Mo _ _ _ _ _ _ _ actual) = actual7

From equivalence relations to partitions Every equivalence relation
R on A corresponds to a partition on A: the set {[a]R | a ∈ A}, where
[a]R = {b ∈ A | (a, b) ∈ R}.

rel2partition :: Ord a => [a] -> Rel a -> [[a]]
rel2partition [] r = []
rel2partition (x:xs) r =

xclass : rel2partition (xs \\ xclass) r
where
xclass = x : [y | y <- xs, elem (x,y) r]

Displaying S5 Models The function rel2partition can be used to
write a display function for S5 models that shows each accessibility rela-
tion as a partition, as follows.

showS5 :: (Ord a,Show a) => EpistM a -> [String]
showS5 m@(Mo states agents props regs

valprop valreg rels actual) =
show states :
show props :
show regs :
show valprop :
show valreg :
map show [(ag, (rel2partition states) (rel ag m))

| ag <- agents]
++
[show actual]

Here @ is used to introduce a shorthand or name for a datastructure.

displayS5 :: (Ord a,Show a) => EpistM a -> IO()
displayS5 = putStrLn . unlines . showS5

8

Blissful Ignorance Blissful ignorance is the state where you don’t know
anything, but you know also that there is no reason to worry, for you know
that nobody knows anything.

A Kripke model where every agent from agent set A is in blissful ignorance
about a (finite) set of propositions P , with |P | = k, with no registers, looks
as follows:

M = (W,V,R) where

W = {0, . . . , 2k − 1}
V = any surjection in W → P(P)
R = {x a→ y | x, y ∈W,a ∈ A}.

Note that V is in fact a bijection, for |P(P)| = 2k = |W |.

Generating Models for Blissful Ignorance

initM :: [Agent] -> [Prp] -> EpistM Integer
initM ags props = (Mo worlds ags props regs

valprop valreg accs points)
where
worlds = [0..(2^k-1)]
regs = []
k = length props
valprop = zip worlds (sortL (powerList props))
valreg = [(w,[]) | w <- worlds]
accs = [(ag,st1,st2) | ag <- ags,

st1 <- worlds,
st2 <- worlds]

points = worlds

The model ε for blissful ignorance with an empty vocabulary:

epsilon :: [Agent] -> EpistM Integer
epsilon ags = initM ags []

9

powerList, sortL (sort by length)

powerList :: [a] -> [[a]]
powerList [] = [[]]
powerList (x:xs) =
(powerList xs) ++ (map (x:) (powerList xs))

sortL :: Ord a => [[a]] -> [[a]]
sortL = sortBy
(\ xs ys -> if length xs < length ys

then LT
else if length xs > length ys
then GT

else compare xs ys)

General Knowledge The general knowledge accessibility relation of a set
of agents C is given by ⋃

c∈C

Rc.

genK :: Ord state => [(Agent,state,state)]
-> [Agent] -> Rel state

genK r ags = [(x,y) | (ag,x,y) <- r, ag ‘elem‘ ags]

Right Section of a Relation

If R is a binary relation on A, and a ∈ A, then aR is the set

{b ∈ A | aRb}.

rightS :: Ord a => Rel a -> a -> [a]
rightS r x = (sort.nub) [z | (y,z) <- r, x == y]

10

General Knowledge Alternatives

genAlts :: Ord state => [(Agent,state,state)]
-> [Agent] -> state -> [state]

genAlts r ags = rightS (genK r ags)

Closures of Relations If O is a set of properties of relations on a set
A, then the O closure of a relation R on A is the smallest relation S that
includes R and that has all the properties in O.

The closures of relations that we need are the transitive closure and the
reflexive transitive closure.

Reflexive Transitive Closure Let a set A be given. Let R be a binary
relation on A. Let I = {(x, x) | x ∈ A}.

We define Rn for n ≥ 0, as follows:

• R0 = I.

• Rn+1 = R ◦Rn.

Next, define R∗ by means of:

R∗ =
⋃
n∈N

Rn.

Computing Reflexive Transitive Closure If A is finite, any R on A is
finite as well. In particular, there will be k with Rk+1 ⊆ R0 ∪ · · · ∪Rk.

Thus, in the finite case reflexive transitive closure can be computed by suc-
cessively computing

⋃
n∈{0,..,k}R

n until Rk+1 ⊆
⋃

n∈{0,..,k}R
n.

In other words: the reflexive transitive closure of a relation R can be com-
puted from I by repeated application of the operation

λS.(S ∪ (R ◦ S)),

11

until the operation reaches a fixpoint. A more efficient computation of the
reflexive transitive closure of R is by repeated application of the operation

λS.(S ∪ (S ◦ S)),

starting from I ∪R, until the operation reaches a fixpoint.

Least Fixpoint A fixpoint of an operation f is an x for which f(x) = x.

Least fixpoint calculation:

lfp :: Eq a => (a -> a) -> a -> a
lfp f x | x == f x = x

| otherwise = lfp f (f x)

Computing Reflexive Transitive Closure, at last:

rtc :: Ord a => [a] -> Rel a -> Rel a
rtc xs r = lfp (\ s -> (sort.nub) (s ++ (s@@s))) ri
where ri = nub (r ++ [(x,x) | x <- xs])

Some test properties:

prop_RtcRefl :: Ord a => [a] -> Rel a -> Bool
prop_RtcRefl xs r = reflR xs (rtc xs r)

prop_RtcTr :: Ord a => [a] -> Rel a -> Bool
prop_RtcTr xs r = transR (rtc xs r)

12

Computing Transitive Closure Same as computing reflexive transitive
closure, but starting out from the relation R.

tc :: Ord a => Rel a -> Rel a
tc r = lfp (\ s -> (sort.nub) (s ++ (s @@ s))) r

A test property:

prop_TcTr :: Ord a => Rel a -> Bool
prop_TcTr r = transR (tc r)

Computing Common Knowledge The common knowledge relation for
group of agents C is the relation

(
⋃
c∈C

Rc)∗.

Given that the Rc are represented as a list of triples

[(Agent,state,state)]

we can define a function that extracts the common knowledge relation:

commonK :: Ord state => [(Agent,state,state)]
-> [Agent] -> [state] -> Rel state

commonK r ags xs = rtc xs (genK r ags)

Common Knowledge Alternatives

commonAlts :: Ord state => [(Agent,state,state)]
-> [Agent] -> [state] -> state -> [state]

commonAlts r ags xs s = rightS (commonK r ags xs) s

13

Representing Formulas

A formula can be about propositions or about arithmetic expressions, which
can be compared.

data Form = Top
| Prp Prp
| Gt Arith Arith

| Eq Arith Arith
| Neg Form
| Conj [Form]
| Disj [Form]
| K Agent Form
| CK [Agent] Form
deriving (Eq,Ord)

CK is the operator for common knowledge.

Arithmetic expressions are integers, registers or the sum of arithmetic ex-
pressions:

data Arith = I Int
| Reg Reg
| ASum [Arith]
deriving (Eq,Ord)

Example formulas

p = Prp (P 0)
q = Prp (Q 0)

14

instance Show Form where
show Top = "T"
show (Gt a b) = ’>’: show a ++ show b
show (Eq a b) = ’=’: show a ++ show b
show (Prp p) = show p
show (Neg f) = ’-’:(show f)
show (Conj fs) = ’&’: show fs
show (Disj fs) = ’v’: show fs
show (K agent f) = ’[’:show agent++"]"++show f
show (CK agents f) = ’C’: show agents ++ show f

instance Show Arith where
show (I i) = show i
show (Reg r) = show r
show (ASum as) = ’+’: show as

Getting the proposition letters from a formula:

getPs :: Form -> [Prp]
getPs Top = []
getPs (Gt a b) = []
getPs (Eq a b) = []
getPs (Prp p) = [p]
getPs (Neg f) = getPs f
getPs (Conj fs) = (sort.nub.concat) (map getPs fs)
getPs (Disj fs) = (sort.nub.concat) (map getPs fs)
getPs (K agent f) = getPs f
getPs (CK agents f) = getPs f

Getting the registers from a formula:

15

getRs :: Form -> [Reg]
getRs Top = []
getRs (Gt a b) = getRsA a ++ getRsA b
getRs (Eq a b) = getRsA a ++ getRsA b
getRs (Prp p) = []
getRs (Neg f) = getRs f
getRs (Conj fs) = (sort.nub.concat) (map getRs fs)
getRs (Disj fs) = (sort.nub.concat) (map getRs fs)
getRs (K agent f) = getRs f
getRs (CK agents f) = getRs f

Getting the registers from an arithmetic expression:

getRsA :: Arith -> [Reg]
getRsA (I i) = []
getRsA (Reg r) = [r]
getRsA (ASum as) = (sort.nub.concat) (map getRsA as)

Valuation Lookup

apply :: Eq a => [(a,b)] -> a -> b
apply [] _ = error "argument not in list"
apply ((x,z):xs) y | x == y = z

| otherwise = apply xs y

This can be used to look up the valuation for a world in a model.

