Network Flow Algorithms for Discrete Tomography

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van de Rector Magnificus Dr. D. D. Breimer,
hoogleraar in de faculteit der Wiskunde en
Natuurwetenschappen en die der Geneeskunde,
volgens besluit van het College voor Promoties
te verdedigen op dinsdag 19 september 2006
klokke 16.15 uur
door

Kees Joost Batenburg

geboren te Rotterdam
in 1980.

Samenstelling van de promotiecommissie:

promotor: Prof. dr. R. Tijdeman
copromotor: Dr. ir. H. J. J. te Riele (CWI)
referent: Prof. dr. A. Kuba (University of Szeged, Hungary)

overige leden: Prof. dr. R. J. F. Cramer (CWI / Universiteit Leiden)
Dr. W. A. Kosters
Prof. dr. J. B. T. M. Roerdink (Rijksuniversiteit Groningen)
Prof. dr. J. Sijbers (Universiteit Antwerpen)
Prof. dr. S. M. Verduyn Lunel

The research in this thesis has been carried out at the national research institute for Ma-
thematics and Computer Science in The Netherlands (CWI) and at the Universiteit Leiden.
It has been financially supported by the Netherlands Organisation for Scientific Research
(NWO), project 613.000.112.

Network Flow Algorithms
for Discrete Tomography

Batenburg, Kees Joost, 1980 —

Network Flow Algorithms for Discrete Tomography
Printed by Universal Press - Veenendaal

AMS 2000 Subj. class. code: 94A08, 90C90

NUR: 918

ISBN-10: 90-9020935-2

ISBN-13: 978-90-9020935-7

e-mail: kbatenbu @math.leidenuniv.nl

NWO

Netherlands Organisation for Scientific Research

THOMAS STIELTJES INSTITUTE
FOR MATHEMATICS

(© K.J. Batenburg, Leiden 2006.

The illustrations on the cover of this thesis are based on a tomographic reconstruction of a
diamond, recorded by DiamScan, Belgium. Part of the data processing was performed by
Prof.dr. J. Sijbers of the University of Antwerp, Belgium.

All rights reserved. No part of this publication may be reproduced in any form without prior
written permission from the author.

Contents

Outline

1.

Network flow algorithms for discrete tomography: an overview
1.1. Introduction e
1.2. Network flow formulation for two projections
1.3. Weighted reconstruction
1.4. Reconstruction from noisy projections
1.5. Algorithms and implementation
1.6. Extension to more than two projections
1.6.1. Computing the start solution
1.6.2. Computing the weightmap
1.6.3. Choosing the pair of directions
1.6.4. Stoperiterion L.
1.6.5. Someresults
1.7. Reconstructing3D volumes
1.8. Extensiontoplanesets
1.9. Applications of discrete tomography,
1.9.1. Atomic resolution electron tomography of nanocrystals
Bibliography e

An evolutionary algorithm for discrete tomography

2.1. Introduction

2.2, Preliminaries

2.3. Algorithmicapproach
2.3.1. Overviewoftheapproach
2.3.2. A new Crossover operator oot eu e u
2.3.3. The hillclimb operator
2.3.4. The mutation operator it
2.3.5. Algorithmdetails,

24. Computational results Lo L
2.4.1. Reconstruction of hv-convex images
2.4.2. Reconstruction from three projections
2.4.3. Reconstruction using Gibbs priors L.

ii

25, ConClusions 57
Bibliography 58
A network flow algorithm for reconstructing binary images from discrete X-
rays 61
3.1. Introduction 61
3.2, Preliminaries L 63
3.3. Algorithmdescription 65
330, Overview 65
3.3.2. Network flowapproach 65
3.3.3. Aniterative network flow algorithm 67
3.3.4. Computing the start solution 67
3.3.5. Computing the pixel weights 69
3.3.6. Choosing the directionpair 70
33.7. Stoperiterion oL 71
33.8. Timecomplexity 72
34, Results.o L 72
34.1. Experimentalsetup 72
3.4.2. Qualitative description of algorithm performance 73
34.3. Randompolygons, 75
344. Randomellipses 77
3.4.5. Random ellipses withnoise 77
34.6. Noisy projectiondata 78
3.4.77. Comparison with alternative approaches 80
35, Discussiono 82
3.6. Conclusions 83
Bibliography 84
A network flow algorithm for 3D binary tomography of lattice images 87
4.1. Introduction 87
4.2. Preliminaries e 88
43. Thecasek=2 e 89
44. Analgorithmfork>2 92
44.1. Peeling 94
4.4.2. Computing the start solution 94
4.4.3. Selecting the directionpair 94
4.44. Computing the voxel weights 94
445, StOpCriterion v v v v it e e e e e e e 95
45. Results. oL 95
4.6. Discussionandconclusions 96

Bibliography 99

il

5. An algorithm for the reconstruction of binary images without an intrinsic lat-

tice 101
5.1. Introduction 102
5.2. Preliminaries 103
5.2.1. Datacollection geometries 103
5.2.2. Definitions and notation 104

5.3, TWOPIOJeCtions v v v v v it e e e e e e e e e 105
5.4. More than two projections 113
5.4.1. Choosing the pair of directions 114
5.4.2. Converting between different grids 116
5.4.3. Computing the weightmap 117
5.4.4. Termination and finaloutput 118

5.5. Experimental results 118
5.5.1. Parallel beam projections 119
5.5.2. Fanbeam projections 122
5.5.3. Noisy projectiondata 123
5.54. Real-worlddata 124

5.6. Conclusions 125
Bibliography L 127
6. On the reconstruction of crystals by discrete tomography 129
6.1. Introduction 129
6.2. Preliminaries 132
6.3. Algorithm 136
6.3.1. Blockphase. 137
6.3.2. Fittingphase 138
6.3.3. Cullingphase e 140
6.3.4. NOISe o e 141

6.4. Experimental results Lo 141
6.5. Discussion 142
6.6. Conclusions 143
Bibliography 144
Nederlandse samenvatting 145
Curriculum Vitae 153

Other publications 155

Outline

Tomography is a powerful technique to obtain images of the interior of an object in a non-
destructive way. First, a series of projection images (e.g., X-ray images) is acquired and
subsequently a reconstruction of the interior is computed from the available projection data.
The algorithms that are used to compute such reconstructions are known as fomographic
reconstruction algorithms.

Discrete tomography is concerned with the tomographic reconstruction of images that
are known to contain only a few different gray levels. By using this knowledge in the re-
construction algorithm it is often possible to reduce the number of projections required to
compute an accurate reconstruction, compared to algorithms that do not use prior knowl-
edge.

This thesis deals with new reconstruction algorithms for discrete tomography. In par-
ticular, the first five chapters are about reconstruction algorithms based on network flow
methods. These algorithms make use of an elegant correspondence between certain types of
tomography problems and network flow problems from the field of Operations Research.

Chapter 1 introduces the network flow approach and serves as an introduction to the
remaining chapters. In Chapters 2, 3 and 4 we describe new algorithms for the reconstruction
of lattice images from few projections. Lattice images can be used to model nanocrystals,
which are of great interest in Materials Science. In Chapter 5, an algorithm is presented for
reconstructing images that do not have a lattice structure. In the last chapter, Chapter 6, we
study a problem that occurs in the application of discrete tomography to the reconstruction
of nanocrystals from projections obtained by electron microscopy.

Chapter 2 deals with the reconstruction problem from only two projections. This prob-
lem is severely underdetermined and using prior knowledge is essential to obtain meaningful
reconstructions. We describe an evolutionary algorithm that can incorporate various forms
of prior knowledge. The algorithm uses a network flow algorithm as a subroutine to com-
pute images that satisfy the projection constraints. It can also be used to reconstruct images
from more than two projections. In that case the remaining projections — besides the first
two — are considered as additional prior knowledge.

The evolutionary algorithm is not suitable for reconstructing large images, e.g., of size
256x256. In Chapter 3 we present an algorithm that can be used to reconstruct such larger
images if more than two projections are available. The algorithm iteratively solves a se-
ries of network flow problems, each time using two of the projections. Chapters 2 and 3
deal with two-dimensional images. The algorithm from Chapter 3 is generalized to a three-

dimensional setting in Chapter 4.

The network flow approach is naturally suited for lattice images. Most practical appli-
cations of tomography deal with images that do not have an intrinsic lattice structure. An
extension of the network flow approach to images that do not have an intrinsic lattice struc-
ture is described in Chapter 5.

The algorithms from Chapters 2—4 can be used to compute reconstructions of nanocrys-
tals at atomic resolution from projection data obtained by electron microscopy. However, for
many interesting Materials Science samples, a lattice model does not correspond perfectly
with physical reality. Deviations from the perfect lattice occur frequently in real microscopic
samples. In Chapter 6 we present an algorithmic approach that can be used as a preprocess-
ing step in order to apply discrete tomography in such cases.

The author has published several articles on discrete tomography that are not included
in this thesis. The section “Other publications” provides references to publications where
the methods from Chapters 1-6 have been applied. It also lists references to other related
publications by the author.

Chapter 1

Network flow algorithms for
discrete tomography: an overview

Part of this chapter will appear as a chapter of the book: G.T. Herman and A. Kuba, eds.,
“Advances in Discrete Tomography and its Applications”, Springer, to appear (November
2000).

Abstract. There exists an elegant correspondence between the problem of recon-
structing a 0-1 lattice image from two of its projections and the problem of finding a
maximum flow in a certain graph. In this chapter we describe how network flow algorithms
can be used to solve a variety of problems from discrete tomography. First, we describe the
network flow approach for two projections and several of its generalizations. Subsequently,
we present an algorithm for reconstructing 0-1 images from more than two projections. The
approach is extended to the reconstruction of 3D images and images that do not have an
intrinsic lattice structure. The chapter concludes with an introduction to the application of
discrete tomography to the reconstruction of nanocrystals. The network flow approach that
is introduced in this chapter forms the basis for the subsequent chapters.

1.1. Introduction

The problem of reconstructing a 0-1 image from a small number of its projections has been
studied extensively by many authors. Most results deal with images that are defined on a
lattice, usually a subset of Z2. Already in 1957, Ryser studied the problem of reconstructing
an mxn 0-1 matrix from its row and column sums [21,22]. He also provided an algorithm
for finding a reconstruction if it exists. Ryser’s algorithm is extremely efficient. In fact it
can be implemented in such a way that it runs in linear time, O(m + n), by using a compact
representation for the output image [6].

The problem of reconstructing a 0-1 matrix from its row and column sums can also
be modeled elegantly as a network flow problem. In 1957 Gale was the first to describe the

4 1. Network flow algorithms for discrete tomography: an overview

two-projection reconstruction problem in the context of flows in networks, providing a com-
pletely different view from Ryser’s approach [8]. In the latter work there was no reference to
the algorithmic techniques for solving network flow problems. In 1956 Ford and Fulkerson
published their seminal paper on an algorithm for computing a maximum flow in a net-
work [7], which can be used to solve the two-projection reconstruction problem. Using the
network flow model, Anstee derived several mathematical properties of the reconstruction
problem [3].

The reconstruction problem from two projections is usually severely underdetermined.
The number of solutions can be exponential in the size of the image. In practice the goal of
tomography is usually to obtain a reconstruction of an unknown original image, not just to
find any solution that has the given projections. If only two projections are available, addi-
tional prior knowledge must be used. Certain types of prior knowledge can be incorporated
efficiently into the network flow approach, by using the concept of min cost flows.

The evolutionary algorithm that is described in Chapter 2 is capable of incorporating
prior knowledge for the reconstruction of a 0-1 matrix from its row and column sums. It
uses the fact that min cost flow problems can be solved efficiently.

A drawback of the network flow approach is that it cannot be generalized to the case
of more than two projections. The reconstruction problem is NP-hard for any set of more
than two projections [10]. In Chapter 3 we describe an iterative approach for reconstructing
0-1 images from more than two projections. In each iteration a reconstruction is computed
from only two projections, using the network flow approach. The reconstruction from the
previous iteration, which was computed using a different pair of projections, is used as prior
knowledge such that the new reconstruction resembles the previous one.

In this chapter the network flow approach will be described, starting from the basic two-
projection case. Section 1.2 describes the basic network flow formulation. In Section 1.3 the
model is extended to incorporate prior knowledge in the reconstruction procedure. Section
1.4 describes how the network flow approach can be made tolerant to noise and other er-
rors. The implementation of network flow algorithms for discrete tomography is discussed
in Section 1.5. Several highly efficient implementations of network flow algorithms are
available. This section also addresses the time complexity of the relevant network flow al-
gorithms. The basic iterative algorithm for reconstructing from more than two projections
is described in Section 1.6. This algorithm can be generalized to 3D reconstruction very
efficiently, which is discussed in Section 1.7. So far, all sections deal with lattice images. In
Section 1.8 we discuss how the algorithms from the previous sections can be adapted to the
problem of reconstructing binary images that do not have a lattice structure.

1.2. Network flow formulation for two projections

The reconstruction problems of this chapter can be posed in several different forms. We
mainly consider the reconstruction of a subset F of Z? from its projections, but one can also
formulate this problem in the context of reconstructing binary matrices or black-and-white
images. In the case of binary matrices the set F is represented by the set of matrix-entries
that have a value of 1. If we want to display a set F C Z? and F is contained in a large

1.2. Network flow formulation for two projections 5

rectangle A C Z? (e.g., 2567 elements), it is convenient to represent F as a black-and-white
image. The white pixels correspond to the elements of F; the black pixels correspond to
the remaining elements of A. Continuous tomography algorithms, such as the Algebraic
Reconstruction Technique (see, e.g., Chapter 7 of [19]), represent the reconstruction as a
gray-level image. At several points in this chapter we discuss how to utilize algorithms
for continuous tomography for solving the discrete reconstruction problems. In these cases
we use the black-and-white image representation of F, as this representation can easily
be connected with the gray-level images from continuous tomography. Depending on the
representation of the set F', points in A may also be called entries (in the context of binary
matrices) or pixels (in the context of black-and-white images).

In this section we consider the problem of reconstructing a subset F of the lattice Z>
from its projections (defined below) in two lattice directions, v(") and v(?). This is a general-
ization of the problem of reconstructing a binary matrix from its row and column sums. We
assume that a finite set A C Z? is given such that F C A. We call the set A the reconstruction
lattice. As an illustration of the concept of the reconstruction lattice, consider the represen-
tation of F as a black-and-white image. The set A defines the boundaries of the image: all
white pixels are known to be within these boundaries.

We denote the cardinality of any finite set F by |F|. Define No={x € Z:x>0}. A
lattice direction is a pair (a,b) € 72 such that a and b are coprime and a > 0. Let v(1>, »2)
be two given lattice directions. A lattice line is a line in Z? parallel to either v(!) or v(2) that
passes through at least one point in Z2. Any lattice line parallel to v(K) (k =1,2) is a set of
the form {nvX) -1 : n € Z} forr € Z*. The sets L)) and L<) denote the sets of lattice lines
for directions v{!) and v(?) respectively. For k = 1,2, put LK) = {¢ € £*) : N A # 0}. Note
that L) and L are finite sets. We denote the elements of L<)by b for i=1,...,|LW)].
As an example, Figure 1.1 shows the reconstruction lattice for A = {1,2,3} x {1,2,3},
v = (1,0), v® = (1, 1). For this example, the sets L(!) and L(>) contain three and five
lattice lines respectively.

For any lattice set F C Z? its projection P§k> : L — Ny in direction v(¥) is defined as

POW@ =Fne =Y f(x)

xel

where f denotes the characteristic function of F. The reconstruction problem can now be
formulated as follows:

Problem 1 Let vV, v pe given distinct lattice directions and let A C 7. be a given re-
construction lattice. Let pV) : LV — Ny and p® : L&) — Ny be given functions. Construct

a set F C A such that Pl(pl) =pW) and P}Z) =p.

Define S =Yiero P (). We call S®) the projection sum for direction v(¥). Note
that if F is a solution of Problem 1, we have S®) = |F| for k = 1,2. In Section 1.4, a
generalization of Problem 1 will be described for which the prescrlbed projections pW and
p? may contain errors. In that case the projection sum for direction v(!) may be different
from the projection sum for direction v(?),

6 1. Network flow algorithms for discrete tomography: an overview

— .« .
soy="1 / -
S S

x—y=0 x—y=1 x—y=2

Figure 1.1: Example lattice: A = {1,2,3} x {1,2,3}, v()) = (1,0), v® = (1,1).

With the triple (A,v("),v(?)) we associate a directed graph G = (V,E), where V is the
set of nodes and E is the set of edges. We call G the associated graph of (A,v(") v(?)). The
set V contains a node s (the source), a node 7 (the sink), one node for each ¢ € L(!) and one
node for each ¢ € L(?). The node that corresponds to £y ; has label ny ;. We call the nodes ny ;
line nodes.

Nodes ny; and n; ; are connected by a (directed) edge (nlj,-,nl j) if and only if ¢; ; and
> ; intersect in A. We call these edges point edges and denote the set of all point edges
by E, C E. There is a bijective mapping ® : E, — A that maps (n;,n2 ;) € E, to the
intersection point of ¢ ; and ¢, ;. We call ® the edge-to-point mapping of G. For e € E,, we
call ®(e) the corresponding point of e and for x € A we call ®~!(x) the corresponding edge
of x.

Besides the point edges the set E contains the subsets E; = {(s,n1;) :i=1,...,|L"|}
and Ey = {(ny,j,1) : j = 1,...,|L{?)|} of directed edges. We call the elements of £ and E»
the line edges of G. The complete set of edges of G is given by E = E, UE| UE,. Figure
1.2 shows the associated graph for the triple (A,v(!), »(?)) from Figure 1.1.

Note that the structure of the associated graph is independent of the projections pM and
p@). To use the associated graph G for solving a particular instance of the reconstruction
problem, we assign capacities to the edges of G. A capacity function for G is a mapping
E — Ny. We use the following capacity function U

fori=1,...,[LY], j=1,...,|L?:

U((n1,,n2,5)) = 1,
U((s,n1,4)) = pWy),
U((”Z,jvt)) = p(z) (ﬁz-,j) .

IN

A flow in G is amapping Y : E — R such that Y (e) < U(e) for all e € E and such that

forallv e V\{s,t}:
Y, Y(wy)= Y Y(vw).

w: (w,v)€E w:(vw)€E

1.2. Network flow formulation for two projections 7

Source node

Line edges

Line nodes

Point edges

Line nodes

x—y=2 x—y=-2

Line edges

Sink node

Figure 1.2: Associated graph G for the triple (A,v") v®) from Figure 1.1.

8 1. Network flow algorithms for discrete tomography: an overview

The latter constraint is called the flow conservation constraint. Flows in graphs are also
known as network flows in the literature. Let 9 be the set of all flows in G. For a given
flow Y € I the size T(Y) of Y is given by T(Y) = ¥(s,)e£ Y ((s,v)). If we consider G as
a network of pipelines, carrying flow from s to ¢, the size of a flow is the net amount of
flow that passes through the network. Due to the flow conservation constraint we also have
T(Y) =Y (v)erY((»1)). The associated graph G has a layered structure: all flow that leaves
the source s must pass through the point edges. This yields the equality T(Y) = Y. E, Y(e).
If Y(e) € Ny forall e € E, we call Y an integral flow. Note that for any integral flow Y in the
associated graph G, we have Y (e) € {0, 1} for all e € E,, as the capacity of all point edges
is 1.

There is an elegant correspondence between the solutions of the reconstruction problem
and the integral flows of maximal size (max flows) in the associated graph G:

Theorem 1 Suppose that SV = S =: T. Problem 1 has a solution if and only if there
exists an integral flow in G of size T. Moreover, there is a 1-1 correspondence between the
solutions of Problem 1 and the integral flows of size T in G.

Proof. We show first that any integral flow in G of size T corresponds to a unique solu-
tion of Problem 1. Let Y be a flow in G of size T. For each e € E,, we have Y (e) € {0,1}.
Put Fy = {®(e) :e € E, and Y (e) = 1}, where ® is the edge-to-point mapping of G. The set
Fy contains all lattice points for which the corresponding point edge in G carries a flow of
1. We call Fy the corresponding point set of Y. We claim that Fy is a solution of Problem 1.

2)

We show that Pg) = p“); the proof for direction v is completely analogous.

From the capacity constraints on the line edges of G and the fact that 7(Y) = s
it follows that all line edges of G must be filled completely by Y. Therefore we have
Y((s,n1;)) = p (1) forall i = 1,...,|L1V)|. Because of the flow conservation constraint
at the line nodes of G we have

L)

Y Y((nn2) = pV(0r;) fori=1,...,|LY|
j=1

and therefore
{D((n1im2,)) Y ((n14,m25)) = 1} = pV(ey;) fori=1,...,|LV)].
From the structure of G it follows that

Fy Ny ={®((n1,i,n2,5)) Y ((n1,n2,5)) = 1} .

which yields Pg) (1) = pV(ey,) fori=1,...,|LW]|. To prove that every flow Y of size T
in G corresponds to a unique solution of Problem 1, we note that Y is completely determined
by its values on the point edges of G. Therefore a flow Y’ # Y of size T must be different
from Y at at least one of the point edges, hence Fy: # Fy.

1.3. Weighted reconstruction 9

We will now show that the mapping from flows of size T in G to solutions of Problem 1
is surjective. For any solution F of Problem 1 define the corresponding flow Yr:

Yr((n,i,n2,5)) = 0 otherwise

{1 if ®((n1,m,)) €F

Specifying Yr on the point edges completely determines the flow through the remaining
edges by the conservation of flow constraint. We call Yz the corresponding flow of F.
It is easy to verify that Yr satisfies all edge capacity constraints. By definition F is the
corresponding point set of Y. We have T'(Yr) = ¥k, Y (v, w)) = |F|, so Y is a flow
of size |F| = S(1) = T. This shows that the mapping ¥ — Fy is a bijection. O

The proof of Theorem 1 shows that we can find a solution of Problem 1 by finding an
integral flow of size 7 = S(!) = §S?) in the associated graph. This flow is a maximum flow
in G, because all line edges are completely saturated. Finding a maximum integral flow in
a graph is an important problem in operations research and efficient algorithms have been
developed to solve this problem, see Section 1.5.

The equivalence between the reconstruction problem for two projections and the prob-
lem of finding a maximum flow in the associated graph was already described by Gale in
1957 [8] in the context of reconstructing binary matrices from their row and column sums.
Theorem 1 generalizes this result to the case of any reconstruction lattice A and any pair of
lattice directions (v(!),v(?)). This is a new result, although it is very similar to the original
result from Gale.

In the next sections we will see that the network flow approach can be extended to solve
more complex variants of the reconstruction problem and that it can be used as a building
block for algorithms that compute a reconstruction from more than two projections.

1.3. Weighted reconstruction

Problem 1 is usually severely underdetermined: the number of solutions can be exponential
in the size of the reconstruction lattice A. In practical applications of tomography, the pro-
jection data are usually obtained by measuring the projections of an unknown object (the
original object) and it is important that the reconstruction closely resembles this object.
One way to achieve this is to use prior knowledge of the original object in the reconstruc-
tion algorithm. One of the first attempts to incorporate prior knowledge in the network flow
approach was described in [25], in the context of medical image reconstruction.
In this section we consider a weighted version of Problem 1:

Problem 2 Let A, v(l), v(2>, p<1), p(2) be given as in Problem 1. Let W : A — R be a given

mapping, the weight map. Construct a set F C A such that Pl(gl) =pW and P}Z) =p® and

the total weight ¥ . W (x) is maximal.

10 1. Network flow algorithms for discrete tomography: an overview

As a shorthand notation we refer to the total weight of F as W(F). Problem 2 is a
generalization of Problem 1. Through the weight map one can express a preference for a
particular solution if the reconstruction problem has more than one solution. This preference
is specified independently for each x € A. The higher the weight W (x), the stronger is the
preference to include x in the reconstruction F. Note that a preference for image features
that involve several pixels cannot be specified directly through the weight map.

The associated graph G can also be used to solve the weighted version of the reconstruc-
tion problem. Define the mapping C : E — R as follows:

Cle) = {—W(CID(e)) fore G.E,, ,
0 otherwise .
The cost C(Y) of a flow ¥ in G is defined as ¥ . C(e)Y (e). The min cost flow problem in
G deals with finding an integral flow Y of a prescribed size T in G such that the cost C(Y) is
minimal. If we choose 7 = S(1) = §() any integral flow Y of size T is a maximum flow in G
and corresponds to a solution of Problem 1. The total weight of the solution that corresponds
to a flow Y equals —C(Y) = W (Fy). Therefore solving the integral min cost flow problem in
G yields a solution of the reconstruction problem of maximum weight, solving Problem 2.

Just as for the max flow problem, efficient algorithms are available for solving the (inte-
gral) min cost flow problem. However, most such algorithms assume that the edge costs are
integer values. If the edge costs are all in Q, we can simply multiply all edge costs by the
smallest common multiple of the denominators to obtain integer costs. If the edge costs are
not in Q the solution of Problem 2 can be approximated by multiplying all edge costs with
a large integer and rounding the resulting costs.

In [25] Slump and Gerbrands described an application of Problem 2 to the reconstruction
of the left ventricle of the heart from two orthogonal angiographic projections. They used a
min cost flow approach to solve a specific instance of Problem 2.

Having the ability to solve Problem 2 can be very helpful in solving a variety of re-
construction problems. We will describe two such problems. These problems deal with the
reconstruction of binary images, i.e., images for which all pixels are either black or white.
Each pixel in the image corresponds to a lattice point. A binary image corresponds to the
lattice set ' C A, where F contains the lattice points of all white pixels in the image.

Example 1 As an application of Problem 2, consider an industrial production line, where
a large amount of similar objects has to be produced. Suppose that a blueprint is available,
which specifies what the objects should look like. Occasionally, flaws occur in the produc-
tion process, resulting in objects that don’t match the blueprint. To check for errors, the
factory uses a tomographic scanner that scans the objects in two directions: horizontal and
vertical. To obtain a meaningful reconstruction from only two projections, the blueprint is
used as a model image. For each object on the factory line, the reconstruction is computed
that matches the blueprint in as many points as possible.

This problem can be formulated in the context of Problem 2. Suppose we want to re-
construct an nxn image. Put A = {1,...,n} x {1,...,n}, v() = (1,0) and v(¥) = (0,1). Let
Fj be the lattice set that corresponds to the blueprint. We want to compute the solution F

1.3. Weighted reconstruction 11

of Problem 1 such that
|(F N Fy) U(A\F NA\Fy)| = |A| — |[F A Fyl

is maximal, where A denotes the symmetric set difference. The term F N F); represents the
white pixels shared by F and Fjy; the term A\F NA\F), represents the shared black pixels.
To formulate this problem as an instance of Problem 2, put

W(x) =

1 ifxeFy,
0 otherwise .

The solution of Problem 2 for this weight map maximizes |F N Fj|, the number of common

elements of F and F),, subject to the constraints P}l) = p(1> and PI(VZ) = p(z).
For the symmetric difference F A Fy, the following equality holds:

\F' & Fy| = ([F| = [F 0 Ful) + (|Fw| = [F O Ful) -
Noting that |F| =S (1) is constant for all solutions of Problem 1 yields

[(FNFy)U(A\F NA\Fy)| =
A= (8" = |F N Fu|) = (|Fu| = |[F N Ful) =
2|F N | + (JA] = |Fu| = S1) .

The term (JA| — |Fys| — S(V) is constant, which shows that maximizing

|(FNFy)U(A\F NA\Fyy)| is equivalent to maximizing |F N Fys|. We conclude that the given
weight map indeed computes the reconstruction that corresponds to the blueprint in as many
pixels as possible.

Figure 1.3a shows a blueprint image of 64x64 pixels that represents a semiconductor
part. The white pixels correspond to the wiring; the black pixels correspond to the back-
ground. Suppose that the object shown in Figure 1.3b passes the scanner. The object clearly
contains a gap that is not present in the blueprint and should be detected. Figure 1.3c shows
a reconstruction computed from the horizontal and vertical projection data of the faulty ob-
ject, using the blueprint image of Figure 1.3a. It has the same projections as the image in
Figure 1.3b and corresponds to the blueprint in as many pixels as possible. Although the re-
construction is not perfect, the gap is clearly visible and the object can be easily identified as
faulty. For comparison, consider the image in Figure 1.3d, which also has the same projec-
tions as the images in Figure 1.3b and 1.3c. This time, the reconstruction corresponds to the
blueprint in as few pixels as possible. Comparing this reconstruction to the original image
of the faulty part shows how severely underdetermined the reconstruction problem is when
only two projections are available. Of course, using a blueprint image does not guarantee
that the reconstruction resembles the scanned object, but it is likely that the reconstruction
will be much better than if no prior knowledge is used at all.

In Chapter 2 an evolutionary algorithm is presented for the reconstruction of binary
images from two projections. Reconstructing a binary image that adheres to two prescribed
projections is a relatively easy task, but many solutions may exist. Therefore, additional

12 1. Network flow algorithms for discrete tomography: an overview

Figure 1.3: (a) Blueprint image of a semiconductor part. (b) Test image, containing a gap in one of
the wires. (¢) Reconstruction of the test image from the horizontal and vertical projections, using the
image from (a) as a model image. (d) Reconstruction using an inverted version of the blueprint image
as a model image.

prior knowledge has to be incorporated which makes the reconstruction more unique. Our
evolutionary algorithm is capable of incorporating various types of prior knowledge. The
algorithm makes extensive use of the network flow approach to find images that adhere
to the prescribed two projections and that have few pixel differences with various model
images. Both evolutionary operators that are used by the algorithm (crossover and mutation)
consist of the computation of a model image, followed by the computation of a flow in the
associated graph to obtain a new image.

Example 2 Another practical problem that can be formulated in the framework of Problem
2 is how to obtain a 0-1 reconstruction from an already computed real-valued reconstruction.
Computing a 0-1 reconstruction from more than two projections is a computationally hard
problem, but for computing a real-valued reconstruction several algorithms are available,
such as the Algebraic Reconstruction Technique (see Chapter 7 of [19]). These algorithms
typically require many projections to compute an accurate reconstruction. Figure 1.4a shows
an ART reconstruction of the image in Figure 1.3b from 6 projections. If we want the re-
construction to be binary, this reconstruction can be “rounded”, such that all pixel values
less than 1/2 become 0 and all pixel values of 1/2 or more become 1. The result is shown
in Figure 1.4b. A different way to obtain a binary reconstruction is to solve Problem 2 using
the pixel values of the original image as the weight-map: the higher the gray value of a pixel
in the continuous reconstruction, the higher the preference for this pixel to be assigned a
value of 1 in the binary reconstruction. In this way the reconstruction will perfectly satisfy
two of the projections, while “resembling” the continuous reconstruction. Figure 1.4c and
1.4d show two such reconstructions. The reconstruction in Figure 1.4c was obtained using
vl = (1,0), v®) = (0, 1). For the second reconstruction the lattice directions v(!) = (0,1),
v = (1,1) were used. Both reconstructions are better than the one in Figure 1.4b at some
features, but it is not clear how to detect automatically which one is better, or how the two
solutions can be combined into one superior solution. In Section 1.6 we describe how the
reconstructions for different pairs of lattice directions can be combined to compute a single,
more accurate reconstruction (see Figure 1.9).

1.4. Reconstruction from noisy projections 13

o r—r =

‘-
x

' -
h

Figure 1.4: (a) ART reconstruction of the image in Figure 1.3b from 6 projections. (b) Rounded ART
reconstruction. (¢) Solution of Problem 2, using the ART reconstruction as the weight map, for lattice
directions (1,0) and (0,1). (d) Solution of Problem 2 using lattice directions (0,1) and (1,1).

H)
i)
i)

1.4. Reconstruction from noisy projections

The network model from Section 1.2 and 1.3 is only suitable for computing reconstructions
from perfect projection data. In simulation experiments it is easy to compute perfect pro-
jections of a given image, but data that is obtained by physical measurements is usually
polluted by noise. As an example of what happens in the network of Section 1.2 when the
projection data contains errors, consider the possibility that S(!) = $()_In this case it is
clear that no perfect solution of the reconstruction problem exists. One can still compute a
maximum flow in the associated graph G. Due to the line arc capacity constraints such a
flow will always have size at most min(S (1),S(2>). If the measured projection for a line ¢
is lower than the number of points on that line in the original object, that line will always
contain too few points in the reconstruction, regardless of the measured line projections in
the other direction, because of the capacity constraint on the corresponding line edge of /.

In this section we consider a modification of the associated graph which can be used to
compute a reconstruction F' for which the norm of the residue, i.e., the difference between
the projections of F' and the two prescribed projections is minimal. This network does not
have the drawbacks that we described above of the network from Section 1.2.

Let F C A. For k = 1,2, the projections Pl(rk) of F have finite domains, so we can regard

P}k) as a vector of |[L(*)| elements. We denote the sum-norm of this vector by |P1(pk) 1. For a
given prescribed projection p(k) the norm

k k
PY —p® = Y 1P () - p® (1))
veLk)

equals the total summed projection difference over all lines in L®) . Another norm that is
often used in tomography is the Euclidean norm | - |,. The sum-norm is better suited for
incorporation in the network flow approach. We now define a generalization of Problem 1
that allows for errors in the prescribed projections.

Problem 3 Let A, v“), v(z), p(l), p(z) be given as in Problem 1. Let T € Ny.
Construct a set F C A with |[F| =T such that |Pl(rl) —pW]y + \P}z) — p?)|y is minimal.

