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Abstract

One of the main problems in Discrete Tomography is the reconstruction of
binary matrices from their projections in a small number of directions. In
this thesis we consider a new algorithmic approach for reconstructing binary
matrices from only two projections. This problem is usually underdetermined
and the number of solutions can be very large. We present an evolutionary
algorithm for finding the reconstruction which maximises an evaluation func-
tion, representing the “quality” of the reconstruction, and show that the algo-
rithm can be successfully applied to a wide range of evaluation functions. We
discuss the necessity of a problem-specific representation and tailored search-
operators for obtaining satisfactory results. Our new search-operators can
also be used in other discrete tomography algorithms.



1 Introduction

Discrete Tomography (DT) is concerned with the reconstruction of a discrete
image from its projections. One of the key problems is the reconstruction
of a binary (black-and-white) image from only two projections, horizontal
and vertical (see Figure 1). In 1957 Ryser [20] and Gale [8] independently
derived necessary and sufficient conditions for the existence of a solution.
Ryser also provided a polynomial time algorithm for finding such a solution.
However, the problem is usually highly underdetermined and a large number
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Figure 1: A binary image with its horizontal and vertical projections

of solutions may exist [26].
Among the applications of discrete tomography are the reconstruction of
crystal lattices from projections obtained by electron microscopy [14, 22] and
the reconstruction of angiographic images in medical imaging [19, 23]. In such
applications the projection data are the result of measurements of a physical
object and we are interested in finding a reconstruction which resembles the
original image as closely as possible, not just one that corresponds to the
given projections. Therefore it is necessary to use all available information
about the class of images to which the measured image belongs.
For certain classes of highly-structured images, such as hv-convex polyomi-
noes (the black pixels in each row and column are contiguous), polynomial-
time reconstruction algorithms exist (see, e.g., [2, 3]). On the other hand,
there are classes of images, such as the more general class of hv-convex images
(which may consist of many separate polyominoes), for which the reconstruc-
tion problem is NP-hard (see [16]).
Instead of assuming specific properties of the image structure, we will focus
on a more general approach. Suppose that we are able to define an evaluation
function, which assigns a value to each of the solutions, reflecting how good
a particular solution is in our context. An algorithm that maximises the
evaluation over the set of all solutions will then yield the most desirable
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solution.
As an example, consider the class of hv-convex images. Suppose that the
unknown original image belongs to this class. In [5] it is shown that when
we define the evaluation of an image to be the number of neighbouring pairs
of black pixels (either horizontal or vertical), the evaluation function is min-
imised by a reconstruction that has the prescribed projections if and only if
the reconstruction is also hv-convex. Similarly, we can define an evaluation
function for the reconstruction of hv-convex polyominoes, where we subtract
a large penalty if the image consists of more than one polyomino.
Probably of greater practical relevance is the case where the measured object
can be considered to be a random variable, sampling from a certain known
distribution. In this case the evaluation function reflects the likelihood that
the image is a random sample from this distribution.
Finally we remark that the NP-hard problem of reconstructing binary im-
ages from more than two projections, including the horizontal and vertical
projections, fits in our model as well. Define the projection deviation of an
image to be the total difference (as a sum of absolute values) between the
image’s projections and the prescribed projections. Because we only deal
with maximisation problems, we use the negated projection deviation as the
evaluation function.
The flexibility of our model comes at a price. The problem of maximising
the evaluation function over the set of all solutions is NP-hard, which fol-
lows directly from the NP-hardness of the problem of reconstructing binary
images from more than two projections (see [9]). In order to deal with this
intractability, we resort to the use of modern approximation algorithms. Sev-
eral preliminary experiments with different algorithms resulted in the choice
for an evolutionary algorithm.
In Section 3 we discuss the choices that we made in designing the algorithm.
Because the problem at hand has a natural binary encoding it seems attrac-
tive to apply a classical genetic algorithm (GA) (see [18]), using the bitstring
representation. For several reasons however, this does not lead to good re-
sults. We will discuss the problem features that cause the application of
classical GA’s to be inadequate and introduce new problem-specific muta-
tion and crossover operators. We discuss the necessity of using a hillclimb
operator as a post-mutation and post-crossover operator for improving the
solution quality.
Section 4 presents our experimental results. The results clearly show that our
algorithm can be successfully applied to a wide range of evaluation functions,
making it very versatile.
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2 Preliminaries

We will now introduce some notation and define the DT problem mathemat-
ically. Parts of our algorithm are based on well-known theoretical results,
which we will summarise. We assume that the reader is familiar with the
theory of network flows and the basic principles of evolutionary algorithms.

Throughout this thesis we will assume that all binary matrices are of size
m × n. We consider the problem of reconstructing a binary matrix from its
horizontal and vertical projections.

Definition 2.1 Let R = (r1, . . . , rm) and S = (s1, . . . , sn) be nonnegative
integral vectors. We denote the class of all binary matrices A = (aij) satis-
fying

n
∑

j=1

aij = ri, i = 1, . . . , m,

m
∑

i=1

aij = sj, j = 1, . . . , n,

by A(R, S). The vectors R and S are called the row and column projections
of any matrix A ∈ A(R, S).

Because DT is strongly related to digital image processing we often refer to
binary matrices as images and call the matrix entries pixels with values black
(1) and white (0).

From this point on we assume that the row and column projections are con-
sistent, meaning that A(R, S) is nonempty. In particular, this implies that
∑m

i=1 ri =
∑n

j=1 sj. Necessary and sufficient conditions for the nonemptiness
of A(R, S) are given in [15].