Maybe types for Booleans and Quantifiers

The following operators implement Strong Kleene evaluation in partial mod-
els ([Kle52], Chapter 12, Section 64). The three truth values are: Nothing

16

for ‘undefined’, Just True for ‘true’, and Just False for ‘false’. The type
for these three values is Maybe Bool.

maybe_Not :: Maybe Bool -> Maybe Bool
maybe_Not Nothing = Nothing
maybe_Not (Just x) = Just (not x)

maybe_And :: [Maybe Bool] -> Maybe Bool
maybe_And [] = Just True
maybe_And (Nothing:xs) = Nothing
maybe_And ((Just True):xs) = maybe_And (xs)
maybe_And ((Just False):xs) = Just False

maybe_Or :: [Maybe Bool] -> Maybe Bool
maybe_Or [] = Just False
maybe_Or (Nothing:xs) = Nothing
maybe_Or ((Just True):xs) = Just True
maybe_Or ((Just False):xs) = maybe_Or (xs)

maybe_And can be used for the definition of maybe_All, and maybe_Or can
be used for the definition of maybe_Any.

maybe_All:: (Maybe Bool -> Maybe Bool) -> [Maybe Bool] ->
Maybe Bool

maybe_All f = (maybe_And). map f

maybe_Any :: (Maybe Bool -> Maybe Bool) -> [Maybe Bool] ->
Maybe Bool

maybe_Any f = (maybe_Or). map f

Evaluation

We will use this to define partial evaluation, to take into account that a
formula may use proposition letters that are not in the vocabulary of a
model.

17

isTrueAtMayb :: Ord state =>
EpistM state -> state -> Form -> Maybe Bool

isTrueAtMayb m w Top = Just True
isTrueAtMayb
m@(Mo _ _ props _ valprop _ _ _) w (Prp p) =
if notElem p props then Nothing else
if elem p (concat [props|(w’,props) <- valprop, w’==w]) then

(Just True)
else Just False
isTrueAtMayb
m@(Mo _ _ _ regs _ _ _ _) w (Gt a b) =
if or (map (\ x -> notElem x regs) ((getRsA a) ++ (getRsA b)))
then Nothing
else if arithVal m w a > arithVal m w b then Just True
else Just False
isTrueAtMayb
m@(Mo _ _ _ regs _ _ _ _) w (Eq a b) =
if or (map (\ x -> notElem x regs) ((getRsA a) ++ (getRsA b)))
then Nothing
else if arithVal m w a == arithVal m w b then Just True
else Just False
isTrueAtMayb m w (Neg f) = maybe_Not (isTrueAtMayb m w f)
isTrueAtMayb m w (Conj fs) =

maybe_And (map (isTrueAtMayb m w) fs)
isTrueAtMayb m w (Disj fs) =

maybe_Or (map (isTrueAtMayb m w) fs)

isTrueAtMayb
m w (K ag f) =
maybe_And (map (flip (isTrueAtMayb m) f)

(rightS (rel ag m) w))
isTrueAtMayb
m@(Mo worlds _ _ _ _ _ acc _) w (CK ags f) =
maybe_And (map (flip (isTrueAtMayb m) f)

(commonAlts acc ags worlds w))

18

For finding the truth value of formulas of the form a > b we have to know
the value of arithmetic values in the model:

arithVal :: Ord state => EpistM state -> state -> Arith -> Int
arithVal m w (I i) = i
arithVal (Mo _ _ _ _ _ valreg _ _) w (Reg r) =
apply (apply valreg w) r

arithVal m w (ASum as) =
sum (map (arithVal m w) as)

isTrue, for truth in a model, is also three-valued:

isTrue :: Ord state => EpistM state -> Form -> Maybe Bool
isTrue m@(Mo _ _ _ _ _ _ _ points) f =
maybe_And [isTrueAtMayb m s f | s <- points]

Finally: Public Announcement Update

19

upd_pa :: Ord state =>
EpistM state -> Form -> EpistM state

upd_pa m@(Mo states agents props regs
valprop valreg rels actual) f =

(Mo states’ agents props regs
valprop’ valreg’ rels’ actual’)
where
states’ = [s | s <- states, isTrueAtMayb m s f ==

Just True]
valprop’ = [(s,p) | (s,p) <- valprop,

s ‘elem‘ states’]
valreg’ = [(s,p) | (s,p) <- valreg,

s ‘elem‘ states’]
rels’ = [(ag,x,y) | (ag,x,y) <- rels,

x ‘elem‘ states’,
y ‘elem‘ states’]

actual’ = [s | s <- actual, s ‘elem‘ states’]

Examples

m0 = initM [a,b,c] [P 0,Q 0]

Conversion of States to Integers Convert any type of state list to
[0..]:

20

convert :: Eq state =>
EpistM state -> EpistM Integer

convert (Mo states agents props regs
valprop valreg rels actual) =

Mo states’ agents props regs valprop’ valreg’ rels’ actual’
where
states’ = map f states
valprop’ = map (\ (x,y) -> (f x,y)) valprop
valreg’ = map (\ (x,y) -> (f x,y)) valreg
rels’ = map (\ (x,y,z) -> (x, f y, f z)) rels
actual’ = map f actual
f = apply (zip states [0..])

Generated Submodels

gsm :: Ord state => EpistM state -> EpistM state
gsm (Mo states ags props regs valprop valreg rel points) =
(Mo states’ ags props regs valprop’ valreg’ rel’ points)
where
states’ = closure rel ags points
valprop’ = [(s,props) | (s,props) <- valprop,

elem s states’]
valreg’ = [(s,regs) | (s,regs) <- valreg,

elem s states’]
rel’ = [(ag,s,s’) | (ag,s,s’) <- rel,

elem s states’,
elem s’ states’]

The closure of a state list, given a relation and a list of agents:

21

closure :: Ord state =>
[(Agent,state,state)] ->
[Agent] -> [state] -> [state]

closure rel agents xs = lfp f xs
where f = \ ys -> (nub.sort) (ys ++ (expand rel agents ys))

The expansion of a relation R given a state set S and a set of agents B is
given by {t | s b→ t ∈ R, s ∈ S, b ∈ B}.

expand :: Ord state =>
[(Agent,state,state)] ->
[Agent] -> [state] -> [state]

expand rel agents ys = (nub . sort . concat)
[alternatives rel ag state | ag <- agents,

state <- ys]

The epistemic alternatives for agent a in state s are the states in sRa (the
states reachable through Ra from s):

alternatives :: Eq state =>
[(Agent,state,state)] ->
Agent -> state -> [state]

alternatives rel ag current =
[s’ | (a,s,s’) <- rel, a == ag, s == current]

Bisimulation: we compute the maximal bisimulation relation on an epistemic
model by means of partition refinement.

Partition Refinement Given: A Kripke model M.

Problem: find the Kripke model that results from replacing each state s in
M by its bisimilarity class |s|↔.

22

The problem of finding the smallest Kripke model modulo bisimulation is
similar to the problem of minimizing the number of states in a finite au-
tomaton [J.E71].

We will use partition refinement, in the spirit of [PT87].

Partition Refinement Algorithm

• Start out with a partition of the state set where all states with the
same valuation are in the same class.

• Given a partition Π, for each block b in Π, partition b into sub-blocks
such that two states s, t of b are in the same sub-block iff for all agents
a it holds that s and t have a−→ transitions to states in the same block
of Π. Update Π to Π′ by replacing each b in Π by the newly found set
of sub-blocks for b.

• Halt as soon as Π = Π′.

type State = Integer

Valuation Comparison

sameVal :: (Eq a,Eq b) => [(a,b)] -> a -> a -> Bool
sameVal val w1 w2 = apply val w1 == apply val w2

—- NOTE: updated until here

From Equivalence Relations to Partitions Relations as characteristic
functions.

23

cf2part :: (Eq a) =>
[a] -> (a -> a -> Bool) -> [[a]]

cf2part [] r = []
cf2part (x:xs) r = xblock : cf2part rest r
where
(xblock,rest) = (x : filter (r x) xs,

filter (not . (r x)) xs)

Initial Partition We start with the partition based on the relation ‘having
the same valuation’:

initPartition :: Eq a => EpistM a -> [[a]]
initPartition (Mo states _ _ _ valprop valreg _ _) =
cf2part states
(\ x y -> (sameVal valprop x y && sameVal valreg x y))

The block of an object in a partition The block of x in a partition is
the block that has x as an element.

bl :: Eq a => [[a]] -> a -> [a]
bl part x = head (filter (elem x) part)

Accessible Blocks For an agent from a given state, given a model and a
partition:

24

accBlocks :: Eq a =>
EpistM a -> [[a]] -> a -> Agent -> [[a]]

accBlocks m@(Mo _ _ _ _ _ _ rel _) part s ag =
nub [bl part y | (ag’,x,y) <- rel,

ag’ == ag, x == s]

Having the same accessible blocks under a partition

sameAB :: Ord a =>
EpistM a -> [[a]] -> a -> a -> Bool

sameAB m@(Mo _ ags _ _ _ _ _ _) part s t =
and [sort (accBlocks m part s ag)

== sort (accBlocks m part t ag) | ag <- ags]

Refinement Step of Partition by Block Splitting Splitting the blocks
bl of p:

refineStep :: Ord a => EpistM a -> [[a]] -> [[a]]
refineStep m p = refineP m p p
where
refineP :: Ord a =>

EpistM a -> [[a]] -> [[a]] -> [[a]]
refineP m part [] = []
refineP m part (bl:blocks) =

newblocks ++ (refineP m part blocks)
where

newblocks =
cf2part bl (\ x y -> sameAB m part x y)

25

Refining a Partition The refining process can be implemented as a least
fixpoint computation on the operation of taking refinement steps.

refine :: Ord a => EpistM a -> [[a]] -> [[a]]
refine m = lfp (refineStep m)

Remark: least fixpoint computation is an element of many refinement pro-
cesses.