Problem 3 asks for a set F which has a prescribed number of T elements such that F

14 1. Network flow algorithms for discrete tomography: an overview

corresponds as well as possible to the two prescribed projections, according to the sum-
norm. If Problem 1 has a solution, we can find all solutions by putting 7 = (") and solving
Problem 3. We will show that Problem 3 can be solved within the network flow model. For
any n-dimensional vector p € R", define

pl* =} max(p:,0).
i=1

To solve Problem 3 we need to make some modifications to the associated graph. Before
introducing the modified graph we prove the following lemma.

Lemmal Let F CA,

F|=T. Then, fork=1,2,

|P1<;k) _p(k)|1 _ 2|P[<;k) _p(k)|+ +S(k) —T.

Proof. Let k € {1,2}. By definition we have
(B =y = B = p O 1p — B
For each line £ € L) we have
P(0) = pY + max(P (€) — p¥(0),0) ~ max(p¥)(0) ~ P (0),0) .

Summing this equation over all lines £ € LK) it follows that

T=5® 1|0 — plt - po — p+
hence
P — p®)y = 21P) — p® |+ 4 s® T (1)

Lemma 1 shows that solving Problem 3 is equivalent to finding a set F with |F| = T for
which W @
P —pW T B = pPIF

is minimal, since S(l), S?) and T are constant.

We will now describe how the associated graph can be modified for solving Problem 3.
The network from Section 1.2 forms the basis for the new network. From this point on we
refer to the line edges of the network from Section 1.2 as primary line edges. As before, we
denote the sets of all primary line edges for directions v and v by E; and E; respectively.
Let £ € L) be any lattice line for direction v(¥) and let e € Ey its corresponding primary line
edge. The capacity of e imposes a hard upper bound on the number of points on ¢ in the
network flow reconstruction. To relax this hard constraint we add a second edge for each

1.4. Reconstruction from noisy projections 15

lattice line, the excess edge. The excess edges are parallel to their corresponding primary
line edges and have the same orientation. We denote the set of excess edges for directions
v(1) and v(?) by E/ and E} respectively. The resulting graph G’ is shown in Figure 1.5. The
capacities of the primary line edges remain unchanged. The excess edges have unbounded
capacities. Effectively this means that the total flow through a primary line edge and its
corresponding excess edge — both belonging to a line ¢ € LX) — is bounded by AN, as
all outgoing flow from the line edges must pass through |A N ¢| point edges that each have
capacity 1. Therefore it is still possible to assign finite capacities to the excess edges.

The primary line edges of the new graph are still assigned a cost of 0, as in the original
network. The excess edges are assigned a cost of K, where K is a positive constant. In this
way it is possible to allow more points on a line ¢ than p*) (£), but only at the expense of a
cost increase.

Now consider the problem of finding a min cost flow in G’ of size 7. Without com-
puting such a flow, we can already be sure that any excess edge will only carry flow if its
corresponding primary line edge is saturated up to its capacity. Otherwise the cost could be
decreased by transferring flow from the excess edge to the primary edge.

Suppose that Y : E — N> is a min cost flow in G’ of size T. The total cost of ¥ given

by
CY)=K(Y. Y(e)+ Y Y(e).

ecE| ecE)
Let Fy be the set of points for which the corresponding point edges in Y carry a positive
flow, as in the proof of Theorem 1. For any line ¢ € L% the total flow through the pri-
mary and excess edge of ¢ must equal ng) (£), because of the flow conservation constraints.

Therefore we have
L v(e)=Irg =M1,
eeE,/{
hence
c(v)=Kk(PY) —p[t + P — pd[H) .

Applying Lemma 1, we conclude that a min cost flow in G’ of size T yields a solution of
Problem 3.
The new network can also be used to solve an extended version of Problem 2.

Problem 4 Ler A, v(l), v<2>, p<1), p(z) be given as in Problem 2. Let T € Ny, o € Rx.
Construct a set F C A with |[F| =T such that

1 2
o[= p i+ 1P = 1) — Y W)
xeF
is minimal.
Similar to the procedure for solving Problem 2, we set C(e) = —W (®(e)) foralle € E),.

Assuming that an excess edge only carries flow if its corresponding primary line edge is
completely full, the total cost of an integral flow Y € 9" now becomes

c()=k(PY) — pMF 4+ PE) — pP 1) = ¥ W)

xeFy

16 1. Network flow algorithms for discrete tomography: an overview

Source node

primary line edge

Line edges

Line nodes

Point edges

Line nodes

x—y=-2

primary line edge

Line edges

Sink node

Figure 1.5: Modified associated graph G' for the triple (A,v\V) ,v®) from Figure 1.1.

1.5. Algorithms and implementation 17

Setting K = 20 and using Equation (1.1) yields

1 2
cv)y=of|Py) = pVli+ [P — pP]) — ¥ W(x) —Co.,

xEFy

where Cj is a constant. We conclude that if Y is an integral min cost flow of size T in G’
then Fy is a solution to Problem 4.

1.5. Algorithms and implementation

As described in the previous sections, Problem 1, 2, 3 and 4 can all be solved as instances
of network flow problems. Both the max flow problem and the min cost flow problem have
been studied extensively. The book [1] provides an overview of available algorithms. A
survey of the time complexities of various network flow algorithms can be found in [23]
(max flow: Chapter 10; min cost flow: Chapter 12).

We now assume that the reconstruction lattice A is a square of size NxN and we fix a
pair (v(D v2)) of lattice directions. It is clear that the number of points in A on each lattice
line parallel to v(!) or v(?) is O(N) and that the number of such lattice lines is also O(N).

Problem 1 can be solved as an instance of the max flow problem in the associated graph.
In [12], Goldberg and Rao describe an algorithm to compute a maximum flow in a graph
with n nodes, m edges and maximum edge capacity ¢ in O(n*3mlog(n? /m)logc) time. The
associated graph of the triple (A,v(!) v(2)) has n = O(N) nodes, m = O(N?) edges and a
maximum edge capacity of ¢ = O(N). Therefore Problem 1 can be solved in O(N%/3logN)
time.

Problem 2 and 3 can both be solved as an instance of the min cost flow problem, i.e., the
problem of finding a flow of fixed size that has minimal cost. The min cost flow problem can
be reformulated as a minimum-cost circulation problem, by adding an edge from the sink
node T to the source node S, see Section 12.1 of [23]. In [13], Goldberg and Tarjan describe
an algorithm to compute a minimum-cost circulation in a graph with n nodes, m edges and
maximum (integral) edge cost K in O(nmlog(n? /m)log(nK)) time. For the associated graph
from Section 1.3, as well as for the modified associated graph from Section 1.4 this yields a
time complexity of O(N3log(NK)) for solving the min cost flow problem.

The problem of finding a maximum flow in the associated graph is known in the liter-
ature as simple b-matching. A flow that saturates all line edges is called a perfect simple
b-matching and the weighted variant of finding a perfect b-matching is known as perfect
weighted b-matching, see Chapter 21 of [23]. For these particular network flow problems,
special algorithms have been developed that are sometimes faster than general network flow
algorithms.

Implementing fast network flow algorithms is a difficult and time consuming task. The
fastest way to use such algorithms is to use an existing, highly optimized implementation.
Several network flow program libraries are available, some commercially and some for free.
The ILOG CPLEX solver [16] performs very well for a wide range of network flow prob-
lems. The CS2 library from Goldberg [11] performs well and is free for non-commercial
use. The same holds for the RelaxIV library from Bertsekas [5].

18 1. Network flow algorithms for discrete tomography: an overview

Compute the start solution F;
i:=0;
while (stop criterion is not met) do
begin
i=i+1;
Select a pair of directions v, and v, (1 < a < b < n);
Compute a new weight-map W' from the previous solution F'~!;

Compute a new solution F! by solving Problem 2 for
directions v, and vy, using the weight map W';

end

Figure 1.6: Basic steps of the algorithm.

1.6. Extension to more than two projections

As shown in the previous sections, the reconstruction problem from two projections is well
understood and can be solved efficiently. We now move to the case where more than two
projections are available.

Problem 5 Let n > 2 and let v(1>, e, V1) pe given distinct lattice directions. Let A C 72
be a given lattice set. For k=1,...,n, let p®® : LK) — Ny be given functions. Construct a

set F C A such thatPI(;k) =p® fork=1,...,n.

When more projections are available the reconstruction problem is less underdetermined
and we would like to be able to use the additional projections to increase the reconstruction
quality. However, the reconstruction problem for more than two projections is NP-hard [10].
Therefore we have to resort to approximation algorithms. In this section we will describe
an iterative algorithm that uses only two projections in each iteration. Within an iteration, a
new pair of projections is first selected. Subsequently, an instance of Problem 2 is solved to
obtain a reconstruction that satisfies the current two projections. The reconstruction from the
previous iteration, which was computed using a different pair of projections, is used to con-
struct the weight map of Problem 2, in such a way that the new reconstruction will resemble
the previous one. In this way the other projections are incorporated in the reconstruction
procedure in an implicit way.

Figure 1.6 describes the basic structure of the algorithm. In Chapter 3 we present a
thorough description of the algorithm, along with extensive experimental results. In the next
subsections we give a global description of each of the algorithmic steps. The algorithm
relies heavily on the methods for solving two-projection subproblems, that we described in
the previous sections.

1.6. Extension to more than two projections 19

| ————— o] o) o3 X1
1110000 0 0\]™ by
2 — o4 o5 e 000111000 by
000000 1 1 t||™] [b
3 O 1001001 0O0[[%] |0
010071001 0f[f" bs
III s\ 00100100 1)|Y be

X8

X9

4 5 6

Figure 1.7: (a) (left) Numbering scheme for the lattice points and the lattice lines in a rectangular
reconstruction lattice. (b) (right) System of equations corresponding to the numbering in (a).

1.6.1. Computing the start solution

At the start of the algorithm there is no “previous reconstruction”; a start solution has to be
computed for the iterative algorithm. Ideally, the start solution should satisfy two criteria:

e Accuracy. The start solution should correspond well to the prescribed projection data.

e Speed. The start solution should be computed fast (compared with the running time
of the rest of the algorithm).

These are conflicting goals. Computing a highly accurate binary reconstruction will cer-
tainly take too much time, as the reconstruction problem is NP-hard.

There are several options for computing the start solutions, each having a different trade-
off between speed and accuracy. The first option is to choose the empty set F© = 0 as a start
solution, i.e., an image that is completely black.

A better alternative is to use a very fast approximate reconstruction algorithm, such as
one of the greedy algorithms described in [14]. The running time of these algorithms is
comparable to the time it takes to solve a single network flow problem in the body of the
main loop of our algorithm.

A third possibility is to start with a continuous reconstruction. A binary start solution
can then be computed from the continuous reconstruction, as described in Example 2 of
Section 1.3. One class of reconstruction algorithms that can be used consists of the algebraic
reconstruction algorithms (see Chapter 7 of [19]). The basic idea of these algorithms is to
describe Problem 5 as a system of linear equations:

Mx=bh. (1.2)

Figure 1.7 shows an example 3x3 grid with the corresponding system of equations
for two directions, v(!) = (1,0) and v(?) = (0,1). Each entry of the vector x represents
an element of A. The entries of the vector b correspond to the line projections for lattice

20 1. Network flow algorithms for discrete tomography: an overview

directions v(!), ..., v(")_ Each row of the binary matrix M represents a lattice line. The entry
M;; is 1 if and only if its corresponding lattice line i passes through point j.

The system (1.2) is usually underdetermined. The shortest solution of the system with
respect to the Euclidean norm |- |, which we denote as x*, is a good choice for a start
solution in discrete tomography. It can be shown that if Problem 5 has several solutions then
the Euclidean distance of x* to any of these solutions is the same, so x* is “centered” between
the solutions. In addition, if the system (1.2) has binary solutions, any of these solutions has
minimal norm among all integral solutions, see [15]. Therefore a short solution is likely
to be a good start solution. We refer to Chapter 3 for the details of these arguments. The
shortest solution of (1.2) can be computed efficiently by iterative methods, as described
in [26]. After this solution has been computed, a pair (v(?),v(?)) of lattice directions has
to be selected for computing the binary start solution. The start solution is computed by
solving Problem 2, using the pixel values in x* as the weight map.

1.6.2. Computing the weight map

In each iteration of the main loop an instance of Problem 2 is solved. The weight map for
this reconstruction problem is computed from the reconstruction of the previous iteration; it
does not depend on the selected pair of lattice directions.

The weight map should be chosen in such a way that the new reconstruction resembles
the reconstruction from the previous iteration. In the new instance of Problem 2, only two of
the projections are used. If the new reconstruction is similar to the previous reconstruction,
which was computed using a different pair of projections, the new image will also approxi-
mately adhere to the prescribed two projections from the previous iteration. Repeating this
intuitive argument we would hope that the new image also satisfies the projections from the
iteration before the previous one, from the iteration before that one, etc.

The most straightforward way to make the new reconstruction resemble the previous
one is to follow the approach from Example 1 in Section 1.3. If we put

; 1 if (x,y) eFT,

Wilxy) = {0 otherwise ,

the new reconstructed image F' will have the same pixel value as Fi~! in as many pixels
as possible. Unfortunately, this choice usually does not lead to good results. Typically, the
main loop of the algorithm does not converge, making it difficult to decide when the algo-
rithm should be terminated. This behaviour is by no means surprising. The reconstruction
problem from a small number of projections is severely underdetermined. If no additional
prior knowledge is used, a small number of projections (e.g., four, five) may not even yield
nearly enough data to uniquely determine a reconstruction.

To deal with this problem we focus on the reconstruction of images that satisfy addi-
tional properties. Smoothness is a property that can often be observed in practical images:
images consist of large areas that are completely black or completely white, instead of ex-
hibiting completely random pixel patterns. A nice property of the smoothness concept is
that it can be measured locally. We say that an image F is perfectly smooth at pixel x € A

1.6. Extension to more than two projections 21

if all neighbouring points of x have the same value as x. Of course this notion requires the
definition of a neighbourhood of x, which we will describe below.

From this point on we assume that the reconstruction lattice A is rectangular. If this
assumption is not satisfied, we can use any square reconstruction lattice A’ for which A C A’,
as increasing the size of the reconstruction lattice does not affect the projections.

Let F~! be the reconstructed image from the previous iteration. As a neighbourhood
of the point p = (xp,y,) € A we choose a square centered in (x,,y,). The reason for pre-
ferring a square neighbourhood over alternatives is that the required computations can be
performed very efficiently in this case. Let p = (x,,y,) € A. Let r be a positive integer, the
neighbourhood radius. Put

Ny={(x,y)€A:x,—r<x<xp+nry,—r<y<y,+r}.

N, contains all pixels in the neighbourhood of p, including p. In case p is near the boundary
of A, the set N, may contain fewer than (2r + 1)? pixels. Let sp be the number of pixels
g € N,, for which F(p) = F(g). Define

_ S
o= N,1

We call f, the similarity fraction of p. A high similarity fraction corresponds to a smooth
neighbourhood of p.

Let g: [0, 1] — R be a nondecreasing function, the local weight function. This function
determines the preference for locally smooth regions. We compute the pixel weight W (p)
of p as follows:

W(p) = 2(F(p) ~ 2)s(y)

Note that 2(F (p) —) is either —1 or +1.

When we take g(f,) = 1 for all f, € [0,1], there is no preference for local smoothness.
To express the preference we make the local weight function g an increasing function of f.
Now a pixel having a value of 1 that is surrounded by other pixels having the same value
will obtain a higher weight than such a pixel that is surrounded by 0-valued pixels. A higher
weight expresses a preference to retain the value of 1 in the next reconstruction. The same
reasoning holds for pixels having a value of 0, except that in this case the pixel weights are
negative. Three possible choices for the local weight function are

i g(fp):fp~
i g(fp):\/JT~
i g(fp):f§~

The latter choice results in a strong preference for pixels that are (almost) perfectly
smooth. Of course many other local weight functions are possible. In Chapter 3 extensive

22 1. Network flow algorithms for discrete tomography: an overview

results are reported for the local weight function

g(fp) =4q4f (065<f,<1), (1.3)
9 (fp: 1).

The choice for this particular function is somewhat arbitrary. In each case, a preference
is expressed for retaining the pixel value of p in the next reconstruction, instead of changing
it. In the case that the whole neighbourhood of p has the same value as p, this preference
is very strong. If the neighbourhood contains a few pixels having a different value, the
preference is less. If there are many pixels in the neighbourhood that have a different value,
the preference is even smaller.

So far we have not discussed how the neighbourhood radius should be chosen. If the start
solution is already a good approximation of the final reconstruction, using a fixed value
of r = 1 works well. For this neighbourhood radius the differences between consecutive
reconstructions F' are typically small. It is usually better to start with a larger neighbourhood
radius, e.g., r = 5 or r = 8. This typically results in large changes between consecutive
reconstructions. Only very large regions of pixels that have the same value obtain a strong
preference to keep this value. Regions that are less smooth can easily change. A choice that
works well for the range of images studied in Chapter 3 is to start the algorithm with r = 8
and to set r = 1 after 50 iterations.

1.6.3. Choosing the pair of directions

In each iteration of the main loop of the algorithm a new pair of lattice directions is selected.
There is no selection scheme which is “obviously best” in all cases. Yet, there are several
ways for choosing the direction pairs that perform well in practice.

A good choice for the new direction pair is to choose the lattice directions v(“>, v(”), for
which the total projection error

B =P+ 1A = p

is largest. After solving the new instance of Problem 2 the total projection error for these
two lattice directions will be zero, assuming perfect projection data. This also guarantees
that if at least two projections have a positive projection error after the previous iteration,
both new lattice directions will be different from the ones used in the previous iteration.

If the number of projections is very small (e.g., four, five) the projection error is not
a good criterion for selecting the new projection pair. For the case of four projections this
scheme leads to cycling behaviour between two pairs of projections. The other projection
pairs are not used at all. To avoid this behaviour it is better to use a fixed order of direction
pairs, in which all pairs occur equally often. Such schemes, for four and five projections,
are shown in Table 1.1.

1.6. Extension to more than two projections 23

iteration 1 2 3 4 5 6

1st dir. 1 3 1 2 1 2

2nddir. 2 4 3 4 4 3
iteration 1 2 3 4 5 6 7 8 9 10
Ist dir. 1 3 5 2 4 1 2 3 4 5
2nddir 2 4 1 3 5 3 4 5 1 2

Table 1.1: (a) (top) Lattice direction scheme for four projections. Each projection pair is used equally
often. No projection pair is used in two consecutive iterations. (b) (bottom) Lattice direction scheme
for five projections.

1.6.4. Stop criterion

In general it is not easy to determine when the iterative algorithm from Figure 1.6 should
terminate, because there is no guaranteed convergence. Yet, the experiments in Chapter 3
show that if enough projections are available the algorithm often converges to the exact
solution of Problem 5. Detecting that an exact solution has been found is easy and the
algorithm always terminates in that case.

To measure the quality of the current reconstruction F the total projection difference

Sk
D(F)= Y. 17 = p,
k=1

can be used. This distance is O for any perfect solution of Problem 5 and greater than O
otherwise. The total projection difference can be used for defining termination conditions.
If no new minimal value is found for the total projection distance during the last 7 iterations,
where T is a positive integer, the algorithm terminates. We used T = 100 for all experiments
in the next subsection.

1.6.5. Some results

We will now show some experimental results obtained by the iterative algorithm from Fig-
ure 1.6. The performance of the algorithm, as for any other general discrete tomography
algorithm, depends heavily on the type of image that is being reconstructed and the number
of available projections. In order to give extensive statistical results about the reconstruction
quality, a class of images has to be defined first. All images in this class should have similar
characteristics. The performance of the algorithm can then be measured for this particu-
lar image class. In Chapter 3 reconstruction results are reported for several different image
classes. The results in this section show a varied set of test images with their reconstruc-
tions, rather than providing extensive quantitative results. Figure 1.8 shows six test images,
each having different characteristics, and their reconstructions. The number of projections
used is shown in the figure captions. The reconstructions of the first five images (a-e) are all
perfect reconstructions, obtained using the weight function in Equation (1.3) from Section

24 1. Network flow algorithms for discrete tomography: an overview

1.6.2. For the first four images (a-d), the linear local weight function also works very well,
even faster than the function in Equation (1.3). The image from Figure 1.8e contains many
fine lines of only a single pixel thickness. In this case the local weight function g(f,) = \/fT,
works well. Which local weight function is best for a certain class of image depends strongly
on characteristics of the particular class. This is also true for the number of projections that
is required to reconstruct an image.

For reconstructing the image in Figure 1.8a, four projections suffice. The structure of the
object boundary is fairly complex, but the object contains no “holes”. The iterative algorithm
reconstructed the image perfectly from four projections (horizontal, vertical, diagonal and
anti-diagonal).

Figure 1.8b shows a much more complicated example. The object contains many cavi-
ties of various sizes and has a very complex boundary. Some of the black holes inside the
white region are only a single pixel in size. In this case, our algorithm requires six projec-
tions to compute an accurate reconstruction. Some of the fine details in this image are not
smooth at all. Still, the fine details are reconstructed with great accuracy. The image from
Figure 1.8c is even more complex. It requires eight projections to be reconstructed perfectly.

The image from Figure 1.8d has a lot of local smoothness in the black areas, but it
contains no large white areas. Still, the image is smooth enough to be reconstructed perfectly
from only five projections. This example also illustrates that very fine, non-smooth details
can be reconstructed by the algorithm, as long as the entire image is sufficiently smooth.

Figure 1.8e shows a vascular system, containing several very thin vessels. The iterative
algorithm can reconstruct the original image perfectly from twelve projections. This is quite
surprising, since the very thin vessels have a width of only one pixel, so they are not smooth.
Still, the smoothness of the thicker vessels and the background area provides the algorithm
with enough guidance to reconstruct the original image.

When the image contains no structure at all, the algorithm performs very badly. Figure
1.8f shows an image of random noise. The reconstruction from 12 projections shows that
our algorithm has a preference for connected areas of white and black pixels. In this case,
however, the smoothness assumption is obviously not satisfied by the original image. The
distance between the projections of the image found by our algorithm and the prescribed
projections is very small, however.

For reconstructing the images in Figure 1.8, a sufficiently large set of projections was
used. Figures 1.9 and 1.10 demonstrate the result of using the algorithm if too few projec-
tions are available.

Figure 1.9 shows the results of reconstructing the semiconductor image of Figure 1.3b
from three and four projections respectively. When using only three projections a recon-
struction is found that has exactly the prescribed projections, but the reconstruction is very
different from the original image.

If too few projections are used the algorithm may also get stuck in a local minimum
of the projection distance, which is shown in Figure 1.10. The original image can be re-
constructed perfectly from five projections, but when only four projections are used the
algorithm fails to find a good reconstruction. The projections of the reconstructed image are
significantly different from the four prescribed projections, yet the algorithm is unable to
find a better reconstruction.

1.7. Reconstructing 3D volumes 25

EZEL..,

(a) Original image. Reconstr., n = (b) Original image. Reconstr., n = 6.

‘ l ‘
l
- [I I
(¢) Original image. Reconstr., n = 8. (d) Original image. Reconstr., n = 5.

27 o‘

70

1&\1

(e) Original image. Reconstr., n = 12. (f) Original image. Reconstr., n = 12.

Figure 1.8: Six original images and their reconstructions. The number n of projections is shown in
the figure caption.

1.7. Reconstructing 3D volumes

So far our approach has been concerned with the reconstruction of 2-dimensional images.
In many practical applications of tomography it is important to obtain 3D reconstructions.
Computing 3D reconstructions is usually a task that is computationally very demanding, as
large amounts of data are involved. There is a slight difference in terminology between 2D
and 3D reconstructions. Pixels in 2D images are usually called voxels in the context of 3D
images, where they represent a unit cube in the 3D volume.

If there exists a plane H in Z3 such that all projection directions lie in H, all algorithms
for 2D reconstruction can be used directly for 3D reconstruction as well, reconstructing the
volume as a series of slices. All slices can be reconstructed in parallel, which allows for a
large speedup if several processors are used. A disadvantage of reconstructing all slices in-
dependently is that certain types of prior knowledge cannot be exploited. For example, if we

26 1. Network flow algorithms for discrete tomography: an overview

R

Original image. Reconstruction, n = 3. Reconstruction, n = 4.

Figure 1.9: (a) Original image. (b) Reconstruction from three projections (horizontal, vertical, di-
agonal) that has exactly the prescribed projections. (¢) Perfect reconstruction of the original image
[from four projections (horizontal, vertical, diagonal, anti-diagonal).

1

® . ®

Original image. Reconstruction, n = 4. Reconstruction, n = 5.

Figure 1.10: (a) Original image. (b) Reconstruction from four projections, which does not have the
prescribed projections. (¢) Perfect reconstruction of the original image from five projections.

generalize the preference for local smoothness from Section 1.6 to 3D, voxels from adjacent
slices are required to compute the neighbourhood density of a certain voxel. Therefore, the
reconstruction computations of the slices are no longer independent.

If the projection directions are not co-planar, reconstructing the volume as a series of
slices is not possible. This situation occurs, for example, in the application of atomic reso-
lution electron microscopy. The crystal sample is tilted in two directions to obtain as many
useful projections as possible.

Figure 1.11 shows an example of a 3 x 3 x 3 volume A with its projections parallel to
the lattice directions v(!) = (1,0,0) and v(*) = (0,1,0). Lattice points that have a value of 1
(i.e., lattice points included in the set F') are indicated by large dots. Similar to the associated
network from Section 1.2, each two-projection problem in 3D also has an associated graph.
The associated graph for the volume in Figure 1.11 is shown in Figure 1.12. Just as in the 2D
case, the associated graph contains a line edge for every projected lattice line. The middle
layer of edges contains one edge for every voxel, connecting the two line nodes for which
the corresponding lines intersect with that voxel.

Figure 1.12 shows a nice property of the two-projection reconstruction problem. For any
point edge (n14,n2,;) € E, in the associated graph, the lines ¢; ; and ¢, ; have a nonempty
intersection in A, so there is a plane in Z* which contains both ¢ 1,;and {2 ;. Since £1 ; and ¢5 ;

1.7. Reconstructing 3D volumes 27

are translates of v(!) and v(?) respectively, this plane will always be a translate of the plane
spanned by v and v If two lines £1,; and 05 ; lie in different translates of this plane,
there will be no voxel edge connecting the corresponding line nodes. Therefore, the max
flow problem can be solved for each translate of the plane independently. In the example
network of Figure 1.12 the subproblems for each of the planes z =0, z =1 and z =2 can
be solved independently. This property holds for any pair (v(“),v(b>) of lattice directions,
although the sizes of the subproblems depend on the direction pair. The number of point
edges in each subproblem is bounded by the maximal number of voxels in A that lie in a
single plane.

O z=0
@ =1
@ =2

Figure 1.11: 3 x 3 x 3 binary volume with its projections in directions v\') = (1,0,0) and
v = (0,1,0). A large circle indicates a value of 1; a small circle indicates a value of 0.

Figure 1.13 shows a cubic test volume, displayed from three different viewing direc-
tions. The directions were selected to provide a clear view of the volume; they are not
parallel to any of the projection directions. The iterative network flow algorithm can re-
construct the original image perfectly from projections along the four lattice directions
(1,0,0),(0,1,0),(0,0,1),(1,1,0). The image dimensions are shown in the figure. The test
volume is surrounded by a black background, which is not counted in the image dimensions.

In Chapter 4 we describe the algorithm for 3D reconstruction in more detail and present
various reconstruction results.

28 1. Network flow algorithms for discrete tomography: an overview

[\l
Il
o

@00

N
Il
NS

Figure 1.13: Cones pointing out, 128 x128x128: perfect reconstruction from 4 projections. The
three images show the same volume from three different viewpoints.

1.8. Extension to plane sets

So far we have considered the reconstruction of lattice sets in 2D and 3D. This model is
well suited for the application of nanocrystal reconstruction at atomic resolution in electron
microscopy [18]: atoms in a crystalline solid are arranged regularly in a lattice structure.
In many other applications of tomography there is no “intrinsic lattice”. In this section
we consider the reconstruction of subsets of R? from its projections in a small number
of directions. We will also refer to such subsets as planar black-and-white images. The
reconstruction problem for planar black-and-white images has also been studied in the field
of Geometric Tomography (see, e.g., the book [9]). In this new context, the projection along
a line is no longer a sum over a discrete set, rather it is a line integral or strip integral of a

1.8. Extension to plane sets 29

function R? — {0, 1}, which yields a real value.

The iterative network flow algorithm can be adapted in such a way that it can be used
for the reconstruction of planar black-and-white images. We will only give a high level
overview of the algorithm. The details will be described in Chapter 5.

Figure 1.14: A planar black-and-white image with two of its projections. If strip projections are
used, the total amount of “black” in a set of consecutive strips parallel to the projection direction is
measured.

Figure 1.14 shows an example of a planar black-and-white image along with two of
its projections. If strip projections are used, the total amount of “white” (or black) in a set
of consecutive strips parallel to the projection direction is measured. As it is impossible
to represent all possible planar images in a finite amount of computer memory, they are
approximated by representing the images on a pixel grid. Each of the pixels can either have
a value of 1 (white) or O (black).

The weighted reconstruction problem for two projections (i.e., Problem 2 in the con-
text of lattice sets) can also be solved efficiently in the case of planar subsets. However, a
specifically chosen pixel grid must be used, which depends on the two projection directions.
Figure 1.15 shows how the grid is formed from two projections. Every pixel on the grid is
the intersection of a strip in the first direction with a strip in the second direction. The net-
work flow approach can be used for this pixel grid, to compute a 0-1 reconstruction from
the given two projections.

In every iteration of the iterative network flow algorithm, a new pair of projections is
selected. Therefore the pixel grid on which the new solution is computed is different in each
iteration. To compute the weight map for the new pixel grid, the image from the previous
iteration (defined on a different pixel grid) is first converted to a gray-scale image on the
pixel grid by interpolation. Recall that the computation of the similarity fraction for a pixel p
does not require that neighbouring pixels of p are binary. Therefore the new weight map can
be computed in a straightforward way. An overview of the adapted version of the iterative

30 1. Network flow algorithms for discrete tomography: an overview

Figure 1.15: Two parallel beams span a pixel grid. On this pixel grid, network flow methods can be
used to solve the two-projection 0-1 reconstruction problem.

algorithm is shown in Figure 1.16.

Just as for lattice images, the iterative network flow algorithm for plane sets is capable
of computing very accurate reconstructions if a sufficient number of projections is available.
However, if the original image does not have an intrinsic lattice structure we cannot expect
a reconstruction that perfectly matches the projection data, as it is unlikely that the original
image can be represented as a binary image on the pixel grid used by the algorithm.

1.9. Applications of discrete tomography

The main aim of this thesis is to present algorithms for the reconstruction of binary im-
ages from a small number of projections. The problem of reconstructing objects that do not
have an intrinsic lattice structure, which is described in Chapter 5, has many potential ap-
plications. Many objects that are scanned in industry consist of a single material. Besides
reconstruction results for simulated images, Chapter 5 contains reconstruction results for a
real experimental dataset of a raw diamond that was scanned in a micro-CT scanner. The
reconstruction results demonstrate that the techniques in this thesis can indeed be used for
real world data.

Chapters 3 and 4 focus on the reconstruction of lattice images. Although lattice images
may seem to be primarily of mathematical interest, the lattice model is also suitable for
use in a practical application: the reconstruction of nanocrystals from projections obtained
by electron microscopy. In the remainder of this section we will introduce this prominent
application of discrete tomography. Chapter 6, the last chapter of this thesis, deals with one
of the reconstruction problems that arise in the application of discrete tomography to the
reconstruction of nanocrystals.

1.9. Applications of discrete tomography 31

Compute the start solution F° on the standard pixel grid;
i:=0;
while (stop criterion is not met) do
begin
i=i+1;
Select a new pair of directions v(@ and v(®) (I<a<b<n);

Convert the previous solution F'~! to an image £~! which is defined
on the pixel grid spanned by directions v(@ and v(®);

Compute a new weight-map W' from the image F'~!;

Compute a new solution F' on the grid spanned by v(@ and{v(h)
by solving a variant of Problem 4, using the weight map W*.

end

Figure 1.16: Basic steps of the algorithm for plane sets.

1.9.1. Atomic resolution electron tomography of nanocrystals

Three-dimensional imaging of extremely small crystals (nanocrystals) at atomic resolution
is an important goal in Materials Science. Finding out exactly where each of the atoms
reside inside different types of nanocrystals would provide a greater understanding of nano-
materials, which are abundant in many different applications.

Most quantities that are measured in physical experiments are continuous quantities.
However, at the smallest scale, the atomic level, nature is actually discrete, as all materials
are made out of a discrete set of atoms. If we focus on crystalline solids, there is also a
different kind of discreteness involved: within a crystal the atoms are arranged in a highly
regular structure, called the crystal lattice.

When looking at a small crystal (a nanocrystal), under a modern electron microscope,
it seems possible to visually distinguish individual atoms in the sample, see Figure 1.17.
However, the image that is seen under the microscope is actually a projection image. The
round dots in Figure 1.17 represent projected columns of atoms, that stretch out in the
direction orthogonal to the image. Such 2D projection images already provide substantial
information about the sample, but it is not possible to determine the 3D position of the atoms
from a single projection image.