One of the basic problems in DT is the reconstruction problem:

Problem 2.2 Let R and S be given integral vectors. Construct a binary
matrix A ∈ A(R, S).

Because the number of possible solutions of the reconstruction problem can
be very large it is necessary to impose additional properties on the solution
being sought. In this thesis we consider the following problem:
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Problem 2.3 Let R and S be given integral vectors and let f : A(R, S) → Z

be a given evaluation function. Find a binary matrix A ∈ A(R, S) such that
f(A) is maximal.

Although in Problem 2.3 the domain of f is restricted to the class A(R, S),
f is usually defined on the entire set {0, 1}m×n.

The notion of switching components plays an important role in the charac-
terisation of the class A(R, S).

Definition 2.4 Let A ∈ A(R, S). A switching component of A is a 2 × 2
submatrix of the form

(

1 0
0 1

)

or

(

0 1
1 0

)

.

Switching components have the property that if we interchange the 0’s and
1’s, the projections do not change. We call such an interchange operation
an elementary switching operation. An important theorem of Ryser [21]
describes how the class A(R, S) is characterised by a single element of this
class and the set of switching components:

Theorem 2.5 Let A ∈ A(R, S). There exists B ∈ A(R, S), B 6= A, if
and only if A contains a switching component. Moreover, if such a matrix
B exists, then A can be transformed into B by a sequence of elementary
switching operations.

We remark that every matrix B that is the result of applying a sequence of
elementary switching operations to A is also in A(R, S). The fact that we
can transform a matrix in A(R, S) into any other matrix having the same
projections by means of elementary switching operations, makes the use of
elementary switching operations very suitable for local search procedures. In
our evolutionary algorithm, we make extensive use of these operations.

An important operation in our algorithm is the computation of matrices in
A(R, S), given R and S. We use a network flow approach for computing
these matrices, which was first introduced by Gale [8]. First, we construct
a directed graph N . The set V of nodes consists of a source node S, a
sink node T , one layer V1, . . . , Vm of nodes that correspond to the image
rows (row nodes) and one layer W1, . . . , Wn of nodes that correspond to the
image columns (column nodes). The set A of arcs consists of arcs (S, Vi) for
i = 1, . . . , m, arcs (Vi, Wj) for i = 1, . . . , m, j = 1 . . . , n, and arcs (Wj, T ) for
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Figure 2: A 3 × 3 image instance and its corresponding network flow

j = 1, . . . , n. We remark that the two layers of row nodes and column nodes
form a complete bipartite graph.
We also define a capacity function C : A → N0 which assigns an integral
capacity to every arc. All arcs between a row node and a column node are
assigned capacity 1. We will denote these arcs as pixel-arcs, because each of
them corresponds to a single, unique pixel of the image (determined by the
row and column). The prescribed projections determine the capacities of the
arcs from the source node and the arcs to the sink node. Every arc (S, Vi)
has capacity ri and every arc (Wj, T ) has capacity sj. Figure 2 shows the
network N for an example 3 × 3 image.
It is well-known that a maximum flow from S to T can be found in polyno-
mial time. From the theory of linear programming we know that there is a
maximum flow which is integral. Suppose that this maximum flow fully sat-
urates all outgoing arcs from the source (and all incoming arcs towards the
sink). Every pixel-arc carries a flow of either 0 or 1. Assign a 1 to pixel (i, j)
if arc (Vi, Wj) carries a flow of 1 and assign 0 otherwise. It is easy to verify
that the resulting image has the prescribed projections in both directions.
Conversely, if the horizontal and vertical projections are consistent, i.e., there
is an image that satisfies them, the network must have a maximal flow that
saturates all outgoing arcs from the source. We see that the problem of find-
ing a maximum integral flow in N is equivalent to the reconstruction problem.
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We can use algorithms for solving the max flow problem to compute solutions
of the DT reconstruction problem. In our case we want to impose additional
requirements on the resulting image. In particular, given a binary image
M ∈ {0, 1}m×n, we want to find the binary image A ∈ A(R, S) that differs
from M in as few pixels as possible. We will refer to M as the model image.

Problem 2.6 Let R and S be given integral vectors and let M = (mij) be a
given binary matrix. Find A = (aij) ∈ A(R, S) such that

m
∑

i=1

n
∑

j=1

|mij − aij|

is minimal.

Problem 2.6 can be solved efficiently using an extension of the network flow
model, incorporating a cost function. We assign a cost cij = −mij to every
arc (Vi, Wj). The remaining arcs are all assigned a cost of 0. The process
of finding a maximum flow of minimal cost now comes down to finding an
integral flow that saturates the maximum number of pixel-arcs for which the
corresponding model image pixel has value 1. In other words, if A is the
image that corresponds to the maximal flow of minimal cost, then A has as
many 1’s in common with M as possible.

For any matrix B = (bij) ∈ {0, 1}m×n, denote the number of 1’s in B by nB.
Suppose that B ∈ A(R, S). Clearly, we have nB =

∑m
i=1 ri =

∑n
j=1 sj. Put

vB = |{(i, j) : bij = 1 ∧ mij = 1}|.