It is an example of what is called a design pattern in Software Engineering
[GHJV95].

Construction of Minimal Model

minimalModel :: Ord a => EpistM a -> EpistM [a]
minimalModel m@(Mo states agents props regs

valprop valreg rel actual) =
(Mo states’ agents props regs
valprop’ valreg’ rel’ actual’)

where
states’ = refine m (initPartition m)
f = bl states’
valprop’ = (nub . sort)

(map (\ (x,y) -> (f x, y)) valprop)
valreg’ = (nub . sort)

(map (\ (x,y) -> (f x, y)) valreg)
rel’ = (nub . sort)

(map (\ (x,y,z) -> (x, f y, f z)) rel)
actual’ = map f actual

Example:

*ModelsVocab> displayS5 s5example
[0,1,2,3]
[p,q]

26

[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]
(a,[[0],[1],[2],[3]])
(b,[[0],[1],[2],[3]])
(c,[[0,1,2,3]])
[1]

*ModelsVocab> displayS5 $ minimalModel s5example
[[0],[1],[2],[3]]
[p,q]
[([0],[]),([1],[p]),([2],[q]),([3],[p,q])]
(a,[[[0]],[[1]],[[2]],[[3]]])
(b,[[[0]],[[1]],[[2]],[[3]]])
(c,[[[0],[1],[2],[3]]])
[[1]]

Map to Bisimulation Minimal Model Map the states to their bisimi-
larity classes.

Next, convert the bisimilarity classes back into integers:

bisim :: Ord a => EpistM a -> EpistM State
bisim = convert . minimalModel . gsm

27

Chapter 2

Action Models, Update

module ActionVocab where

import List
import ModelsVocab
import Test.QuickCheck

Definition of Action Models Datatype for Action Models. No need to
specify a vocabulary, for the vocabulary is implicitly given by the list of
precondition formulas.

data AM state = Am
[state]
[Agent]
[(state,Form)]
[(Agent,state,state)]
[state] deriving (Eq,Show)

Extracting the list of preconditions from an action model:

28

preconditions :: AM state -> [Form]
preconditions (Am _ _ pairs _ _) = map snd pairs

Extracting the proposition vocabulary from an action model:

vocProp :: AM state -> [Prp]
vocProp am = (sort.nub.concat)(map getPs (preconditions am))

Extracting the register vocabulary from an action model:

vocReg :: AM state -> [Reg]
vocReg am = (sort.nub.concat) (map getRs (preconditions am))

Functions from agent lists to action models

type FAM state = [Agent] -> AM state

Updating with an Action Model

up :: (Eq state, Ord state) =>
EpistM state -> FAM state

-> EpistM (state,state)

29

up m@(Mo worlds ags props regs
valprop valreg rel points) fam =

Mo worlds’ ags’ props regs valprop’ valreg’ rel’ points’
where
Am states ags’ pre susp actuals = fam ags
worlds’ = [(w,s) | w <- worlds, s <- states,

isTrueAtMayb m w (apply pre s) ==
Just True]

valprop’ = [((w,s),props) | (w,props) <- valprop,
s <- states,
elem (w,s) worlds’]

valreg’ = [((w,s),regs) | (w,regs) <- valreg,
s <- states,
elem (w,s) worlds’]

rel’ = [(ag1,(w1,s1),(w2,s2)) |
(ag1,w1,w2) <- rel,
(ag2,s1,s2) <- susp,
ag1 == ag2,
elem (w1,s1) worlds’,
elem (w2,s2) worlds’]

points’ = [(p,a) | p <- points, a <- actuals,
elem (p,a) worlds’]

Update and simplify

upd :: (Eq state, Ord state) =>
EpistM state -> FAM state

-> EpistM State
upd m a = bisim (up m a)

Public Announcement Again Update model consists of a single action,
with reflexive arrows for all agents.

30

Precondition is the formula that expresses the content of the announcement.

public :: Form -> FAM State
public form ags = Am [0] ags [(0,form)]

[(a,0,0)| a <- ags] [0]

Composing Two Static Models

Definition of [EWS10].

31

composMod :: (Eq a, Ord a) =>
EpistM a -> EpistM a

-> EpistM (a,a)

composMod m1@(Mo worlds agents props regs
valprop1 valreg1 rel1 points)

m2@(Mo worlds’ agents’ props’ regs’
valprop2 valreg2 rel2 points’) =

(Mo compstat agents compprops compregs
compvalprop compvalreg comprel compoints) where

compstat = [(x,y) | x <- worlds, y <- worlds’,
intersect (valPropStat x m1) (vcbPropSet m2) ==
intersect (valPropStat y m2) (vcbPropSet m1),
(map (apply (apply valreg1 x))

(intersect regs regs’)) ==
(map (apply (apply valreg2 y))

(intersect regs regs’))]

comprel = [(i,(x,y),(r,s))| (i,x,r) <- rel1,
(j,y,s) <- rel2, i==j]

compvalprop = [((x,y),
nub ((++) (vcbPropSet m1) (vcbPropSet m2)))
| x <- worlds, y <- worlds’]

compvalreg = [((x,y),
nub ((++) (valRegSet m1) (valRegSet m2)))
| x <- worlds, y <- worlds’]

compprops = (sort.nub) ((++) props props’)
compregs = (sort.nub) ((++) regs regs’)
compoints = [(x,y) | x <- points, y <- points’]

Compressing a Parallel Composition of two Models by Bisimula-
tion

32

compos :: (Eq a, Ord a) =>
EpistM a -> EpistM a -> EpistM State

compos m1 m2 = bisim (composMod m1 m2)

33

Chapter 3

Adding Factual Change

module ChangeVocab where

import List
import ModelsVocab hiding (m0)
import ActionVocab hiding (upd,public,preconditions,

vocProp,vocReg)

Change in the World Following [BvEK06], we represent changes in the
world as substitutions. A substitution maps proposition letters to formulas
and registers to arithmetic expressions. Type of a substitition in Haskell:

type Subst = ([(Prp,Form)],[(Reg,Arith)])

Action+Change models

34

data ACM state = Acm
[state]
[Agent]
[(state,(Form,Subst))]
[(Agent,state,state)]
[state] deriving (Eq,Show)

Extracting the list of preconditions from an action model:

preconditions :: ACM state -> [Form]
preconditions (Acm _ _ pairs _ _) = map (fst.snd) pairs

Extracting the proposition vocabulary from an action model:

vocProp :: ACM state -> [Prp]
vocProp acm@(Acm _ _ pairs _ _) = (sort.nub)
((concat (map getPs (preconditions acm))) ++
(map fst propsubs) ++
(concat (map (getPs.snd) propsubs)))

where propsubs = concat (map (fst.snd.snd) pairs)

Extracting the register vocabulary from an action model:

vocReg :: ACM state -> [Reg]
vocReg acm@(Acm _ _ pairs _ _) = (sort.nub)
((concat (map getRs (preconditions acm))) ++
(map fst regsubs) ++
(concat (map (getRsA.snd) regsubs)))

where regsubs = concat (map (snd.snd.snd) pairs)

35

Functions from Agents to A+C models

type FACM state = [Agent] -> ACM state

Getting the precondition and the substitution from an A+C model

prec :: ACM state -> [(state,Form)]
prec (Acm _ _ ps _ _) =

map (\ (x,(y,_)) -> (x,y)) ps

subst :: ACM state -> [(state,Subst)]
subst (Acm _ _ ps _ _) =

map (\ (x,(_,y)) -> (x,y)) ps

From Tables to Functions

t2f :: Eq a => [(a,b)] -> a -> b
t2f t = \ x -> maybe undefined id (lookup x t)

Extracting the proposition and register substitutions as functions:

subProp :: Eq a => ACM a -> a -> Prp -> Form
subProp am s p = let

sb = fst (t2f (subst am) s) in
if elem p (map (\ (x,_) -> x) sb) then

t2f sb p
else (Prp p)

36

subReg :: Eq a => ACM a -> a -> Reg -> Arith
subReg am s r = let

sb = snd (t2f (subst am) s) in
if elem r (map (\ (x,_) -> x) sb) then

t2f sb r
else (Reg r)

Changing the World Valuation at a world in an epistemic model:

valProp :: Eq a => EpistM a -> a -> [Prp]
valProp m = t2f (valuationProp m)

valReg :: Eq a => EpistM a -> a -> [(Reg,Int)]
valReg m = t2f (valuationReg m)

New valuation after update with an action model

newValProp :: (Eq a, Ord a) =>
EpistM a -> ACM a -> (a,a) -> [Prp]

newValProp m am (w,s) = [p | p <- allprops, subfct p]
where
allprops = (sort.nub)
((valProp m w) ++
(map (\ (x,_) -> x) (fst (t2f (subst am) s))))

subfct p = isTrueAtMayb m w (subProp am s p) == Just True

37

newValReg :: (Eq a, Ord a) =>
EpistM a -> ACM a -> (a,a) -> [(Reg,Int)]

newValReg m am (w,s) = [(r,arithVal m w (subReg am s r))
| r <- vocabReg m]