When the first meeting on discrete tomography was organized in 1994, one of the main
envisioned applications was 3D tomography of nanocrystals with atomic resolution. In fact,
a novel technique in electron microscopy that had just been developed at that time, was
one of the main reasons for starting research in discrete tomography. This technique, called
QUANTITEM [20, 24], made it possible to count the number of atoms in each projected
column of a nanocrystal. One of the main questions that arose from this new ability was,
if it would be possible to reconstruct the 3D position of all atoms from the projection data
by some tomographic reconstruction algorithm, provided that the atom counting could be

32 1. Network flow algorithms for discrete tomography: an overview

Figure 1.17: Projection image of a nanocrystal from an electron microscope. The width of a pixel in
this image is less than 10~ %m. Each round dot represents a projected column of atoms. Courtesy of
C. Kisielowski.

performed for several projection images.

For investigating samples that require a resolution of at most 1 nanometer (10~"m),
tomography has already been used extensively in electron microscopy. Just as in X-ray to-
mography, a series of projection images is recorded from a range of angles, called a tilt
series. The reconstruction is subsequently computed by methods from continuous tomogra-
phy, such as Filtered Backprojection or ART (see, e.g., [19]). Tomographic reconstruction
from projections obtained by electron microscopy is known as electron tomography. Several
factors limit the applicability of this type of tomography to atomic resolution reconstruction.
Firstly, a large number of tilt angles is required to obtain reconstructions of sufficient quality.
Typically, at least 50 images have to be recorded. Each time that the electron beam interacts
with the sample to form a new image, the sample may be damaged by the electron beam.
Therefore, recording many images is often impossible. Secondly, when recording images at
atomic resolution, it is very difficult to properly align the sample for each new projection
angle. In this aspect, electron tomography is somewhat different from X-ray tomography.
In X-ray tomography the X-ray source is usually rotated around the object of interest. In
electron microscopy, the sample is rotated within the microscope. Even if it is possible to
rotate the sample holder with great accuracy, sample drift within the holder may still occur.
At atomic resolution even the slightest changes in the sample position or orientation have
major consequences for the acquired image. Finally, the interaction of the electron beam
with the sample depends heavily on the orientation of the sample relative to the electron
beam. If the electron beam is aligned parallel to one of the lattice directions of the crystal
(called zone axes), the observed image will usually be very different from an image ob-

1.9. Applications of discrete tomography 33

®
-3
©

0.5 nm

Figure 1.18: (a) Left: Cuboctahedral shape of a simple nanocrystal (b) Right: Projection of a perfect
nanocrystal consisting of 309 atoms

tained without zone axis alignment. Mixing these two type of images in the reconstruction
algorithm typically results in reconstruction artifacts.

Counting atoms

Figure 1.18 shows a 3D nanocrystal that consists of 309 atoms. Nanocrystals are highly reg-
ular structures. The atoms in a perfect crystal are arranged in a periodic pattern. By incor-
porating the regular structure of crystals in the reconstruction algorithm (i.e., reconstructing
a lattice image) the special structure of nanocrystals can be exploited.

Not every orientation of the sample is equally suitable for counting the number of atoms.
To observe projected columns of atoms in the microscopic images, the electron beam has to
be aligned parallel to one of the zone axes of the crystal.

Unfortunately, the experimental results of QUANTITEM did not live up to the expecta-
tions. One of the main obstacles at that time that had to be overcome first were aberrations,
that distorted the images from the microscope. Both spherical aberrations and chromatic
aberrations are a main concern in electron microscopy. Spherical aberrations are caused by
the use of a spherical lense, instead of an ideal hyperbolic lense. Chromatic aberrations are
caused by the use of an electron beam that contains electrons of different energy levels.

Over the last ten years major improvements have been obtained in aberration correction.
Special lense systems for correcting spherical aberrations have now been integrated into the
newest microscopes. Besides correcting aberrations by adding hardware to the microscopes,
new techniques have also been developed for improving the image quality by computation.
Instead of recording a single image, a series of images is obtained using varying focus
conditions. From a single image, only the intensity of the electron beam can be measured

34 1. Network flow algorithms for discrete tomography: an overview

1
B

angular distribution |

(A0=053rad) |

© Thickness [nm] &

Imaginary part of EW

1 3

number of gold atoms

Figure 1.19: (a) Left: experimentally determined exit wave phase for a very thin gold sample. (b)
Right: The exit wave phases for the different atom columns cluster into groups, determined by the
number of atoms in the column. The discrete step of the exit wave phase for each additional gold atom
is 0.53 rad.

as it exits the sample. By recording a sequence of images, it is also possible to compute
the phase of the electron exit wave. This computation is known as exit wave reconstruction.
The reconstructed exit wave of a crystalline sample turns out to be very useful for counting
the number of atoms in each projected column.

Figure 1.19a shows the phase of the electron exit wave for a very thin gold sample,
obtained by a real (physical) experiment. It can be seen in Figure 1.19b that a discrete jump
in the exit wave phase occurs each time that an extra atom is added to a column.

Using the exit wave phase it is now possible to count the number of atoms in each col-
umn of a very thin sample. If the atom counting step can be performed for several different
projection angles, a discrete tomography problem will have to be solved to compute a 3D
reconstruction from these projections, see Figure 1.20.

Results of experiments using simulated microscopy data are reported in [17, 18]. At
present, there is no dataset available yet that contains atom count data for several zone axis
projections. The main obstacle towards obtaining such a dataset is the unavailability of a
double tilt-holder. To obtain projection images along several zone axes, a single tilt axis
for the sample is not enough. However, rotating the sample around more than one axis
is technically difficult. Double tilt-holders that are capable of rotating along two axes are
currently under construction.

Count errors

Most theory that has been developed for discrete tomography deals with reconstruction from
perfect projections. Unfortunately, in most physical experiments, errors are very difficult to
avoid. A major advantage of using the knowledge that atoms are discrete and that they occur
in columns, is that this allows for some correction of errors. As can be seen in Figure 1.19,

1.9. Applications of discrete tomography 35

7
/

e
/

7

7
7
7

2

7

- — — — =
7

7/

_" @-

7
7
7

7
- —
7/

7

/

7/
7/

7
7/
7/
- — =
7
- — = =

7/
7

- —
7/

7
7

e ee,
‘o000 e
o
‘@ @

/_'_

’
’
’
(L
’
’
’
’
’
(e}

7/
/-

A

33 3 5 4

7

Figure 1.20: Discrete tomography can be used to reconstruct the position of the atoms inside a
nanocrystal from zone-axis projections, assuming that the atom positions are all lattice points.

different columns that contain the same number of atoms don’t result in equal measured
exit wave phases. Suppose that an atom column contains k atoms and ¢ is the expected
exit wave phase for this number of atoms. As long as the measured phase ¢’ is closer to ¢
than to the expected exit phases for other atom counts, the resulting atom count will still be
correct. This kind of error correction is unusual in physics, as most measured quantities are
continuous.

Now suppose that after the counting step the projection data still contains errors. In
Chapters 2, 3 and 4 we will show that it is often possible to reconstruct binary images from
just a few projections. If perfect projections from k directions are required to compute a per-
fect reconstruction of an image, but X’ > k projections are actually available, the projection
data contains redundancy. Similar to the way that redundancy is exploited in Coding Theory
to correct errors, it may be possible to use additional projections in discrete tomography for
the correction of errors [4]. Unfortunately, the results in [2] show that the number of errors
that can be corrected grows only linearly with the number of available projections.

For the application of electron microscopy, it may be possible to beat the theoretical
bound on the number of correctable errors. Prior knowledge that comes from known crys-
tallographic properties of crystals can be used to guide a reconstruction algorithm towards
physically feasible reconstructions.

36 1. Network flow algorithms for discrete tomography: an overview

Defects

Assuming that all atoms in a nanocrystal are ordered in a regular lattice is mathematically
very convenient. The resulting mathematical model of discrete tomography contains two
forms of “discreteness”: each lattice point either contains one or zero atoms, i.e. the set of
atoms is discrete, and the lattice itself is discrete. Unfortunately, microscopists are usually
more interested in crystals that do not have a perfect lattice structure. Deviations from the
regular lattice structure are known as defects in crystallography. The simplest of such devi-
ations, which can be incorporated in the lattice model are vacancies. A crystal contains a
vacancy if a lattice point is not occupied, where it should be occupied according to the peri-
odic crystal structure. The ability to do 3D imaging of vacancies would already be of great
interest in materials science. However, many defects occur in practical samples that severely
distort the regular lattice structure. If it is not longer possible to find orientations in which
projection columns of atoms can be observed, it is unclear how to use discrete tomography
for such samples. Chapter 6 describes how it may still be possible to count atoms from the
projection data, even though the atoms do not lie in regular columns.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]
[10]

[11]

[12]

[13]

Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms and appli-
cations. Prentice-Hall (1993).

Alpers, A., Gritzmann, P.: On stability, error correction and noise compensation in
discrete tomography. SIAM J. Discrete Math., 20, 227-239 (2006).

Anstee, R.P.: The network flows approach for matrices with given row and column
sums. Discrete Math., 44, 125-138 (1983).

Batenburg, K.J., Jinschek, J.R., Kisielowski, C.: Atomic resolution electron tomogra-
phy on a discrete grid: atom count errors. Microsc. Microanal., 11, suppl. 2 (2005).

Bertsekas, D.P., Tseng, P.. RELAX-IV: a faster version of the RELAX code for solving
minimum cost flow problems. LIDS Technical Report LIDS-P-2276, MIT, (1994).

Diirr, C.: Ryser’s algorithm can be implemented in linear time.
http://www.lix.polytechnique.fr/ "durr/Xray/Ryser/

Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canad. J. Math., 8,
399-404 (1956).

Gale, D.: A theorem on flows in networks. Pacific J. Math., 7, 1073—1082 (1957).
Gardner, R.J.: Geometric tomography. Cambridge University Press, New York (1995).

Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of
reconstructing lattice sets from their X-rays. Discrete Math., 202, 45-71 (1999).

Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algo-
rithm. J. Algorithms, 22, 1-29 (1997).

Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM, 45, 783-797
(1998).

Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive ap-
proximation. Math. Oper. Res., 15, 430-466 (1990).

38

1. Network flow algorithms for discrete tomography: an overview

[14]

[15]

[16]
[17]

Gritzmann, P., de Vries, S., Wiegelmann, M.: Approximating binary images from dis-
crete X-rays. SIAM J. Optim, 11, 522-546 (2000).

Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew.
Math., 534, 119-128 (2001).

ILOG CPLEX, http://www.ilog.com/products/cplex/

Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Van Dyck, D., Chen, F.-R.,
Kisielowski, C.: Prospects for bright field and dark field electron tomography on a
discrete grid. Microsc. Microanal., 10, suppl. 3 (2004).

Jinschek, J.R., Calderon, H.A., Batenburg, K.J., Radmilovic, V., Kisielowski, C.: Dis-
crete tomography of Ga and InGa particles from HREM image simulation and exit
wave reconstruction. MRS Proc., 839, 4.5.1-4.5.6 (2004).

Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. SIAM
(2001).

Kisielowski, C., Schwander, P., Baumann, F., Seibt, M. Kim, Y., Ourmazd, A.: An ap-
proach to quantitative high-resolution transmission electron microscopy of crystalline
materials. Ultramicroscopy 58, 131-155 (1995).

Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can J. Math., 9,
371-377 (1957).

Ryser, HJ.: Combinatorial mathematics, The Carus Mathematical Monographs, 14,
Math. Assoc. of America, John Wiley and Sons, Inc., New York (1963).

Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Algorithms and
Combinatorics series, 24, Springer, Heidelberg (2003).

Schwander, P., Kisielowski, C., Baumann, F., Kim, Y., Ourmazd, A.: Mapping pro-
jected potential, interfacial roughness, and composition in general crystalline solids by
quantitative transmission electron microscopy. Phys. Rev. Lett., 71, 4150-4153 (1993).

Slump, C.H., Gerbrands, J.J.: A network flow approach to reconstruction of the left
ventricle from two projections. Comput. Gr. Im. Proc., 18, 18-36 (1982).

Tanabe, K.: Projection method for solving a singular system. Numer. Math., 17, 203—
214 (1971).

Chapter 2

An evolutionary algorithm for
discrete tomography

This chapter has been published as: K.J. Batenburg, “An evolutionary algorithm for
discrete tomography”, Discrete Applied Mathematics, Vol. 151, 36-54 (2005).

Abstract. One of the main problems in Discrete Tomography is the reconstruction of
binary matrices from their projections in a small number of directions. In this chapter we
consider a new algorithmic approach for reconstructing binary matrices from only two pro-
jections. This problem is usually underdetermined and the number of solutions can be very
large. We present an evolutionary algorithm for finding the reconstruction which maximises
an evaluation function, representing the “quality” of the reconstruction, and show that the al-
gorithm can be successfully applied to a wide range of evaluation functions. We discuss the
necessity of a problem-specific representation and tailored search-operators for obtaining
satisfactory results. Our new search-operators can also be used in other discrete tomogra-
phy algorithms.

2.1. Introduction

Discrete Tomography (DT) is concerned with the reconstruction of a discrete image from
its projections. One of the key problems is the reconstruction of a binary (black-and-white)
image from only two projections, horizontal and vertical (see Figure 2.1). In 1957 Ryser [23]
and Gale [11] independently derived necessary and sufficient conditions for the existence
of a solution. Ryser also provided a polynomial time algorithm for finding such a solution.
However, the problem is usually highly underdetermined and a large number of solutions
may exist [27].

Among the applications of discrete tomography are the reconstruction of crystal lattices
from projections obtained by electron microscopy [17,25] and the reconstruction of angio-

40 2. An evolutionary algorithm for discrete tomography

O W R O Ul R

2 32 3 46 41

Figure 2.1: A binary image with its horizontal and vertical projections.

graphic images in medical imaging [22,26]. In such applications the projection data are the
result of measurements of a physical object and we are interested in finding a reconstruction
which resembles the original image as closely as possible, not just one that corresponds to
the given projections. Therefore it is necessary to use all available information about the
class of images to which the measured image belongs.

In this chapter we assume that the given projection data are consistent (i.e., there is at
least one image which has the given projections). In practice the situation is often more
complicated, as noise and other errors may result in inconsistent data.

For certain classes of highly-structured images, such as hv-convex polyominoes (i.e.,
the white pixels in each row and column are contiguous), polynomial-time reconstruction
algorithms exist (see, e.g., [4,6]). On the other hand, there are classes of images, such as the
more general class of hv-convex images (which may consist of many separate polyominoes),
for which the reconstruction problem is NP-hard (see [19]). Instead of assuming specific
properties of the image structure, we will focus on a more general approach. Suppose that
we are able to define an evaluation function, which assigns a value to each of the solutions,
reflecting how good a particular solution is in our context. An algorithm that maximises the
evaluation over the set of all solutions will then yield the most desirable solution.

As an example, consider the class of hv-convex images. Suppose that the unknown orig-
inal image belongs to this class. In [8] it is shown that when we define the evaluation of an
image to be the number of neighbouring pairs of white pixels (either horizontal or vertical),
the evaluation function is maximised by a reconstruction that has the prescribed projections
if and only if the reconstruction is also hv-convex. Similarly, we can define an evaluation
function for the reconstruction of hv-convex polyominoes, where we subtract a large penalty
if the image consists of more than one polyomino.

Probably of greater practical relevance is the case where the unknown original image
can be considered to be a random sample from a certain known probability distribution,
defined on the set of all images. In this case the evaluation function reflects the likelihood
that any given image is a random sample from this distribution.

Finally we remark that the NP-hard problem of reconstructing binary images from more
than two projections fits into our model as well, as long as the horizontal and vertical projec-
tions are included in the set of known projections. In that case the evaluation function must

2.2. Preliminaries 41

include a term that indicates the deviation of the remaining projections (besides horizontal
and vertical) of the reconstructed image from the prescribed projections. Note that our al-
gorithm will always find a reconstruction for which the horizontal and vertical projections
correspond perfectly to the prescribed projections, assuming that the prescribed projections
in those two directions are consistent. Define the projection deviation of an image to be the
total difference (as a sum of absolute values) between the image’s projections and the pre-
scribed projections. Because we only deal with maximisation problems, we use the negated
projection deviation as the evaluation function.

The flexibility of our model comes at a price. In general, the problem of maximising
the evaluation function over the set of all solutions is NP-hard, which follows directly from
the NP-hardness of the problem of reconstructing binary images from more than two pro-
jections (see [12]). In order to deal with this intractability, we resort to the use of mod-
ern approximation algorithms; in particular, we propose an evolutionary algorithm, see [3].
The term evolutionary algorithm is generally used to denote a class of algorithms that are
based on the concept of maintaining a “population” of candidate solutions, which evolves
by means of evolutionary operators (e.g., mutation, crossover) and selection. In Section 2.3
we discuss the choices that we made in designing the algorithm. Because the problem at
hand has a natural binary encoding it seems attractive to apply a classical genetic algorithm
(GA) (see [21]), using the bitstring representation. For several reasons however, this does
not lead to good results. We will discuss the problem features that cause the application of
classical GA’s to be inadequate and introduce new problem-specific mutation and crossover
operators. We discuss the necessity of using a hillclimb operator as a post-mutation and
post-crossover operator for improving the solution quality.

Section 2.4 presents our experimental results. The results suggest that our algorithm
can be successfully applied to a wide range of evaluation functions, which makes it very
versatile.

2.2. Preliminaries

We will now introduce some notation and define the DT problem mathematically. Parts
of our algorithm are based on well-known theoretical results, which we will summarise.
We assume that the reader is familiar with the theory of network flows [2] and the basic
principles of evolutionary algorithms [3,21].

Throughout this chapter we will assume that all binary matrices are of size m x n. We
first consider the basic problem of reconstructing a binary matrix from its horizontal and
vertical projections.

42 2. An evolutionary algorithm for discrete tomography

Definition 1 Let R = (ry,...,ry) and S = (s1,...,8,) be nonnegative integral vectors. We
denote the class of all binary matrices A = (a;;) satisfying
n
Za,‘j = r, i=1,....m,
j=1

on

Il
—_

ajj = Sj, jzl,...,n,

by A(R,S). The vectors R and S are called the row and column projections of any matrix
A€ 4(R,S).

Because DT is strongly related to digital image processing we often refer to binary matrices
as images and call the matrix entries pixels with values white (1) and black (0).

From this point on we assume that the row and column projections are consistent, mean-
ing that 4(R, S) is nonempty. In particular, this implies that " , r; = Y'i_1 ;. Necessary and
sufficient conditions for the nonemptiness of A4(R,S) are given in [18].

One of the basic problems in DT is the reconstruction problem:

Problem 6 Let R and S be given integral vectors. Construct a binary matrix A € A(R,S).

Because the number of possible solutions of the reconstruction problem can be very
large it is necessary to impose additional properties on the solution being sought. In this
chapter we consider the following problem:

Problem 7 (MAXEVAL) Let R and S be given integral vectors and let f : A(R,S) — 7 be
a given evaluation function. Find a binary matrix A € A(R,S) such that f(A) is maximal.

Although in Problem 7 the domain of f is restricted to the class 4(R,S), f is usually defined
on the entire set {0, 1}"*".

The notion of switching components plays an important role in the characterisation of
the class 4(R,S).

Definition 2 Let A € A(R,S). A switching component of A is a 2 X 2 submatrix of the form

69 ()

Switching components have the property that if we interchange the 0’s and 1’s, the
projections do not change. We call such an interchange operation an elementary switching
operation. An important theorem of Ryser [24] describes how the class A(R,S) is charac-
terised by a single element of this class and the set of switching components:

Theorem 2 Let A € A(R,S). There exists B € A(R,S), B+ A, if and only if A contains a
switching component. Moreover, if such a matrix B exists, then A can be transformed into B
by a sequence of elementary switching operations.

2.2. Preliminaries 43

2 2 1

Figure 2.2: A 3 x 3 image instance and its corresponding network flow.

We remark that every matrix B that is the result of applying a sequence of elementary
switching operations to A is also in A(R,S). The fact that we can transform a matrix in
A(R,S) into any other matrix having the same projections by means of elementary switching
operations, makes the use of elementary switching operations very suitable for local search
procedures. In our evolutionary algorithm, we make extensive use of these operations.

An important operation in our algorithm is the computation of matrices in 4(R, S), given
R and S. We use a network flow approach for computing these matrices, which was first
introduced by Gale [11]. First, we construct a directed graph N. The set V of nodes consists
of a source node S, a sink node 7', one layer Vi, ..., V,, of nodes that correspond to the image
rows (row nodes) and one layer Wy, ..., W, of nodes that correspond to the image columns
(column nodes). The set A of arcs consists of arcs (S,V;) fori=1,...,m, arcs (V;,W;) for
i=1,...,m,j=1...,n,and arcs (W;,T) for j =1,...,n. We remark that the two layers of
row nodes and column nodes form a complete bipartite graph.

We also define a capacity function C : A — Ny which assigns an integral capacity to
every arc. All arcs between a row node and a column node are assigned capacity 1. We will
denote these arcs as pixel-arcs, because each of them corresponds to a single, unique pixel
of the image (determined by the row and column). The prescribed projections determine the
capacities of the arcs from the source node and the arcs to the sink node. Every arc (S,V;)
has capacity r; and every arc (W}, T') has capacity s . Figure 2.2 shows the network N for an
example 3 x 3 image.

It is well-known that a maximum flow from S to 7' can be found in polynomial time.
From the theory of linear programming we know that there is a maximum flow which is

44 2. An evolutionary algorithm for discrete tomography

integral. Suppose that this maximum flow fully saturates all outgoing arcs from the source
(and all incoming arcs towards the sink). Every pixel-arc carries a flow of either O or 1.
Assign a 1 to pixel (i, j) if arc (V;, W;) carries a flow of 1 and assign 0 otherwise. It is easy
to verify that the resulting image has the prescribed projections in both directions. Con-
versely, if the horizontal and vertical projections are consistent, i.e., there is an image that
satisfies them, the network must have a maximal flow that saturates all outgoing arcs from
the source. We see that the problem of finding a maximum integral flow in N is equivalent
to the reconstruction problem.

We can use algorithms for solving the max flow problem to compute solutions of the
DT reconstruction problem. In our case we want to impose additional requirements on the
resulting image. In particular, given a binary image M € {0,1}"*", we want to find the
binary image A € 4(R,S) that differs from M in as few pixels as possible. We will refer
to M as the model image. Our evolutionary algorithm computes reconstructions for many
different model images. Each of those reconstructions adheres to the prescribed horizontal
and vertical projections.

Problem 8 (BESTMATCH) Let R and S be given integral vectors and let M = (m;;) be a
given binary matrix. Find A = (a;;) € A(R,S) such that

M=

mij — aj|

n
=1

1

J

Il
—

is minimal.

Problem 8 can be solved efficiently using an extension of the network flow model, incor-
porating a cost function. We assign a cost ¢;; = —m;; to every arc (V;,W;). The remaining
arcs are all assigned a cost of 0. The process of finding a maximum flow of minimal cost
now comes down to finding an integral flow that saturates the maximum number of pixel-
arcs for which the corresponding model image pixel has value 1. In other words, if A is
the image that corresponds to the maximal flow of minimal cost, then A has as many 1’s in
common with M as possible.

For any matrix B = (b;;) € {0,1}"*", denote the number of 1’s in B by np and define
ny analogously. Suppose that B € A(R,S). Clearly, we have ng =Y | r; = Yi_s;j. Put

ve=[{(i,)) : bij=1Am; = 1}].
Then
where | - | denotes the set cardinality. Hence
H(l).]) :bij :ml]}| =mn— (nB—f—nM—sz))

which shows that maximising the number of common 1’s between B and M is equivalent to
solving Problem 8, because mn, ng and ny, are constant for B € 4(R, S). Numerous standard
algorithms are available for solving the min cost max flow problem in polynomial time. We
can use any of these algorithms for solving Problem 8, see, e.g., [2].

2.3. Algorithmic approach 45

2.3. Algorithmic approach

2.3.1. Overview of the approach

In this section we will describe a heuristic algorithm for solving Problem 7 (MAXEVAL).
Because finding a reconstruction that maximises the evaluation function is an NP-hard prob-
lem, we have to resort to approximation algorithms. In our approach we make extensive use
of the fact that Problem 8 (BESTMATCH) can be solved in polynomial time. In preliminary
experiments we implemented and tested several approaches, based on simulated anneal-
ing [1], tabu search [13] and evolutionary algorithms [3]. On the basis of these preliminary
experiments, we believe that simulated annealing and tabu search, which only use local
search operators, are not well suited for this task. The main reason for this is that the DT
problem usually has a great number of local optima and moving between different optima
may require a large number of “uphill” steps.

Evolutionary algorithms can handle this problem in two ways. Firstly, the algorithm
uses a diverse population of candidate solutions, instead of a single solution. Secondly, the
crossover operator is capable of performing large steps in the search space.

Because the problem at hand allows for a natural bitstring representation of candidate
solutions it fits directly into the framework of classical genetic algorithms on bitstrings:
simply use {0, 1} as the candidate solution space. We now have two optimisation criteria,
the evaluation function and the deviation from the prescribed projections.

We found this approach to be inadequate for several reasons. In the first place, the
crossover operator usually results in candidate solutions that deviate greatly from the pre-
scribed projections. This is particularly common when the two parent solutions have many
differences. This behaviour makes the crossover operator hardly effective at all, reducing
the algorithm to a simple hillclimb procedure that only uses mutation to improve upon the
solutions. In addition, the most common crossover operators, single-point crossover and
uniform crossover, do not take into account the two-dimensional spatial structure of the
candidate solutions. Intuitively, building blocks for this problem are made up of regions of
pixels, not necessarily horizontally or vertically aligned. A problem-specific operator could
benefit from this structure.

We have designed a problem-specific evolutionary algorithm to overcome the disadvan-
tages of the classical genetic algorithm (GA). Instead of optimising over all bitstrings in
{0,1}™", the algorithm optimises exclusively over A(R,S). At the end of each generation
all candidate solutions have the prescribed horizontal and vertical projections. This requires
a new crossover operator, that is not only capable of mixing features from both parents,
but also of ensuring that the produced children adhere to the prescribed projections. Similar
requirements apply to the mutation operator.

Our algorithm is a memetic algorithm (see [7]): after every crossover or mutation oper-
ation a stochastic hillclimb is performed until the solution has reached a local optimum. In
this way, individuals always represent local optima in the search space. We chose this ap-
proach, because although the proposed crossover operator generates children that have the
prescribed projections, the children are often of inferior quality with respect to the evalua-
tion function (when compared to the parents). In order to fully exploit the explorative power

46 2. An evolutionary algorithm for discrete tomography

generate initial population Py of size A, consisting of matrices in 4(R,S);
perform a hillclimb operation on each matrix in Py;
t:=0;
while (stop criterium is not met) do
begin
P/ =0;
fori:=1toudo
begin
generate a child matrix C, by crossover or mutation;
perform a hillclimb operation on C;
P =P/ U{C};
end;
select new population P, from P, UP/;
ti=t+1;
end
output the best individual found;

Figure 2.3: Outline of the evolutionary algorithm.

of the crossover operator, the hillclimb procedure increases the solution quality while still
remaining quite close to the solution that resulted from the crossover operation. Memetic
algorithms typically require only a small number of generations (while performing a lot of
work for each generation).

Figure 2.3 summarises our algorithm. The parameters A and u are the population size
and the number of children that are created in each generation, respectively. In the next
sections we will describe the various operators in more detail.

2.3.2. A new crossover operator

The crossover operator is one of the main parts of our algorithm. The input of the operator
consists of two parent images. The output is a child image, which has certain features from
both parents. Because all images in the population are members of 4(R,S), the resulting
image should have the prescribed projections. In order to enforce this constraint, we use the
network flow formulation of the DT problem.

First, a crossover mask X = (x;;) € {0,1}™*" is computed, which determines for each
pixel from which parent image it inherits. In the following description, assigning cell (i, j)
to the first parent means setting x;; = 0 and assigning cell (i, j) to the second parent means
setting x;; = 1. By neighbouring cells of a cell (i, j) we mean the four horizontal and vertical
neighbours (or fewer, if the pixel is at one of the image boundaries). As discussed in Section
2.3.1 we want the crossover operator to take the spatial structure of our image into account.
Therefore the crossover mask should assign areas of the image to each of the parents. We
use the following procedure for realising this. First, one random cell is selected in each of

2.3. Algorithmic approach 47

while (there are border cells) do
begin
randomly select a border cell (x,y);
mark all unassigned neighbouring cells of (x,y) as border cells;
assign these cells to the same parent as (x,y);
remove the border status of (x,y);
end

Figure 2.4: Main loop of the procedure that generates the crossover mask.

the four quadrants (where the origin is considered to be in the center of the image). We call
these cells the seeds. Two (randomly chosen) seeds are assigned to the first parent, the other
two are assigned to the second parent. The four seeds are marked as border cells. Next,
the algorithm enters a loop, shown in Figure 2.4. Because the seeds are each in a different
quadrant, this procedure results in a crossover mask that roughly assigns the same number
of cells to both parents.

From the crossover mask and both parent images P = (p;;) and Q = (gi;), a model image
M = (m;;) is computed, as follows:

Subsequently, we construct the child image C by solving Problem 8, using M as the
model image. This will result in a child image that is in 4(R, S), resembles the first parent in
a certain part and resembles the other parent in the rest of the image. Figure 2.5 shows two
parent images (having the same projections), a crossover mask, the corresponding model
image and the resulting child image. The four seeds are shown as dark cells in the crossover
mask. In this example, we use the number of neighbouring pairs of white pixels as the
evaluation function. Although the child image resembles both parents in their corresponding
parts, it is clear that the child image is far from a local optimum with respect to the evaluation
function. To ensure that the child image has sufficient quality, we apply a local hillclimb
operator after the crossover operation, which we describe in the next section.

2.3.3. The hillclimb operator

The hillclimb operator applies a sequence of small modifications, all of which increase the
evaluation function, until a local optimum is reached. Because we want the resulting image
to be in A(R,S), we use elementary switching operations as local steps. The outline of the
procedure is shown in Figure 2.6. It is of great importance that the switching component
in each step is chosen randomly among all those yielding an increase of the evaluation
function. We have performed experiments with implementations for which this was not the
case: the search for switching components always started in the topleft corner and proceeded

48 2. An evolutionary algorithm for discrete tomography

H: D first parent
D second parent

c. crossover mask

d. model image e. child before hillclimb f. child after hillclimb

Figure 2.5: The crossover operator combines two parent images into a child image.

from left to right, top to bottom. However, this introduces a bias in the hillclimb process,
resulting in “skew images”, clearly showing the consequences of the biased operator.
Although the hillclimb operation can be easily described, its implementation offers
several computational challenges. Finding all applicable switching components (switching
components that are present in the image) is an O((mn)?) operation, making it computa-
tionally expensive. We store all applicable switching components in a hash table. Switching
components are stored as two integer-pairs: (top-left, bottom-right). We can use the hash ta-
ble to iterate over all applicable switching components. The search efficiency of hash tables
is required to update the datastructure after a switching operation has been applied by first
removing all switching components containing any of the four pixels involved and subse-
quently adding all new switching components that contain any of those four pixels. If the

while (a switching operation that can improve the evaluation exists) do
begin

randomly select such a switching operation;

apply the switching operation;
end

Figure 2.6: Outline of the hillclimb procedure.

2.3. Algorithmic approach 49

(4,3)-(6,7)

(1,3)-(2,5)

‘(2,5)-(4,7)‘ ‘(1,2)-(4,4)‘ (6,5)-(7,6)
‘ hash value = 1 ‘ 2 ‘ 4 ‘ e ° .
count = 2 1 3 1 e o o
accum. count = 2 3 6 7 o o o

5th element

Figure 2.7: The hash table of switching components is extended to allow binary search for an indexed
element.

hash table is large enough we can perform this update operation in O(mn) time.

A second operation that our datastructure must support is efficient selection of a ran-
domly chosen element. Each hash table entry points to a linked list of switching compo-
nents. In a separate array, we store the number of switching components that reside in each
list. In another array, we compute the accumulated number of switching components, up to
and including that entry. Using this information, we can efficiently find the ith element in
the hash table, given any index i: first perform a binary search to find the right table entry
and then perform a (tiny) linear search to find the actual switching component. Figure 2.7
illustrates the approach.

Figure 2.8 shows a more precise formulation of the hillclimb operator. In every iteration of
the outer loop the evaluation of the image is increased. If the evaluation function is bounded
from above and from below (as is the case for the evaluation functions we consider in more
detail later), these bounds yield a bound on the number of iterations of the outer loop. Note
that the evaluation function of Problem 7 is discrete.

As the evaluation of the solution increases, the number of iterations in the inner loop
until an improvement is found will generally increase. Because the efficiency of the inner
loop contributes greatly to the efficiency of the hillclimb procedure we want to make the
inner loop as efficient as possible. To improve efficiency, we can use the fact that for many
evaluation functions the evaluation function after application of a switching component does
not have to be computed from scratch, but can be derived from the previous evaluation (delta
updating). It is essential to exploit this feature, because the inner loop is executed so often.
Despite the performance optimisations that we proposed, the hillclimb procedure is still the
bottle-neck for the runtime of our algorithm.