Then

|{(i, j) : bij 6= mij}| = (nB − vB) + (nM − vB) = nB + nM − 2vB,

so
|{(i, j) : bij = mij}| = mn − (nB + nM − 2vB),

which shows that maximising the number of common 1’s between B and M
is equivalent to solving Problem 2.6, because mn, nB and nM are constant
for B ∈ A(R, S). Numerous standard algorithms are available for solving
the min cost max flow problem in polynomial time. We can use any of these
algorithms for solving Problem 2.6.
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3 Algorithmic approach

3.1 Overview of the approach

Because finding a reconstruction that maximises the evaluation function is an
NP-hard problem, we have to resort to approximation algorithms. In prelim-
inary experiments we implemented and tested several approaches, based on
simulated annealing [1], tabu search [10] and evolutionary algorithms [24].
We found that simulated annealing and tabu search, which only use local
search operators, are not well suited for this task. The main reason for this
is that the DT problem usually has a great number of local optima and mov-
ing between different optima may require a large number of “uphill” steps.
Evolutionary algorithms can handle this problem in two ways. Firstly, the
algorithm uses a diverse population of candidate solutions, instead of a sin-
gle solution. Secondly, the crossover operator is capable of performing large
steps in the search space.
Because the problem at hand allows for a natural bitstring representation of
candidate solutions it fits directly into the framework of classical genetic al-
gorithms on bitstrings. Simply use {0, 1}mn as the candidate solution space.
We now have two optimisation criteria, the evaluation function and the de-
viation from the prescribed projections.
We found this approach to be inadequate for several reasons. In the first
place, the crossover operator usually results in candidate solutions that de-
viate greatly from the prescribed projections. This is particularly com-
mon when the two parent solutions have many differences. This behaviour
makes the crossover operator hardly effective at all, reducing the algorithm
to a simple hillclimb procedure that only uses mutation to improve upon
the solutions. In addition, the most common crossover operators, single-
point crossover and uniform crossover, do not take into account the two-
dimensional spatial structure of the candidate solutions. Intuitively, build-
ing blocks for this problem are made up of regions of pixels, not necessarily
horizontally or vertically aligned. A problem-specific operator could benefit
from this structure.
We have designed a problem-specific evolutionary algorithm to overcome the
disadvantages of the classical GA. Instead of optimising over all bitstrings
in {0, 1}mn, the algorithm optimises exclusively over A(R, S). At the end of
each generation all candidate solutions have the prescribed horizontal and
vertical projections. This requires a new crossover operator, that is not only
capable of mixing features from both parents, but also of ensuring that the
produced children adhere to the prescribed projections. Similar requirements
apply to the mutation operator.
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generate initial population P0 of size λ, consisting of matrices in A(R, S);
perform a hillclimb operation on each matrix in P0;
t := 0;
repeat

P ′

t = ∅;
for i := 1 to µ do

begin

generate a child matrix C, by crossover or mutation;
perform a hillclimb operation on C;
P ′

t := P ′

t ∪ {C};
end;
select new population Pt+1 from Pt ∪ P ′

t ;
t := t + 1;

until (stop criterium has been met);
output the best individual found;

Figure 3: Outline of the evolutionary algorithm

Our algorithm is a memetic algorithm (see [4]): after every crossover or
mutation operation a stochastic hillclimb is performed until the solution has
reached a local optimum. In this way, individuals always represent local
optima in the search space. We chose this approach, because although the
proposed crossover operator generates children that have the prescribed pro-
jections, the children are often of inferior quality with respect to the eval-
uation function (when compared to the parents). In order to fully exploit
the explorative power of the crossover operator, the hillclimb procedure in-
creases the solution quality while still remaining quite close to the solution
that resulted from the crossover operation. Another reason for choosing this
approach is that our crossover and mutation operators are computationally
expensive operations. Memetic algorithms typically require only a small
number of generations (while performing a lot of work for each generation).
Figure 3 summarises our algorithm. The parameters λ and µ are the popu-
lation size and the number of children that are created in each generation,
respectively. In the next sections we will describe the various operators in
more detail.
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while (there are border cells) do

begin

randomly select a border cell (x, y);
mark all unassigned neighbouring cells of (x, y) as border cells;
assign these cells to the same parent as (x, y);
remove the border status of (x, y);

end

Figure 4: Main loop of the procedure that generates the crossover mask.

3.2 A new crossover operator

The crossover operator is one of the main parts of our algorithm. The in-
put of the operator consists of two parent images. The output is a child
image, which has certain features from both parents. Because all images in
the population are members of A(R, S), the resulting image should have the
prescribed projections. In order to enforce this constraint, we use the net-
work flow formulation of the DT problem.
First, a crossover mask X = (xij) ∈ {0, 1}m×n is computed, which deter-
mines for each pixel from which parent image it inherits. In the following
description, assigning cell (i, j) to the first parent means setting xij = 0
and assigning cell (i, j) to the second parent means setting xij = 1. By
neighbouring cells of a cell (i, j) we mean the four horizontal and vertical
neighbours. As discussed in Section 3.1 we want the crossover operator to
take the spacial structure of our image into account. Therefore the crossover
mask should assign areas of the image to each of the parents. We use the
following procedure for realising this. First, one random cell is selected in
each of the four quadrants. Two (randomly chosen) of those cells are as-
signed to the first parent, the other two are assigned to the second parent.
The four cells are marked as border cells. Next, the algorithm enters a loop,
show in Figure 4. Because the first four border cells are each in a different
quadrant, this procedure results in a crossover mask that roughly assigns the
same number of cells to both parents.
From the crossover mask and both parent images P = (pij) and Q = (qij), a
model image M = (mij) is computed, as follows:

mij =

{

pij if xij = 0
qij if xij = 1

9



a. first parent b. second parent

second parent

first parent

c. crossover mask

d. model image e. child before hillclimb f. child after hillclimb

a. first parent b. second parent

second parent

first parent

c. crossover mask

d. model image e. child before hillclimb f. child after hillclimb

Figure 5: The crossover operator combines two parent images into a child
image.
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Subsequently, we construct the child image C by solving Problem 2.6, using
M as the model image. This will result in a child image that is in A(R, S),
resembles the first parent in a certain part and resembles the other parent
in the rest of the image. Figure 5 shows two parent images (having the
same projections), a crossover mask, the corresponding model image and the
resulting child image. In this example, we use the number of neighbouring
pairs of black pixels as the evaluation function. Although the child image
resembles both parents in their corresponding parts, it is clear that the child
image is far from a local optimum with respect to the evaluation function. To
ensure that the child image has sufficient quality, we apply a local hillclimb
operator after the crossover operation.