Updating with an A+C Model

upc :: (Eq state, Ord state) =>
EpistM state -> FACM state

-> EpistM (state,state)

38

upc m@(Mo worlds ags props regs
valprop valreg rel points) facm =

Mo worlds’ ags’ props’ regs’ valprop’ valreg’ rel’ points’
where
acm@(Acm states ags’ ps susp as) = facm ags
worlds’ = [(w,s) | w <- worlds, s <- states,

isTrueAtMayb m w (apply (prec acm) s)
== Just True]

props’ = (sort.nub) (props ++ vocProp acm)
regs’ = (sort.nub) (regs ++ vocReg acm)
valprop’ = [((w,s),newValProp m acm (w,s)) |

(w,s) <- worlds’]
valreg’ = [((w,s),newValReg m acm (w,s)) |

(w,s) <- worlds’]
rel’ = [(ag1,(w1,s1),(w2,s2)) |

(ag1,w1,w2) <- rel,
(ag2,s1,s2) <- susp,
ag1 == ag2,
elem (w1,s1) worlds’,
elem (w2,s2) worlds’]

points’ = [(p,a) | p <- points, a <- as,
elem (p,a) worlds’]

Update and Simplify

upd :: (Eq state, Ord state) =>
EpistM state -> FACM state

-> EpistM State
upd m a = bisim (upc m a)

String a series of updates together:

39

upds :: EpistM State -> [FACM State] -> EpistM State
upds m [] = m
upds m (a:as) = upds (upd m a) as

Public Announcement See [Pla89, Ger99].

Update model consists of a single action, with reflexive arrows for all agents.

Precondition is the formula that expresses the content of the announcement.

public :: Form -> FACM State
public form ags = Acm [0] ags [(0,(form,([],[])))]

[(a,0,0)| a <- ags] [0]

Example

m0 = upc s5example (public p)
m1 = upd s5example (public p)

*ChangeVocab> displayS5 s5example
[0,1,2,3]
[p,q]
[R0]
[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]
[(0,[(R0,0)]),(1,[(R0,1)]),(2,[(R0,2)]),(3,[(R0,3)])]
(a,[[0],[1],[2],[3]])
(b,[[0],[1],[2],[3]])
(c,[[0,1,2,3]])
[1]

40

*ChangeVocab> displayS5 m0
[(1,0),(3,0)]
[p,q]
[R0]
[((1,0),[p]),((3,0),[p,q])]
[((1,0),[(R0,1)]),((3,0),[(R0,3)])]
(a,[[(1,0)],[(3,0)]])
(b,[[(1,0)],[(3,0)]])
(c,[[(1,0),(3,0)]])
[(1,0)]

*ChangeVocab> displayS5 m1
[0,1]
[p,q]
[R0]
[(0,[p]),(1,[p,q])]
[(0,[(R0,1)]),(1,[(R0,3)])]
(a,[[0],[1]])
(b,[[0],[1]])
(c,[[0,1]])
[0]

Public Change

pChange :: Subst -> FACM State
pChange subst ags = Acm [0] ags [(0,(Top,subst))]

[(a,0,0)| a <- ags] [0]

Example

m2 = upc s5example (pChange ([(P 0,q)],[(Rg 0,I 0)]))
m3 = upd s5example (pChange ([(P 0,q)],[(Rg 0,I 0)]))

41

*ChangeVocab> displayS5 m2
[(0,0),(1,0),(2,0),(3,0)]
[p,q]
[R0]
[((0,0),[]),((1,0),[]),((2,0),[p,q]),((3,0),[p,q])]
[((0,0),[(R0,0)]),((1,0),[(R0,0)]),((2,0),[(R0,0)]),((3,0),[(R0,0)])]
(a,[[(0,0)],[(1,0)],[(2,0)],[(3,0)]])
(b,[[(0,0)],[(1,0)],[(2,0)],[(3,0)]])
(c,[[(0,0),(1,0),(2,0),(3,0)]])
[(1,0)]

*ChangeVocab> displayS5 m3
[0,1]
[p,q]
[R0]
[(0,[]),(1,[p,q])]
[(0,[(R0,0)]),(1,[(R0,0)])]
(a,[[0],[1]])
(b,[[0],[1]])
(c,[[0,1]])
[0]

Group Announcement Computing the update for passing a group an-
nouncement to a list of agents: the other agents confuse the action with the
action where nothing happens.

In the limit case where the message is passed to all agents, the message is a
public announcement.

42

groupM :: [Agent] -> Form -> FACM State
groupM gr form agents =
if sort gr == sort agents

then public form agents
else
(Acm
[0,1]
agents
[(0,(form,([],[]))),(1,(Top,([],[])))]
([(a,0,0) | a <- agents]
++ [(a,0,1) | a <- agents \\ gr]
++ [(a,1,0) | a <- agents \\ gr]
++ [(a,1,1) | a <- agents])

[0])

Example

e0 = initM [a,b,c] [P 0,Q 0]
m4 = upc e0 (groupM [a,b] (Neg p))
m5 = upd e0 (groupM [a,b] (Neg p))

*ChangeVocab> displayS5 e0
[0,1,2,3]
[p,q]
[]
[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]
[(0,[]),(1,[]),(2,[]),(3,[])]
(a,[[0,1,2,3]])
(b,[[0,1,2,3]])
(c,[[0,1,2,3]])
[0,1,2,3]

*ChangeVocab> displayS5 m4

43

[(0,0),(0,1),(1,1),(2,0),(2,1),(3,1)]
[p,q]
[]
[((0,0),[]),((0,1),[]),((1,1),[p]),((2,0),[q]),((2,1),[q]),((3,1),[p,q])]
[((0,0),[]),((0,1),[]),((1,1),[]),((2,0),[]),((2,1),[]),((3,1),[])]
(a,[[(0,0),(2,0)],[(0,1),(1,1),(2,1),(3,1)]])
(b,[[(0,0),(2,0)],[(0,1),(1,1),(2,1),(3,1)]])
(c,[[(0,0),(0,1),(1,1),(2,0),(2,1),(3,1)]])
[(0,0),(2,0)]

*ChangeVocab> displayS5 m5
[0,1,2,3,4,5]
[p,q]
[]
[(0,[]),(1,[]),(2,[p]),(3,[q]),(4,[q]),(5,[p,q])]
[(0,[]),(1,[]),(2,[]),(3,[]),(4,[]),(5,[])]
(a,[[0,3],[1,2,4,5]])
(b,[[0,3],[1,2,4,5]])
(c,[[0,1,2,3,4,5]])
[0,3]

Private Messages Private messages are a special case of group messages:

message :: Agent -> Form -> FACM State
message agent = groupM [agent]

Tests Tests are another special case of group messages:

test :: Form -> FACM State
test = groupM []

44

Communications Whether

• informing everone whether ϕ,

• informing a group whether ϕ,

• informing an individual whether ϕ.

Telling someone whether it rains involves giving her the facts: if it rains you
tell her “it rains”, if it does not rain you tell her “it does not rain”.

In the action model for this there are two actual actions. Which one will
lead to a new actual world depends on the facts of the matter, and these
are determined by the input model . . .

General Form: Group Communication Whether Informing Every-
one Whether p.

0 : p 1 : pc
abc abc

⇒ 0 : p 1 : p
abc abc

Implementation First the negation of a formula:

negation :: Form -> Form
negation (Neg form) = form
negation form = (Neg form)

45

Informing a Group Whether ϕ

info :: [Agent] -> Form -> FACM State
info group form agents =

Acm
[0,1]
agents
[(0,(form,([],[]))),(1,(negation form,([],[])))]
([(a,0,0) | a <- agents]

++ [(a,1,1) | a <- agents]
++ [(a,0,1) | a <- others]
++ [(a,1,0) | a <- others])

[0,1]
where others = agents \\ group

Example

m6 = upc e0 (info [a,b] p)
m7 = upd e0 (info [a,b] p)

*ChangeVocab> displayS5 m6
[(0,1),(1,0),(2,1),(3,0)]
[p,q]
[]
[((0,1),[]),((1,0),[p]),((2,1),[q]),((3,0),[p,q])]
[((0,1),[]),((1,0),[]),((2,1),[]),((3,0),[])]
(a,[[(0,1),(2,1)],[(1,0),(3,0)]])
(b,[[(0,1),(2,1)],[(1,0),(3,0)]])
(c,[[(0,1),(1,0),(2,1),(3,0)]])
[(0,1),(1,0),(2,1),(3,0)]

*ChangeVocab> displayS5 m7

46

[0,1,2,3]
[p,q]
[]
[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]
[(0,[]),(1,[]),(2,[]),(3,[])]
(a,[[0,2],[1,3]])
(b,[[0,2],[1,3]])
(c,[[0,1,2,3]])
[0,1,2,3]

47

Chapter 4

Change and Perception

Based on [Eijar].

module ChangePerception where

import List
import ModelsVocab hiding (m0)
import ActionVocab hiding (upd,public,preconditions,

vocProp,vocReg)
import ChangeVocab

Unobserved Change

The action model Ap:=ϕ for unobserved change p := ϕ looks as follows (note
that reflexive arrows are not drawn, and it is assumed that N is the set of
all agents):

Ap 7→ϕ : 0 : > : p 7→ ϕ 1 : >
N

Implementation:

48

unobserved_change :: Prp -> Form -> FACM State
unobserved_change prp form ags =
Acm
[0,1]
ags
[(0,(Top,([(prp,form)],[]))), (1,(Top,([],[])))]
[(a,s,t)| a <- ags, s <- [0,1], t <- [0,1]]
[0]

The action model A(i,ϕ,G) for a perception by i of ϕ, witnessed by G, looks
as follows (if Q is a list of proposition letters, PQ

i expresses that i is able
to perceive the letters in Q; voc(ϕ) gives the propositional vocabulary of
formula ϕ):

A(i,ϕ,G) :

0 : Pvoc(ϕ)
i ∧ ϕ 1 : Pvoc(ϕ)

i ∧ ¬ϕ

2 : >

{i}

G G

Implementation (assuming for simplicity that every agent can perceive every
proposition letter):

49

perception :: Agent -> Form -> [Agent] -> FACM State
perception i form group ags =
Acm [0,1,2]

ags
[(0,(form,([],[]))),
(1,(Neg form, ([],[]))),
(2,(Top,([],[])))]
([(a,s,s)| a <- ags, s <- [0,1,2]]
++ [(a,0,1)| a <- ags \\ [i]]
++ [(a,1,0)| a <- ags \\ [i]]
++ [(a,0,2)| a <- ags \\ group]
++ [(a,2,0)| a <- ags \\ group]
++ [(a,1,2)| a <- ags \\ group]
++ [(a,2,1)| a <- ags \\ group])

[0]

First model:

md0 :: EpistM Integer
md0 = Mo [0,1]

[a,b,c]
[P 0]
[]
[(0,[P 0]), (1,[])]
[(0,[]), (1,[])]
([(ag,x,x) | ag <- [a,b,c], x <- [0,1]]

++ [(c,0,1),(c,1,0)])
[0]

Second model:

md1 = upd md0 (perception b (Prp (P 0)) [b,c])
md1’ = upc md0 (perception b (Prp (P 0)) [b,c])

50

Third model:

md2 = upd md1 (unobserved_change (P 0) (Neg Top))
md2’ = upc md1 (unobserved_change (P 0) (Neg Top))

Fourth model:

md3 = upd md2 (perception b (Neg p) [b,c])
md3’ = upc md2 (perception b (Neg p) [b,c])

Fourth model, after perception by all:

md3a = upd md2 (perception b (Neg p) [a,b,c])
md3a’ = upc md2 (perception b (Neg p) [a,b,c])

Different update:

md1a = upd md0 (perception c p [a,c])
md1a’ = upc md0 (perception c p [a,c])

Different initial model:

51

mm0 :: EpistM Integer
mm0 = Mo [0,1]

[a,b,c]
[P 0]
[]
[(0,[P 0]), (1,[])]
[(0,[]),(1,[])]
([(ag,x,x) | ag <- [a,b,c], x <- [0,1]]

++ [(a,0,1),(a,1,0)]
++ [(c,0,1),(c,1,0)])
[0]

mm1 = upd md0 (perception b (Prp (P 0)) [b,c])
mm1’ = upc md0 (perception b (Prp (P 0)) [b,c])

The action model for perceived change (i, p, p 7→ ϕ,G) (perception by i of p
after a change in p has taken place in the model, with G as witnesses of the
act of perception) takes the following shape:

A(i,p,p 7→ϕ,G) :

0 : Pvoc(ϕ)
i ∧ ϕ, p 7→ ϕ 1 : Pvoc(ϕ)

i ∧ ¬ϕ, p 7→ ϕ

2 : >

{i}

G G

Implementation:

52

perceived_change :: Agent ->
Prp -> Form -> [Agent] -> FACM State

perceived_change i prp form group ags =
Acm [0,1,2] ags [(0,(Prp prp,([(prp,form)],[]))),

(1,(Neg (Prp prp), ([(prp,form)],[]))),
(2,(Top,([],[])))]

([(a,s,s)| a <- ags, s <- [0,1,2]]
++ [(a,0,1)| a <- ags \\ [i]]
++ [(a,1,0)| a <- ags \\ [i]]
++ [(a,0,2)| a <- ags \\ group]
++ [(a,2,0)| a <- ags \\ group]
++ [(a,1,2)| a <- ags \\ group]
++ [(a,2,1)| a <- ags \\ group])

[0]

Some updates with this:

me1 = upd md0 (perceived_change a (P 0) (Top) [a])
me1’ = upc md0 (perceived_change a (P 0) (Top) [a])

me2 = upd md0 (perceived_change a (P 0) (Neg Top) [a])
me2’ = upc md0 (perceived_change a (P 0) (Neg Top) [a])

me3 = upd md0 (perceived_change a (P 0) (Neg Top) [a,b])
me3’ = upc md0 (perceived_change a (P 0) (Neg Top) [a,b])

53

me4 = upd md1 (perceived_change a (P 0) (Neg Top) [a,b])
me4’ = upc md1 (perceived_change a (P 0) (Neg Top) [a,b])

ppc :: Agent -> Prp -> Form -> [Agent] -> FACM State
ppc i prp form group ags =
Acm [0,1,2] ags [(0,(form,([(prp,form)],[]))),

(1,(Neg form, ([(prp,form)],[]))),
(2,(Top,([],[])))]

([(a,s,s)| a <- ags, s <- [0,1,2]]
++ [(a,0,1)| a <- ags \\ [i]]
++ [(a,1,0)| a <- ags \\ [i]]
++ [(a,0,2)| a <- ags \\ group]
++ [(a,2,0)| a <- ags \\ group]
++ [(a,1,2)| a <- ags \\ group]
++ [(a,2,1)| a <- ags \\ group])

[0]

npc :: Agent -> Prp -> Form -> [Agent] -> FACM State
npc i prp form group ags =
Acm [0,1,2] ags [(0,(form,([(prp,form)],[]))),

(1,(negation form, ([(prp,form)],[]))),
(2,(Top,([],[])))]

([(a,s,s)| a <- ags, s <- [0,1,2]]
++ [(a,0,1)| a <- ags \\ [i]]
++ [(a,1,0)| a <- ags \\ [i]]
++ [(a,0,2)| a <- ags \\ group]
++ [(a,2,0)| a <- ags \\ group]
++ [(a,1,2)| a <- ags \\ group]
++ [(a,2,1)| a <- ags \\ group])

[1]

And again:

54

mpc1 = upd md0 (ppc a (P 0) (Top) [a])
mpc1’ = upc md0 (ppc a (P 0) (Top) [a])

mpc2 = upd md0 (npc a (P 0) (Neg Top) [a])
mpc2’ = upc md0 (npc a (P 0) (Neg Top) [a])

mpc3 = upd md0 (npc a (P 0) (Neg Top) [a,b])
mpc3’ = upc md0 (npc a (P 0) (Neg Top) [a,b])

mpc4 = upd md1 (npc a (P 0) (Neg Top) [a,b])
mpc4’ = upc md1 (npc a (P 0) (Neg Top) [a,b])

55

Chapter 5

The Muddy Children Puzzle

module Muddy where

import List
import ModelsVocab hiding (m0)
import ActionVocab hiding (upd,public,preconditions,

vocProp,vocReg)
import ChangeVocab
import ChangePerception

Abbreviations for some basic propositions:

ma, mb, mc, md :: Form
ma = Prp (P 1) -- this represents Alice is muddy
mb = Prp (P 2) -- this represents Bob is muddy
mc = Prp (P 3) -- this represents Carol is muddy
md = Prp (P 4) -- this represents Dave is muddy

Let’s model the case where Bob, Carol and Dave are muddy:

56

bcd_dirty = Conj [Neg ma, mb, mc, md]

The following series of updates expresses that each child is aware of the state
(muddy or not) of the other children:

awareness = [info [b,c,d] ma,
info [a,c,d] mb,
info [a,b,d] mc,
info [a,b,c] md]

Formulas for knowing whether one is muddy:

aKn = Disj [K a ma, K a (Neg ma)]
bKn = Disj [K b mb, K b (Neg mb)]
cKn = Disj [K c mc, K c (Neg mc)]
dKn = Disj [K d md, K d (Neg md)]

We start with an initial situation where the four agents are blissfully unaware
about the muddiness facts, and update with the test expressing that b,c,d
are in fact muddy. This gives the following model:

mu0 = upd (initM [a,b,c,d] [P 1, P 2, P 3, P 4])
(test bcd_dirty)

Next, add awareness information:

mu1 = upds mu0 awareness

This gives:

57

*Muddy> displayS5 mu1
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
[p1,p2,p3,p4]
[]
[(0,[]),(1,[p1]),(2,[p2]),(3,[p3]),(4,[p4]),(5,[p1,p2]),(6,[p1,p3]),
(7,[p1,p4]),(8,[p2,p3]),(9,[p2,p4]),(10,[p3,p4]),(11,[p1,p2,p3]),
(12,[p1,p2,p4]),(13,[p1,p3,p4]),(14,[p2,p3,p4]),(15,[p1,p2,p3,p4])]

[(0,[]),(1,[]),(2,[]),(3,[]),(4,[]),(5,[]),(6,[]),(7,[]),(8,[]),
(9,[]),(10,[]),(11,[]),(12,[]),(13,[]),(14,[]),(15,[])]