50 2. An evolutionary algorithm for discrete tomography

initialize the hash table, storing all s applicable switching components;
repeat
initialise the accumulated count array;
generate a random permutation T of 1,....,s;
fori:=1tosdo
begin
find switching component 7; in the hash table;
if (applying m; increases the evaluation) then
begin
apply m;;
update the hash table;
break out of the for-loop and restart in the outer loop;
end;
end;
until (no improving switching component has been found);

Figure 2.8: The hillclimb procedure.

2.3.4. The mutation operator

Besides the crossover operator, our algorithm also uses a mutation operator. This opera-
tor “distorts” a region of the image, while still adhering to the prescribed projections. The
mutation operator is composed of several algorithmic steps, very similar to the crossover op-
erator. Instead of the crossover mask, a mutation mask X = (x;;) € {0,1}"*" is computed.
First, a random number k € [kyin, kinax] and a random cell (i, j) (the seed) are selected. We
assign x;; = 1 and mark (i, j) as border cell. Subsequently, a similar procedure as in Figure
2.4 is executed. In this case however, the loop is only executed k times. All cells that are
still unassigned after the loop terminates are assigned O in the mutation mask.

From the mutation mask X and a parent image P, a model image M = (m;;) is computed
by assigning m;; = p;; if x;; = 0 and assigning m;; a random value (0 or 1) if x;; = 1. In
other words, the mutation mask determines which part of the parent image will be distorted
in the model image.

After the model image has been computed, the same steps are performed as for the
crossover operator: Problem 8 is solved using the weight mask as M. Subsequently, the
hillclimb operator is applied, yielding the child individual. Figure 2.9 shows the the different
steps of the mutation operator. The dark cell in the mutation mask indicates the position of
the seed. As the figure shows, there may be differences between the child and the parent
individual outside the distorted region, as a result of the projection constraints.

2.3.5. Algorithm details

In this section we address several details of our evolutionary algorithm that have not been
discussed in the preceding sections.

2.3. Algorithmic approach 51

D inverted
D not inverted

a. parent b. mutation mask

c. model image d. child before hillclimb e. child after hillclimb

Figure 2.9: The mutation operator transforms a parent image into a child image.

The initial population is generated by repeatedly solving Problem 8, each time using a
new random binary matrix as the weight mask M. Although this procedure does not generate
all matrices in A(R,S) with equal probability, it leads to sufficient diversity in the initial
population.

The algorithm is designed to work with a variety of evaluation functions. We use tour-
nament selection, because it is independent of the actual evaluation values (it only depends
on their ordering) and because the selective pressure can be adjusted easily, by changing the
tournament size.

Before applying the crossover operator, the two parents are randomly selected among
the current population. The same applies to parent selection for the mutation operator. The
probabilities of crossover vs. mutation are adjusted dynamically after each generation. For
every generated child image, the algorithm keeps track of the operator that generated it. It
also counts the number of children generated by crossover (a.) and by mutation (a,,). After
the new population has been selected, the algorithm counts the number of individuals in
the new population that were created by crossover (b.) and by mutation (b,,). From these
numbers the average crossover yield y. = b./(ac+ 1) and mutation yield y,, = b,/ (am + 1)
are computed. (We add 1 to the denominator to avoid division by zero.) The probability that
a child will be generated through crossover in the next generation is set to y./(ye + ym)-
In this way, the algorithm creates more children by crossover in the next generation when
the crossover operation in the current generation creates children of high quality. An explicit
lower- and upperbound for y. are used: 0.1 < y. < 0.9. If the computed value of y. is outside

52 2. An evolutionary algorithm for discrete tomography

these bounds, it is adjusted.

According to Section 2.3.4, the mutation operation randomly selects an integer k in
the interval [Kyin,kmay]. For all experiments in Section 2.4 we used ky,;, = mn/64 and
kmax = Smn/64.

Because the algorithm can be used with many different evaluation functions, it is dif-
ficult to design a universal termination condition. For some specific problems, an upper
bound on the evaluation function value is known in advance and the algorithm can termi-
nate as soon as an individual having that evaluation is found. Consider, for example, the
reconstruction of an image from the horizontal and vertical projections and a third projec-
tion, see Section 2.4.2. In that case a projection deviation of O clearly corresponds to a global
maximum of the evaluation function.

For such problems, having solutions for which optimality can easily be checked, sep-
arate termination procedures can be implemented in our system. In general, however, the
algorithm terminates when no improvement on the best solution so far has been found in
the last 20 generations.

As indicated in Figure 2.3 the selection procedure selects individuals for the new popu-
lation from both the old population and the group of new children. Individuals are allowed
to be selected more than once for the new population. We performed experiments to find
suitable values for the population size A and the number of children u that is created in
each generation. We found that our algorithm performs well when A > yu, and with a large
population. For all the experiments in Section 2.4 we used A = 1000, u = 500 and a tourna-
ment size of 3. We remark that although we have chosen suitable values for the algorithm
parameters, other values may work well too.

2.4. Computational results

We have implemented our algorithm in C++, using the gcc compiler. The implementation
is fully object oriented. By using inheritance and virtual methods, different evaluation func-
tions can be used without modifying the algorithm code. The evolutionary algorithm uses
a base class Individual to represent a member of the population (a single image). For each
evaluation function we implemented a derived class, which computes the evaluation func-
tion and performs delta updating computations. In this way new evaluation functions can be
added with very little extra coding effort and without modifying existing code.

For the implementation of the network flow algorithm we used the RelaxIV solver [5],
combined with the MCFClass library [10]. The source code of our algorithm (except the
MCEF library) is available from the author.

All our experiments were run on a Pentium IV 2800MHz PC with 512Mb of memory.
We performed experiments with several evaluation functions. The evaluation functions are
very different from each other, in order to demonstrate the versatility of the problem model
and the algorithm. The experimental results are intended to demonstrate the feasibility and
flexibility of our approach, not to provide extensive results on each of the individual prob-
lems that we consider.

2.4. Computational results 53

(6)) ®) ©) (10)

Figure 2.10: hv-convex test images

2.4.1. Reconstruction of hv-convex images

The first class of test images consists of sv-convex images. Using methods from [16] we
generated 10 hv-convex images of size 40 x 40. Each image consists of three or four hv-
convex objects. There are no empty horizontal or vertical lines between the objects. The test
images are shown in Figure 2.10. For this image class, the evaluation function is the total
number of neighbouring white pixels (horizontal and vertical). We performed ten test runs
for each of the images. Table 2.1 shows the results. We call a reconstruction perfect if it is
the same as the original image. The table shows the number of runs that achieved a perfect
reconstruction, the average runtime of the algorithm (in minutes) and the average number
of generations after which the best reconstruction was found. When the algorithm did not
find a perfect reconstruction, the reconstruction was always very different from the original
image. Therefore, we do not report solution quality for those cases.

In the cases that the algorithm did not find the optimal solution, it converged to a local

| image [1 [2]3[4]5 6 [7] 8] 9]10|
#perfect 9 5 8 8 9 6 6 6 6 9

average time (m) | 25.6 | 16.6 | 155 | 8.8 85 | 108 | 17.7 | 17.7 | 8.8 | 15.7

average #gen. 246 | 173 | 185 | 14.8 | 15.8 | 185 | 30.2 | 150 | 21.0 | 23.6

Table 2.1: Reconstruction results for the set of hv-convex images

optimum. Figure 2.11 demonstrates the difficulties involved in this optimisation problem. It
shows the second test image and another locally optimal image having the same projections.
The images are very dissimilar, except for the object in the center. This problem is due to
the presence of large blocks of switching components.

54 2. An evolutionary algorithm for discrete tomography

(1) 29x46 (2) 26x41 (3) 36x42

Figure 2.12: Three phantom images and their reconstructions.

2.4.2. Reconstruction from three projections

The second group of test images are phantom images (i.e., simulated images) from [9].
These images have been used as test images in several publications ([14], [20]). In this case
we reconstruct the images from three projections: horizontal, vertical and diagonal (top left
to bottom right). Within our problem formulation, we consider the reconstruction problem
from three projections as a special case of the reconstruction problem from two projec-
tions (horizontal and vertical), where the evaluation of an image depends on the deviation
of its diagonal projection from the prescribed diagonal projection. The evaluation function
to be maximised is the negated total deviation of the image’s diagonal projection from the
prescribed projection (as a sum of absolute values). The three test images and their recon-
structions are shown in Figure 2.12. We performed a single test run for each of the images.
The first two images were reconstructed perfectly (the reconstruction was equal to the orig-
inal image) within 8 seconds. For the third image, however, the algorithm did not find a
reconstruction with the given diagonal projection. The resulting reconstruction has a total

2.4. Computational results 55

difference of 4 from the prescribed diagonal projection, and took 30 seconds to compute.
The main strength of our algorithm is its flexibility. All test images are completely 4-
connected and have no “holes” in them. When we assume this as a priori information, we
can incorporate it in the evaluation function.
For an image A, put
S(A)=—cxd(A)+b(A)

where d(A) denotes the total difference between the diagonal projection of A and the pre-
scribed projection, b(A) denotes the total number of pairs of neighbouring white pixels in A
and c is a very large constant. Maximising f(A) will result in the reconstruction that satisfies
the prescribed diagonal projection which has as many neighbouring white pixels as possi-
ble. Using this new evaluation function, the algorithm reconstructed the original images
perfectly within one minute, even the third image. This experiment shows that reconstruc-
tions from three projections can be very accurate if appropriate a priori information is used
and that such information can easily be incorporated in our algorithm.

2.4.3. Reconstruction using Gibbs priors

The third evaluation function involves a probability distribution, known as a Gibbs distribu-
tion. A method for using Gibbs priors in the reconstruction process was presented in [20].
We use similar definitions. We assume that the original image is a random sample of a
certain known probability distribution. Let IT be such a probability distribution, on the set
{0,1}™*", which determines for each matrix the probability that it is sampled. The proba-
bility TI(A) of a matrix A is given by

TT(A) = L BT T 1),
Z
Here, Z is a normalising factor, 3 is a parameter defining the “peakedness” of the distribution
and I;;(A) is the local energy function of cell (i, j). The local energy function of a cell is
determined by the value of the cell and each of its eight neighbours. Border pixels, which
have less than eight neighbours, are treated as if the lacking neighbours are black. Figure
2.14 shows the eight patterns for which the local energy is nonzero. The corresponding
local energy values are k,,, kp, k. and k. respectively. Each of the patterns corresponds to a
particular local image feature, such as a homogeneous region or a corner. We denote a Gibbs
distribution by the 5-tuple (k,, kp, ke, kc,B), which we call the parameters of the distribution.

B Pk

Figure 2.13: The eight patterns having a nonzero local energy.

As we know that the original image is a random sample from the given Gibbs distri-
bution, we want to find a reconstruction that has maximal likelihood. We remark that this
reconstruction is not guaranteed to be equal to the original image.

56 2. An evolutionary algorithm for discrete tomography

adnabend

:
s |
i

. B
faml

a

et mamamammann

(1) (7,7,15,15,1.2) 2) (7.7,15,15,12) (3) (7.7,15,14,12)

Figure 2.14: Three samples from Gibbs distributions.

Maximising IT1(A) is equivalent to maximising E(A) = ¥} | ¥.7_, 1;j(A), since [1(A) is a
monotonously increasing function of E(A). Computing E(A) involves only the known five
parameters of the distribution and the image A, we do not need to compute Z.

We implemented a Metropolis algorithm, described in [20], for generating random sam-
ples from Gibbs distributions. Three such samples of size 30 x 30 and their parameters are
shown in Figure 2.14. The reason that we selected three images, instead of showing results
for a large number of images, is that many generated images are not tomographically chal-
lenging. For example, many contain several lines that only consist of black or white pixels.
The fact that all three images consist of lines and blocks of four pixels is due to the selected
patterns in Figure 2.13. Different patterns lead to other types of images. As our goal here
is to illustrate the feasibility of our approach, we only show results for this set of patterns.
We performed 10 test runs for each of the three images. Table 2.2 shows the reconstruction
results. For the third image, the algorithm actually found a reconstruction that is slightly dif-
ferent from the original image, but has higher likelihood. We still marked this reconstruction
as a perfect reconstruction. When the algorithm did not find a perfect reconstruction (im-
age 2), the reconstruction was always very different from the original image. Therefore, we
do not report solution quality for those cases. The results show clearly that perfect recon-
struction from only two projections and a given Gibbs distribution is possible in nontrivial
cases.

image | 1 ‘ 2 | 3 ‘
#perfect 10 5 10

average time (m) 164 | 19.5 | 144
average #generations | 17.3 | 36.8 | 20.1

Table 2.2: Reconstruction results for the Gibbs samples.

2.5. Conclusions 57

2.5. Conclusions

We have presented a new algorithm for finding a binary image that satisfies prescribed hori-
zontal and vertical projections and has an optimal or near-optimal evaluation function value.
Our experimental results demonstrate that the algorithm is effective for several different
evaluation functions, corresponding to diverse reconstruction problems.

As demonstrated by the results in Section 2.4.2 a main feature of our approach is its
ability to incorporate various forms of a priori information in the evaluation function.

The bottleneck of the algorithm is the hillclimb operator. Because our hillclimb proce-
dure involves keeping track of all applicable switching components, our algorithm is limited
to images of size 50 x 50 or less. Perhaps making the hillclimb operation less exhaustive
could result in improved time complexity of the operation.

Although we used the problem of reconstructing a binary image from more than two
projections to demonstrate the flexibility of our approach, more effective algorithms are
available that deal with this problem. In the next chapter we will present an algorithm for
this problem that is capable of reconstructing much larger images.

In our experiments we often observed that really finding the global optimum of the eval-
uation function was necessary to find an image that resembled the unknown original image,
which was used to generate the projection data. Near-optimal solutions were usually very
different. In order to increase the stability of the search procedure, it is necessary to incorpo-
rate as much information as possible in the evaluation function. The various reconstruction
results show that when sufficient information is incorporated, our algorithm is capable of
finding accurate reconstructions.

A topic of further research will be the development of a variant of our evolutionary al-
gorithm that is capable of reconstructing an image from noisy projection data. At present
we assume that all projection data are perfect, which may not be realistic for practical ap-
plications.

Bibliography

[1] Aarts, E., Korst. J.: Simulated annealing and boltzmann machines: a stochastic ap-
proach to combinatorial optimization and neural computing, Wiley (1996).

[2] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms and appli-
cations, Prentice-Hall (1993).

[3] Bick, T., Fogel, D.B., Michalewicz, T., eds.: Evolutionary computation 1, Institute of
Physics Publishing, Bristol and Philadelphia, (2000).

[4] Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex poly-
ominoes from horizontal and vertical projections, Theoret. Comp. Sci., 155, 321-347
(1996).

[5] Bertsekas, D.P., Tseng, P.: RELAX-IV: a faster version of the RELAX code for solving
minimum cost flow problems. LIDS Technical Report LIDS-P-2276, MIT, (1994).

[6] Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Nivat. M.: Reconstruction of
4- and 8-connected convex discrete sets from row and column projections, Linear
Algebra Appl., 339, 37-57 (2001).

[7] Corne, D., Dorigo, M., Glover. F.: New ideas in optimisation, McGraw-Hill Education,
(1999).

[8] Dahl, G., Flatberg, T.: Optimization and reconstruction of hv-convex (0,1)-matrices,
Electron. Notes Discrete Math., 12, (2003).

[9] Fishburn, P, Schwander, P., Shepp, L., Vanderbei, R.: The discrete Radon transform
and its approximate inversion via linear programming, Discrete Appl. Math. 75, 39-61
(1997).

[10] Frangioni, A., Gentile, C.: The MCFClass Project (2003).
http://www.di.unipi.it/di/groups/optimize/Software/MCF.html

[11] Gale, D.: A theorem on flows in networks. Pacific J. Math., 7, 1073-1082 (1957).

[12] Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of
reconstructing lattice sets from their X-rays. Discrete Math., 202, 45-71 (1999).

2.5. Conclusions 59

[13] Glover, F.,, Laguna, M.: Tabu Search. Kluwer Academic Publishers (1998).

[14] Hajdu, L., Tijdeman, R.: An algorithm for discrete tomography. Linear Algebra Appl.,
339, 147-169 (2001).

[15] Herman, G.T., Kuba, A., eds.: Discrete tomography: foundations, algorithms and ap-
plications. Birkhiduser, Boston (1999).

[16] Hochstittler, W., Loebl, M., Moll, C.: Generating convex polyominoes at random.
Discrete Math., 153, 165—-176 (1996).

[17] Kisielowski, C., Schwander, P., Baumann, F., Seibt, M. Kim, Y., Ourmazd, A.: An ap-
proach to quantitative high-resolution transmission electron microscopy of crystalline
materials. Ultramicroscopy 58, 131-155 (1995).

[18] Kuba, A., Herman, G.T.: Discrete tomography: a historical overview. Chapter 1 of
[15],3-34 (1999).

[19] Del Lungo, A., Nivat, M.: Reconstruction of connected sets from two projections.
Chapter 7 of [15], 163—188 (1999).

[20] Matej, S., Vardi, A., Herman, G.T., Vardi. E.: Binary tomography using gibbs priors.
Chapter 8 of [15], 191-212 (1999).

[21] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs; 3rd
Revision edition. Springer Verlag (1996).

[22] Onnasch, D.G.W., Prause, G.P.M.: Heart chamber reconstruction from biplane angiog-
raphy. Chapter 17 of [15], 385-401 (1999).

[23] Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can J. Math., 9,
371-377 (1957).

[24] Ryser, H.J.: Combinatorial mathematics, The Carus Mathematical Monographs, 14,
Math. Assoc. of America, John Wiley and Sons, Inc., New York (1963).

[25] Schwander, P., Kisielowski, C., Baumann, F., Kim, Y., Ourmazd, A.: Mapping pro-
jected potential, interfacial roughness, and composition in general crystalline solids by
quantitative transmission electron microscopy. Phys. Rev. Lett., 71, 4150-4153 (1993).

[26] Slump, C.H., Gerbrands, J.J.: A network flow approach to reconstruction of the left
ventricle from two projections. Comput. Gr. Im. Proc., 18, 18-36 (1982).

[27] Wang, B., Zhang, F.: On the precise number of (0, 1)-matrices in A(R,S). Discrete
Math., 187, 211-220 (1998).

Chapter 3

A network flow algorithm for
reconstructing binary images
from discrete X-rays

This chapter has been accepted for publication in the Journal of Mathematical Imaging
and Vision, Springer (2006).

Abstract We present a new algorithm for reconstructing binary images from their pro-
jections along a small number of directions. Our algorithm performs a sequence of related
reconstructions, each using only two projections. The algorithm makes extensive use of
network flow algorithms for solving the two-projection subproblems.

Our experimental results demonstrate that the algorithm can compute highly accurate
reconstructions from a small number of projections, even in the presence of noise. Although
the effectiveness of the algorithm is based on certain smoothness assumptions about the
image, even tiny, non-smooth details are reconstructed exactly. The class of images for
which the algorithm is most effective includes images of convex objects, but images of
objects that contain holes or consist of multiple components can also be reconstructed very
well.

3.1. Introduction

Discrete tomography (DT) is concerned with the reconstruction of a discrete image from
its projections. In our context, the image is defined on a discrete set of lattice points and
the set of possible pixel values is also discrete. The latter property distinguishes discrete
tomography from continuous tomography. We will restrict ourselves to images that have
only two possible pixel values, O (black) and 1 (white). Typically, the number of directions
in which the projection data are available is very small.

62 3. A network flow algorithm for reconstructing binary images from discrete X-rays

Before practical applications of discrete tomography were considered, several prob-
lems of DT had already been introduced as interesting combinatorial problems. In 1957,
Ryser [19] and Gale [7] independently presented necessary and sufficient conditions for the
existence of a binary matrix with prescribed row and column sums. Ryser also provided a
polynomial time algorithm for reconstructing such matrices.

Over the past ten years many of the basic DT problems have been studied extensively.
A principal motivation for this research was a demand from material sciences for improved
reconstruction techniques due to advances in electron microscopy [15-17,21]. Since its in-
ception around 1994, the field of DT has attracted many researchers, resulting in numerous
publications and meetings. Discrete tomography is considered one of the most promising ap-
proaches to making atomic resolution 3D reconstructions of crystals in electron microscopy.
Besides applications in electron microscopy DT has several other applications, such as med-
ical imaging (particularly angiography [22]) and industrial tomography.

Although polynomial-time algorithms have been shown to exist for a number of specific
DT problems, many of the more general DT problems are NP-complete. In particular it was
shown by Gardner, Gritzmann and Prangenberg [8] that the problem of reconstructing a
binary image from three or more projections is NP-complete.

In general, the problem of reconstructing binary images from a small number of projec-
tions is underdetermined. When only two projections are available, horizontal and vertical,
the number of solutions can be very large [24]. Moreover, there can be solutions which are
substantially different from each other. Similar difficulties occur when more than two pro-
jections are given: the number of solutions can be exponential in the size of the image for
any set of projection directions.

Fortunately, images that occur in practical applications are rarely random; they usually
exhibit a certain amount of “structure”. Several authors have come up with algorithms for
reconstructing binary matrices that satisfy additional constraints, such as certain forms of
convexity or connectedness [3,4]. In some cases a reconstruction can still be found in poly-
nomial time. However, in practical situations such assumptions on the structure of the image
are often too restrictive. Also, few proposed algorithms for the two-projection case can be
generalized to the case where more than two projections are available.

Algorithmic approaches for more general DT problems have been proposed in [5, 10,
13,25]. In [5] the authors propose a relaxation of the original problem that can be solved
efficiently by linear programming. In [25] the approach from [5] is extended to include
a smoothness prior. Several greedy heuristic algorithms for reconstructing binary images
from more than two projections are described in [10]. The authors of [13] propose an iter-
ative algorithm which starts at a real-valued solution and gradually moves toward a binary
solution.

A well-known technique that can be used to improve reconstruction quality in some
cases is the introduction of a smoothness prior. For the binary reconstruction problem this
means that we try to find a reconstruction for which most local neighbourhoods of pixels
are either completely black or completely white. For images that occur in practice, such
smoothness assumptions are often satisfied. A disadvantage of this approach can be that
very tiny local details tend to be neglected by the reconstruction algorithm, in favour of the
smoothness constraints.

3.2. Preliminaries 63

In this chapter we present a new algorithm for approximately reconstructing binary im-
ages from their projections. Although smoothness assumptions are used to guide the algo-
rithm during the reconstruction procedure, they are not so dominant that they blur out the
very fine details. In this way, the relative smoothness of many practical images can be used
by the algorithm to obtain reconstructions, while the resulting reconstructions still show a
very high detail level. Even single-pixel details are often reconstructed exactly.

The algorithm is very effective on a broad spectrum of binary images. We will show
experimental evidence that the algorithm can — when used on images that contain large
black or white areas — compute reconstructions that are almost or even completely identical
to the original image, from a very small number of projections. The class of images for
which the algorithm performs well includes the images of convex objects, but even objects
that contain a large number of “holes” or consist of many separated components can be
reconstructed with very high accuracy. We are not aware of any other algorithm for this
reconstruction problem that achieves similar reconstruction quality on such test cases. A
comparison with two alternative approaches is described in Section 3.4.7. Our algorithm is
also very fast, which makes it suitable for reconstructing large images.

Our algorithm reconstructs an image from three or more projections by performing a
sequence of related reconstructions, each using only two projections. We use a network
flow approach for solving the two-projection problems.

In Section 3.2 we introduce some notation and describe our reconstruction problem in a
formal context. Section 3.3 forms the main part of this chapter. We introduce our algorithm
and describe each of its parts in detail. In Section 3.4 we present extensive experimental
results on the performance of our algorithm and show how the algorithm can be adapted
to work with noisy projection data. We also give a performance comparison between our
algorithm and two alternative approaches.

3.2. Preliminaries

We restrict ourselves to the reconstruction of 2-dimensional images, although the algorithm
that we propose can be used for d-dimensional images where d > 2 as well. The cases
d = 2,3 are of most practical interest.

We denote the cardinality of a finite set V by |V| and we denote the set {n € Z : n > 0}
by Ny. Let m,n be positive integers. Put

A={i,))eZ*: 1<i<n1<j<m}

and let F denote the collection of mappings A — {0,1}. We call m and n the height and
width of A respectively. We will sometimes regard the elements of F as matrices or images.
Similarly, we will refer to the elements of A as entries or pixels respectively and to the
values of pixels as colours, black (0) and white (1).

We call a vector v = (a,b) € Z>\{(0,0)} a lattice direction if a and b are coprime. For
every lattice direction v, we define the lattice line L, = {nv| n € Z}. We denote the set of
lines parallel to L, by P, = {L, +1| t € Z*} and the subset of lines in P, that contain at least
one pointof Aby §, ={P € P,| PNA#0}. Let F € F. We call the function X, F : 8, — Ny

64 3. A network flow algorithm for reconstructing binary images from discrete X-rays

defined by

X,F(P)=|{(x,y) € Z*: (x,y) € PNAand F (x,y) = 1}|

for P € §, the (discrete) 1-dimensional X-ray of F parallel to v. We will also refer to the
X-rays as projections.

In the inverse reconstruction problem, we want to construct a function F' € F which
has prescribed 1-dimensional X-rays, parallel to a number of lattice directions vy, vs,. .., V.
More formally:

Problem 9 (Reconstruction problem).
Let k> 1 and vy,...vy be given distinct lattice directions. Let ¢; : 8,, — No(i=1,...,k) be
given functions. Find a function F € J such that X,,F = ¢; fori=1,... k.

Because the functions ¢; all have finite domains, we sometimes consider ¢, to be a vector
of |8,,| elements. We will refer to this vector as a prescribed projection and to its elements
as prescribed linesums.

It is important to notice that there may be many F € F having the prescribed X-rays
even if the number of lattice directions is large [12]. However, the number of solutions
depends heavily on the actual X-rays, which in turn depend on the “original image” that
was measured.

Our algorithm is based on the fact that the problem of reconstructing binary images
from two projections can be solved efficiently. In each iteration our algorithm takes one
pair of projections and finds an image which satisfies those two projections exactly. We use
polynomial time network flow algorithms for solving the two-projection problems. See [1]
for an excellent reference on network flow algorithms. In the next sections we will assume
that the reader is familiar with the basic ideas of network flows.

One can also regard the reconstruction problem as the problem of finding a 0-1 solution
of a system of linear equations, which describes all the linesum constraints. We write this
system as Bx = b, where every entry of the vector x corresponds to a pixel and every row
in the matrix B corresponds to a projected lattice line. The column vector b contains the
linesums for each of the k projections. We will use this notation several times in the next
sections, referring to B as the projection matrix and to b as the vector of prescribed linesums.
When we consider an image as a vector of pixel values, we refer to the vector representation
of an image.

Let x be the vector representation of an image. We define the distance dist(x) between
the projections of x and the prescribed projections as

dist(x) = |Bx—b|,

where |.| denotes the Euclidean norm.

3.3. Algorithm description 65

3.3. Algorithm description

3.3.1. Overview

The purpose of our algorithm is to solve Problem 9 for more than two lattice directions.
Our algorithm is iterative: in each iteration a new reconstruction is computed, using the
reconstruction from the previous iteration.

To obtain a start solution, we solve a real-valued relaxation of the binary reconstruction
problem, using all lattice directions. Every iteration consists of choosing two projection
directions and then constructing an image that satisfies the linesums in those directions per-
fectly. Typically, this two-projection problem has many solutions. We use the reconstruc-
tion from the previous iteration (corresponding to a different pair of directions) to deter-
mine which of the solutions is selected. A weighted network flow model is used for solving
the two-projection problems. By choosing appropriate weights, the reconstruction from the
previous iteration can be incorporated into the new reconstruction process. The weights are
chosen in such a way that the new reconstruction is not very different from the previous
reconstruction. In this way information gathered from previous reconstructions is passed on
to the new reconstruction.

The choice of the weights also depends on local smoothness properties of the image that
resulted from the previous iteration. In this way, the assumption that the image is relatively
smooth is used throughout the algorithm. As we will show in Section 3.4, this does not
restrict the algorithm to the reconstruction of completely smooth images.

3.3.2. Network flow approach

Our algorithm makes extensive use of the network flow method for reconstructing binary
images from two projections. This approach has been studied by several authors [2,22]. As
an example, consider the two-direction problem in Figure 3.1, where the horizontal projec-
tion r = (ry,r2,r3) and the vertical projection s = (s1,s2,s3) of a 3 X 3 binary image F are
given.

column nodes

pixel arcs

row nodes

Figure 3.1: A 3 x 3 reconstruction problem and the corresponding network.

We construct a capacitated network G, as shown in Figure 3.1. The column nodes
C1,C,,C3 correspond to the image columns, the row nodes Ry,R;,R3 correspond to the
image rows. There is an arc between every pair of column and row nodes. Each arc (C;,R))

66 3. A network flow algorithm for reconstructing binary images from discrete X-rays

1
column nodes
010 pixel arcs
11012 TN)
2 2 1 e

-2

Figure 3.2: A solution of the transportation problem in G corresponds to a solution of the recon-
struction problem. The number along each arc indicates the flow through that arc.

corresponds to a single pixel of the image (the cell that intersects with column i and row
J). Therefore we will refer to these arcs as pixel arcs. All pixel arcs are assigned a capacity
of 1. The column nodes act as sources. The linesum for each column determines the
(nonnegative) excess at the corresponding column node. The row nodes act as sinks. Every
row node has a nonpositive excess (i.e., a shortage), which is the negated linesum of the
corresponding row. The excess of the column nodes and row nodes are shown in Figure
3.1. We denote the flow through arc (C;,R;) by x;;. We now consider the transportation
problem in G, which is the problem of finding a flow X = (x;;) such that

3

inj = rj fOI‘j:172,3,
i=1

3

inj = S fori:1,2,3,
j=1

0 <x; < 1 forl<i,j<3.

This transportation problem is a special case of the more general max flow problem. It
is a well known fact that if all arc capacities are integral and if the problem is feasible (i.e.,
there is a solution), there exists a solution for which all the arc flows x;; are integral. As all
arcs of G have a capacity of 1, all arc flows in such a solution will be either 0 or 1. Efficient
methods for finding a max flow are described in [1].

A reconstruction F’ which has the same row and column sums as F' can now be com-
puted by first solving the transportation problem in the network G. Subsequently, each pixel
of F' is assigned the flow through the corresponding pixel arc of G (either O or 1). Figure
3.2 illustrates the construction. The thickness of each arc depicts the flow through that arc
Oorl).

The construction does not require the two directions to be horizontal and vertical; any
pair of lattice directions can be used. In that case we refer to nodes in the graph G as line
nodes. The resulting bipartite graph is not necessarily complete: a pair of line nodes is
connected by an arc if and only if the two lines that correspond to these two nodes intersect

3.3. Algorithm description 67

within the image domain A. In the remainder of this section we will keep using the notation
of the example, involving the horizontal and vertical projections. All presented concepts can
be used for other pairs of lattice directions as well.

As noted before, the problem of reconstructing binary images from two projections can
have a large number of solutions. When extra a priori information is available, such as
an approximate reconstruction, we can use this information to select the most preferable
solution by assigning a weight w;; to every pixel arc (C;,R;). We will refer to these weights
as pixel weights. We now try to find a solution of the transportation problem that maximizes
the total weight:

maximize Z WijXij
(i,j)eA

such that X = (x;;) is a solution of the transportation problem in G.

The problem of finding the solution of maximal weight is a special case of the min-
cost max-flow problem (in which the arc costs are the negated weights). Several efficient
algorithms exist for this type of problem. This weighted network flow approach was already
presented in [22] for reconstructing an image of the left ventricle using a priori information.

3.3.3. An iterative network flow algorithm

Figure 3.3 shows the basic steps of our algorithm. First, a start solution is computed by solv-
ing a real relaxation of the binary problem. This start solution is used to determine the pixel
weights of the network G that corresponds to the first two directions. By solving a min-cost
max-flow problem in G a binary solution is obtained which satisfies the projections in the
first two directions exactly, while closely resembling the start solution. Subsequently, the
new solution is used for determining the pixel weights of the network that corresponds to
a different pair of directions. A preference for local smoothness of the image is also incor-
porated in this computation. The procedure is repeated until some termination condition is
satisfied.

A slightly similar approach was briefly suggested in [11], but as far as we know it has
never been further explored. It does not use a smoothness assumption, which plays in im-
portant role in our approach.

In the next subsections we will provide concrete algorithms for computing the start
solution, choosing the pair of directions for every step of the algorithm and choosing the
pixel weights.

3.3.4. Computing the start solution

At the start of the algorithm we do not have a solution of a previous network flow problem
that we can use for choosing the pixel weights of the first network. One approach would be
to assign equal weights to all pixels. We have chosen to solve a real-valued relaxation of the
binary tomography problem and determine the pixel weights of the first network from the
real solution. Consider the system of linear equations

Bx=b 3.1)

68 3. A network flow algorithm for reconstructing binary images from discrete X-rays

Compute the real-valued start solution X* = (x?j) (see Section 3.3.4);

Compute the binary start solution X° by solving a min-cost
* .

max-flow problem for directions v| and vy, using w;; = x;)

i:=0;

while (stop criterion is not met) do

begin
i=i+1;
Select a new pair of directions v, and vy, (1 <a < b <k),
see Section 3.3.6;

Compute a new solution X! by solving the min-cost
max-flow problem for directions v, and vy, using
the weight function from Section 3.3.5;

end

Figure 3.3: Basic steps of the algorithm.

where B is the projection matrix and b is the vector of prescribed linesums. We now allow
the pixel values (the entries of the vector x) to have any real value instead of just 0 and
1. Because the system of equations is underdetermined it usually has an infinite number
of solutions. We compute the shortest solution x* with respect to the Euclidean norm. The
motivation for using this particular solution comes from the following two observations,
both from [12]:

Observation 1 Suppose that the system (3.1) has a binary solution, X. Let X be any binary
solution of (3.1). Then |£ —x*| = | — x*|.