3.3 The hillclimb operator

The hillclimb operator applies a sequence of small modifications, all of which
increase the evaluation function, until a local optimum is reached. Because
we want the resulting image to be in A(R, S), we use elementary switching
operations as local steps. The outline of the procedure is shown in Figure
6. It is of great importance that the switching component in each step is
chosen randomly among all those yielding an increase of the evaluation func-
tion. We have performed experiments with implementations for which this
was not the case: the search for switching components always started in the
topleft corner and proceeded from left to right, top to bottom. However, this
introduces a bias in the hillclimb process, resulting in “skew images”, clearly
showing the consequences of the biased operator.
Although the hillclimb operation can be easily described, its implementation
offers several computational challenges. Finding all applicable switching com-
ponents (switching components that are present in the image) is an O((mn)2)
operation, making it computationally expensive. Although the number of ap-
plicable switching components is also O((mn)2), it is usually much smaller.
We store all applicable switching components in a hash table. Switching

while (a switching operation that can improve the evaluation exists) do

begin

randomly select such a switching operation;
apply the switching operation;

end

Figure 6: Outline of the hillclimb procedure.
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(1,3)−(2,5)

hash value = 1 2 3 4

count = 2 1 3 1

accum. count = 2 3 6 7

5th element

(2,5)−(4,7) (1,2)−(4,4)

(4,3)−(6,7)

(1,1)−(3,6)

(4,2)−(5,3) (6,5)−(7,6)

Figure 7: The hash table of switching components is extended to allow binary
search for an indexed element.

components are stored as two integer-pairs: (top-left, bottom-right). We can
use the hash table to iterate over all applicable switching components. The
search efficiency of hash tables is required to update the datastructure after
a switching operation has been applied by first removing all switching com-
ponents containing any of the four pixels involved and subsequently adding
all new switching components that contain any of those four pixels. If the
hash table is large enough we can perform this update operation in O(mn)
time.
A second operation that our datastructure must support is efficient selection
of a randomly chosen element. Each hash table entry points to a linked list of
switching components. In a separate array, we store the number of switching
components that reside in each list. In another array, we compute the ac-
cumulated number of switching components, up to and including that entry.
Using this information, we can efficiently find the ith element in the hash
table, given any index i: first perform a binary search to find the right table
entry and then perform a (tiny) linear search to find the actual switching
component. Figure 7 illustrates the approach.

Figure 8 shows a more precise formulation of the hillclimb operator. In
every iteration of the outer loop the evaluation of the image is increased.
If the evaluation function is bounded from above and from below (as is the
case for the evaluation functions we consider in more detail), these bounds
yields a bound on the number of iterations of the outer loop. Note that the
evaluation function of Problem 2.3 is discrete.
As the evaluation of the solution increases, the number of iterations in the
inner loop until an improvement is found will generally increase. Because
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initialize the hash table, storing all s applicable switching components;
repeat

initialise the accumulated count array;
generate a random permutation π of 1, . . . , s;
for i := 1 to s do

begin

find switching component πi in the hash table;
if (applying πi increases the evaluation) then

begin

apply πi;
update the hash table;
break out of the for-loop and restart in the outer loop;

end;
end;

until (no improving switching component has been found);

Figure 8: The hillclimb procedure.

the efficiency of the inner loop contributes greatly to the efficiency of the
hillclimb procedure we want to make the inner loop as efficient as possible.
To improve efficiency, we can use the fact that for many evaluation functions
the evaluation function after application of a switching component does not
have to be computed from scratch, but can be derived from the previous
evaluation (delta updating). It is essential to exploit this feature, because the
inner loop is executed so often. Despite the performance optimisations that
we proposed, the hillclimb procedure is still the bottle-neck for the runtime
of our algorithm.

3.4 The mutation operator

Besides the crossover operator, our algorithm also uses a mutation operator.
This operator “distorts” a region of the image, while still adhering to the
prescribed projections. The mutation operator is composed of several algo-
rithmic steps, very similar to the crossover operator. Instead of the crossover
mask, a mutation mask X = (xij) ∈ {0, 1}m×n is computed. First, a ran-
dom number k ∈ [kmin, kmax] and a random cell (i, j) are selected. We assign
xij = 1 and mark (i, j) as border cell. Subsequently, a similar procedure as in
Figure 4 is executed. In this case however, the loop is only executed k times.
All cells that are still unassigned after the loop terminates are assigned 0 in
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a. parent

not inverted

inverted

b. mutation mask

c. model image d. child before hillclimb e. child after hillclimb

Figure 9: The mutation operator transforms a parent image into a child
image.

the mutation mask.
From the mutation mask X and a parent image P , a model image M = (mij)
is computed by assigning mij = pij if xij = 0 and assigning mij a random
value (0 or 1) if xij = 1. In other words, the mutation mask determines
which part of the parent image will be distorted in the model image.
After the model image has been computed, the same steps are performed as
for the crossover operator: Problem 2.6 is solved using the weight mask as M .
Subsequently, the hillclimb operator is applied, yielding the child individual.
Figure 9 shows the the different steps of the mutation operator. As the figure
shows, there may be differences between the child and the parent individual
outside the distorted region, as a result of the projection constraints.