(a,[[0,1],[2,5],[3,6],[4,7],[8,11],[9,12],[10,13],[14,15]])
(b,[[0,2],[1,5],[3,8],[4,9],[6,11],[7,12],[10,14],[13,15]])
(c,[[0,3],[1,6],[2,8],[4,10],[5,11],[7,13],[9,14],[12,15]])
(d,[[0,4],[1,7],[2,9],[3,10],[5,12],[6,13],[8,14],[11,15]])
[14]

Update with a public announcement of the father that at least one child is
muddy.

mu2 = upd mu1 (public (Disj [ma, mb, mc, md]))

This gives:

*Muddy> displayS5 mu2
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]
[p1,p2,p3,p4]
[]
[(0,[p1]),(1,[p2]),(2,[p3]),(3,[p4]),(4,[p1,p2]),(5,[p1,p3]),(6,[p1,p4]),
(7,[p2,p3]),(8,[p2,p4]),(9,[p3,p4]),(10,[p1,p2,p3]),(11,[p1,p2,p4]),
(12,[p1,p3,p4]),(13,[p2,p3,p4]),(14,[p1,p2,p3,p4])]
[(0,[]),(1,[]),(2,[]),(3,[]),(4,[]),(5,[]),(6,[]),(7,[]),(8,[]),
(9,[]),(10,[]),(11,[]),(12,[]),(13,[]),(14,[])]

(a,[[0],[1,4],[2,5],[3,6],[7,10],[8,11],[9,12],[13,14]])
(b,[[0,4],[1],[2,7],[3,8],[5,10],[6,11],[9,13],[12,14]])
(c,[[0,5],[1,7],[2],[3,9],[4,10],[6,12],[8,13],[11,14]])
(d,[[0,6],[1,8],[2,9],[3],[4,11],[5,12],[7,13],[10,14]])
[13]

The first round: they all say they don’t know their state.

58

mu3 = upd mu2
(public (Conj[Neg aKn, Neg bKn, Neg cKn, Neg dKn]))

*Muddy> displayS5 mu3
[0,1,2,3,4,5,6,7,8,9,10]
[p1,p2,p3,p4]
[]
[(0,[p1,p2]),(1,[p1,p3]),(2,[p1,p4]),(3,[p2,p3]),(4,[p2,p4]),(5,[p3,p4]),
(6,[p1,p2,p3]),(7,[p1,p2,p4]),(8,[p1,p3,p4]),(9,[p2,p3,p4]),(10,[p1,p2,p3,p4])]

[(0,[]),(1,[]),(2,[]),(3,[]),(4,[]),(5,[]),(6,[]),(7,[]),(8,[]),(9,[]),(10,[])]
(a,[[0],[1],[2],[3,6],[4,7],[5,8],[9,10]])
(b,[[0],[1,6],[2,7],[3],[4],[5,9],[8,10]])
(c,[[0,6],[1],[2,8],[3],[4,9],[5],[7,10]])
(d,[[0,7],[1,8],[2],[3,9],[4],[5],[6,10]])
[9]

The second round: they still all don’t know their state.

mu4 = upd mu3
(public (Conj[Neg aKn, Neg bKn, Neg cKn, Neg dKn]))

*Muddy> displayS5 mu4
[0,1,2,3,4]
[p1,p2,p3,p4]
[]
[(0,[p1,p2,p3]),(1,[p1,p2,p4]),(2,[p1,p3,p4]),(3,[p2,p3,p4]),(4,[p1,p2,p3,p4])]
[(0,[]),(1,[]),(2,[]),(3,[]),(4,[])]
(a,[[0],[1],[2],[3,4]])
(b,[[0],[1],[2,4],[3]])
(c,[[0],[1,4],[2],[3]])
(d,[[0,4],[1],[2],[3]])
[3]

Now b, c and d say they know. In the final model all is known to everyone.

59

mu5 = upds mu4 [public (Conj[bKn, cKn, dKn])]

*Muddy> displayS5 mu5
[0]
[p1,p2,p3,p4]
[]
[(0,[p2,p3,p4])]
[(0,[])]
(a,[[0]])
(b,[[0]])
(c,[[0]])
(d,[[0]])
[0]

60

Chapter 6

The Wise Men Puzzle; or:
The Riddle of the Caps

module WiseMen

where
import List
import ModelsVocab hiding (m0)
import ActionVocab hiding (upd,public,preconditions,

vocProp,vocReg)
import ChangeVocab
import ChangePerception

? ? ! ?
!

61

? ? ? ?
!

Analysis with Model Checking

• Four agents: a, b, c, d, occupying positions 1, 2, 3, 4.

• Four basic propositions p1, p2, p3, p4.

• pi expresses that the guy at position i is wearing a white cap.

Initial model

mo0 = initM [a,b,c,d] [P 1, P 2, P 3, P 4]

p1,p2,p3,p4 :: Form
p1 = Prp (P 1); p2 = Prp (P 2)
p3 = Prp (P 3); p4 = Prp (P 4)

capsInfo :: Form
capsInfo =
Disj [Conj [f, g, Neg h, Neg j] |

f <- [p1, p2, p3, p4],
g <- [p1, p2, p3, p4] \\ [f],
h <- [p1, p2, p3, p4] \\ [f,g],
j <- [p1, p2, p3, p4] \\ [f,g,h],
f < g, h < j]

62

mo1 = upd mo0 (public capsInfo)

*WiseMen> displayS5 mo1
[0,1,2,3,4,5]
[p1,p2,p3,p4]
[]
[(0,[p1,p2]),(1,[p1,p3]),(2,[p1,p4]),
(3,[p2,p3]),(4,[p2,p4]),(5,[p3,p4])]
[(0,[]),(1,[]),(2,[]),(3,[]),(4,[]),(5,[])]
(a,[[0,1,2,3,4,5]])
(b,[[0,1,2,3,4,5]])
(c,[[0,1,2,3,4,5]])
(d,[[0,1,2,3,4,5]])
[0,1,2,3,4,5]

awarenessFirstCap = info [b,c] p1
awarenessSecondCap = info [c] p2

mo2 = upd (upd mo1 awarenessFirstCap)
awarenessSecondCap

*WiseMen> displayS5 mo2
[0,1,2,3,4,5]
[p1,p2,p3,p4]
[]
[(0,[p1,p2]),(1,[p1,p3]),(2,[p1,p4]),
(3,[p2,p3]),(4,[p2,p4]),(5,[p3,p4])]
[(0,[]),(1,[]),(2,[]),(3,[]),(4,[]),(5,[])]
(a,[[0,1,2,3,4,5]])
(b,[[0,1,2],[3,4,5]])
(c,[[0],[1,2],[3,4],[5]])

63

(d,[[0,1,2,3,4,5]])
[0,1,2,3,4,5]

bK = Disj [K b p2, K b (Neg p2)]
cK = Disj [K c p3, K c (Neg p3)]

mo3a = upd mo2 (public cK)
mo3b = upd mo2 (public (Neg cK))

*WiseMen> displayS5 mo3a
[0,1]
[p1,p2,p3,p4]
[]
[(0,[p1,p2]),(1,[p3,p4])]
[(0,[]),(1,[])]
(a,[[0,1]])
(b,[[0],[1]])
(c,[[0],[1]])
(d,[[0,1]])
[0,1]

*WiseMen> displayS5 mo3b
[0,1,2,3]
[p1,p2,p3,p4]
[]
[(0,[p1,p3]),(1,[p1,p4]),(2,[p2,p3]),(3,[p2,p4])]
[(0,[]),(1,[]),(2,[]),(3,[])]
(a,[[0,1,2,3]])
(b,[[0,1],[2,3]])
(c,[[0,1],[2,3]])
(d,[[0,1,2,3]])
[0,1,2,3]

64

impl :: Form -> Form -> Form
impl form1 form2 = Disj [Neg form1, form2]

equiv :: Form -> Form -> Form
equiv form1 form2 =
Conj [form1 ‘impl‘ form2, form2 ‘impl‘ form1]

test1 = isTrue mo3a bK
test2 = isTrue mo3b bK
test3 = isTrue mo3a (K a (equiv p1 p2))
test4 = isTrue mo3b (K a (equiv p1 (Neg p2)))

*WiseMen> test1
Just True
*WiseMen> test2
Just True
*WiseMen> test3
Just True
*WiseMen> test4
Just True

mo4a = upd mo3a (public bK)
mo4b = upd mo3b (public bK)

*WiseMen> displayS5 mo4a
[0,1]

65

[p1,p2,p3,p4]
[]
[(0,[p1,p2]),(1,[p3,p4])]
[(0,[]),(1,[])]
(a,[[0,1]])
(b,[[0],[1]])
(c,[[0],[1]])
(d,[[0,1]])
[0,1]

*WiseMen> displayS5 mo4b
[0,1,2,3]
[p1,p2,p3,p4]
[]
[(0,[p1,p3]),(1,[p1,p4]),(2,[p2,p3]),(3,[p2,p4])]
[(0,[]),(1,[]),(2,[]),(3,[])]
(a,[[0,1,2,3]])
(b,[[0,1],[2,3]])
(c,[[0,1],[2,3]])
(d,[[0,1,2,3]])
[0,1,2,3]

66

Chapter 7

Liar’s Dice

In this section we show how the game of Liar’s Dice which is analysed in
[DvESW07] can be modelled using DEMO, and we demonstrate the doxastic
models that we get if we trace a particular run of the game.