This follows from the fact that x* is the orthogonal projection of the origin onto the solu-
tion manifold W = {x € R™" : Bx = b}. Because X is also in W we can apply the Pythagorean
formula:

=2 = 52— 5P

But because ¥ is a binary vector we have
t
IKl={1<i<mn:%=1} =) b;
j=1

where by, ..., b; are the linesums corresponding to the first lattice direction. We observe that
|%—x*| only depends on b. By substituting £ for X we find that |£ —x*| = |¥ —x*|. Observation
1 shows that x* is “centered in between” all binary solutions.

Observation 2 Suppose that the system (3.1) has a binary solution X. Let X be an integral
solution of (3.1). Then we have || < |x|.

3.3. Algorithm description 69

This follows from the fact that

3

n

§

2
X; .

“M§

e

where by, ..., b, are the linesums corresponding to the first lattice direction. We use the fact
that 0 and 1 are both equal to their squares. Observation 2 shows that the binary solutions
of (3.1) have the smallest norm among all integer solutions. Therefore the smallest real
solution of the system seems to be a good first approximation to a binary solution.

We use the iterative projection method from [23] for solving the system (3.1). Because
the matrix B is very sparse all computations can be performed efficiently. The accuracy that
is required for our purpose is quite low, because we are only seeking a first approximation.
Therefore we can terminate the iterative algorithm after a small number of iterations. For all
experiments in Section 3.4 we used 300 iterations.

After the pair of projections for the first iteration of the reconstruction algorithm has
been selected, the entries of x* are used as pixel weights in the corresponding transportation
problem.

"M§

1

1

1

3.3.5. Computing the pixel weights

In every iteration of the algorithm the pixel weights are recomputed for all pixels in the
image. In this computation we incorporate the preference of smooth images over random
images, having no particular structure. The new weight of a pixel depends not only on the
corresponding pixel value in the reconstruction from the previous iteration, but also on the
values of pixels in a neighbourhood.

Let F € 3 be the reconstructed image from the previous iteration. As a neighbourhood
of the pixel p = (x,,y,) we choose a square centered in (x,,y,). The reason for preferring a
square neighbourhood over alternatives is that the required computations can be performed
very efficiently in this case. Let p = (x,,y,) € A. Let r be a positive integer, the neighbour-
hood radius. Put

NP:{(X7Y)GA3xp—rSxﬁxp+r,yp—r§y§yp+r}.

In case p is near the boundary of the image, the neighbourhood N, may contain fewer than
(2r+ 1)2 pixels. Let s, be the number of pixels in N that have the same colour (i.e., pixel
value) as p, and let f), be the relative fraction of such pixels:

Sp [{(x,y) ENp: F(x,9) =F(xp,3p) },

_ S
T =,

Let g: [0, 1] — R+ be a nondecreasing function, the local weight function. This function
determines the preference for locally smooth regions. We compute the pixel weight wy,
of p as follows:

1
Wxpyp = (F(xp,)’p) - 5) g(fp)

70 3. A network flow algorithm for reconstructing binary images from discrete X-rays

Note that (F (xp,y,) — %) is either —3 or 3.

The vector of all pixel weights can be computed in time O(mn), regardless of the neigh-
bourhood radius r. First, the number of black pixels in all rectangles having (0, 0) as a corner
is computed. Subsequently, the number of black pixels in each rectangular pixel neighbour-
hood can be computed as a linear combination of the values for rectangles having corner
(0,0). We omit the details here.

When we take g(f,) = 1 forall f,, € [0, 1], there is no preference for local smoothness. In
that case the solution of the new network flow problem will simply have the same value as
in as many pixels as possible. For a constant weight function, the algorithm usually does not
converge. We will show in Section 3.4 that incorporating a preference for local smoothness
in the local weight function results (empirically) in good convergence for images that are
relatively smooth.

We performed several preliminary experiments to determine a good local weight func-
tion. Several different functions appear to work equally well. For the experiments in Section
3.4 we used the following local weight function:

1 (f <0.65)
8(fp) = af (0.65 < f,<1)
9 (fp =1).

The choice for this particular function is somewhat arbitrary. In each of the three cases, a
preference is expressed for retaining the pixel value of p in the next reconstruction, instead
of changing it. In the case that the whole neighbourhood of p has the same colour as p,
this preference is very strong. If the neighbourhood contains a few pixels having a different
colour, the preference is smaller. If there are many pixels in the neighbourhood that have a
different colour, the preference is even smaller.

The neighbourhood radius is not constant during the algorithm. In the experiments, we
used two phases: during the first phase, which resolves the coarse structure of the image,
we use r = 8. The large neighbourhood radius leads to a strong smoothing effect. After 50
iterations, the neighbourhood radius is set to 1. From this point on, the fine details in the
image are gradually reconstructed.

Most min-cost max-flow algorithms (that can be used to find a maximal weight solution
of the transportation problem) work with integer costs. We multiply all pixel weights by a
large integer L and round the results to obtain integral weights. In the experiments of Section
3.4 we use L = 10000.

3.3.6. Choosing the direction pair

In every iteration of the algorithm a new pair of projections is selected which must be
different from the pair of the previous iteration. It is allowed however that one of the two
chosen projections is also used in the previous iteration.

When the number of prescribed projections is small (not greater than 6), we choose to
iterate over all possible pairs of two directions. It is of great importance for the performance
of the algorithm that all pairs of projections are used, not just all single projections. Tables

3.3. Algorithm description 71

3.1 and 3.2 show the order in which the projection pairs are used for the case of four and five
prescribed projections respectively, where the projections are numbered from one through
four (five). These orders perform very well in practice, but several other orders which show
similar performance can be chosen.

Table 3.1: Projection-pair order for four projections
iteration 1 2 3 4 5 6
Istdirection 1 3 1 2 1 2
2nd direction 2 4 3 4 4 3

Table 3.2: Projection-pair order for five projections
iteration 1 2 3 4 5 6 7 8 9 10
Istdirection 1 3 5 2 4 1 2 3 4 5
2nd direction 2 4 1 3 5 3 4 5 1 2

When the number of directions is larger it is no longer feasible to iterate over all possible
direction pairs, which grows quadratically with the number of directions. Instead we use a
heuristic to select the new direction pair. The heuristic first computes all projections of the
current images. Then it compares these projections to the prescribed projection data and
selects the pair of directions for which the total difference (the sum of the absolute values
of linesum differences) between the image projections and the prescribed projections is the
largest. We remark that unless the current reconstruction perfectly satisfies all projection
constraints, these directions will always be different from the two directions used in the
previous iteration. This heuristic is not suitable when the number of projections is very
small. When reconstructing from four projections, for example, using the heuristic would
result in using only two direction pairs, alternating between those pairs. Such cycling is
much less likely to occur when the number of projections is larger.

3.3.7. Stop criterion

As we cannot evaluate how close the current reconstructed image is to the unknown original
image, the only measure for the distance between those two images is the distance between
their respective projections. In theory, this is not a good measure at all, since there may
be two images which are very different, yet have similar projections. For the classes of
smooth images that we focus on, however, this does not seem to be the case. In all our
experiments using more than three projections we found that when the projections of the
reconstruction got close to the prescribed projections, the reconstructed image was also
close to the original image. Only when using three projections it sometimes occurred that
the reconstructed image was quite different from the original image while the projections of
both images were almost the same.

We use the distance between the projections of the current reconstructed image and
the prescribed projections for defining termination conditions for our algorithm. When the

72 3. A network flow algorithm for reconstructing binary images from discrete X-rays

reconstructed image has exactly the prescribed projections, the algorithm terminates. If no
improvement is made in the distance between the prescribed projections and the projections
of the reconstructed image in the last 7T iterations, where T is a positive integer, the algorithm
also terminates. We used 7 = 100 for all experiments in Section 3.4.

Whenever the distance between the projections of the current image and the prescribed
projections becomes less than a certain constant S the algorithm will always terminate after
a maximum of N iterations, where N is a positive integer. This is to avoid cycling around
the optimal solution. We used S = 100, N = 50 for all experiments. The algorithm always
terminates after a maximum number U of iterations. We used U = 1500 in the experiments.

3.3.8. Time complexity

An important factor of the time complexity of our algorithm is determined by the complexity
of the network flow solver that is used. The specific network flow problem that needs to be
solved in each iteration is known in the literature as (simple) capacitated b-matching in a
bipartite graph. Section 21.13a of [20] provides a complexity survey of this problem.

Let G be the graph for the transportation problem corresponding to lattice directions
ve and v,. Let M = mn be the number of pixel arcs in G and N be the total number
of nodes. The number of nodes depends on v, and v,. For a fixed pair of lattice direc-
tions, we have N = O(max (m,n)). By multiplying all pixel weights with a large integer
and rounding the result we ensure that all pixel weights are integral. Let W be the max-
imal arc weight in the graph, i.e., the maximum of the pixel weights. In our case W is
bounded by a constant. Gabow and Tarjan proposed an algorithm [6] having time complex-
ity O(N*3MC**1log(NW)), where C is the maximum of the arc capacities. For our problem
we have C = 1, so this results in a time complexity of O(max (m,n)z/ Smnlog(max (m,n))).
If the image domain A is square, this yields a time complexity of O(ns/ 3logn). As men-
tioned in Section 3.3.5, the computation of pixel weights can be performed in O(mn) time.

Our algorithm is always terminated after at most U iterations (see Section 3.3.7). Ideally,
one would hope for a result stating that the algorithm always converges to a solution of the
reconstruction problem. In our case it seems unlikely that such a result is possible, as the
convergence properties of the algorithm depend strongly on the particular (original) image
that is reconstructed. To prove strong convergence results it seems necessary to consider
only a very narrow class of images, instead of the wide range that we consider in this chapter.

3.4. Results

3.4.1. Experimental setup

We have implemented our algorithm in C++. We use the CS2 network flow library by An-
drew Goldberg for solving the min-cost max-flow problems (see [9]). This library is publicly
available for noncommercial use. All results in this section were obtained using an AMD
Athlon XP2800 PC.

The main criterion for evaluating the performance of any DT algorithm should be the
resemblance of the reconstructed image to the measured physical object. Although in prac-

3.4. Results 73

tical situations the “original” image is unknown, we can compare the original image with
the reconstruction when working with artificial test images.

Different classes of images require a different number of projections to be reconstructed
correctly. So far, we have no way to compute in advance how many projections will be
enough. We use a fixed set of directions and do not focus here on which set of directions is
best for our algorithm. Put

D:={vi,...,vie} ={ (1,0),(0,1),(1,1),(1,—1),(1,2),(2,—1)
(1,-2),(2,1),(2,3),(3,-2),(2,-3),(3,2)
(1,3),(3,=1),(1,-3),(3,)}
When reconstructing images from k < 16 projections, we use the set {vy,..., v} of direc-

tions.

3.4.2. Qualitative description of algorithm performance

Our algorithm can be used for a wide range of images and a wide range of available projec-
tions. The number of projections that is required for accurate reconstruction greatly depends
on the type of image. Before describing more detailed results for specific image classes, we
will give a more qualitative description of the performance of our algorithm.

For reconstructing images such as the one shown in Figure 3.4a, four projections usually
suffice. The structure of the object boundary is fairly complex, but the object contains no
“holes”. Our algorithm reconstructed the image perfectly from four projections (horizontal,
vertical, diagonal and anti-diagonal).

Figure 3.4b shows a much more complicated example. The object contains many cavi-
ties of various sizes and has a very complex boundary. Some of the black holes inside the
white region are only a single pixel in size. In this case, our algorithm requires six projec-
tions to compute an accurate reconstruction. Some of the fine details in this image are not
smooth at all. Still, the fine details are reconstructed with great accuracy. The image 3.4c is
even more complex. It requires eight projections to be reconstructed perfectly.

When the image contains no structure at all, our algorithm performs very badly. Figure
3.4d shows an image of random noise. The reconstruction from twelve projections shows
that our algorithm has a preference for connected areas of white and black pixels. In this
case, however, the smoothness assumption is obviously not satisfied by the original image.
The distance between the projections of the image found by our algorithm and the prescribed
projections is very small, however.

The image in Figure 3.4e has more structure, but it contains no large white areas. Still,
the image is smooth enough to be reconstructed perfectly from only five projections. This
example also illustrates that very fine, non-smooth details can be reconstructed by our algo-
rithm, as long as the entire image is sufficiently smooth.

Figure 3.4f shows a vascular system, containing several very thin vessels. Our algorithm
can reconstruct the original image perfectly from twelve projections. This is quite surpris-
ing, since the very thin vessels have a width of only one pixel, so they are not very smooth.
Still, the smoothness of the thicker vessels provides the algorithm with enough guidance to
reconstruct the original image.

74 3. A network flow algorithm for reconstructing binary images from discrete X-rays

a. Original image Reconstruction, k = 4 b. Original image Reconstruction, k = 6

Il
%

d. Original image Reconstruction, k = 12

N AN
XA
NS

e. Original image Reconstruction, k = 5 f. Original image Reconstruction, k = 12

c. Original image Reconstruction, k

Figure 3.4: Six original images and their reconstructions.

Although the examples in Figure 3.4 give an impression of the reconstruction capabili-
ties of our algorithm, we cannot draw general conclusions from them. In the following two
sections we propose three classes of images from which a random sample can be taken. We
will report statistical data on the performance of our algorithm on a large number of test
instances.

Our experiments with the algorithm show clearly that for each class of images, there is
a certain minimum number of projections, k,;; which is required to reconstruct all images
correctly. When the number of prescribed projections is smaller than k,,;,, many reconstruc-
tions fail. When more than k,,;, projections are known, the algorithm usually converges
faster to an accurate solution. Figure 3.5 shows what happens when the number of pre-
scribed projections is too small. The algorithm still converges, but the resulting image is
very different from the original image. Even though the projections of the reconstructed im-
age are still different from the prescribed projections, the reconstructed image is a fixpoint
of the iterative procedure. After adding an extra projection, the algorithm can reconstruct
the original image perfectly, within a small number of iterations.

3.4. Results 75

Original image Rec., k=4 Rec., k=5

Figure 3.5: Using too few projections results in very bad reconstructions.

3.4.3. Random polygons

For our first class of test images, we implemented a program which generates images that
consist of a number of white polygons on a black background. The program takes as input
the size of the image, the number n of polygons and the number p of points that are used to
generate each polygon. In order to generate a polygon, a random set of p pixels is generated,
using a uniform distribution. The convex hull of these pixels is used as the new polygon. The
final image is a superposition of n polygons that have been generated in this way. Figures
3.6 shows several sample images that were generated by the program, using two different
pairs of parameters (n, p).

| Lt L]
odld i E 4

Figure 3.6: Test images generated by the polygon program. Top row: n =5, p = 8. Bottom row:
n=12,p=4.

For both these pairs (n, p) we performed 200 test runs, using a varying number of pro-
jections. All test images are of size 256 x 256. For more than three projections, the algorithm
typically either converges to an image which (almost) perfectly satisfies the projection con-
straints, or it converges to an image which does not even come close to satisfying those
constraints. In the former case, we always observed that there were very few differences be-
tween the reconstructed image and the original image. Only when using three projections,

76 3. A network flow algorithm for reconstructing binary images from discrete X-rays

we observed that for many reconstructed images the difference between their projections
and the prescribed projections was small, yet they were very different from the original im-
ages. For each set of test parameters, we report not only the average results over all test
cases, but also the average results over the set of test cases for which the reconstruction was
successful. By a successful reconstruction we mean that the distance between the projec-
tions of the image found by our algorithm and the prescribed projections is less than 20k
(where £k is the number of projections). In other words, the projections of the reconstructed
image approximate the prescribed projections very well. The reason for letting the definition
of a successful reconstruction depend on the number k of projections is that pixel errors in
the resulting image (compared to the original image) typically result in errors in each of the
projections. A single pixel error in the resulting image results in a larger distance from the
prescribed projections when the number of projections is larger.

Table 3.3: Experimental results for the “random polygons” test cases

n p k #success #perfect proj.error pixel error #iter. time(s)
5 8 3 200 59 32 538 109 14
4 200 200 0.0 0.0 66 11
5 200 200 0.0 0.0 61 10
12 4 4 190 190 12 62 123 18
4% 0.0 0.0 106 16
5 200 200 0.0 0.0 108 18
6 200 200 0.0 0.0 63 14

Table 3.3 shows the test results. The first three columns contain the test parameters n, p
and k. The next two columns contain the number of successful and perfect reconstructions
among the 200 test runs. We consider a reconstruction to be perfect if it is identical to the
original image from which the projection data was computed. The next four columns contain
the average projection error, average number of pixel differences with the original image,
average number of iterations (network flow steps) and average running time. For those sets
of test parameters for which only a subset of the images was reconstructed successfully,
we also show the average results for this subset. We use an asterisk (*) to indicate that we
consider only successful reconstructions.

When using our definition of a successful reconstruction, all images for the case
(n,p,k) = (5,8,3) are reconstructed “successfully”. The results show clearly however, that
although the average projection error is very small, the average pixel error is quite large. In
this case, having a small projection distance is apparently not sufficient for reconstructing
an image which is very similar to the original image. For more than three projections the
situation is different. The results for the successful reconstructions (indicated by an asterisk)
show that in these cases having a small projection distance implies that the reconstruction
is very similar to the original image.

3.4. Results Tl

3.4.4. Random ellipses

For the second class of test images we implemented a program which generates a superpo-
sition of white ellipses on a black background. The parameters of the program are the size
of the image, the number 7 of ellipses and the minimal and maximal radius (7, and 7,y
respectively) of the ellipses (for both axes), measured in pixels. For each ellipse, a random
point (x¢,y.) € A is chosen as the center. Both radii r, and r, are selected randomly as in-
tegers from the interval [ryn, Fimax], using a uniform distribution. A random angle ¢ € [0, 7]
is selected, over which the ellipse is rotated. All pixels (x,y) inside the ellipse are coloured
white. Figure 3.7 shows five examples of images that were generated by this program, each
using different parameter settings.

4 K g,

(15,20,40) (50,5,35) (50,5,25) (100,5,25) e. (200,5,10

=

Figure 3.7: Five images that were generated by the ellipse program, each using different parameters

(”7 Ymin, rmax)-

By adjusting the program parameters we can sample many classes of images, each hav-
ing their own characteristics. For each of the parameter settings shown in Figure 3.7 we
performed 200 test runs. All test images are of size 256 x 256. The results are shown in
Table 3.4.

The results show that for each image class there is a clear lower bound on the number
of projections that is required by the algorithm to compute an accurate reconstruction. If
enough projections are available, even the images from the most complex class (200, 3, 10)
are reconstructed with very high accuracy.

3.4.5. Random ellipses with noise

So far, the images that we described were very smooth. Surprisingly, our algorithm can also
reconstruct very fine non-smooth details. We generated a relatively smooth image with fine
non-smooth details by using the ellips program of the previous section — with parameters
(R, Tmins Fmax) = (50,5,35) — and inverting a set of s random pixels afterwards, where s
is a positive integer. We remark that we still use exact projection data: the original image
is “polluted” by noise, not the projection data. Figure 3.8 shows three polluted images —
for s = 50,100,200 — and their reconstructions from 9, 11 and 12 projections respectively.
Although in none of the cases the reconstruction is perfect, most of the very fine details are
accurately reconstructed.

78 3. A network flow algorithm for reconstructing binary images from discrete X-rays

Table 3.4: Experimental results for the “ellipse” test cases

n Tmin Tmax K #suc. #perf. proj.err. pixelerr. #iter. time(s)
15 20 40 4 77 77 170 3257 286 36
4% 0.0 0.0 180 24
5 200 200 0.0 0.0 109 19
6 200 200 0.0 0.0 64 13
50 5 35 5 9 9 737 7597 405 57
5% 0.0 0.0 251 37
6 121 113 577 2779 286 43
6* 1.8 292 224 34
7 200 162 5.9 1.2 103 22
8 200 159 7.5 1.3 85 20
50 5 25 6 40 35 1202 6510 387 54
6* 2.6 617 329 46
7 147 109 521 1289 225 37
7% 7.1 1.4 154 27
8 200 162 6.3 1.1 97 21
9 200 130 13.2 1.9 92 21
100 5 25 7 53 11 1589 4455 395 61
7* 26 5.2 376 56
8 186 63 270 457 240 40
8* 35 5.9 215 37
9 200 73 31 4.5 160 31
200 5 10 12 49 5 6699 6157 625 117
12* 81 8.2 782 137
14 200 27 107 9.0 356 68
16 200 26 131 9.5 229 48

3.4.6. Noisy projection data

So far we have assumed that the prescribed projections are perfect, without any noise. The
network flow approach from Section 3.3.2 cannot be used directly when the projection data
is noisy, as the transportation problem that corresponds to any two-projection subproblem
may not have an exact solution in that case. We need to replace the transportation problem
by a slightly modified network flow problem, see Figure 3.9. Each arc in the network has an
associated capacity u and cost ¢, which are shown in the figure as u/c.

The middle layer of the network still resembles the graph that corresponds to the trans-
portation problem. The graph has been augmented with a source node S and a sink node
T, a set of outgoing arcs from the source node and a set of incoming arcs to the sink node.
For each column node C;, there are two arcs from S to C;. The first arc has capacity s; (the
prescribed column projection) and cost 0. The second arc, which we call the overflow arc,
has capacity m — ¢; and cost K, where K is a very large integer. The set of arcs from the row
nodes to the sink node has a similar structure, where the overflow arc for row j has capacity

3.4. Results 79

e.s =100,k =11 f.s=200,k=12

Figure 3.8: Top: Polluted versions of an image generated by the ellips program. Bottom: Recon-
structions of the polluted images.

n—r;. The pixel arcs all have capacity one and arc (C;,R;) has cost ¢;; = —w;;, where w;;
is the pixel weight of pixel (i, j).

The amount f of flow through the network, which equals the number of ones (white
pixels) in the resulting image, is determined by averaging the sum of all linesums over all
projections and rounding to the nearest integer. The number of white pixels is the same for
all pairs of projections.

In each iteration of the algorithm the network that corresponds to the selected pair of
directions is constructed and a flow of f units from S to 7 is computed that has minimal
cost. Exceeding a prescribed linesum results in a high penalty cost of K per flow unit, but
is allowed. Clearly, if f < mn, this min-cost max-flow problem always has a solution and
as little flow as possible will go through overflow arcs. When the projection data is exact,
the resulting min-cost max-flow solution will be identical to the solution of the original
transportation problem and none of the overflow arcs will carry any flow.

To generate noisy projection data, we start with perfect projection data and generate for
each linesum v a random sample r from a Gaussian distribution with average u = 1 and
variance 6°. The original linesum is replaced by rv. This model seems reasonable, since in
many practical measurements the magnitude of the noise increases with the amount of ma-
terial (white pixels) that an X-ray passes. Figure 3.10 demonstrates the performance of our
algorithm for various noise levels and number of directions. The quality of the reconstruc-
tion degrades gradually as the noise level increases. A more accurate reconstruction can be
obtained by increasing the number of projections. Even when ¢ = 0.05, the reconstruction

80 3. A network flow algorithm for reconstructing binary images from discrete X-rays

source node

column arcs

column nodes

pixel arcs
20222

row nodes
2 2 1

row arcs

sink node

Figure 3.9: Nerwork for the case of noisy projection data.

from 12 projections reveals almost all features of the original image.

i Prid Pred o

a. Original image b.Rec., k=8,06 =0.01 c.Rec.,k=8,6=0.02 d.Rec., k=8,6 =0.035

YAy e

e.Rec., k=8,6=0.05 f.Rec., k=12,6 =0.035 g.Rec., k=12,6 =0.05 h.Rec., k=12,6=0.1

Figure 3.10: Reconstruction results for noisy projection data.

3.4.7. Comparison with alternative approaches

In this section we compare the reconstruction results of our algorithm to the results of two
alternative algorithms for a set of four test images. There are few descriptions in the liter-

3.4. Results 81

b. 0.1s c. 1.5s d. 4.6s

Figure 3.11: Reconstruction results for four test images. The running times for each of the algorithms
is indicated in the subfigure captions. The number of projections used is indicated for each original
image. a. Original image; b. result of Gritzmann et al. [10]; c. result of Weber et al. [25]; d. result of
our algorithm.

ature of other reconstruction algorithms that are suitable for large images (i.e., 256 x 256
pixels or more).

In [5], Fishburn et al. describe a relaxation of the Reconstruction Problem (Problem
9) that can be solved by linear programming. The authors present reconstruction results

82 3. A network flow algorithm for reconstructing binary images from discrete X-rays

for three small test images (around 40 x 40 pixels). The resulting reconstruction is real-
valued, all pixel values are between 0 and 1. In [25], Weber et al. describe an extension of
the linear program from [5] which incorporates a smoothness prior. We implemented the
FSSV2 approach which is described in their paper using the ILOG CPLEX interior point
solver. The real-valued pixel values are rounded to binary values as a postprocessing step,
which was also done in [25].

In [10], Gritzmann et al. describe a greedy algorithm for reconstructing binary images
from their projections. The paper reports reconstruction results for images up to 512 x 512
pixels. We implemented the Greedy-C algorithm and the Improvement postprocessing step.
The combination of these two procedures was reported to perform best compared to the
other proposed algorithms in the paper. It is important to stress that this approach does not
use any smoothness assumptions.

Figure 3.11 shows the reconstruction results for four test images. The test images all
have a size of 128 x 128 pixels. The figure indicates the number of projections that was
used for each test image and the running times for each of the algorithms.

The reconstruction results indicate that our algorithm is very fast compared to the linear
programming approach from [25]. The greedy approach from [10] is even faster, but it
clearly results in inferior reconstructions for all four test cases.

The reconstructions computed by our algorithm are perfect (identical to the original
image) for all four test cases. Even for the vessel-like structure, which contains many thin
lines, our algorithm computes a perfect reconstruction.

The linear programming approach yields a very good reconstruction for the first image,
which is very smooth. Only 9 pixels are different from the original image. For the second
image, which is less smooth, the reconstruction still looks reasonable, but several details
are not reconstructed accurately. The approach does not work well for the third, vessel-
like image. For the fourth image, the linear programming approach works very well. The
required computation time is a major limitation for the linear programming approach when
working with large images, at least for certain types of images. Note that for the very sparse
fourth test image, the linear programming approach is very fast.

3.5. Discussion

The experimental results show that for a broad spectrum of images, our algorithm can com-
pute high quality reconstructions from a small number of projections. This gives rise to
optimism on the feasibility of reconstructing images from so few projections. Many impor-
tant theoretical results have been focused on the reconstructibility of general images, for
which no a priori assumptions are given. These results tend to be very poor. We have shown
that rather soft smoothness assumptions are already sufficient to change the reconstructibil-
ity properties dramatically. We think that our soft smoothness assumptions are satisfied for
many practical applications. In practice, most images are neither completely random, nor do
they obey strict mathematical constraints, such as convexity. Our algorithm performs very
well in this intermediate case, by using the assumption that the image is relatively smooth
while not enforcing any rigid structure assumptions.

3.6. Conclusions 83

The grid model that we use, in which lattice lines only contain a discrete set of grid
points, is widely used in the literature on discrete tomography (see, e.g., [14]). In particular,
it serves as a model for the electron microscopy application, where atoms are arranged in
a lattice. For several other applications, however, modelling images as plane sets is more
appropriate (see, e.g., [18]). In medical imaging, for example, the measured linesums are
actually line integrals of a certain density function. The basic principles of our algorithm
can be generalized to cover a much wider range of discrete tomography models. We will
report on two generalizations in the next chapters.

For each of the image classes that we used for testing, the results showed a clear lower
bound on the number of required projections. When raising the number of projections above
this lower bound, the running time of the algorithm decreases, up to certain point where
adding additional projections no longer results in reduced reconstruction time.

Fortunately, the best known algorithms for solving minimum cost network flow prob-
lems have a low time complexity. Therefore our algorithm can even be used for recon-
structing images as large as 1000 x 1000 pixels, although that may require several hours of
computation time.

By adapting our algorithm as described in Section 3.4.6, it can also be used in the case
of noisy projection data. Making a good comparison between our algorithm and alternative
approaches is hard, because only few good alternatives are available. The results in Section
3.4.7 indicate that for relatively smooth images our approach is much faster than the lin-
ear programming approach from [25], which also uses a smoothness assumption. Yet our
method yields comparable or better reconstructing quality. Our algorithm is slower than the
greedy approach from [10], but the greedy approach yields inferior reconstruction quality.

3.6. Conclusions

We have presented a new algorithm for reconstructing binary images from a few projections.
We demonstrated that the algorithm is capable of making very accurate reconstructions for
a wide range of test images. The algorithm uses soft smoothness assumptions, yet it is
capable of reconstructing very fine details. In its basic form the algorithm assumes perfect
projection data, but it can be adapted to work in the case of noisy projection data as well. A
comparison between our algorithm and two alternative approaches showed that for relatively
smooth images the reconstruction quality of our algorithm is significantly better than for the
other two algorithms. Our algorithm is very fast and can be used for reconstruction large
images.

Bibliography

[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms and appli-
cations, Prentice-Hall (1993).

[2] Anstee, R.P.: The network flows approach for matrices with given row and column
sums. Discrete Math., 44, 125-138 (1983).

[3] Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex poly-
ominoes from horizontal and vertical projections. Theoret. Comp. Sci., 155, 321-347
(1996).

[4] Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Nivat. M.: Reconstruction of
4- and 8-connected convex discrete sets from row and column projections. Linear
Algebra Appl., 339, 37-57 (2001).

[5] Fishburn, P., Schwander, P., Shepp, L., Vanderbei, R.: The discrete Radon transform
and its approximate inversion via linear programming. Discrete Appl. Math. 75, 39-61
(1997).

[6] Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J.
Comput., 18, 1013-1036 (1989).

[7] Gale, D.: A theorem on flows in networks. Pacific J. Math., 7, 1073-1082 (1957).

[8] Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of
reconstructing lattice sets from their X-rays. Discrete Math., 202, 45-71 (1999).

[9] Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algo-
rithm. J. Algorithms, 22, 1-29 (1997).

[10] Gritzmann, P., de Vries, S., Wiegelmann, M.: Approximating binary images from dis-
crete X-rays. SIAM J. Optim, 11, 522-546 (2000).

[11] Gritzmann, P., Prangenberg, D., de Vries,S., Wiegelmann, M.: Success and failure of
certain reconstruction and uniqueness algorithms in discrete tomography, Int. J. Image.
Syst. Tech., 9, 101-109 (1998).

[12] Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew.
Math., 534, 119-128 (2001).

3.6. Conclusions 85

[13] Hajdu, L., Tijdeman, R.: An algorithm for discrete tomography. Linear Algebra Appl.,
339, 147-169 (2001).

[14] Herman, G.T., Kuba, A., eds.: Discrete tomography: foundations, algorithms and ap-
plications. Birkhiduser, Boston (1999).

[15] Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Van Dyck, D., Chen, F-R.,
Kisielowski, C.: Prospects for bright field and dark field electron tomography on a
discrete grid. Microsc. Microanal., 10, suppl. 3 (2004).

[16] Jinschek, J.R., Calderon, H.A., Batenburg, K.J., Radmilovic, V., Kisielowski, C.: Dis-
crete Tomography of Ga and InGa Particles from HREM Image Simulation and Exit
Wave Reconstruction. MRS Proceedings, 839, 4.5.1-4.5.6 (2004).

[17] Kisielowski, C., Schwander, P., Baumann, F., Seibt, M. Kim, Y., Ourmazd, A.: An ap-
proach to quantitative high-resolution transmission electron microscopy of crystalline
materials. Ultramicroscopy 58, 131-155 (1995).

[18] Kuba, A.: Reconstruction of measurable plane sets from their two projections taken in
arbitrary directions. Inverse Problems, 4, 513-527 (1988).

[19] Combinatorial properties of matrices of zeros and ones. Can J. Math., 9, 371-377
(1957).

[20] Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Algorithms and
Combinatorics series, 24, Springer, Heidelberg (2003).

[21] Schwander, P., Kisielowski, C., Baumann, F., Kim, Y., Ourmazd, A.: Mapping pro-
jected potential, interfacial roughness, and composition in general crystalline solids by
quantitative transmission electron microscopy. Phys. Rev. Lett., 71, 4150-4153 (1993).

[22] Slump, C.H., Gerbrands, J.J.: A network flow approach to reconstruction of the left
ventricle from two projections. Comput. Gr. Im. Proc., 18, 18-36 (1982).

[23] Tanabe, K.: Projection method for solving a singular system. Numer. Math., 17, 203—
214 (1971).

[24] Wang, B., Zhang, F.: On the precise number of (0, 1)-matrices in A(R,S). Discrete
Math., 187, 211-220 (1998).

[25] Weber, S., Schnorr, C., Hornegger, J.: A linear programming relaxation for binary
tomography with smoothness priors. Electron. Notes Discrete Math., 12 (2003).