3.5 Algorithm details

In this section we address several details of our evolutionary algorithm that
have not been discussed in the preceding sections.
The initial population is generated by repeatedly solving Problem 2.6, each
time using a new random binary matrix as the weight mask M . Although
this procedure does not generate all matrices in A(R, S) with equal proba-

14



bility, it leads to sufficient diversity in the initial population.
The algorithm is designed to work with a variety of evaluation functions.
Therefore, using selection operators that use the evaluation value directly,
such as roulette wheel selection, is not practical. We use tournament se-
lection, because it is independent of the actual evaluation values (it only
depends on their ordering) and because the selective pressure can be ad-
justed easily, by changing the tournament size.
The probabilities of crossover vs. mutation are adjusted dynamically after
each generation. For every generated child image, the algorithm keeps track
of the operator that generated it. It also counts the number of children gen-
erated by crossover (ac) and by mutation (am). After the new population
has been selected, the algorithm counts the number of individuals in the
new population that were created by crossover (bc) and by mutation (bm).
From these numbers the average crossover yield yc = bc/(ac + 1) and muta-
tion yield ym = bm/(am + 1) are computed. (We add 1 to the denominator
to avoid division by zero). The probability that a child will be generated
through crossover in the next generation is set to yc/(yc + ym). In this way,
the algorithm creates more children by crossover in the generation when the
crossover operation in the current generation creates children of high quality.
An explicit lower- and upperbound for yc are used: 0.1 < yc < 0.9. If the
computed value of yc is outside these bounds, it is adjusted.
According to Section 3.4, the mutation operation randomly selects an inte-
ger k in the interval [kmin, kmax]. For all experiments in Section 4 we used
kmin = mn/64 and kmax = 5 × mn/64.
Because the algorithm can be used with many different evaluation functions,
it is difficult to design a universal termination condition. For some specific
problems, such as the reconstruction from three projections, an upper bound
on the evaluation function value is known in advance and the algorithm can
terminate as soon as an individual having that evaluation is found. For such
problems, having solutions for which optimality can easily be checked, sepa-
rate termination procedures can be implemented in our system. In general,
however, the algorithm terminates when no improvement on the best solu-
tion so far has been found in the last 20 generations.
As indicated in Figure 3 the selection procedure selects individuals for the
new population from both the old population and the group of new children.
Individuals are allowed to be selected more than once for the new popula-
tion. We performed experiments to find the best values for the population
size λ and the number of children µ that is created in each generation. We
found that our algorithm performs best when λ > µ, and with a large popu-
lation. For all the experiments in Section 4 we used λ = 1000, µ = 500 and
a tournament size of 3.
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4 Computational results

We have implemented our algorithm in C++, using the gcc compiler. The
implementation is fully object oriented. By using inheritance and virtual
methods, different evaluation functions can be used without modifying the
algorithm code. The evolutionary algorithm uses a base class Individual to
represent a member of the population (a single image). For each evaluation
function we implemented a derived class, which computes the evaluation
function and performs delta updating computations. In this way new evalu-
ation functions can be added with very little extra coding effort and without
modifying existing code.
For the implementation of the network flow algorithm we used the MCFClass
library [7]. The source code of our algorithm (except the MCF library) is
available from the author.
All our experiments were run on a Pentium IV 2800MHz PC with 512Mb of
memory. We performed experiments with several evaluation functions. The
evaluation functions are very different from each other, in order to demon-
strate the versatility of the problem model and the algorithm. The experi-
mental results are intended to demonstrate the feasibility and flexibility of
our approach, not to provide extensive results on each of the individual prob-
lems that we consider.

4.1 Reconstruction of hv-convex images

The first class of test images consists of hv-convex images. Using methods
from [13] we generated 10 hv-convex images of size 40 × 40. Each image
consists of three or four hv-convex objects. There are no empty horizontal
or vertical lines between the objects. The test images are shown in Fig-
ure 10. For this image class, the evaluation function is the total number of
neighbouring black pixels (horizontal and vertical). We performed ten test
runs for each of the images. Table 1 shows the results. The table shows the
number of runs that achieved a perfect reconstruction, the average runtime
of the algorithm (in minutes) and the average number of generations after
which the best reconstruction was found. When the algorithm did not find a
perfect reconstruction, the reconstruction was always very different from the
original image. Therefore, we do not report solution quality for those cases.
In the cases that the algorithm did not find the optimal solution, it con-

verged to a local optimum. Figure 11 demonstrates the difficulties involved in
this optimisation problem. It shows the second test image, having 155 neigh-
bouring black pixels, and another locally optimal image having the same
projections and 175 neighbouring black pixels. The images are very dissimi-
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10)

Figure 10: hv-convex test images
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image 1 2 3 4 5 6 7 8 9 10

#perfect 9 5 8 8 9 6 6 6 6 9
avg.time (m) 25.6 16.6 15.5 8.8 8.5 10.8 17.7 17.7 8.8 15.7
avg. #gen. 24.6 17.3 18.5 14.8 15.8 18.5 30.2 15.0 21.0 23.6

Table 1: Reconstruction results for the set of hv-convex images

lar, except for the object in the center. This problem is due to the presence
of large blocks of switching components.