First we will closely examine the different actions that take place in the
game and their representations as action models. Let p represent the value
of a coin, with 1 signifying heads, and 0 signifying tails. Let agents a and b
represent the two players, and let C1 represent the contents of the purse of
player a (C for cash), and C2 that of player b, with natural number values
representing the amounts in euros that each player has in her purse. These
natural number registers are available in the new extension of DEMO. Let
S1, S2 represent the money at stake for each player. Factual change can be
thought of as assignment of new values to variables. This is an essential
ingredient of the various actions in the game:

Initialisation Both players put one euro at stake, and they both know
this. S1 := 1, C1 := C1− 1, S2 := 1, C2 := C2− 1, together with public
announcement of these factual changes.

Heads Factual change of the propositional value of a coin p to 1, with
private communication of the result to player a (p = 1 signifies heads).

Tails Factual change of the propositional value of a coin p to 0, with private
communication of the result to player a. (p = 0 signifies tails).

Announce Player a announces either ‡Head or ‡Tail. There are several
ways to model this and we will come back to this later.

67

Pass Player b passes and loses, player a gets the stakes. C1 := C1 + S1 +
S2, S1 := 0, S2 := 0.

Challenge Public setting of C2 := C2 − 1, S2 := S2 + 1, followed by public
announcement of the value of p. If the outcome is p then C1 := C1 +
S1 +S2, otherwise C2 := C2 +S1 +S2 and in any case S1 := 0, S2 := 0.

We will show how these actions can be defined as doxastic action models in
Haskell code using DEMO.

module Lies
where
import ModelsVocab hiding (m0)
import ActionVocab hiding (upd,public,preconditions,

vocProp,vocReg)
import ChangeVocab
import ChangePerception
import Data.Set (Set)
import qualified Data.Set as Set

type EM = EpistM Integer

We first define the cash and stakes of each player as integer registers.

c1, c2, s1, s2 :: Reg
c1 = (Rg 1); c2 = (Rg 2)
s1 = (Rg 3); s2 = (Rg 4)

This declares four integer registers, and gives them appropriate names. The
initial contents of the purses of the two players must also be defined. Let’s
assume both players have five euros in cash to start with.

68

initCash1, initCash2 :: Int
initCash1 = 5
initCash2 = 5

Initialisation of the game: both players put one euro at stake. This is
modelled by the following factual change: S1 := 1, C1 := C1 − 1, S2 :=
1, C2 := C2 − 1. The representation of this in our modelling language is
straightforward. We just represent the contents of the registers at startup.

initGame :: EM
initGame = (Mo

[0]
[a,b]

[]
[s1, s2, c1, c2]
[(0,[])]

[(0,[(s1,1),(s2,1),
(c1,(initCash1-1)),(c2,(initCash2-1))])]

[(a,0,0),(b,0,0)]
[0])

Tossing the coin is a factual change of p to 0 or 1. The coin is tossed
secretly and before player a looks both players don’t know the value of the
coin. Because of this there are two worlds, one where p is set to 0 and one
where p is set to 1, and neither of the two players can distinguish these
worlds.

69

toss :: Integer -> FACM State
toss c ags = (Acm

[0,1]
ags
[(0,(Top,([(P 0,Neg Top)],[]))),
(1,(Top,([(P 0,Top)],[])))]
[(ag,w,w’) | w <- [0,1],

w’ <- [0,1], ag <- ags]
[c])

Note that the action model has a list that assigns to each world a precondi-
tion, a change to the propositions, and a change to the registers. In world
0, the precondition is > and the change is to set p to value ¬>, i.e., ⊥ (and
there is no change to the registers), and in world 1, the precondition is again
> and the change is to set p to value > (and again, there is no change to
the registers).

After the coin is tossed player a looks under the cup without showing the
coin to player b. We define a generic function for computing the model of the
action where a group of agents looks under the cup. These models consist of
two worlds, one where p is true (heads) and one where p is false (tails), the
agents in the group can distinguish these two worlds and the other agents
cannot.

look :: [Agent] -> FACM State
look group ags = (Acm

[0,1]
ags
[(0,(p,([],[]))),(1,(Neg(p),([],[])))]
([(ag,w,w’) | w <- [0,1], w’ <- [0,1],

ag <- ags, notElem ag group] ++
[(ag,w,w) | w <- [0,1], ag <- group])

[0,1])

In this case, there are no changes to propositions or registers, but world 0
has precondition p, and world 1 has precondition ¬p.

70

Now we define the models of the situation after the coin has been tossed
and player a has looked at the outcome, distinguishing the two outcomes of
the toss:

headsg :: EM
headsg = upd (upd initGame (toss 1)) (look [a])

tailsg :: EM
tailsg = upd (upd initGame (toss 0)) (look [a])

Before looking at the way to model the announcement of an outcome of
the toss by player a we will first define the action models for passing and
challenging.

When player b passes, the stakes are added to player a’s cash: C2 := C2 +
S1 + S1, S1 := 0, S2 := 0. Player b never gets to see the actual value of the
coin so there are no changes in the knowledge of the agents about p. The
model for this has only one world that indicates the changes in the stakes
and cash.

pass :: FACM State
pass ags = (Acm

[0]
ags
[(0,(Top,([],

[(s1,(I 0)),
(s2,(I 0)),
(c1,ASum [Reg c1,Reg s1,Reg s2])])))]

[(ag,0,0) | ag <- ags]
[0])

Note that here for the first time we see changes to the registers.

When player b decides to challenge player a, the cup is lifted and both
players get to know the value of p. Then the stakes are added to the cash
of player a in case of heads and player b in case of tails, together with one

71

extra euro from the cash of player b that player b added to the stakes while
challenging player a. So instead of S2 := S2 + 1, C2 := C2 − 1 and after
that C1 := C1 + S1 + S2 in case of heads and C2 := C2 + S1 + S2 in case
of tails, we use C1 := C1 + S1 + S2 + 1, C2 := C2 − 1 in case of heads
and C2 := C2 + S1 + S2 in case of tails. The action model for this has one
world for the case of heads and one world for the case of tails. Both players
can distinguish these worlds because the cup was lifted, and the stakes are
divided differently in the two worlds.

challenge :: FACM State
challenge ags =
Acm
[0,1]
ags
[(0,(Neg(p),([],

[(s1,(I 0)),
(s2,(I 0)),
(c2,ASum [Reg c2,Reg s1,Reg s2])]))),

(1,(p ,([],
[(s1,(I 0)),
(s2,(I 0)),
(c2,ASum [Reg c2,I (-1)]),
(c1,ASum [Reg c1,Reg s1,Reg s2,I 1])])))]

[(ag,w,w) | w <- [0,1], ag <- ags]
[0,1]

When player a announces ‡Head or ‡Tail the stakes change. In case of
‡Head C1 := C1−1, S1 := S1+1 and in case of ‡Tail C2 := C2+S1+S2, S1 :=
0, S2 := 0.

72

announceStakes :: Integer -> FACM State
announceStakes 0 ags =
Acm
[0]
ags
[(0,(Top,([],[(s1,(I 0)),
(s2,(I 0)),
(c2,ASum [Reg c2,Reg s1,Reg s2])])))]
[(ag,0,0) | ag <- ags]
[0]
announceStakes 1 ags =
Acm
[0]
ags
[(0,(Top,([],[(s1,ASum [Reg s1,I 1]),
(c1,ASum [Reg c1,I (-1)])])))]
[(ag,0,0) | ag <- ags]
[0]

Now the only thing we have to decide is how we will model the announcement
of ‡Head or ‡Tail. Suppose we would use the manipulative update ‡p or
‡¬p for this. This would imply that the other player believes the claims that
are made.

However, in a real game of Liar’s Dice player b knows that player a might
very well be bluffing and she doesn’t really believe player a’s claim at all.
So to correctly model the game we should not use the manipulative update.
When player a makes an announcement this doesn’t even change player b’s
knowledge and beliefs because player b doesn’t believe player a.

So instead of the manipulative update we should only use the model for
changing the stakes to model the announcement:

announce :: Integer -> FACM State
announce = announceStakes

Now player b doesn’t know whether p is true but she knows she doesn’t

73

know:

bKnows :: Form
bKnows = Disj [(K b (Neg p)), (K b p)]

*Lies> isTrue (upd tailsg (announce 0)) bKnows
Just False
*Lies> isTrue (upd tailsg (announce 0)) (K b (Neg bKnows))
Just True
*Lies> isTrue (upd headsg (announce 0)) bKnows
Just False
*Lies> isTrue (upd headsg (announce 0)) (K b (Neg bKnows))
Just True
*Lies> isTrue (upd tailsg (announce 1)) bKnows
Just False
*Lies> isTrue (upd tailsg (announce 1)) (K b (Neg bKnows))
Just True
*Lies> isTrue (upd headsg (announce 1)) bKnows
Just False
*Lies> isTrue (upd headsg (announce 1)) (K b (Neg bKnows))
Just True

Note that since we did not use the manipulative update to model player a’s
announcement (although it is easy to implement in DEMO, of course) the
resulting models are still S5-models.