Chapter 4

A network flow algorithm for 3D
binary tomography of lattice
images

This chapter has been published as: K.J. Batenburg, “A new algorithm for 3D binary
tomography”, Proceedings of the Workshop on Discrete Tomography and its Applications,
New York, Electronic Notes in Discrete Mathematics, Vol. 20, 247-261 (2005).

Abstract. In this chapter we propose a new algorithm for reconstructing 3D binary
images on a lattice from a small number of their projections. The algorithm is iterative; a
new 3D image is computed in each iteration, using network flow methods. It is based on
an algorithm for computing 2D reconstructions, which performs very well for a large class
of images. We demonstrate the performance of our algorithm on a set of characteristic test
images.

4.1. Introduction

Reconstructing 3D binary images from a small number of projections is one of the most im-
portant problems in discrete tomography. Research on discrete tomography was stimulated
in the 1990s as a result of advances in electron microscopy that made it possible to count the
number of atoms in each projected column of a crystal lattice, in several directions [7,9]. Un-
fortunately, the signal-to-noise ratio turned out to be prohibitively large for this technique.
Recently, new techniques have been developed that provide a much better signal-to-noise
ratio. The measured atom counts can be used as input for a 3D tomographic reconstruction
procedure, which reconstructs the lattice positions of all individual atoms [5, 6].

The problem of reconstructing binary images on a lattice has been studied extensively.
The book [4] provides an excellent overview. In 1999, Gardner et al. showed in [3] that

88 4. A network flow algorithm for 3D binary tomography of lattice images

for any set of more than two projections the general reconstruction problem is NP-hard,
for both 2D and 3D images. When certain a priori knowledge of the image is available,
it may be possible to restrict the reconstruction procedure to a specific class of images.
For several classes of 2D images, such as the class of convex images, polynomial time
reconstruction algorithms exist. However, such classes are often too restrictive to be used in
practical applications.

In Chapter 3, we proposed a new algorithm for reconstructing 2D binary images on
a square lattice from few projections, using soft smoothness assumptions. The algorithm
performs very well for a wide range of images and the smoothness assumption seems to be
practically realistic.

In this chapter we propose a generalization of the algorithm from Chapter 3 to 3D im-
ages, defined on a lattice. In principle any algorithm that computes 2D reconstructions can
also be used for the 3D case by considering the volume as a series of 2D slices and recon-
structing each slice independently. This approach requires that all projection directions lie
in a single plane. For the electron microscopy application however, the projection directions
must coincide with the orientation of the atom columns (called zone axes). Therefore the
number of suitable directions is very small and these directions do not lie in a single plane.
As a consequence, reconstructing a 3D image as a series of 2D slices is not possible. Our
algorithm does not require the projection directions to lie in a single plane. The algorithm
is iterative. In every iteration a 3D reconstruction is computed using only two of the pre-
scribed projections and the reconstruction from the previous iteration. The subproblem that
is solved within an iteration can be solved as a series of slices, yet the volume is split into a
different set of slices for each new iteration.

4.2. Preliminaries

We denote the cardinality of a finite set V by |V| and we denote the set {n € Z: n > 0} by
Np. Let w, h,d be positive integers, the volume dimensions. Put

A={(x,3,2) €Z’:0<x<w,0<y<h0<z<d}

and let ¥ denote the collection of mappings A — {0, 1}. For the sake of convenience we will
sometimes regard the elements of F as 3D images. Similarly, we will refer to the elements
of A as voxels. We sometimes use the shorthand notation Fy,, to denote F (x,y,z).

We call a vector v = (a,b,c) € Z*\{(0,0,0)} a lattice direction if it satisfies
gcd(a,b,c) = 1. For every lattice direction v, we define the lattice line L, = {nv | n € Z}.
We denote the set of all lines parallel to £, by P, = {L£, +|¢ € Z} and the subset of lines
in 2, that contain at least one point of Aby S, ={P € B, |P N A # 0}.LetF € . We
call the function X,,F : S, — Ny defined by

XF(P)= Y F(xyz2)
(x,y,2)EPNA

the (discrete) 1-dimensional X-ray parallel to v. We will also refer to X, F" as the projection
of F parallel to v. Because the function X, F has finite domain, we can consider it as a vector
of |5, | elements.

4.3. The case k =2 89

In the reconstruction problem, we want to construct a function F € F which has pre-
scribed 1-dimensional X-rays, parallel to certain lattice lines vy, ..., v;. More formally:

Problem 10 (Reconstruction problem).

Let k> 1 and vy, ... v be given distinct lattice directions. Let ¢; : S, — No (i =1,...,k)
be given functions, the prescribed projections. Find a function F € F such that X,,F = ¢;
fori=1,... k

Clearly, the reconstruction problem does not always have a solution. In this chapter
we assume that the prescribed projections are consistent, meaning that the reconstruction
problem has at least one solution.

Let v = (a,b,c) be alattice direction. If max(a,b,c) > max(w,h,d) then |[PNA| < 1 for
all P € §,. If the set {vy,..., v} contains such a lattice direction, solving the reconstruction
problem is trivial. In practice it is usually not possible to choose such a lattice direction,
because of physical constraints. In the electron microscopy application for example, atom
projections are seen under the microscope as circles having a finite width. The lattice direc-
tions must be chosen in such a way that projected atom columns do not overlap, otherwise
the number of atoms in each column cannot be counted. We are mainly interested in lattice
directions for which max(a, b, c) is small, e.g., no more than 3.

4.3. The case k =2

It is well known that the reconstruction problem in 2D from only two projections can be
solved in polynomial time. In 3D this is also the case. For any two prescribed projections,
the 3D reconstruction problem can be solved by considering the volume as a series of 2D
slices and reconstructing each of the slices independently. Let v,,v; be the distinct lattice
directions corresponding to the two prescribed projections. Consider the following linear
programming problem (denoting F'(x,y,z) by Fyy.):

Problem 11
maximize Y Fy (F = (Fyy) € RWXMd)
(x.y.2) €A
subject to Y, Fo:<0u(P) forallP, €S,
(x.3,2)EPy
Z Fo: < 0p(Py) forall P, €S,
(XQ?,Z) €Phy

0<Fy <1 (x,3,2) €A.

Clearly, any solution £ = (}yz) of the reconstruction problem is a solution of Problem
11, since

Y Fy=) 0uP)=) 0u(P).

(x,y,2)€A PES,, PESy,

90 4. A network flow algorithm for 3D binary tomography of lattice images

O z=0
@ =1
@ =2

Figure 4.1: A 3 x 3 X 3 binary volume with its projections in directions v, = (1,0,0) and
vp =(0,1,0). A large dot indicates a value of 1, a small dot indicates a value of 0.

Figure 4.1 shows an example of a 3 x 3 x 3 binary volume with its projections parallel
to the lattice directions v, = (1,0,0) and v;, = (0,1,0). Problem 11 is equivalent to a max
flow problem in a directed graph G. Figure 4.2 shows the graph G that corresponds to the
volume in Figure 4.1.

The set V of nodes of G consists of a node S (the source), one layer of nodes for each
P € §,,, one layer of nodes for each P € S, and a node T (the sink). Every node in one of
the two middle layers is labeled by its respective set P.

Let E be the set of arcs of G. Every arc in E has an associated capacity. The set E
contains an arc (S, P,) with capacity 0,(P,) for each P, € S,,. Similarly, E contains an arc
(Py, T) with capacity ¢y (P,) for each P, € §,,.

Forany P, € S,,, P, € S,,, E contains the arc (P, P;) iff P, NP, NA # 0. We call such an
arc (P,,Pp) a voxel arc. Every voxel arc has capacity 1. For every voxel (x,y,z) € A there is
exactly one arc (P,, P,) € E such that P,NP, = {(x,,2) }. We call (P, P,) the corresponding
voxel arc of (x,y,z) and (x,y,z) the corresponding voxel of (P,,Pp).

The problem of finding a maximal flow from S to T that satisfies all capacity constraints
in G is equivalent to the linear programming problem 11, considering Fyy, to be the flow
through the corresponding voxel arc of (x,y,z) € A. We refer to the book [1] for details. The

4.3. The case k =2 91

(2]
Il
o

@00

N
Il
NS

Figure 4.2: Network corresponding to the two-projection reconstruction problem in Figure 4.1.

flow through all voxel arcs completely determines the flow through all other arcs of G.

In particular, since all arc capacities are integral, an integral maximal flow can be found
in polynomial time. For the voxel arcs, integrality of flow means that every Fy,, in the
resulting flow is either O or 1.

Any solution F = (F}y;) of the reconstruction problem corresponds to a valid flow in G,
which completely saturates all outgoing arcs from § and all incoming arcs to 7. This shows
that F' corresponds to a maximal flow in G. Conversely, any maximal flow F = (Fyyz) in
G must saturate all arcs from S and all arcs to 7 completely. It then follows directly from
the flow conservation constraints in G that if F is an integral flow, it is a solution to the
reconstruction problem.

Figure 4.2 also shows a nice property of the two-projection reconstruction problem. If
(P,,P,) € E then P, and P, have a nonempty intersection in A, so there is a plane in R? which
contains both P, and P,. Since P, and P, are translates of £, and L, respectively, this plane
will always be a translate of the plane spanned by v, and v,. Because there are no voxel
arcs between voxels lying in different translates of this plane, the max flow problem can be
solved for each translate of the plane independently. In the example network of Figure 4.2
the subproblems for each of the planes z =0, z =1 and z = 2 can be solved independently.
This property is independent of the specific pair (v,4,vp) of lattice directions, although the
sizes of the subproblems depend on the direction pair. The number of voxel arcs in each
subproblem is bounded by the maximal number of voxels in A that lie in a single plane.

We remark that in general the solution of a two-projection reconstruction problem is
not unique. In practical applications it is important that the reconstructed image closely
resembles the “original image” from which the projection data have been obtained. Two

92 4. A network flow algorithm for 3D binary tomography of lattice images

prescribed projections are often not sufficient to achieve this goal. In the next section we
will propose an algorithm that can be used when more than two projections are available.

4.4. An algorithm for k > 2

In the previous section we showed that the 3D reconstruction problem from two projections
can be solved efficiently. Moreover, the reconstruction problem can be split into a series of
independent subproblems in this case, which can be solved in parallel.

Unfortunately, if k > 2 the reconstruction problem is NP-hard. If not all lattice directions
are contained in a common plane, there is also no straightforward way to split the problem
into smaller subproblems.

We propose an iterative algorithm for solving the reconstruction problem for £ > 2. In
every iteration a two-projection reconstruction problem is solved, corresponding to two of
the prescribed projections. This two-projection problem typically does not have a unique
solution. Using the reconstruction from the previous iteration, we define an ordering on
the set of solutions, reflecting the quality of the new solution with respect to the previous
reconstruction. Let v,, v, € {v1,..., v} be two disjoint lattice directions. Define a voxel
weight wyy, € R for each voxel (x,y,z) € A. Putt = Ypcs, 0a(P) = Lres, ¢»(P). Consider
the following linear programming problem:

Problem 12

maximize Y, wyeF: (F = (Fyy) € RWd)
(xy,2)€A

subject to Z Foy, =t
(x.y,z)€A

Y, Fy:<0u(Pa) forallP €S,
(x,y,2)EP,

Z Fo: < 0p(Py) forall P, € S,,
(x.y:2)€EPp
OSnyzg 1 (x,y,z) €A.

Any integral solution F' = (nyz) of Problem 12 has maximal total weight

Z Wx}z Xyz

(x)zeA

among all solutions of the two-projection reconstruction problem for lattice directions
(va,vp)- The linear programming problem 12 is equivalent to a min-cost max-flow problem
on the graph G described in Section 4.3. An integral solution can be found in polynomial
time.

We can express a preference for Fyy, to have a value of 1 or a value of 0, by choosing w,y,
to be (relatively) large or small respectively. In particular, for any 3D image M = (M,y;) € F,
choosing

Wayz = My, (x,,2) EA

4.4. An algorithm for k > 2 93

Perform preprocessing step: peeling;
Compute the real-valued start solution F?;
i:=0;
while (stop criterion is not met) do
begin

i=i+1;

Select a new pair of directions v, and vp;

For each voxel (x,y,z), compute a voxel weight w.y, that depends
on the value of voxel (x,y,z) and its neighbors in the previous
reconstruction Fi~ 1,

Solve a series of min-cost max-flow problems, one for each translate of
the plane spanned by v, and v,.

Merge the solutions of the max-flow problems into a new solution F'.

end

Figure 4.3: Basic steps of our algorithm.

and solving the linear programming problem 12 yields the solution F' of the two-projection
problem that has fewest voxel differences with M. We refer to Section 1.3 for a proof of this
fact.

Now that we have described how to construct a solution for a two-projection subprob-
lem, we can give a schematic overview of our algorithm for more than two projections,
which solves a two-projection problem in each iteration.

Figure 4.3 shows a global description of our algorithm. It is similar to the algorithm from
Chapter 3 for reconstructing 2D images. First, as a preprocessing step, lines containing only
0’s or only 1’s are removed from the volume in an iterative way until there are no such lines
left. We call this the peeling step. Subsequently, a start solution is computed by solving a
real-valued relaxation of the binary reconstruction problem. Next, the algorithm enters a
loop.

In every iteration i a pair (v,,v,) of lattice directions is selected. A new solution F'
is computed that perfectly satisfies the prescribed projections for the directions (v,,v;) and
closely resembles the solution F1~! from the previous iteration. Such a solution can be found
by first choosing a suitable set of voxel weights and then solving the linear programming
problem 12. For computing the voxel weight wy,, not only the value of voxel (x,y,z) in the
previous reconstruction is used, but also the value of several surrounding voxels. Soft local
smoothness assumptions are used here: a voxel is more likely to retain its value if many of
its neighbors share this value. In this way, the assumption that the image is relatively smooth
is used throughout the algorithm. In the next subsections we will describe the algorithmic
steps in more detail.

94 4. A network flow algorithm for 3D binary tomography of lattice images

4.4.1. Peeling

The peeling step is a very simple preprocessing step. While there is aline P € S, (1<j<k)
such that either X, .F (P) = 0 or X, ,F (P) = ¢;(P), the line is “removed” from the volume.
This means that all voxels on the line are immediately assigned their final value (0 or 1
respectively) and their projections are subtracted from the prescribed projections.

Peeling can reduce the size of the residual volume significantly. For the test volume in
Figure 4.4 of Section 4.5 for example, peeling is a very effective preprocessing step.

4.4.2. Computing the start solution

For computing the start solution the algorithm uses all k prescribed projections simultane-
ously. The system

leF(Pl)
X, F(P) =

V2

(Pr) forall P €,

0
O(P) forall P, €S, 4.1)

X, F(P) =0(P) forall P, €S,

is a system of linear equations in the variables F,;, (x,y,z) € A. We remove the constraint
that Fy,, € {0,1}, allowing any real value F,;. As a start solution F 9 we use the shortest
real-valued solution of (4.1) with respect to the Euclidean norm. We refer to Chapter 3
for a motivation of choosing this particular solution. For the pixel weights in the first two-
projection iteration of the algorithm we use

Wiye = FO (x,y,2) € A.

xyz

4.4.3. Selecting the direction pair

In every iteration a new pair of lattice directions is selected from the set {v,...,v}. It ap-
pears to be important that every pair of directions is used. For example, when computing
a reconstruction from four projections, the results are much better when all pairs are used
compared to cycling between the two pairs (vi,v,) and (v3,v4). For the reconstruction re-
sults in Section 4.5 we used a fixed pair ordering in which every pair occurs with the same
frequency, see Chapter 3 for details.

4.4.4. Computing the voxel weights
Define the neighborhood Ny, of a point p = (x,y,z) € A as
nyz = {(x/,y/,zl) €A: |x_x/| <1, |y_y/| <1, |Z_Z/| < 1}'

Let F € ¥ be the reconstruction from the previous iteration of the algorithm. The voxel
weight of p for the new reconstruction depends on the value Fy,, of p and the values of its

4.5. Results 95

neighbors in the previous reconstruction. Define

s = |{()y,Z)eN: F(X.y,Z)=F(x,52)}|,
f = s/INL

We now choose the following pixel-weight w, , . of p:

F(x,y,z2)—1/2 (f <0.65),
o= { AF(n)—1/2)f (0.65<f<1),

9(F(x,y,z)—1/2) (le)

This is the same choice of pixel weights as in the 2D version of the algorithm from
Chapter 3. It appears to be suitable for computing 3D reconstructions as well. Extensive
experiments are necessary here to determine which choice of pixel weights works best. This
choice may well depend on characteristics of the type of images that the algorithm is used
for.

4.4.5. Stop criterion

For determining when the algorithm should terminate, we use the distance

k
Z X, F — i,

where | - | denotes the Euclidean norm. The algorithm terminates if D(F') has not decreased
for T iterations, where T is a prescribed positive integer. We used 7' = 10 for the exper-
iments in Section 4.5. The algorithm terminates immediately if the current reconstruction
perfectly satisfies the prescribed projections. As a consequence, if we use the algorithm
for the case k = 2 (which is possible, but not very useful), it always terminates after one
iteration, provided that the prescribed projections are consistent.

4.5. Results

We implemented the algorithm for 3D reconstruction from more than two projections in
C++. For solving the min-cost max-flow problems we use the RelaxIV solver within the
MCF framework [2]. For visualizing the 3D volumes we use the Visualization Toolkit
(VTK) [8]. To visualize a volume, the contours of the objects in the volume are first ex-
tracted into a polygon model. Subsequently, a surface rendering algorithm is used to render
the contours.

Figure 4.4 shows the reconstruction results for an object consisting of a number of cones
pointing outward, from two, three and four projections (top to bottom). Each 3D image is
displayed from three different angles (left to right). When there are only two prescribed
projections our algorithm terminates after the first iteration and the reconstructed image
perfectly satisfies both prescribed projections. The results show that two projections are

96 4. A network flow algorithm for 3D binary tomography of lattice images

clearly not enough to obtain a reconstruction that resembles the original object. The recon-
struction from three projections does resemble the original object, but the object surface in
the reconstruction is rather rough. The reconstruction from four projections is completely
identical to the original volume. As noted in Subsection 4.4.1, the peeling step is very ef-
fective here. A large part of the empty space (consisting of 0’s) surrounding the object is
peeled away during this step.

Figure 4.5 shows three different test volumes. The first volume is the union of 100
random cones with varying height, radius and orientation. The second volume contains 100
relatively large spheres with varying radius. For such a volume, peeling is far less effective
than for the volume in Figure 4.4. The third volume contains 1000 small spheres of varying
radius. Our algorithm can reconstruct each of these images from six projections, using lattice
directions

(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1) and (0,1,1).

The image sizes and the reconstruction times on a 2.4GHz Pentium IV are shown in the
figure.

4.6. Discussion and conclusions

The results suggest that the algorithm is capable of computing high quality reconstructions
from a small number of projections. To further assess the performance of our algorithm it is
necessary to perform tests on a large number of 3D volumes, sampled from different classes
of random volumes. For the 2D version, results of such tests have already been described
in Chapter 3. The high reconstruction quality for 2D images gives rise to confidence in the
capabilities of the 3D generalization.

All 3D volumes that we used for testing the algorithm are relatively smooth. As local
smoothness is assumed when choosing the voxel weights, our algorithm can only be ex-
pected to work well for such images. We believe that a large fraction of images that occur
in practice are relatively smooth.

Even without the use of parallel computation the running time of our algorithm is not
excessively large. We expect that when a high performance parallel computer is available,
the reconstruction time can be reduced to less than half a minute for a 128 x 128 x 128
volume.

4.6.

Discussion and conclusions

97

Original volume of size 128 x 128 x 128.

Reconstruction from four projections: (1,0,0), (0,1,0), (0,0,1) and (1, 1,0).

Figure 4.4: Reconstruction results for a volume consisting of cones pointing outward.

98

4. A network flow algorithm for 3D binary tomography of lattice images

1000 small spheres, 139 x 139 x 139: perfect reconstruction in 304s.

Figure 4.5: Three volumes that were perfectly reconstructed from six projections.

Bibliography

[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms and appli-
cations, Prentice-Hall (1993).

[2] Bertsekas, D., Frangioni, A., Gentile, C.: RelaxIV, The MCFClass Project,
www.di.unipi.it/di/groups/optimize/Software/MCF.html
(2004).

[3] Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of
reconstructing lattice sets from their X-rays. Discrete Math., 202, 45-71 (1999).

[4] Herman, G.T., Kuba, A., eds.: Discrete tomography: foundations, algorithms and ap-
plications. Birkhduser, Boston (1999).

[5] Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Van Dyck, D., Chen, F-R.,,
Kisielowski, C.: Prospects for bright field and dark field electron tomography on a
discrete grid. Microsc. Microanal., 10, suppl. 3 (2004).

[6] Jinschek, J.R., Calderon, H.A., Batenburg, K.J., Radmilovic, V., Kisielowski, C.: Dis-
crete Tomography of Ga and InGa Particles from HREM Image Simulation and Exit
Wave Reconstruction. MRS Proceedings, 839, 4.5.1-4.5.6 (2004).

[7] Kisielowski, C., Schwander, P., Baumann, F., Seibt, M. Kim, Y., Ourmazd, A.: An ap-
proach to quantitative high-resolution transmission electron microscopy of crystalline
materials. Ultramicroscopy 58, 131-155 (1995).

[8] Schroeder, W., Martin, K., Lorensen, B.: The visualization toolkit: an object-oriented
approach to 3D graphics, 3rd Edition, Kitware, Inc., (2003).

[9] Schwander, P., Kisielowski, C., Baumann, F., Kim, Y., Ourmazd, A.: Mapping pro-
jected potential, interfacial roughness, and composition in general crystalline solids by
quantitative transmission electron microscopy. Phys. Rev. Lett., 71, 4150-4153 (1993).

Chapter 5

An algorithm for the
reconstruction of binary images
without an intrinsic lattice

A compressed version of this chapter has been accepted for publication in the Proceedings
of the 13th International Conference on Discrete Geometry for Computer Imagery (DGCI),
Lecture Notes in Computer Science, Springer (2006).

Abstract. Tomography is a powerful technique to obtain accurate images of the inside
of an object in a nondestructive way. With conventional reconstruction algorithms, such
as filtered backprojection, many projections are required to obtain high quality reconstruc-
tions. If the object of interest is known in advance to be discrete, i.e., it consists of only a
few different materials, the use of this prior knowledge in the reconstruction procedure can
dramatically reduce the number of required projections.

In this chapter we propose a new algorithm for the reconstruction of binary images from
a small number of their projections. Our algorithms relies on the fact that the problem of
reconstructing an image from only two projections can be formulated as a network flow
problem in a graph. We derive this formulation for parallel beam and fan beam tomogra-
phy and show how it can be used to compute binary reconstructions from more than two
projections.

Our algorithm is capable of computing high quality reconstructions from very few pro-
jections. We evaluate its performance on both simulated and real experimental projection
data and compare it to other reconstruction algorithms.

102 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

5.1. Introduction

Tomography deals with the reconstruction of the density distribution inside an object from
a number of its projections [10, 11]. In many applications, such as the reconstruction of
medical CT images, a large number of different density values will occur. Typically, the
number of projections that is required to obtain sufficiently accurate reconstructions is large
in such cases (more than a hundred).

For certain applications, however, it is known in advance that only a few possible density
values can occur. Many objects scanned in industry for nondestructive testing or reverse
engineering purposes are made of one homogeneous material, resulting in two possible
density values: the material and the surrounding air. Another example is medical digital
subtraction angiography, where one obtains projections of the distribution of a contrast in
the vascular system.

The field of discrete tomography deals with the reconstruction of images from a small
number of projections, when the set of pixel values is known to have only a few discrete
values [7]. By using this prior information about the set of possible values, it may be possible
to dramatically reduce the amount of projection data that is required to obtain accurate
reconstructions. For some applications, such as the atomic scale reconstruction of crystals
from electron tomographic projections, using few projections is a necessity as the scanning
process damages the sample [9]. In industrial imaging a reduction of the scanning time may
result in cost savings. In medical imaging, reducing the number of projections reduces the
amount of radiation used.

Since the 1990s discrete tomography has received considerable interest in the mathe-
matics and computer science communities. Both theoretical and practical aspects have been
studied; see [7] for an overview. Most of the theory was developed for reconstructing binary
images that are defined on a lattice, i.e., a subset of Z2. In [6] it was shown that the binary
reconstruction problem is NP-hard for more than two projections.

In Chapter 3 we proposed an algorithm for reconstructing binary images that are de-
fined on a lattice, using some smoothness assumptions. This algorithm exploits the fact
that the reconstruction problem for only two projections can be solved in polynomial time.
The proposed reconstruction procedure is iterative: in each iteration a new reconstruction
is computed using only two projections and the reconstruction from the previous iteration.
The new reconstruction simultaneously resembles the image from the previous iteration and
adheres to the two selected projections.

In this chapter we describe a new iterative algorithm for reconstructing binary images
that do not have an intrinsic lattice structure (i.e., subsets of the plane), which is based on
ideas similar to those used in Chapter 3. To solve the two-projection subproblems efficiently,
a different pixel grid has to be used in each iteration, corresponding to the selected pair of
projections. The reconstruction problem can then be solved as a special case of the minimum
cost network flow problem in graphs, for which efficient polynomial time algorithms are
available [1]. Special care has to be taken to handle noisy projection data. We mainly focus
on parallel beam tomography, as the network flow approach is particularly well suited for
the parallel beam geometry. Our algorithm can also be applied to fan beam data.

Alternative approaches to the binary reconstruction problem that have been considered

5.2. Preliminaries 103

in the literature are, among others, adaptation of continuous algebraic reconstruction algo-
rithms to the binary reconstruction problem [3], stochastic reconstruction using Gibbs priors
(Chapter 8 of [7]), linear programming [4, 15, 16], and D.C. programming [14]. To the best
of our knowledge, no reconstruction results have been reported in the literature for images
of size larger than 256 <256 pixels (the paper [14] reports on some results for images of size
256x256). Our reconstruction results show that discrete tomography can be used effectively
on images of this size.

Section 5.2 contains the basic definitions and concepts that are necessary to define our
algorithm. In Section 5.3 we consider the problem of reconstructing a binary image from
two projections and formulate this problem as a minimum cost flow problem. The algorithm
for reconstructing images from more than two projections, which is described in Section 5.4,
builds upon the techniques from Section 5.3. In Section 5.5, results of several experiments
with simulated projection data are presented, followed by reconstruction results based on
real-world data. The results are compared to two alternative algorithms. Section 5.6 con-
cludes.

5.2. Preliminaries

In this section the tomographic scanning geometry is described and notation is introduced
to describe the imaging process mathematically.

5.2.1. Data collection geometries

This chapter deals with transmission tomography: a beam passes through an unknown ob-
ject, which attenuates the beam. The intensity of the attenuated beam is measured at the
other side of the object by a detector array. The measured intensity of a ray depends on
the length of the intersection between the ray and the unknown object, as well as on the
materials the object is made of.

We consider two different scanning geometries: parallel beam and fan beam. In parallel
beam tomography, a parallel beam passes through the object. The resulting intensities are
measured by a parallel array of detectors. The basic setup is shown in Figure 5.1a. The
source and detector array rotate around the object, acquiring a number of projections from
different angles. Parallel beams are often used in electron tomography, where the projections
of a nanosample are acquired by an electron microscope.

Fan beam tomography is often used in medical imaging. Figure 5.1b shows the imaging
setup. Rays from a single source pass through the object of interest. The detector array
covers a range of angles. The rays from the source cover the entire cross-section of the
object. Both the source and the detector array rotate around the object, acquiring projections
from several angles. Parallel beam tomography can be considered as a special case of fan
beam tomography, where the point source is located at an infinite distance from the object.

In the remainder of this chapter we use the term X-ray source to denote the source of
any beam (i.e., X-rays, electrons) that is used to measure projections of the unknown object.

104 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

7

Figure 5.1: (a) Left: Parallel beam tomography setting (b) Right: Fan beam tomography setting

5.2.2. Definitions and notation

Let R € Ry be the scanner radius. Let D = {0,...,0,} be a set of disjoint real numbers in
the interval [0,27), the projection angles. This is the set of angles at which the X-ray source
is located during the measurements.

Let T = {to,...,t,} be a set of real numbers in the interval (—2ZE ™) satisfying
to <t; <...<t,. Wecall T the set of fan parameters. The fan parameters determine the set
F ={Y0,...,Ya} of fan angles by the relation y; = #; /R for 0 < i < n.

The scanner radius, the projection angles and the fan parameters jointly define the data
collection geometry S = (R,D,T). From this point on we assume that the data collection
geometry is fixed.

Fori e (—2), puty(f) =7/R. Let 6 € [0,27), 1,¢' € (— 2R, ZR). Define

lo(x,y,1) =xcos (0 +7(t)) +ysin (0 +7(¢)) — Rsiny(z) x,y€eR.
Define the fan half line Lg(t) for projection angle 8 and fan parameter ¢ as
Lo(t) ={(x,y) €R*: Ig(x,,t)=0 and ycos®—xsin® <R}

and the fan strip So(t,1') as

lo(x,y,t) >0 and
/ f— 2 . 9 7y7 -
Se(tvt)_ {(x,y)e]R . le(x,y,l') SO }

Figure 5.2b shows the geometric meaning of the last definitions. The half line Lg(0) has
angle 0 with the y-axis, ends at p = (—Rsin®, Rcos 0) and passes through the origin O. Any
half line Lg(¢) also ends in p and has angle y(¢) with Lg(0). The strip Se(z,#’) covers the area
in between two such half lines.

The reason for using the fan parameter t instead of directly using the fan angle 7y is that
we can now consider the parallel beam geometry as a special case of the fan beam geometry.

siny __

If we let R — oo, we obtain (using limy .o - = 1):

5.3. Two projections 105

Se(t,t') ={(x,y) €R*: 1t <xcos®+ysin® <t'}

This is illustrated in Figure 5.2a. The line xcos0 + ysin® = ¢ has an angle 0 with the
y-axis and has distance |¢| to the origin. By specifying the fan parameters instead of the fan
angles, we can use the same model for both fan beam and parallel beam tomography.

- ~

O

~-o

—

|
|
[}
|
|
|
|
[}
|
-
[}
|

Figure 5.2: (a) Left: Parallel beam geometry (b) Right: Fan beam geometry

We call the set Sg; (f,,) the field of view for projection angle ;. Define the imaging area I
as

d

I = m Se, (to,1n)-

k=1

The imaging area is the set of all points in R? that are within the field of view for all
projection angles.

5.3. Two projections

We first deal with the problem of reconstructing a gray level image or a binary image (i.e.,
black-and-white) from only two projections. We consider the unknown image as a mapping
f:1— B, where B can be either the closed interval [0, 1] (gray value reconstruction) or the
set {0, 1} (binary reconstruction).

Problem 13 Let 0,0, € D be two different projection angles. Let py = (p11 - - .pln)T eR",
P2 = (pa1...pan)T € R" be two vectors of nonnegative real numbers (the measured strip
projections for projection angles 01 and 0,, respectively). Construct a function f : 1 — B

106 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

such that
// fx,y)dydx = py fori=1,...,n and
Sg, (i1 sti

// flry)dydx = po fori=1,...,n.
Sa, (ti-1:ti)

Depending on whether B is the unit interval or the set {0, 1}, we refer to the gray value
variant and the binary variant of Problem 13 respectively. We call an integral of the form
fngk(fH 1) F(x,y) dydx a strip projection.

To represent a mapping f : I — B in a computer we have to resort to an approximate
representation. An image f is represented as a 2D array of pixels. Every measured strip
projection then gives rise to a linear equation on the pixel values of f. Combining the linear
equations for all measured strip projections yields a large system of equations. A real-valued
solution of this system can be computed by methods from linear algebra. However, it is
likely that such a solution will not be binary. Note that the reconstruction problem from two
projections is severely underdetermined, so it may have an infinite number of real-valued
solutions.

Two projections jointly define a two-projection grid. The rows and columns of this grid
correspond to the fan strips of the two projections. Define grid cell C;; (1 <i,j < n) as
follows:

Cij= Sél(ti—17ti) mSéz(tj—l’tj)

Figure 5.3 shows examples of two-projection grids for the parallel and fan beam case. Grid
cells that are outside the imaging area are not drawn in the figure.

For any polygon-shaped set V C R?, denote its area by A(V). As a shorthand nota-
tion we denote the area of grid cell C;; by a;;. In the parallel beam case all grid cells are
parallelogram-shaped and have the same area.

A\ \ ‘ >
8875
XK
e e
“::::‘:‘::::,‘:“ 2
‘W‘:‘:‘:"’“ ,——,’—:9%";’2%
SIS =
KL XEEXIIEEEXS S S OSSOSSSSSSS
RSOSSN SIS
SEEIIEEIIIEEKIUEEKX Y S S OSSN
XSS SE XIS E XS SIS SN
0 S IR ¢ PO STSISSSIIKEKIINNN |
SIS IEIISEIIIEXLXEEKK S BTSSRI IS
X EEEESEIEEXKREEKKXIEKLXS ' PSSR SIS
S S X BE R XSS XEXX XS E ST S SLEIILIIREKIBKNN
B IIELIEEXIEIEXS : P o R RN
X RS 1 LSS SRR
S KIIEEIESERXISE KRS i SRR RN
S SR IIBEX KKK / S SRR
S IE S IIKIIIEES / 2 SRR
SEEXIAEESKIEEXKEKK / S oL RN
0SS IRKEEKKS D e e S S SIS NN
X SEEKIEELE XK [P e e SSSSSINN
X EXXIEEIAIEK , 2NN
5 SS
SO
‘o’:’:‘:“
K

Figure 5.3: (a) (Left) Two parallel beam projections jointly define a two-projection grid. (b) (Right)
Two-projection grid defined by two fan-beam projections.