Figure 11: Two locally optimal images having the same projections, yet being
very dissimilar.

4.2 Reconstruction from three projections

The second group of test images are phantom images from [6]. These images
have been used as test images in several publications ([11], [17]). In this case
we reconstruct the images from three projections: horizontal, vertical and
diagonal (top left to bottom right). The evaluation function to be maximised
is the negated total deviation of the image’s diagonal projection from the
prescribed projection (as a sum of absolute values). The three test images
and their reconstructions are shown in Figure 12. We performed a single test
run for each of the images. The first two images were reconstructed perfectly
(the reconstruction was equal to the original image) within 8 seconds. For the
third image, however, the algorithm did not find a reconstruction with the
given diagonal projection. The resulting reconstruction has a total difference
of 4 from the prescribed diagonal projection, and took 30 seconds to compute.
The main strength of our algorithm is its flexibility. All test images are
completely 4-connected and have no “holes” in them. When we assume this
as a priori information, we can incorporate it in the evaluation function.
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(1) 29 × 46 (2) 26 × 41 (3) 36 × 42

Figure 12: Three phantom images and their reconstructions.

For an image A, put

f(A) = −c × d(A) + b(A)

where d(A) denotes the total difference between the diagonal projection of
A and the prescribed projection, b(A) denotes the total number of pairs of
neighbouring black pixels in A and c is a large constant. Maximising f(A)
will result in the reconstruction that satisfies the prescribed diagonal projec-
tion and has as many neighbouring black pixels as possible. Using this new
evaluation function, the algorithm reconstructed the original images perfectly
within one minute, even the third image. This experiment shows that recon-
structions from three projections can be very accurate if appropriate a priori
information is used and that such information can easily be incorporated in
our algorithm.

4.3 Reconstruction using Gibbs priors

Figure 13: The eight patterns having a nonzero local energy.

The third evaluation function involves a probability distribution, known
as a Gibbs distribution. A method for using Gibbs priors in the reconstruc-
tion process was presented in [17]. We use similar definitions. We assume
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(1) (7, 7, 15, 15, 1.2) (2) (7, 7, 15, 15, 1.2) (3) (7, 7, 15, 14, 1.2)

Figure 14: Three samples from Gibbs distributions.

that the original image is a random sample of a certain known probability
distribution. Let Π be such a probability distribution, on the set {0, 1}m×n,
which determines for each matrix the probability that it is sampled. The
probability Π(A) of a matrix A is given by

Π(A) =
1

Z
eβ

Pm
i=1

Pn
j=1 Iij(A).

Here, Z is a normalising factor, β is a parameter defining the “peakedness”
of the distribution and Iij(A) is the local energy function of cell (i, j). The
local energy function of a cell is determined by the value of the cell and each
of its eight neighbours. Border pixels, which have less than eight neighbours,
are treated as if the lacking neighbours are white. Figure 14 shows the eight
patterns that have nonzero local energy: homogeneous white and black, hor-
izontal and vertical edges, and four corners. The corresponding local energy
values are kw, kb, ke and kc respectively. We denote a Gibbs distribution by
the 5-tuple (kw, kb, ke, kc, β), which we call the parameters of the distribution.
As we know that the original image is a random sample from the given Gibbs
distribution, we want to find a reconstruction that has maximal likelihood.
We remark that this reconstruction is not guaranteed to be equal to the orig-
inal image.
Maximising Π(A) is equivalent to maximising E(A) =

∑m
i=1

∑n
j=1 Iij(A),

since Π(A) is a monotonously increasing function of E(A). Computing E(A)
involves only the known five parameters of the distribution and the image A,
we do not need to compute Z.
We implemented a Metropolis algorithm, described in [17], for generating ran-
dom samples from Gibbs distributions. Three such samples of size 30 × 30
and their parameters are shown in Figure 14. The reason that we selected
three images, instead of showing results for a large number of images, is that
many generated images are not tomographically challenging. For example,
many contain several lines that only consist of black or white pixels. The
fact that all three images consist of lines and blocks of four pixels is due to
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the selected patterns in Figure 13. Different patterns lead to other types of
images. As our goal here is to illustrate the feasibility of our approach, we
only show results for this set of patterns. We performed 10 test runs for each
of the three images. Table 2 shows the reconstruction results. For the third
image, the algorithm actually found a reconstruction that is slightly differ-
ent from the original image, but has higher likelihood. We still marked this
reconstruction as a perfect reconstruction. The results show clearly that per-
fect reconstruction from only two projections and a given Gibbs distribution
is possible in nontrivial cases.

image 1 2 3

#perfect 10 5 10
average time (m) 16.4 19.5 14.4

average #generations 17.3 36.8 20.1

Table 2: Reconstruction results for the Gibbs samples.
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5 Solving Japanese puzzles