Lies> isS5Model (upd headsg (announce 1))
True
Lies> isS5Model (upd headsg (announce 0))
True
Lies> isS5Model (upd tailsg (announce 1))
True
Lies> isS5Model (upd tailsg (announce 0))
True

This means that no actual misleading is taking place at all! This is actually
very plausible because player b knows that player a’s announcement might
very well be false. This shows that lying only creates false belief if the person
who lies is believed to be telling the truth.

74

Now we can use these action models to do a doxastic analysis of a game of
Liar’s Dice. The different possible games are:

1. Player a tosses tails and announces ‡Tail

2. Player a tosses heads and announces ‡Tail

3. Player a tosses tails and announces ‡Head and player b passes

4. Player a tosses tails and announces ‡Head and player b challenges

5. Player a tosses heads and announces ‡Head and player b passes

6. Player a tosses heads and announces ‡Head and player b challenges

The models for these games are:

game1, game2, game3, game4, game5, game6 :: EM
game1 = gsm (upd tailsg (announce 0))
game2 = gsm (upd headsg (announce 0))
game3 = gsm (upd (upd tailsg (announce 1)) pass)
game4 = gsm (upd (upd tailsg (announce 1)) challenge)
game5 = gsm (upd (upd headsg (announce 1)) pass)
game6 = gsm (upd (upd headsg (announce 1)) challenge)

We will now consider these six different cases in turn.

Game 1 is the game where player 1 tosses tails and admits this.

In this case both players stake one euro and player b wins the stakes, so
in the end player a lost one euro and player b won one euro. This can be
checked with DEMO:

*Lies> isTrue game1 (Eq (Reg c1) (ASum [I initCash1,I (-1)]))
Just True
*Lies> isTrue game1 (Eq (Reg c2) (ASum [I initCash2,I 1]))
Just True

Player b doesn’t get to know what the value of the coin was:

75

*Lies> isTrue game1 bKnows
Just False

The model for game 1 is:

*Lies> displayS5 game1
[0,1]
[p]
[R1,R2,R3,R4]
[(0,[]),(1,[p])]
[(0,[(R1,4),(R2,6),(R3,0),(R4,0)]),
(1,[(R1,4),(R2,6),(R3,0),(R4,0)])]

(a,[[0],[1]])
(b,[[0,1]])
[0]

A picture of this model is below. There are two worlds, one where the toss
was heads and one where it was tails. Player a can distinguish these worlds,
player b cannot because player b never got to see the coin. In both worlds
the cash of player a is 4 and that of player b is 6 euros, because the division
of the stakes doesn’t depend on the value of the coin. Reflexive arrows are
not shown.

0 :
p,R14, R26,
R30, R40

1 :
p,R14, R26,
R30, R40

b

Game 2 is the game where player a falsely announces ‡Head. Just like in
game 1, player a loses one euro and player b wins one euro, and player b
doesn’t get to know the value of the coin.

*Lies> isTrue game2 (Eq (Reg c1) (ASum [I initCash1,I (-1)]))
Just True
*Lies> isTrue game2 (Eq (Reg c2) (ASum [I initCash2,I 1]))
Just True
*Lies> isTrue game2 bKnows
Just False

76

The model for this game is almost the same as for game 1: the difference is
that now the world where p is true is actual instead of the world where p is
false.

*Lies> displayS5 game2
[0,1]
[p]
[R1,R2,R3,R4]
[(0,[]),(1,[p])]
[(0,[(R1,4),(R2,6),(R3,0),(R4,0)]),
(1,[(R1,4),(R2,6),(R3,0),(R4,0)])]

(a,[[0],[1]])
(b,[[0,1]])
[1]

The picture of this model (reflexive arrows not shown) is:

0 :
p,R14, R26,
R30, R40

1 :
p,R14, R26,
R30, R40

b

The third game is the case where player a tosses tails but falsely announces
‡Head and player b passes. In this case player a stakes two euros and player
b stakes one euro, and player a gets to keep the stakes, so the final payoff is
that player a wins one euro and player b loses one euro:

*Lies> isTrue game3 (Eq (Reg c1) (ASum [I initCash1,I 1]))
Just True
*Lies> isTrue game3 (Eq (Reg c1) (ASum [I initCash1,I 1]))
Just True

Player b passes, so the cup is never lifted and player b doesn’t know the
value of the coin:

*Lies> isTrue game3 bKnows
Just False

77

The model for this game is:

*Lies> displayS5 game3
[0,1]
[p]
[R1,R2,R3,R4]
[(0,[]),(1,[p])]
[(0,[(R1,6),(R2,4),(R3,0),(R4,0)]),
(1,[(R1,6),(R2,4),(R3,0),(R4,0)])]

(a,[[0],[1]])
(b,[[0,1]])
[0]

This model has the same two worlds as the models for game 1 and 2 except
for the changes in the player’s cash.

In the fourth game, player a tosses tails but falsely announces ‡Head and
player b challenges player a. This means that both players stake one extra
euro and then the cup is lifted and player b gets the stakes.

In this case player b does know the value of the coin:

*Lies> isTrue game4 bKnows
Just True

The payoffs are −2 euros for player a and 2 euros for player b:

*Lies> isTrue game4 (Eq (Reg c1) (ASum [I initCash1,I (-2)]))
Just True
*Lies> isTrue game4 (Eq (Reg c1) (ASum [I initCash1,I (-2)]))
Just True

The model for this game is:

*Lies> displayS5 game4
[0]
[p]
[R1,R2,R3,R4]
[(0,[])]
[(0,[(R1,3),(R2,7),(R3,0),(R4,0)])]
(a,[[0]])
(b,[[0]])
[0]

78

This model has only one world because none of the players consider any
other world possible, because both players know the values of the coin. In
this world p is false (because the toss was tails), player a’s cash is 3 euros
and player b’s cash is 7 euros. A picture of this model is below.

0 :
p,R13, R27,
R30, R40

The fifth game is the game where player a tosses heads and truthfully an-
nounces this and player b passes. In this case the cup isn’t lifted so player
b doesn’t know the value of the coin again:

*Lies> isTrue game5 bKnows
Just False

The payoffs are 1 for player a and −1 for player b:

*Lies> isTrue game5 (Eq (Reg c1) (ASum [I initCash1,I 1]))
Just True
*Lies> isTrue game5 (Eq (Reg c2) (ASum [I initCash2,I (-1)]))
Just True

The model for game 5 has two worlds again because player b doesn’t know
the value of the coin.

*Lies> displayS5 game5
[0,1]
[p]
[R1,R2,R3,R4]
[(0,[]),(1,[p])]
[(0,[(R1,6),(R2,4),(R3,0),(R4,0)]),
(1,[(R1,6),(R2,4),(R3,0),(R4,0)])]

(a,[[0],[1]])
(b,[[0,1]])
[1]

79

In game 6 player a tosses heads and truthfully announces this and player
b challenges player a. In this case both players add one extra euro to the
stakes, the cup is lifted and player a gets to keep the stakes. The model for
this has one world where p is true, player a has 7 euros and player b has 3
euros.

*Lies> displayS5 game6
[0]
[p]
[R1,R2,R3,R4]
[(0,[p])]
[(0,[(R1,7),(R2,3),(R3,0),(R4,0)])]
(a,[[0]])
(b,[[0]])
[0]

In this case player b knows the value of the coin and the payoffs are 2 euros
for player 1 and −2 euros for player 2:

*Lies> isTrue game6 bKnows
Just True
*Lies> isTrue game6 (Eq (Reg c1) (ASum [I initCash1,I 2]))
Just True
*Lies> isTrue game6 (Eq (Reg c2) (ASum [I initCash2,I (-2)]))
Just True

80

Bibliography

[BvEK06] J. van Benthem, J. van Eijck, and B. Kooi. Logics of
communication and change. Information and Computation,
204(11):1620–1662, 2006.

[CH00] Koen Claessen and John Hughes. QuickCheck: A lightweight
tool for random testing of Haskell programs. In Proc. Of Inter-
national Conference on Functional Programming (ICFP), ACM
SIGPLAN, 2000.

[DvESW07] Hans van Ditmarsch, Jan van Eijck, Floor Sietsma, and Yanjing
Wang. On the logic of lying. manuscript, CWI, 2007.

[Eijar] Jan van Eijck. Perception and change in update logic. In
Jan van Eijck and Rineke Verbrugge, editors, Games, Actions
and Social Software. Springer, 2011 (to appear).

[EWS10] Jan van Eijck, Yanjing Wang, and Floor Sietsma. Composing
models. In Wiebe van der Hoek, editor, Online Proceedings of
LOFT 2010, http://loft2010.csc.liv.ac.uk/, 2010.

[Ger99] J. Gerbrandy. Bisimulations on Planet Kripke. PhD thesis,
ILLC, Amsterdam, 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley Professional, 1995.

[J.E71] J.E.Hopcroft. An n log n algorithm for minimizing states in
a finite automaton. In Zvi Kohavi and Azaria Paz, editors,
Theory of Machines and Computations. Academic Press, 1971.

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. North
Holland and P. Noordhoff, 1952.

81

[Pla89] J. A. Plaza. Logics of public communications. In M. L. Emrich,
M. S. Pfeifer, M. Hadzikadic, and Z. W. Ras, editors, Proceed-
ings of the 4th International Symposium on Methodologies for
Intelligent Systems, pages 201–216, 1989.

[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement
algorithms. SIAM J. Comput., 16(6):973–989, 1987.

82