5.3. Two projections

107

For fan beam projections we have to make some additional assumptions on the pair of
projections, to ensure that a two-projection grid can be constructed. We assume that

(—Rsin®;,Rcos0) ¢ Sg,(t0,1n)
(—RSinéLRCOSéz) ¢ Sél (t(),tn)

5.1
Ly, (t:) N Lg, (t)) # 0 forall 0<i,j<n.
The first two properties ensure that the source of the first projection is not within the fan
range of the second projection and vice versa. The third property states that each fan half
line of the first projection intersects each fan half line of the second projection.

A two-projection image is a mapping {1,...,n} x {1,...,n} — [0, 1] which assigns a
real value — the gray value — in the interval [0, 1] to each grid cell of a two-projection
grid. A binary two-projection image is a two-projection image for which all gray values
are either O (black) or 1 (white). Figure 5.4 shows two examples of a binary two-projection
image on the grids from Figure 5.3.

\ X5
X5
B
“:“:"“::::‘::::::“ =
S SEEKEEESS o
CEEIEEIEIKEKS oo
K RESEEIEEEEES Q S //
‘Wm ‘-o./
SIS S SSSIS S SSSE S
CESKEEE K EESK KKK ' BTSN
S S S SIS S : O O S
(SIS I ISR i S S SIS IS
S S ISR K XS T ST SIS |
XSS XSS IR X XK NKKS | TR R R KRR
SIS EIIEXNK XIS SRR
BRI KX KKEEKXN ; P R R RN
BEXXIESERISEEXKEEL K oSSR RN
SIS KEKEIEKL S R RN
SIS RIS IS S RN
00050 %050 %9050 % %% 00 Z 7RI
SRS e\
SEKEEEEERKS eSS SSSSON!
SRR Wil
XSEEERIS D
XBEXRKKS
XSRS
KK
XK
K
XS

Figure 5.4: (a) Left: Binary two-projection image on the grid from Figure 5.3a (parallel beam case).
(b) Right: Binary two-projection image on the grid from Figure 5.3b (fan beam case).

It is often convenient to consider a two-projection image X as a matrix (x;;), where x;;
denotes the gray value of cell C;;. It is straightforward to compute the strip projections of a
two-projection image X for the projection angles 8; and 6, by summation of all entries in a
row or column of X, weighted according to the cell areas. Define Py, P : [0, 1" — R" by

Yo ainxi
PiX) = .

5.2)
Z:‘T:l AinXin
and

Yo aijxi;
=

. 5.3)
Z;!:l AnjXnj

108 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

We call P; and P, the projections of X for angles 8; and 0., respectively. Define the total
projection S : [0,1]"*" — R by

S(X) = Z ajjXij.

1<i,j<n

The representation of a binary image as a two-projection image is only an approximate
representation. Possibly there does not exist a two-projection image for which the projec-
tions are exactly equal to the measured projections of Problem 13. In addition, if the mea-
sured projections have been obtained from a physical experiment they will usually contain
errors. If no perfect solution of the reconstruction problem exists, we would like to find a
reconstruction that adheres to the measured projections as well as possible. We now define
a reconstruction problem for two-projection images that allows for such errors.

Problem 14 Let ©0,,8, € D be two different projection angles. Let
p1 = (pi1--.pi)T €RY, po = (p21...pam)" € R (the measured strip projections
for projection angles 81 and 0, respectively). Let T € R (the prescribed total projection).
Construct a matrix X € B"™" such that S(X) = T and

|PL(X) = pil +[P2(X) = p2a
is minimal (where | - || denotes the sum-norm).

In any instance of Problem 14, S(X) is considered to be a fixed parameter. A good
value for the parameter T can be computed from the measured projection data. For a binary
image, S(X) represents the total area of the white pixels in X. For any image X we have
S(X) = |P1(X)]1 = |P2(X)|1, so in order to minimize |P;(X) — p1|1 + [P2(X) — p2|1, S(X)
has to be close to | p1|; and |p2|1. A sensible value for T is given by (|p1]1 +|p2|1)/2. For the
parallel beam case, Problem 14 can only have a binary solution if 7 is an integral multiple
of the pixel area a. A good value for T can be found by rounding (|p1|1 +|p2|1)/2 to the
nearest multiple of a. For fan beam projections, such a rounding step cannot be applied, as
the cell area is not constant. In the fan beam case we only deal with the gray value variant of
Problem 14, as the binary variant cannot be solved efficiently within our proposed model.

We will now show that Problem 14 can be formulated as a min cost flow problem in a
particular graph. In fact, this network flow approach can be used to solve a generalization
of Problem 14. This generalization offers the possibility of incorporating prior knowledge
about the unknown image in the reconstruction, by specifying a weight w;; for each pixel

(i, j):

Problem 15 Let 01,0,, p1,p>,T be as in Problem 14. Let W = (wij) € R™" and o € R.
Construct a matrix X € B"" such that S(X) =T and

o(|PL(X) = pili+IPa(X) = p21) = Y, wijaijxi;

I<i,j<n

is minimal.

5.3. Two projections 109

Source node

Line edges

Line nodes

Pixel edges

Line nodes

Line edges

Sink node

Figure 5.5: Basic structure of the associated graph

Problem 15 is a generalization of Problem 14. Setting ot =1 and w;; =0for 1 <i,j<n
yields Problem 14. We call the matrix W the weight map. The weight map is used extensively
in the algorithm for reconstructing a binary images from more than two projections that we
describe in the next section.

The basic idea of using network flow methods for the reconstruction of binary images
from two projections was first described by Gale in 1957 [5], in the context of reconstructing
binary matrices from their row and column sums.

With a pair of projection angles (81,0,) and their respective measured projections
(p1,p2), we associate a directed graph G = (V,E), where V is the set of nodes and E is
the set of edges. We call G the associated graph, see Figure 5.5. The set V contains a node
s (the source), a node t (the sink), one node for each strip of projection angle 8; and one
node for each strip of projection angle 0. The node that corresponds to Sg X (ti—1,t;) has la-
bel ny ;. We call the nodes ny ; line nodes. Every pair (ny, no, ;) of nodes is connected by
a (directed) edge. We call these edges pixel edges and denote the set of all pixel edges by
E, C E. Besides the point edges the set E contains the subsets £y = {(s,n1;) :i=1,...,n}
and E» = {(no,j,¢) : j=1,...,n} of directed edges. We call the elements of E; and E; the
line edges of G. The complete set of edges of G is given by E = E, UE| UE. In the remain-
der of this section we assume that the reader is familiar with the basic concepts of nerwork
flows. The book [1] provides an excellent introduction to this subject.

To each edge e € E we assign a real-valued capacity, according to the following capacity
Sfunction U : E — Rxo:

110 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

U((l’l]’,‘,l’lz’j)) = aijj for 1 S i,j S n
n
U((s,niy) = Ya; for 1<i<n
j=1
n
U((n2,j,1)) = Zaij for 1<j<n
i=1

A flow in G is amapping Y : E — R>¢ such that Y (¢) < U(e) for all e € E and such that

forallv e V\{s,t}:
Y Y(wyv)=) Y(»w).

w: (w,v)EE w:(v,w)EE

Define the size S(Y) of a flow Y as

-

S(r) = Y((s,nu)):ilmnz,,-,r)): Y V().

i=1 1<i,j<n

Note that if a flow Y is specified on the pixel edges, its value for all line edges can
be computed using the flow conservation constraint. A flow Y is called an integral flow if
Y(e) e Npforalle € E.

For any matrix X € [0, 1)"*" we define its corresponding flow Yx by

Yx((nu,nz’j)) :a,'jx,'j for 1 S i,j S n.

Note that Yx is a mapping E — R>¢, which we define by specifying its values on a sub-
set of E. The value of Yy on the line edges of G then follows from the flow conservation
constraints:

Yx((s,nw)) = [Pl (X)], for 1 S i S n (54)

and
Yx((n27j7l‘)) = [PQ(X)L for 1<j<n. 5.5)

With each edge e € E we assign a cost function, which determines the cost of sending
a certain amount x of flow through that edge. The cost function C, depends on the weight
map W, the constant o and the measured projections p; and p» and is defined by

C(nl‘,-,nz,,-)(x) = —wix for i,j=1,...,n
C(Mlﬁl.)(x) = 2amax(x—p;;,0) for i=1,....n
C(nzlj,t)(x) = 2amax(x—p,;,0) for j=1,....n

Define the rotal cost C(Y) of a flow Y as

C(Y)=) C.(Y(e)). (5.6)

ecE

5.3. Two projections 111

Lemma 2 There is a 1-1 correspondence between the solutions of the gray value variant
of Problem 15 and the flows Y of size T in G for which C(Y) is minimal among all flows of
size T.

Proof. For any real-valued vector p € R”, define |p|™ = ¥}, max (p;,0). Combining
Equation (5.4), (5.5) and (5.6), we find that

C(Yx)2206(|P1(X)—p1|++|P2(p2|+ Z WijdijXij-

1<i,j<n

Using the identities
SX) =P = |peli +1P(X) = pil " = |pe = B(X)[T for k=12,

and
|Pe(X) — pili = 1P(X) — pel T+ | px — P (X)),
we find that

C(Yx>:(X(|P1(X)—p1|1+|P2(p2|l Z WijaijXij +

1<i,j<n

a(28(X) = |p1l1 = [p2]1)- (5.7)

The mapping X — Yx yields a 1-1 correspondence between the flows in G of size T
and the two-projection images X for which S(X) = T. If we fix S(X), as in Problem 15, the
term o(2S(X) — |p1]1 — |p2|1) in Equation (5.7) is constant. We conclude that the problem
of finding a flow Y of size T in G for which C(Y) is minimal is equivalent to finding a
solution of the gray value variant of Problem 15. O

The minimum cost flow problem in graphs is a well-known problem in combinatorial
optimization for which efficient, polynomial time algorithms exist (see [1] for a thorough
description or [13] for an overview). However, most algorithms for this problem deal with
linear cost functions for the edges, i.e., cost functions of the form C,(x) = cx, where c is a
constant. The cost function for a line edge can be formulated as a linear cost function by
replacing the line edge with rwo parallel edges. For a line edge (s,n1;) in the original graph
G, the first new edge has a capacity of pj; and a cost function of 0. The second parallel edge
has a capacity of (¥}_; a;;) — p1; and a cost function C(x) = 20w, see Figure 5.6a. For any
minimum cost flow, the second parallel edge will only carry a nonzero flow if the first edge
is completely filled, because of the cost of using the second edge.

For the parallel beam case, a solution of the binary version of Problem 15 can be com-
puted efficiently (i.e., in polynomial time) using the min cost flow formulation. It is a well-
known fact that if a network has only integral edge capacities and edge costs, there is always
an integral flow among all flows for which the total cost is minimal (see, e.g., [1]). Such an
integral flow can be computed in polynomial time. Note that for the parallel beam case, the
pixel area is constant. We first divide all edge capacities in the associated graph by a, the
pixel area. The total flow T and the coefficients of the linear cost functions for the edges

112 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

() O
L7 cost: 2aa([p1i/a) — pri/a)x

cap: pii cap: (X)) ai) — pui cap: |pii/al cap: n— [p1;/al
cost: 0 cost: 2aw cost: 0 cost: 2aax

Figure 5.6: (a) (Left) To obtain linear cost functions for the edges, each line edge is replaced with
two parallel edges that have linear cost functions. (b) (right) In the parallel beam case, the line edges

are replaced by three parallel edges that each have integral capacity.

have to be scaled accordingly. If 7' /a is not an integral value, it is rounded to the nearest
integer; otherwise it would clearly be impossible to find an integral flow of size T /a. We
denote the graph that is obtained by this scaling step by G’. All pixel edges in G’ have a
capacity of 1, but the capacities of the line edges (one pair for each projected strip, as in
Figure 5.6a) may still not be integral. If a pair of parallel edges that represents a line edge
does not have integral capacities, we add a third parallel edge, as in Figure 5.6b. The figure
also indicates the capacity and the cost function for each of the three parallel edges. Note
that the derivatives of the cost functions are increasing constants for the three parallel edges,
from left to right. Therefore, in any minimum cost flow the second edge will only be used if
the first one is completely filled and the third edge will only be used if the second one is full.
It is easy to verify that for any infegral amount x of flow from s to ny; the total cost for the
three parallel edges equals 2oemax (x — py;/a,0) and all three edge capacities are integral.
To obtain integral coefficients in all cost functions, note that the solution of the minimum
cost flow problem in a graph does not change if we multiply all costs by the same constant
(only the rotal cost of the solution changes). For each (linear) cost function C, = cx, we
multiply ¢ by a constant K and round the result. As round(Kcx)/Kcx — 1 for large values
of K, the effect of this rounding step can be made negligible by choosing K to be large.

In the case of fan beam projections it is also possible to use the network flow approach.
However, finding a binary solution of the reconstruction problem is now much more diffi-
cult. Figure 5.3b shows a two-projection grid for the fan beam case. In the parallel beam
case, all pixel edges have a capacity of 1, thus any integral flow corresponds to a binary
image. As the cell area A(C;;) is no longer constant in the fan beam case (see Figure 5.3b),
the capacity of the pixel edges will no longer be constant. Although there is no guarantee
that the minimum cost flow corresponds to a binary solution in this case, min cost flow al-
gorithms can still be used to compute a gray value image. As we will show in Section 5.5,
this gray value image can still be very useful for computing a binary reconstruction, as most
pixel values will typically be very close to 0 or 1.

If we set o to a very large value in Problem 15, the solution(s) of the reconstruction
Problem will correspond to the measured projections as well as possible, according to the
sum-norm. For the experiments in Section 5.5 we used & = 10000. In those experiments the
pixel weights w;; are always between —2 and 2.

5.4. More than two projections 113

5.4. More than two projections

In the previous section we showed that the two-projection reconstruction problem can be
formulated as a network flow problem. For the case of parallel beam projections, a binary
solution can be found efficiently. For the fan beam case the network flow approach can also
be used, but it does not guarantee a binary solution. Unfortunately, there is no straightfor-
ward generalization of the network flow approach to the case of more than two projections.
In this section we study the following reconstruction problem:

Problem 16 Letp; = (p11...pin)", ..., pa = (pai-..pan)! € R" be vectors of nonnegative
real numbers (the measured strip projections for projection angles 01,...,0, € D respec-
tively). Construct a function f : I — {0, 1} such that

// flx,y)dA = pg fori=1,...,n,k=1,...,d.
Soy ti-1:1i)

We propose an iterative algorithm, which makes use of the fact that the two-projection
problem can be solved efficiently. The algorithm computes a reconstruction from more than
two projections by solving a series of two-projection subproblems, each using two projec-
tion angles from the set D. The algorithm uses the concept of a weight map, as defined in
Section 5.3. In each iteration a new pair of projection angles is selected. An instance of
Problem 15 is then solved on the two-projection grid that corresponds to those two angles.
The weight map is computed using the reconstruction from the previous iteration, in such a
way that solutions are preferred which resemble the reconstruction from the previous itera-
tion. The previous reconstruction was computed using a different pair of projections, which
are thus incorporated into the new reconstruction. Repeating this argument, projections from
earlier iterations are also incorporated.

p P

Figure 5.7: To display a reconstruction on a two-projection grid, it has to be converted to the stan-
dard pixel grid.

114 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

To display a reconstruction that has been computed on a two-projection grid, it has to
be converted to an image on the standard square pixel grid, aligned to the horizontal and
vertical axes. Figure 5.7 shows the standard pixel grid, superimposed on a two-projection
image. The value of each pixel in the standard pixel grid is computed by averaging the gray
values of the overlapping pixels in the two-projection image, weighted by the overlap area.
We will describe the details of this computation in Section 5.4.2.

Figure 5.8 shows the basic steps of the algorithm. First, a start solution is computed,
using all projections simultaneously. The start solution should provide a good first approx-
imation of the unknown image, while being easy to compute. The start solution can be
computed on the standard nxn square pixel grid. For the experiments in Section 5.5 we
used the SIRT (Simultaneous Iterative Reconstruction Technique, see Chapter 7 of [10]) to
compute the start solution, which yields a gray value reconstruction.

Subsequently, the “total area of the white pixels in the unknown object” T is computed
as T := (X¢_, |px|)/dn. The value of T is used during the main loop of the algorithm,
to determine the total flow in each of the network flow problems, corresponding to two-
projection subproblems. Note that in the case of parallel beam tomography, T has to be
rounded to the nearest integral multiple of the cell area, to be able to find binary solutions
for the two-projection problems.

Next, the algorithm enters the main loop. In each iteration T of the main loop a new
pair (6}',5;) of projection angles is first selected, which determines the two-projection grid
for iteration T. We refer to the cell (i, j) of this grid as Cl""j Section 5.4.1 describes several
possible angle selection schemes.

Subsequently the weight map W* = (w

T
ij
X"!. We describe the details of this computation in Subsection 5.4.3. The weight map W,
the total flow T and the projections for angles (é"{,ég) define an instance of Problem 15.
Solving this problem by the network flow approach yields the new reconstruction X .

The criterion for termination of the main loop is described in Section 5.4.4, which also
describes how the final reconstruction X* is computed.

) is computed from the previous reconstruction

5.4.1. Choosing the pair of directions

Not every pair of projection angles is suitable to be used for solving a two-projection prob-
lem. At least such a pair should satisfy the conditions in Equation 5.1, but it is also important
that both projection angles are sufficiently orthogonal. Figure 5.9 shows the grid cell shape
for two projection angles that are almost orthogonal, versus the shape for two projection
angles that have a small angular difference, resulting in a flat, stretched pixel shape. Such
pixels are not well suited for accurate image representation, as the pixel diameter (i.e., the
farthest distance between any two points in the pixel) is too large. Therefore the angular
difference between é‘l’ and é"ﬁ’ should always be larger than a certain minimum value, &yy,.
We call a pair of projection angles valid if it satisfies all requirements to be used for solving
a two-projection problem. We used Sy,in = 7/4 for all experiments (including the fan-beam
experiments) in Section 5.5.

One can think of several criteria for choosing the projection pair at the start of a new
iteration. Let X be a two-projection image for projection angles 81, 8,. Define the projection

5.4. More than two projections 115

Compute the start solution X° on the standard pixel grid;
T = (T |pxl) /dn:
17:=0;
while (stop criterion is not met) do
begin
T:=1+1;
Select a new pair of projection angles 67,67 € D;
Compute the weight map W™ = (w};) for the two-projection grid
corresponding to (8%,6%), using the previous reconstruction X*~!;

Compute a solution X* with S(X) = T of Problem 15
on the two-projection grid for angles (87,05), using the
weight map W7,

end

Return the final reconstruction X* (see Section 5.4.4);

Figure 5.8: Basic steps of the algorithm for plane sets.

H

Figure 5.9: Pixel shape for two different two-projection grids in the parallel beam case. (a) Left:
Two projection angles that are almost orthogonal. (b) Right: Small angular difference between both
projection angles.

P, (X) for projection angle 6; € D as follows:

Yi<i j<nA(Cij N Se, (t0,11))xij
P(X)=
Yi<i j<nA(Cij N Se, (tn—1:1n))xij

Recall that A(V') denotes the area of a subset V € R2. Note that for the two angles 8,
and 6, this definition is equivalent to Equations (5.2) and (5.3).

A good choice for the new pair of projection angles 8;,0; € D in each iteration of the
main loop is to choose the pair of valid directions for which the summed projection distance

|Pi(X) — pil2+|P;j(X) — pj|2

116 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

is largest. We used this criterion for the experiments in Section 5.5.

Under certain conditions it may be better to use a scheme that guarantees that all projec-
tions are used equally often. If the number of valid pairs of projection angles is small (e.g.,
d =4,5), it is likely that cycling occurs between two or three projection pairs when the
total projection distance is used to select a new pair of projections. The other pairs will not
be used, which may degrade the reconstruction quality. Also, when one projection contains
significantly more noise than other projections, it will be selected over and over again, as
it is more likely to have a higher projection error than the other projections. Possible selec-
tion schemes that avoid these problems are to select a random valid pair in each iteration,
to select all pairs sequentially in a fixed order, or to select one random angle first and then
choose the second angle such that the summed projection distance is largest.

5.4.2. Converting between different grids

Let X = (x;;) be a two-projection image and let C;; denote grid cell (i, /) in the corre-
sponding two-projection grid. To display the image X, we need to convert it to an image
X = (x’/J,) on the square pixel grid, aligned with the horizontal and vertical axes. Denote
the grid cells of this new grid by C}, 7 (1 <i,j <n). As X cannot be represented perfectly
on the grid of X’, we have to resort to an approximation. For each cell C;, 7 the intersection
is computed W1th all cells of the “old” grid and the gray-value is averaged weighted by the
intersection area: ACAC!
Xop =), MGGy Al(j el i;jl)x,-j
1<i,j<n i
The coefficients A(C;; NC;, ,) JA(C(,j,) can be precomputed for each pair of two-

projection grids. For a fixed plxel (/',j') in the new grid, the number of pixels (i,j) in
the old grid for which A(C;;NC;, j,) is nonzero is typically very small, because only valid
projection pairs are used (see Section 5.4.1). By using a sparse representation that stores
only the nonzero coefficients, the conversion of an image from one two-projection grid to
another two-projection grid can be performed in linear time.

Another operation that is used by our algorithm, to obtain the weight map, is the com-
putation of the average gray value in a small neighbourhood of a point (x,y) € R2. Most
common pixel neighbourhood definitions that are used in image processing, such as the 4-
neighbourhood and 8-neighbourhood, are very suitable for square pixel grids. However, as
our algorithm deals with many different pixel grids for which the pixel sizes and shapes may
vary, we have to use a more general neighbourhood definition.

Define the r-neighbourhood N(x,y,r) of (x,y), as

Neyr) = {(55) € B>/ (e— 02+ (- 92 < 1)

Let X be a gray value image and denote the corresponding grid cells by C;;. The r-
neighbourhood gray value I'x (x,y,r) of a point (x,y) can now be computed as

o A(N(x,y,r)NCjj)
Tx (x,y,r) 1g§"§n A(N(x,y,r))

x,-j. (58)

5.4. More than two projections 117

Although an intersection area of the form A(N(x,y,r) NC;;) can in principle be com-
puted exactly (up to floating point errors), a sufficiently accurate approximation can be
obtained by representing N(x,y, r) as a regular polygon with 7 vertices, where 7i is a large
integer, e.g., i = 100. The intersection area of two convex polygons of /i and 7 vertices
respectively can be computed in O(7 + i) time, see Section 7.6 of [12].

5.4.3. Computing the weight map

The weight map W7 is computed from the previous reconstruction X*~! and the measured

projections for angles (éf,é;). We denote the grid cells of the two-projection grid from the

previous iteration by C’(i'j/) and the grid cells of the new two-projection grid by C(i, j).
Define the cell center m;; of cell C;; as the intersection point of two fan half lines as

mij = (Xm;s Ym;) = Lge ((ti1 +10)/2) O Ligg (11 +17)/2)

The pixel weight wfj of pixel (i, j) depends directly on the r-neighbourhood gray value
of the cell center m; j, computed using the previous reconstruction X’. In all experiments of
Section 5.5 the parameter r is a constant. For each cell center m;;, the r-neighbourhood gray
value I'y:—1 (xm,-j s Ymij s r) of m;; in the image X ™1 is computed according to Equation (5.8).

Let g: [—1,1] — R be an odd function (i.e., g(—v) = —g(v)), which is increasing
on the interval [0, 1]. We call g the local weight function. Together with the neighbourhood
radius 7, the local weight function determines the preference for locally smooth regions.

The pixel weight w}; is computed as

1

7))

W;Ej = g(2(FX171 (xmij,)’mijar) - 2

Note that 0 < Tye1 (X, Yy, 7) < 1.

The basic motivation of the local weight function is that, as the neighbourhood of a pixel
becomes more white, the preference to make this pixel white in the next iteration increases.
The same holds for black neighbourhoods. If a pixel neighbourhood consists of 50% black
and 50% white pixels, no preference is expressed as the pixel weight is zero. Which local
weight function works best for a certain set of projection data depends on local properties
of the (unknown) original image. If the original image contains large regions that are either
completely black or completely white, it makes sense to use g(v) = sign(v)v?: the pixel
weight increases strongly near v = 1 (and decreases strongly near v = —1), which results in
a strong preference for local neighbourhoods that are either completely white or completely
black. On the other hand, if the image contains many fine details (i.e., local neighbour-
hoods containing both black and white pixels), it will be better to use g(x) = sign(v)/|v/,
which results in a weaker preference for completely homogeneous neighbourhoods. for the
experiments in Section 5.5 we used the function

v i A1
g(v)_{zv it v =1. ©9)

118 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

This function expresses a strong preference for pixels that are surrounded solely by pixels
of the same value to retain their value in the next iteration. For pixel neighbourhoods that
are not homogeneous, the pixel weight function is linear. The results in Section 5.5 show
that this local weight function works well for a varied set of test images.

The other parameter that determines the preference for smooth reconstructions is the
neighbourhood radius r. If the neighbourhood radius is large, the local weight function
expresses a preference for pixels to be assigned the same value as the majority of their
neighbouring pixels in a large surrounding area, which corresponds to some form of “blur-
ring”. Fine details cannot be reconstructed in this way, but on the other hand the influence of
noise is reduced. If the neighbourhood radius is small, the local weight function expresses
a preference for pixels to retain their value from the previous reconstruction.

The interplay of the local weight function and the neighbourhood radius r is quite com-
plex and difficult to analyze, due to the wide range of possible local weight functions. There-
fore, the results in Section 5.5, which use only a single local weight function, are not nec-
essarily the best possible results for our algorithm. A different choice for the local weight
function and neighbourhood radius may lead to better results.

5.4.4. Termination and final output

Define the rotal projection distance A(X) as

d
AX) =) [P(X) = pil2
k=1

The total projection distance provides an indication of the quality of the reconstruction
X without having knowledge of the unknown original image. Therefore it can be used to
define a termination criterion for the main loop of the algorithm. The algorithm terminates
if no improvement has been made in the total projection distance (i.e., by finding a new
reconstruction that has a smaller projection distance than the best one so far) during T
iterations, where T is a constant. We used 7' = 30 for all experiments in Section 5.5.

The result of one iteration of the algorithm is always a reconstruction that adheres well
to the two projection angles that were used in that iteration. If the projection data contain
noise, errors caused by the noise in those two projections will always be present in the
last reconstructions. To reduce this effect, the final reconstruction that is returned by the
reconstruction algorithm is computed as an average image over the last 7’ iterations, where
T’ is a constant. The reconstructions from the last 7’ iterations, each computed on a two-
projection grid, are converted to the standard square pixel grid. On this grid, the pixel values
are averaged and thresholded at 0.5 to obtain a binary reconstruction. We used T’ = 15 for
all experiments in Section 5.5.

5.5. Experimental results

In this section we present reconstruction results of our algorithm. First, we present recon-
struction results for a set of four phantom images (i.e., synthetic images). For each of the

5.5. Experimental results 119

phantoms we computed the measured projection data by simulation. In this way the noise
level can be controlled, which is difficult for datasets obtained by real measurements. Subse-
quently, we provide reconstruction results for a real measured dataset, obtained by scanning
a raw diamond using a micro-CT scanner.

We implemented the iterative network flow algorithm in C++, using the RelaxIV library
[2] to solve the min cost flow problems. All experiments were performed on a 2.4GHz
PentiumIV PC.

As noted in Section 5.4.2, a large part of the computations that are involved in converting
an image from one grid to a different grid, or computing the neighbourhood gray value, can
be precomputed. In the running times that are reported in this section we assume that these
computations have already been carried out, as the precomputing step is independent from
the measured projection data and has to be performed only once for each data collection
geometry.

5.5.1. Parallel beam projections

The four phantom images that we use to evaluate the reconstruction time and the recon-
struction quality of our algorithm are shown in Figure 5.10.

R

a. single object b. 50 ellipses c. turbine blade d. cylinder head
300%300 256%256 276x276 276x276

Figure 5.10: Four phantom images

The phantom in Figure 5.10a represents a single object, which is not convex. In contrast
with the first phantom, the phantom in Figure 5.10b represents many small separate objects.
The image contains 50 ellipses of various sizes. The phantom in Figure 5.10c represents
a cross section of a turbine blade from a jet engine. Checking turbine blades for cracks
and other defects is crucial, as defects in one of the blades may lead to malfunction of the
engine. Note that the turbine blade phantom contains several small gaps and cracks, which
we would like to see in the reconstruction. The fourth phantom, in Figure 5.10d represents
a cross section of a cylinder head in a motorcycle engine. Cylinder heads, which are often
made of aluminium, are occasionally scanned in industry for reverse engineering, using
X-rays.

First, we compare our reconstruction results from perfect parallel beam projections to
two alternative approaches. It is well known that continuous tomography algorithms such
as Filtered Backprojection require a large number of projections. Algebraic reconstruction
methods, such as ART and SIRT (see Chapter 7 of [10]) typically perform much better

120 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

than backprojection algorithms if the number of projections is very small. Our algorithm
uses the SIRT algorithm to compute a start solution. As a first comparison, we compare the
final reconstruction computed by our algorithm to the continuous SIRT reconstruction. In
[15,16], Weber et al. describe a linear programming approach to binary tomography which
incorporates a smoothness prior. We implemented the R-BIF approach which is described
in [16] using the ILOG CPLEX interior point solver [8]. The real-valued pixel values are
rounded to binary values as a postprocessing step, which was also done in [15]. Besides
the projection data, the linear program depends on a parameter o, which determines the
preference for smoothness. For our set of four phantoms we found that & = 0.2 works well.

For our network flow algorithm we use the local weight function of Equation (5.9). as
the local weight function. The neighbourhood radius is set to 1.5 times the diameter of a
pixel (in the phantom image).

Figure 5.11 shows the reconstruction results for the four phantoms from parallel beam
projection data. For each of the phantoms, the number of (equally spaced) strips in a projec-
tion equals the width, in pixels, of the phantom. Quantitative results for the four phantoms
are shown in Table 5.1.

phantom size #proj. R-BIF Network Flow
#errors | time(min) | #errors | time(min)

single object | 300300 | 5 220 9.2 58 2.0

50 ellipses 256x256 | 8 216 35 152 1.5

turbine blade | 276x276 | 7 214 3.2 108 1.8

cylinder head | 276x276 | 10 375 10 665 1.9

Table 5.1: Quantitative comparison between the R-BIF reconstruction and the reconstruction com-
puted by our network flow algorithm. The table shows the reconstruction time in minutes and the total
number of pixel differences between the reconstruction and the original phantom.

The number d of projections is chosen for each phantom as the minimum number for
which our algorithm computes an accurate reconstruction from the projection data. The
projection angles are equally spaced between 0 and 180 degrees. Every projection consists
of n strip projections, that each have a width equal to the phantom image pixel width.

Our algorithm is capable of computing an accurate reconstruction of each of the four
phantom images from a small number of projections. The reconstruction quality of the R-
BIF algorithm appears to be similar, although there are some small differences between the
reconstructions by both methods. The reconstruction quality for both these algorithms is
much better than for the continuous SIRT algorithm, which is immediate by visual inspec-
tion of the resulting images. We observed that the number of projections that is required to
compute an accurate reconstruction is the same for the R-BIF algorithm as for our algorithm,
for each of the four phantoms. As there are major differences between both algorithms, this
suggests that this minimal number of projections is an intrinsic property of the images them-
selves. It may be very difficult or even impossible to compute accurate reconstructions from
fewer projections by using a different algorithm.

The reconstructions that result from using too few projections may be quite different

5.5. Experimental results 121

a.SIRT, d =5 b. SIRT, d =8 c.SIRT, d =7 d. SIRT, d = 10
e.R-BIF, d =5 f.R-BIF,d =38 2. R-BIFd=7 h. R-BIF, d = 10

i.NFd=5 j-NF, d=38 k.NEd=7 LLNF,d =10

Figure 5.11: Reconstruction results for the four phantoms from parallel beam projections, using
SIRT (top), R-BIF from [16] (middle) and our network flow algorithm (NF, bottom). The figure cap-
tions show the number d of projections that was used.

between both algorithms. Figure 5.12 shows a reconstruction of the turbine blade phantom
from 6 projections for both algorithms.

Figure 5.12: (a) (Left) Network flow reconstruction from 6 projections. (b) (Right) R-FIB recon-
struction from 6 projections.

122 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

The minimal number of projections that is required to reconstruct a given (unknown)
image depends strongly on characteristics of the unknown image, as can be seen by the
varying number of projections that is required for the four phantom images.

If more projections are available than the minimum number that is required, using a
few additional projections reduces the number of iterations of our algorithm, resulting in a
shorter running time.

Our algorithm has several advantages compared to the R-BIF linear programming ap-
proach. First, the network flow algorithm is faster than general linear programming as used
in [16], even though we used a high performance interior point solver for solving the linear
program. It was demonstrated in Chapter 4 for the case of lattice images that the network
flow approach for 2D reconstruction can be extended to a highly efficient algorithm for 3D
reconstruction. Within each iteration a series of 2D reconstruction problems is solved, in-
stead of one big 3D problem. The 2D reconstructions can be computed fast (because each
subproblem is relatively small) and in parallel. A similar extension is possible for our new
algorithm. Dealing with large volumes seems to be very difficult when using general linear
programming, as the number of variables becomes huge for large 3D volumes.