Japanese puzzles are a form of logic drawing : the puzzler gradually makes a
drawing on a grid, by means of logical reasoning. They are very popular in
the Netherlands nowadays and are sold at every newspaper-stand.
Similar to the two-projection DT problem, the puzzler is provided with in-
formation about the horizontal and vertical arrangement of the black pixels
along every line. Figure 15 shows an image and its corresponding horizontal
and vertical description. For each line, the description indicates the size of
the segments of consecutive black pixels, in the order in which they appear
on the line.
The problem of solving Japanese puzzles is NP-complete. Several complexity
results concerning Japanese puzzles, which are also known as nonograms,
were derived in [25].
As summation of the segment sizes of a line yields the total number of black
pixels on that line, Japanese puzzles can be considered to be a special form of
the DT problem, in which extra a priori information is available. Therefore,
it seems natural to consider Japanese puzzles as an instance of Problem 2.3,
which was first suggested by Walter Kosters. However, before our algorithm
can be applied, a suitable evaluation function has to be defined.
We regard this problem as a minimisation problem. The evaluation function
should reflect the deviation of a given image from the horizontal and vertical
descriptions. We consider this deviation separately for each (horizontal or
vertical) line. We can then obtain an evaluation function for the whole image
by summation of the deviations of all lines. The minimal deviation possible,
0, should correspond to a solution of the puzzle.
From this point on, we will refer to the set of given line descriptions as
the prescribed description and to the description of an actual image as the
description of the image.
A very coarse way to compute the deviation ds(`) of a given line of pixels `
from its prescribed description s is given by

ds(`) =

{

0 if ` corresponds to s
1 otherwise

The resulting evaluation function does indeed have a minimal value of 0, when
the image adheres to the prescribed description along all lines. However, the
function ds does not provide much information to the algorithm if ` deviates
from its description. In order for the evolutionary algorithm to be succesful,
the evaluation values should lead the algorithm to an optimal solution as
gradually as possible.
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Figure 15: Top: an image and its line descriptions. Bottom: the correspond-
ing Japanese puzzle.

23



A different approach is to let ds be a measure of the difference between s
and the actual description of `, providing more information to the algorithm
than the coarse approach. This brings up several difficulties. It is not easy
to see how this difference could be defined exactly. One possibility is to con-
sider joining two adjacent segments, or splitting a segment into two separate
segments, as elementary operations and count the minimum number of such
operations that can transform one description into another. This method has
the disadvantage that two segments that are adjacent in the description may
be separated by a large number of white pixels in the actual line. In such a
case, the operation of joining segments does not make sense. The value of all
pixels on the line is known, so it does not seem to be a good idea to throw
away this information and only work with the descriptions.
Ideally, the function ds should make full use of all information available:
the value of the pixels on ` and the prescribed description s of `. Let
(`1, `2, . . . , `k) be the pixel values of ` (where k = n if ` is horizontal, k = m
if ` is vertical). We call the operation of changing the value of one pixel of `
a bitflip operation. We now define ds(`) to be the minimal number of bitflip
operations that are required to make ` conform to s.
This definition of ds has several advantages. Firstly, it is a very intuitive way
of defining the “distance” between a given line of pixels and its prescribed
description and it uses all available information. If a line ` adheres to its
description s, we have ds(`) = 0, as desired.
Secondly, ds has the property that performing a single bitflip operation on
`, yielding a line `′, can change the value of ds by no more than 1. For
example, if ds(`

′) > ds(`) + 1 there is a contradiction, because repeating the
bitflip operation on `′ (yielding `) and subsequently applying bitflips on ` so
that it conforms to s only takes ds(`) + 1 bitflip operations. In a discrete
sense, ds can be regarded as a continuous function of `.
Surprisingly, ds(`) can be computed quite efficiently by means of dynamic
programming. Suppose that the prescribed description s of ` consists of h
segments of black pixels, (s1, . . . , sh). Without loss of generality, we may
assume that ` starts and ends with a white pixel: adding white pixels at the
beginning or end of a line does not change its description.
We define a line segmentation ˆ̀= (ˆ̀1, . . . , ˆ̀

2h+1), corresponding to the num-
ber h of black segments in s:

ˆ̀
i =

{

0 (white) if i is odd
1 (black) if i is even

The entries of the line segmentation correspond to the alternating black and
white segments in the description (where we consider the white segments to
be implicitly present). Figure 16 shows a line description s, its corresponding
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1 3 4 1

Figure 16: A line description (top), the corresponding line segmentation
(middle), and an actual line that adheres to the description (bottom). The
arrows indicate the links between the line and the segmentation.

line segmentation ˆ̀ and a realisation of s, which is a line ` that adheres to s.
The arrows indicate for each pixel of ` to which entry of ˆ̀ it corresponds. If
pixel i corresponds to entry j of ˆ̀, we say that pixel i is linked to entry j of
the line segmentation. We call the corresponding mapping L : {`1, . . . , `k} →
{ˆ̀

1, . . . , ˆ̀
2s+1} a link mapping.

If ` does not correspond to s, we can also link every pixel i consecutively to
an entry j of ˆ̀. In that case, however, there are pixels in ` that do not match
the colour of the entries of ˆ̀ to which they are linked. A bitflip operation
will have to be applied to these pixels in order to make ` conform to ˆ̀, with
the given links.
Valid link mappings must satisfy several requirements: consecutive pixels
should be linked either to the same entry of ˆ̀ or to consecutive entries of ˆ̀.
The number of pixels linked to each black entry ˆ̀

j must be sj/2. There must

be at least one pixel linked to each white entry of ˆ̀.
A valid partial link mapping from (`1, . . . , `i) to (ˆ̀1, . . . , ˆ̀

j) satisfies the same
requirements as a total valid link mapping. In addition, if pixel i is linked to
a black entry ˆ̀

j, the pixels (`i−sj/2+1, . . . , `i−1) should also be linked to entry
j.
We now introduce the function δ : (1, . . . , k) × (1, . . . , 2h + 1) → N. The
function value δ(i, j) is the minimal number of bitflip operations, over all
valid partial link mappings from (`1, . . . , `i) to (ˆ̀1, . . . , ˆ̀

j), that has to be
applied to ` in order to make it conform to the partial link mapping (so that
all pixels have the same colours as the entries to which they are linked). We
remark that δ(k, 2h + 1) is the minimal number of bitflip operations that is
required to transform ` into a line that adheres to s.
The function δ can be represented by a table. For computing the entries of
the table we use two recursive relationships. Let b(i1, i2) be the total number
of black pixels in (`i1, . . . , `i2), where i1 < i2. Suppose that we want to
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compute δ(i, j). If j is even, then entry j of ˆ̀ is black and it corresponds to
segment sj/2 of s. We have

δ(i, j) = (sj/2 − b(i − sj/2 + 1, i)) + δ(i − sj/2, j − 1)

if we assume that all indexes in this relation are greater than 0. In order for
a partial link mapping from (`1, . . . , `i) to (ˆ̀1, . . . , ˆ̀

j) to be valid, the pixels

(`i−sj/2+1, . . . , `i−1) should all be linked to entry j of ˆ̀. Then pixel i − sj/2

must be linked to the white entry ˆ̀
j−1. The first term on the right side of

the equation indicates the number of white pixels that should be black (and
all have to be flipped), the second term is the minimal number of bitflip
operations that is required to transform the rest of the pixels in the proper
way. If one or more of the indexes in the equation are less than 1, or the
δ-term on the right is undefined because the transformation is not possible,
then δ(i, j) is also undefined (and we set δ(i, j) = ∞).
If j is odd, then ˆ̀

j is white and it either corresponds to the segment of
white pixels between the segments s(j−1)/2 and s(j+1)/2 of black pixels, or is
at the beginning or end of the line. In order for a partial link mapping from
(`1, . . . , `i) to (ˆ̀1, . . . , ˆ̀

j) to be valid, pixel i−1 must either be linked to entry
j − 1 (corresponding to a black segment), or it must be linked to the same
white segment as pixel i. The first option requires a minimum of

cb = `i + δ(i − 1, j − 1)

bitflip operations, the second options requires a minimum of

cw = `i + δ(i − 1, j)

operations. The term `i will be 0 if pixel i is white and 1 if pixel i is black
(and has to be flipped). We now have

δ(i, j) = min(cb, cw).

Once again, there may be terms that are undefined in the equations. If any
of the indexes of δ(i, j) is less than 1, we set δ(i, j) = ∞, indicating that the
corresponding transformation is not possible.
Using these recursive relationships we can compute the table representation
of δ by using two nested loops. The outer loop iterates over all pixels of `,
the inner loop iterates over all entries of ˆ̀. Using this order, the values of δ
that are required at any step will be available at that step. Figure 17 shows
the resulting table for a certain prescribed description s and line `. Entries
containing the symbol “x” correspond to impossible transformations.
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Figure 17: The table representation of δ.

As we remarked before, the value δ(k, 2h + 1) is the minimal number of bit-
flip operations that is required to transform ` into a line that adheres to the
prescribed description, so we can directly use it as the evaluation function
for our algorithm. We remark that using the tabular representation of δ,
δ(k, 2h + 1) can be computed in O(kh) operations. The time required for
this computation is much longer than for the other problem types that we
considered.

We implemented the evaluation function and performed several test runs.
Figure 18 shows the test images that we used. The first two examples, of
size 25 × 25, are from the Dutch “Puzzelsport” series and are known to
have a unique solution. We performed one test run for each image. The
first image was reconstructed perfectly in 80 minutes after 15 generations of
the algorithm. The second image proved to be much harder: the algorithm
converged to a local optimum. The resulting reconstruction is shown in
Figure 19. Note that the reconstruction is quite different from the original
image, yet it adheres to nearly all line descriptions.
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Figure 18: Test images for the Japanese puzzle variant of the algorithm.

Surprisingly, the third test image, a random 30 × 30 image (50% black),
was reconstructed perfectly in about 12 hours. Although the reconstruction
process took a long time to complete, this is still a very positive result,
since random images are very hard to reconstruct using only logic reasoning.
Branching seems inevitable for that type of image.

Figure 19: Reconstruction result for the second test image.
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6 Conclusions

We have designed a new algorithm for finding a binary image that satisfies
prescribed horizontal and vertical projections and has an optimal or near-
optimal evaluation function value. Our experimental results demonstrate
that the algorithm is effective for several different evaluation functions, cor-
responding to diverse reconstruction problems.
As demonstrated by the results in Section 4.2, a main feature of our approach
is its ability to encorporate various forms of a priori information in the eval-
uation function.
The idea of using our algorithm to solve Japanese puzzles was suggested af-
ter the main algorithm was implemented. Yet, the implementation could be
extended for this case without any difficulties.
The bottleneck of the runtime is the hillclimb operator. Because our hillclimb
procedure involves keeping track of all applicable switching components, our
algorithm is limited to images of size 50 × 50 or less. Perhaps making the
hillclimb operation less exhaustive could result in improved time complexity
of the operation.
In our experiments we often observed that only finding the global optimum
of the evaluation function was sufficient to find an image that resembled the
unknown original image. Near-optimal solutions were usually very different.
In order to increase the stability of the search procedure, it is necessary to
incorporate as much information as possible in the evalution function, in or-
der to provide proper gradients throughout the search space.
The various reconstruction results show that when sufficient information is
incorporated, our algorithm is capable of finding accurate reconstructions.
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