Another advantage of our algorithm is that it can deal with noise effectively, as we
will show in the next subsections. The linear programming approach from [15, 16] is not
capable of handling noisy data. It can be extended to the case of noisy data, as described
in [17]. However, the presented algorithm for dealing with noisy data solves a series of
linear programs, which results in far longer reconstruction times.

More recently, Schiile et al. developed a different reconstruction algorithm based on
D.C. programming (Difference of Convex functions) [14]. The results of this algorithm
seem to be very promising and it does not have some of the drawbacks of the linear program-
ming approach. We intend to perform a comparison between a wider set of reconstruction
algorithms in the future.

5.5.2. Fan beam projections

The main focus of our reconstruction results is on parallel beam projection data. For parallel
beam data the network flow methods guarantees a binary solution of each two-projection
reconstruction problem. For fan beam data, the solution of the two-projection problems is
not necessarily binary. Figure 5.13 shows reconstruction results from fan beam projections.
For all four phantoms, the center of rotation of the beam source is the center of the image
and the distance from the source to the center (the detector radius R) equals the width (and
height) of the image. The fan parameters 1y, .. .,t, are equally spaced.

The results show that even though the solutions of the two-projection subproblems are
not necessarily binary, the algorithm is still capable of computing a binary reconstruction.
The reconstructions are somewhat less accurate than for the parallel beam case. In partic-
ular, there is a small gap visible in the left part of the turbine blade phantom, which is
not visible in the reconstruction. The cylinder head reconstruction contains a small crack
at the top, which is not present in the original phantom. Adding two more projections for
these phantoms results in reconstructions without these errors. As the pixel sizes and shapes
vary significantly between pixel grids in different iterations of the algorithm, we expect the

5.5. Experimental results 123

R [

a.d =35, 2.8min. b. d =8, 3.3min. c.d=17,32min. d. d =10, 8.1min.

Figure 5.13: Reconstruction results of the network flow algorithm from fan beam projections. For
each phantom, the distance of the X-ray source to the center of the image equals the width (and
height) of the image. The figure captions show the number d of projections and the reconstruction
time in minutes.

loss of accuracy caused by conversions between different grids to be larger for fan beam
tomography than for parallel beam tomography.

5.5.3. Noisy projection data

So far all experiments were carried out with perfect projection data. We now focus on the
reconstruction of images from noisy projection data, which is practically more realistic.
We also assume that the noise is independent for each projected strip. To be more precise,
we assume that the noise is additive and that it follows a Gaussian distribution with u =0
and © constant over all projected strips. The standard deviation G is expressed as G = vy,
where y denotes the average measured strip projection over all projected strips. For example,
taking v = 0.1 results in independently distributed additive noise for each strip projection,
following the A’(0,0.1y) distribution.

Figure 5.14 shows reconstruction results for the cylinder head phantom, using 10 parallel
beam projections and varying noise levels. The reconstruction quality decreases gradually
as the noise level is increased. Up to v = 0.02, the noise hardly has any visible influence on
the reconstruction quality.

a.v=0.01 b.v=0.02 c.v=0.05 d.v=0.10

Figure 5.14: Reconstruction results of the network flow algorithm from 10 parallel beam projections
for increasing noise levels.

It is clear from Figure 5.14d that for high noise levels the reconstruction is not very

124 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

smooth at all. The smoothness of the reconstruction can be increased by increasing the size
r of the local neighbourhood used in the computation of the weight map. However, increas-
ing the neighbourhood size reduces the ability to reconstruct fine details. If such details are
not present, such as in the “single object” phantom, or if they are not important, increas-
ing the neighbourhood size results in better reconstructions for high noise levels. Figure
5.15 compares reconstructions of the single object phantom for neighbourhood sizes of 1.5
and 6 times the diameter of a pixel in the phantom image. Increasing the neighbourhood
size results in far better reconstructions. The ability to compute reconstructions under noisy
conditions is very important in practical applications.

a.v=0.02,r=1.5 b.v=0.02,r=6 c.v=0.05r=1.5 d.v=0.05,r=6

Figure 5.15: Reconstruction results of the network flow algorithm for the single object phantom with
two noise levels (v = 0.02 and v = 0.05) and two local neighbourhood sizes (r = 1.5 and r = 6).

5.5.4. Real-world data

Besides the experiments with simulated projection data, we also performed a reconstruc-
tion experiment with real X-ray CT data. Figure 5.16a shows a sinogram obtained by X-ray
tomography of a slice of raw diamond (courtesy of SkyScan, Antwerp, Belgium). The sino-
gram shows the measured parallel beam projections of the slice for 500 consecutive projec-
tion angles, equally spaced between 0 and 180 degrees. Each horizontal line of the sinogram
corresponds to a measured projection. If the diamond is not polluted by other materials, it
can be considered as a homogeneous object, which leads to a binary reconstruction problem.

Figure 5.16b shows a gray value reconstruction computed by the SIRT algorithm from
the sinogram in Figure 5.16a, using 125 of the available 500 projections. The continuous
reconstruction was thresholded to obtain a binary reconstruction, which is shown in Figure
5.16¢. The sinogram in Figure 5.16a contains several artifacts, caused by some problems
with the scanning device at the time of the experiment. In particular there are several very
faint projections (dark horizontal lines) visible. When using continuous tomography, the
influence of such errors becomes smaller as the number of projections is increased. A second
source of errors is that the sinogram is an 8-bit gray scale image, which limits the accuracy
of the measured projection values. The errors make the task of reconstructing the diamond
slice from few projections by discrete tomography more challenging.

Figure 5.17 shows reconstruction results from 5 and 10 projections for the SIRT algo-
rithm and our network flow algorithm. Although the basic shape of the diamond slice can be
distinguished in the SIRT reconstruction from 10 projections, this reconstruction is of very

5.6. Conclusions 125

Jow

Figure 5.16: (a) (Left) Parallel beam sinogram of a raw diamond slice (courtesy of SkyScan,
Antwerp, Belgium). (b) (Middle) SIRT reconstruction from 125 projections. (c) (Right) Thresholded
SIRT reconstruction: a binary image.

poor quality. The reconstruction computed by our algorithm from 5 projections approxi-
mates the real shape quite well. Due to noise and other errors in the projection data there
are still some errors in the reconstruction. The reconstruction from 10 projections is much
more accurate. In particular, the boundary of the diamond slice is reconstructed well.

This example shows that our algorithm is capable of handling real-world projection data,
even if the data contains significant noise or other errors. The number of projections that is
required to compute an accurate reconstruction is far lower than for continuous tomography,

which is currently used in most applications.

a.SIRT, d =5 b. SIRT, d = 10 a.NF, d = b.NF, d =10

Figure 5.17: Reconstruction results for the SIRT algorithm and our network flow algorithm (NF)
from 5 and 10 equally spaced projections.

5.6. Conclusions

We have described a novel algorithm for the reconstruction of binary images from a small
number of their projections. Our algorithm is iterative. In each iteration a reconstruction
problem is solved that depends on two of the projections and the reconstruction from the
previous iteration. We showed that the two-projection reconstruction problem is equivalent
to the problem of finding a flow of minimal cost in the associated graph. This equivalence

126 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

allows us to use network flow algorithms for solving the two-projection subproblems. The
network flow approach is most effective for parallel beam projections, but it can also deal
with fan beam projection data.

The reconstruction results show that the reconstruction quality of our algorithm is far
better than for the SIRT algorithm from continuous tomography. A comparison with the
R-BIF linear programming approach from [16], which uses a smoothness prior, shows that
both algorithms yield comparable reconstruction quality. Our algorithm runs faster than the
linear programming approach and can be easily extended to 3D reconstruction or recon-
struction from noisy projections. These extensions are difficult to accomplish efficiently for
the linear programming approach.

Our results for noisy projection data shows that the algorithm is capable of dealing with
significant noise levels. The reconstruction quality decreases gradually as the noise level is
increased. A smoother reconstruction can be obtained by increasing the local neighbourhood
size that is used to compute the weight map. For images that do not contain fine details it is
likely that increasing the smoothness results in better reconstructions.

By providing reconstruction results of a raw diamond slice from real X-ray scanner
data, we showed that our algorithm is capable of computing high quality reconstructions
from real-world data.

In future research we intend to perform more extensive comparisons between different
discrete tomography algorithms. Such a comparison is often difficult, as each algorithm
makes different assumptions on the class of images, the detector setting, etc. Generalization
of our algorithm to 3D reconstruction is straightforward, following the same approach as
in Chapter 4. Even for 3D objects that could be reconstructed as a series of 2D slices,
an algorithm that takes the 3D connectivity of the object into account (using a 3D local
neighbourhood) could possibly improve the reconstruction quality.

Bibliography

[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms and appli-
cations, Prentice-Hall (1993).

[2] Bertsekas, D.P., Tseng, P.. RELAX-IV: a faster version of the RELAX code for solving
minimum cost flow problems. LIDS Technical Report LIDS-P-2276, MIT, (1994).

[3] Censor, Y.: Binary steering in discrete tomography reconstruction with sequential and
simultaneous iterative algorithms. Linear Algebra Appl., 339, 111-124 (2001).

[4] Fishburn, P., Schwander, P., Shepp, L., Vanderbei, R.: The discrete Radon transform
and its approximate inversion via linear programming, Discrete Appl. Math. 75, 39-61
(1997).

[5] Gale, D.: A theorem on flows in networks. Pacific J. Math., 7, 1073-1082 (1957).

[6] Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of
reconstructing lattice sets from their X-rays. Discrete Math., 202, 45-71 (1999).

[7] Herman, G.T., Kuba, A., eds.: Discrete tomography: foundations, algorithms and ap-
plications. Birkhiduser, Boston (1999).

[8] ILOG CPLEX, http://www.ilog.com/products/cplex/

[9] Jinschek, J.R., Calderon, H.A., Batenburg, K.J., Radmilovic, V., Kisielowski, C.: Dis-
crete tomography of Ga and InGa particles from HREM image simulation and exit
wave reconstruction. MRS Proc., 839, 4.5.1-4.5.6 (2004).

[10] Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. SIAM
(2001).

[11] Natterer, F.: The mathematics of computerized tomography, SIAM (2001).
[12] O’Rourke, J.: Computational geometry in C, Cambridge University Press (2001).

[13] Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Algorithms and
Combinatorics series, 24, Springer, Heidelberg (2003).

128 5. An algorithm for the reconstruction of binary images without an intrinsic lattice

[14] Schiile, T., Schnorr, C., Weber, S., Hornegger, J.: Discrete Tomography by Convex-
Concave Regularization and D.C. Programming. Discrete Appl. Math., 151, 229-243
(2005).

[15] Weber, S., Schnorr, C., Hornegger, J.: A linear programming relaxation for binary
tomography with smoothness priors. Electron. Notes Discrete Math., 12 (2003).

[16] Weber, S., Schiile, T., Schnérr, C., Hornegger, J.: A Linear Programming Approach to
Limited Angle 3D Reconstruction from DSA Projections. Methods Inf. Medicine, 4,
Schattauer Verlag, 320-326 (2004).

[17] Weber, S., Schiile, T., Hornegger, J., Schnérr, C.: Binary Tomography by Iterating Lin-
ear Programs from Noisy Projections. Proc. of IWCIA 2004, Lecture Notes in Com-
puter Science 3322, 38-51 (2004).

Chapter 6

On the reconstruction of crystals
by discrete tomography

This chapter has been published as: K.J. Batenburg and W.J. Palenstijn, “On the re-
construction of crystals through discrete tomography”, Proceedings of the Workshop on
Combinatorial Image Analysis, Lecture Notes in Computer Science, Vol. 3322, 23-37,
Springer (2004).

Abstract. We consider the application of discrete tomography to the reconstruction of
crystal lattices from electron microscopy images. The model that is commonly used in the
literature to describe this problem assumes that the atoms lie in a strictly regular grid. In
practice, this is often not the case. We propose a model that allows for nonregular atom
positions. We describe a two-step method for reconstructing the atom positions and types.
For the first step, we give an algorithm and evaluate its performance.

6.1. Introduction 2

Over the past ten years, the research field of discrete to-
mography has received considerable attention [2]. Among
the principal motivations for studying the tomographic re-
construction of images which have a small discrete set of
pixel values is a demand from materials science. Advances
in the field of electron microscopy have made it possible to
count the number of atoms in each column of a crystal lat-
tice along a small number of directions [3] (see Figure 6.1).
For this application the reconstruction problem consists of
retrieving the individual atom positions from a small num-
ber of projections.

o0
Q0000 |~

Q0000
)

Figure 6.1: Arom grid with
horizontal and vertical projec-
tions.

130 6. On the reconstruction of crystals by discrete tomography

In the mathematical model that is commonly used in
the literature to describe the reconstruction problem, it is
assumed that the atoms lie in a strictly regular grid. Each
column of atoms corresponds to a single column of pixels in the resulting image.

The number of atoms in each column is not measured directly by the detector array of
the microscope. Processing of the raw measured data results in a reconstructed exit wave
of the crystal. The phase of the exit wave (see Figure 6.2a) can be regarded as a projected
image of the crystal. Figure 6.2b shows the measured phase along a line of projected atom
columns. In the exit wave phase image each atom column has a width of several pixels,
typically around 10.

The atom columns appear as spikes in the measured projection. For crystals that consist
of only one type of atom, the height of a peak depends (almost) linearly on the number of
atoms in the corresponding column. Therefore, the number of atoms in a column can be
found by dividing the peak height by the projection height of a single atom and rounding to
the nearest integer.

2 40 e e 100 1 140 160 180 20 20 zd0 260

Figure 6.2a. Figure 6.2b.

Figure 6.2: a) Exit wave reconstruction of a CdSe nanocrystal b) Measured phase along a line in
the crystal projection (marked in the left figure); courtesy of dr. Ch. Kisielowski, NCEM, Lawrence
Berkeley Lab.

For a solid crystal without any irregularities the grid model corresponds well to physical
reality. Unfortunately, many crystals that are of interest in materials science contain one or
more irregularities, known as defects, in the regular grid structure. Figure 6.3 shows exam-
ples of the various types of defects that may occur in a crystal that contains two different
atom types, indicated by light and dark gray circles. The defects marked by a, ¢ and d are
examples of point defects. Defect b is an example of an edge dislocation. Note that in most
cases the surrounding atoms have moved away from their grid positions.

If a crystal contains defects, the atoms do not lie in straight columns, which makes the
method of counting atoms by looking at the peak heights inapplicable.

Figure 6.4a shows a single atom and its projection as measured by the detector array.
Figure 6.4b shows the same atom shifted slightly to the right. Although the displacement is
less than the width of a detector cell, we can tell that the atom has moved from the observed

6.1. Introduction 131

Figure 6.3: Overview of various crystal defects; courtesy of prof.dr. H. Fill.

Figure 6.4a. Figure 6.4b. Figure 6.4c.

Figure 6.4: a) A single atom and its measured projection. b) The same atom shifted slightly to the
right. c¢) Two atoms for which the projection shows only one peak.

pattern. Clearly, when measuring a single atom, assuming perfect, noiseless measurements,
it is possible to determine its position with greater accuracy than the actual detector width.
Figure 6.4c shows two atoms which are not vertically aligned. The measured data shows
only a single peak. Yet, by using the a priori knowledge that the peak is a superposition of
two atom projections, it is possible to recover the horizontal positions of both atoms exactly
by solving a least squares problem (see Section 6.3.2).

This raises the question if recovering the positions of the atoms is also possible for larger
atom configurations, consisting of many more atoms. If the configuration contains several
different atom types, it is not even clear if the number of atoms of each type can be computed
from the measured projection data.

When performing a tomographic reconstruction, projection data from several directions
is available. We want to reconstruct the measured set of atoms (i.e., the number of atoms,
their horizontal and vertical coordinates and their types) from the projections.

We propose a two-step method, which first performs a reconstruction on each projection
separately. The first step consists of determining the atom positions and types in the direction
orthogonal to the projection direction, for all separate projections. This results in a discrete
tomography problem which is much simpler than the original reconstruction problem. The
second step consists of solving the discrete tomography problem. In this chapter we focus on

132 6. On the reconstruction of crystals by discrete tomography

the first step. Clearly, the ability to accurately perform this first step is a necessary condition
for the two-step procedure to be feasible. The second step will be considered in future
research.

Figure 6.5 shows the basic idea of the two-step approach. First the x-coordinates of the
atoms and their types are computed from the vertical projection. Then the y-coordinates of
the atoms, along with their types, are computed from the horizontal projections. The process
may be repeated if more projections are available. Subsequently the resulting data is com-
bined into a discrete tomography problem. As the computation for each separate projection
also yields the types of the projected atoms, it may be possible to solve the tomography
problem for each atom type independently if the sample contains several atom types.

Mﬂﬁ Mﬁﬁ L2l
:‘ H“H@‘;:: :‘ o :

o © ©
o ©©
© o

o

Figure 6.5a. Figure 6.5b. Figure 6.5c.
Figure 6.5: a) A set of atoms and two of its projections. b) Coordinates of the atoms, reconstructed
[from the projections. c) The resulting discrete tomography problem.

In this chapter we explore to what extent the atom positions and their types can be re-
covered from a single projection. We restrict ourselves to the processing of 1-dimensional
projections of 2-dimensional images. We present an algorithm that computes the atom posi-
tions and their types. Our experimental results demonstrate that even when many atoms are
projected on top of each other it is still possible to recover the positions and types of the in-
dividual atoms that constitute the projection. The algorithm does not perform an exhaustive
search and is not guaranteed to find a solution. We evaluate its performance and show that it
is capable of finding accurate reconstructions for a varied set of test data. The results show
that even in the presence of a limited amount of noise the algorithm performs well.

6.2. Preliminaries

Although the model that we study in this chapter is quite flexible, we have to make several
simplifications in comparison with physical reality. In this section we define our model and
describe in what ways the model may deviate from actual physical experiments.

We restrict ourselves to 2-dimensional images. Although generalization of our methods
to 3-dimensional images is not straightforward, we consider the development of algorithms
for 2D images as a necessary first step towards the development of more complicated algo-
rithms for the 3D case.

6.2. Preliminaries 133

ﬂﬁ
= @0 _00
® & ..

cooo

Figure 6.6a. Figure 6.6b. Figure 6.6c.

Figure 6.6: a) A single atom and its projection function. b) The projection of an atom as measured
by the detector array. c) A set of atoms and its measured projection.

Figure 6.6a shows a schematic representation of the experimental setup that we will
study. Using an electron microscope, one can measure the effect of an atom on a passing
electron beam. The figure shows a single atom a, centered in (x4,y,), and its effect on a
vertical electron beam. The effect of the atom can be described by the projection function
fa(x), which gives the magnitude of the effect for any given x. We assume the following
properties of f;:

e f, is independent of the y-coordinate of the atom;

fa 18 not the zero-function;

e there exists an r such that f,(x) = 0 if |x —x,4| > r. The smallest such r is the atom
radius rg;

fa is continuous;

fa(xq+x) is independent of the atom position x,. In other words: when we move the
atom horizontally, its projection function shifts along with it;

fa 1s nondecreasing for x < x,;

fa is symmetric, i.e., f,(x, —x) = fu(x, +x) for all x.

The first five properties are essential to the algorithm that we propose. The remaining prop-
erties are assumed for computational convenience and efficiency and are physically realistic.
It is possible to remove these assumptions by adapting our algorithm if necessary.

134 6. On the reconstruction of crystals by discrete tomography

We use the convention of representing atoms by circles in our figures. We assume that
the projection function of an atom is independent of the orientation of the atom. In other
words, an atom looks the same from all directions.

The detector array does not measure the projection function directly: each detector cell
measures the average value of the projection function on a certain horizontal interval (see
Figure 6.6b).

In practice, it is not possible to isolate a single atom. When the atom is part of a larger
crystal (see Figure 6.6¢), it is only possible to measure the projection function fiy of the
whole crystal. We assume that fi is the sum of the projection functions of all individual
atoms that make up the crystal:

fo(x) =Y falx).

atoms a

This assumption is not completely valid in practice. The projection functions of the indi-
vidual atoms do not add up linearly although the nonlinear effects are small. The method
that we describe in this chapter can also be used in the nonlinear case, as long as adding an
atom a will result in a sufficiently large increase of fio(x). We assume that the measurable
effect of the atoms on the electron beam is limited to the interval [0,w] measured by the
microscope where w is the width of the detector array. In other words, fiot(x) =0 forx < 0
or x > w. It is possible to drop this assumption, i.e., to allow for a sample which stretches
beyond the detector array, but this will result in a severe loss of accuracy near the edges.
The detector that measures the projection consists of ny consecutive detector cells that
have a fixed width wqe. We denote the measurement of detector cell i = 0,1,...,n; — 1 by
m;. For noiseless measurements, m; is the integral of the projection function over the interval

[xiaxi + Wdet} :
Xi+Wdet
m; = / Srot(x) dx
Xi

Note that the detector cells are equally spaced and x; = iwget.

We assume that the crystal consists of a small number of atom types, e.g., Cd, Se, Au,
etc. Atoms of the same type are indistinguishable. Therefore, each atom type has a single
projection function modulo shifts. The atom types that make up the crystal and their pro-
jection functions are known in advance. The main problem that we study in this chapter
concerns the recovery of the individual atoms from the collective projection:

Problem 17 (Reconstruction Problem) Given the detector measurements and a set of atom
types with their projection functions, determine a set A of atoms (their types and x-
coordinates), such that the Euclidean distance between the projection of A and the measured
projection data is minimal.

It is possible that a solution to the reconstruction problem exists which is quite different
from the actual atom configuration. The simplest example of this would occur if two atom
types share the same projection function. If certain projection functions are integral linear
combinations of different projection functions, similar problems occur.

6.2. Preliminaries 135

The detector measurements always contain a certain amount of noise. A high noise level
may also result in a solution to the reconstruction problem that is different from the actual
measured atom configuration.

We now choose a particular set of atom projection functions for demonstrating the basic
concepts of our model and our algorithm. We assume that the atom projection functions
are projections of circles, multiplied by a density. Each atom type ¢ has an associated pair
(r¢,p;s), the radius and density of the atom. The projection function of an atom a of type ¢,
centered in x,, is given by

f(x)z{ 200/ 17— (x —x4)? ifx € [xg—rs, %+ 1]

0 otherwise.

Put u = +/r? — (x —x,)2. Then the function F,, defined by:

0 ifx<x,—r
Fu(x) =3 pi((x—xq)u+rf(arctan (=) + 5)) ifx € (xg—r, Xa+77)
p,7tr,2 ifx>x,+r

is a primitive function of the projection function. Hence, the contribution m;(a) of a to the
value measured by detector cell i is given by

mfa) = | A = Ful wae) — ().

Our algorithm for solving the reconstruction problem searches for the atom types and
their x-coordinates from left to right. The interval [0, w] is split into grid cells and each of the
cells is assigned a number of atoms, possibly of different types. We call such an assignment
of atoms to grid cells a configuration. An important step of the algorithm is to determine the
minimum and maximum contribution of an atom a to the measured value m; in detector i if
a is assigned to grid cell ¢ = [I., r.]. Figure 6.7 shows the maximum (bold) and minimum
(dashed) values that could be measured in each detector cell if a single atom lies somewhere
within the indicated interval from the left circle to the right circle.

Because of the restrictions on f, (it is symmetric around
X, and nondecreasing for x < x,), these values can be eas-
ily determined. We denote the minimal contribution of a to
detector cell i by 11; min(a, ¢) and the maximal contribution
by m; max(a,).

For a given configuration s, let ¢, denote the cell in
which atom a lies. Then

Mimin(s) = Y, Mimin(a,cq) Figure 6.7: maximal (bold)
atomsa €s and minimal (dashed) values
measured in each detector cell,

is a lower bound on the value measured in detector i and]
for a single atom.

mi,max(s) = Z M max (a7ca>
atomsa €s

136 6. On the reconstruction of crystals by discrete tomography

is an upper bound on the value measured in detector i. We
use these bounds extensively in the block phase of our algorithm (see Section 6.3.1). We say
that a configuration s is k-admissible if

M min ($) < m;i < M max (s) for0 <i<k and
M min(5) < m; for i > k.

Suppose that we try to add atoms to s in order to obtain a configuration which matches the
measured data in all detector cells. If we require that the additional atoms only affect the
values measured in detector cells to the right of cell k, then k-admissibility is a necessary
condition for s to be extendable to a fitting configuration.

In a given configuration s, the position of each atom is determined up to the width of a
grid cell. During the fitting phase of our algorithm (see Section 6.3.2), the coordinates of
the atoms are fixed at real values that lie within their respective cells. We call the resulting
assignment § of coordinates to atoms an exact configuration for s. For an exact configuration
§, the simulated measurement (the value that would be measured by the detector array for
this configuration) is given by

mi(5) = / ji+w“e‘ Y filx) dx.

acs§

We define the k-distance of an exact configuration § to the projection data as the square root
of YX_, (m; — m;(5))>.

6.3. Algorithm

In this section we describe an algorithm for solving the reconstruction problem. Our main
goal is to demonstrate that it is indeed possible to recover the atom types and their approxi-
mate positions from the projection data in many cases. We use heuristics to limit the search
space. It may happen that the algorithm fails to find an optimal solution or even that it fails
to find an approximate solution. However, we demonstrate in Section 6.4 that our algorithm
is capable of finding high quality solutions for a diverse set of test cases.

The reconstruction problem faces us with the task of recovering both the number of
atoms of each type and the x-coordinates of all these atoms. The x-coordinates are real
values, so they can take an infinite number of different values. In order to obtain a finite
search space, we impose a (1-dimensional) grid on the interval [0, w] and determine for each
atom in which grid cell it lies, instead of determining the exact atom positions. The imposed
grid is typically finer than the detector grid, e.g., twice as fine. We call this grid the fine grid.
It is relatively easy to calculate lower and upper bounds on the number of atoms present in
each grid cell.

We say that a grid cell ¢ in the fine grid contains an atom a if the left side of a, defined
as x, — 14 1s in c. In this way, the projection of a has no effect on the values measured by
detector cells to the left of ¢. Our algorithm constructs atom configurations incrementally
from left to right. Once a configuration has been constructed up to grid cell ¢, we can check

6.3. Algorithm 137

S_1 := {empty configuration},
for b :=0ton, do
begin

Sy :=0;

kp = index of last detector cell covered by blocks 0, ..., b;
foreach s € S,_; do
begin
foreach b-extension ¢ of s which is k,-admissible (see Section 6.3.1) do
begin
fit ¢ to the measured data (see Section 6.3.2);
if ¢ fits the data well enough then

Sp=SpU{t};
end
end
cull §;, (see Section 6.3.3);
end

Figure 6.8: Outline of the algorithm.

if the configuration is k-admissible, where k is the index of the last detector cell that is
entirely left of the right boundary of c.

The main loop of our algorithm iterates over the fine grid, from left to right, in steps
that comprise a number of fine grid cells. We call a group of fine cells that constitute such
a step a block. The size of a block is always a power of two (see Section 6.3.1). We denote
the number of blocks that cover the interval [0, w] by np.

The algorithm maintains a set S of configurations that partially (up to the current block
of fine grid cells) fit the measured data well. At the start of iteration b, a configuration s € S
contains atoms up to block b — 1. New atoms are then added to s in block b, forming a new
configuration ¢, which is called a b-extension of s.

When the end of the projection data has been reached, the set S contains configurations
that fit the measured data well on the interval [0,w]. Each configuration provides an es-
timate of the atom positions and their types. We remark that the atom coordinates are not
determined exactly; they are determined up to grid cells in the fine grid. Figure 6.8 shows an
outline of our algorithm. In the next sections the various steps of the algorithm are described
in more detail.

6.3.1. Block phase

When searching for b-extensions of a configuration s, we want to determine the possible sets
of atoms that the fine grid cells in b can contain such that the corresponding b-extension still
fits the measured data. We first determine all such sets for the entire block, where we require
the atoms to lie within the left and right boundary of the block without restricting them to
a single fine cell. To this end, we extend the admissibility concept to the “coarse” grid of

138 6. On the reconstruction of crystals by discrete tomography

[5]

(2[3[1]t] [2]2]2]1] [2]2]1]2]

Figure 6.9: Admissible configurations are determined recursively, forming a tree of refinements.

blocks, i.e., we determine the minimal and maximal contribution of atoms contained in the
current block to the measured values m;.

We determine all sets of atoms that the current block can contain which satisfy this
“extended kj-admissibility”. Subsequently, the block grid is refined by splitting the block
into its left and right halves. As each atom must lie on one of both sides, we form all
partitions of the atom set into a left and a right half. For each partition, we adjust the upper
and lower bounds on the projection. If these (narrower) bounds still satisfy the extended
kp-admissibility, we recursively split it into a new grid that is again twice as fine. We repeat
this procedure until we have reached the fine grid level. Note that we always choose a power
of two as the block size.

As an example, we consider a single block of four fine grid cells in the reconstruction
of a crystal that consists of only one atom type (see Figure 6.9). The root node of the tree
represents the current block b. Suppose that, by using the lower and upper bounds on the
contribution of atoms in b to the measured data, it has been determined that block b must
contain 7 atoms. These atoms can be split in various ways among the left and right halves of
b. For each of the partitions we can compute finer admissibility bounds. In the example tree
of Figure 6.9, only two partitions satisfy the finer admissibility bounds: 5 atoms left and 2
atoms right or 4 atoms left and 3 atoms right. By repeating this procedure we end up at the
leaf nodes, which represent assignments of the atoms to the four fine grid cells in the block.

6.3.2. Fitting phase

In the block phase, candidate atom configurations are selected which satisfy the admissibil-
ity criterion. However, admissibility is not a sufficient condition that a configuration must
satisfy to fit the measured data. The main problem with the admissibility condition is that
it considers all detector values separately. For example, the measured effect of an atom can
never be equal to its lower bound for all detectors simultaneously.

For a given configuration s which has been constructed up to block b, the fitting proce-
dure constructs an exact configuration § for which the atom positions lie in the prescribed
cells such that the kj-distance of § to the measured data is minimal:

kp
minimize Y (m; —m;(5))>.
i=1

If the kp-distance of the resulting exact configuration is larger than a constant D (the fitting

6.3. Algorithm 139

cutoff), we can conclude that the configuration s is most likely not a good partial solution
to the reconstruction problem and it is discarded.

For solving this least squares problem, we use the Levenberg-Marquardt (LM) algorithm
[1, §4.7.3]. The LM algorithm requires an initial approximation to the solution of the least
squares problem, from which it iteratively moves to a local optimum. For a configuration s’
that is a b-extension of a configuration s, the x-coordinates of atoms that have been added
in the current block b are initialized randomly in a small interval around the center of their
respective fine cells. Atoms from previous blocks are initialized at the values found by the
LM algorithm when applied to s.

As the algorithm progresses, the number of atoms up to the current block — and con-
sequently the number of variables in the least squares problem — will become increasingly
large. It is very unlikely that the addition of a new block will significantly affect the posi-
tions of atoms that are far to the left of the current block. The positions of such atoms have
already been determined by many prior LM steps. In order to limit the number of variables
in the least squares problem, we fix the positions of these atoms. To be precise, all atoms in
cells that are at least H fine cells to the left of the start of the current block are fixed, where
H is a positive integer constant. Consequently, the terms of the least squares problem that
correspond to detectors that are solely affected by the fixed atoms are also removed.

The LM algorithm uses the partial derivatives of m;(§) with respect to the atom positions
x,4. These derivatives can be expressed easily in terms of the projection function:

ad

gmi(f) = fa(xi) = fa(Xi +Waer)

where x; is the left bound of detector cell i. The intuitive explanation of this expression is
that if atom a is moved to the right over a distance dx,, the value measured in detector cell
i is increased by f,(x;)dx, due to the part of the atom projection of a that “slides” into the
range of detector cell i at the left boundary, and decreased by f,(x; + wget)0x, due to the
part of the projection of a that moves out of detector cell i at the right boundary.

Although the LM algorithm will find a locally optimal solution of the least squares
problem, it will not necessarily find a global optimum. In its basic form, the LM algorithm
does not allow boundary constraints. We implemented the boundary constraints by adding
a penalty function for each atom to the sum of squared differences. For an atom a that must
lie within the interval [l,, r,], the penalty is defined as:

1000(Z, — x,)*! if x, <,
Pa = 0 ifl, <x, <71y
1000(x,; — 1)t ! if x4 > ry.

Note that the penalty function is continuously differentiable, which is a requirement for the
LM algorithm. The reason for using the penalty method over other methods that use hard
boundary constraints is that it provides more information. When an atom a is slightly outside
its bounds in the optimal solution, this is a strong indication that a better configuration exists,
for which all variables are within their bounds.

Strictly speaking, the formulation of the minimization problem that is solved by the LM
algorithm does not depend on the concept of configurations at all (not taking the penalty

140 6. On the reconstruction of crystals by discrete tomography

functions into account). Without a proper start solution and penalty functions, however, the
problem will be extremely difficult to solve analytically, as it has a huge number of local
optima.

6.3.3. Culling phase

As the algorithm proceeds from left to right, the number of states in Sj, will typically become
larger and larger, unless we resort to culling the set after each block.

Although we do not make rigid assumptions on the horizontal positions of the atoms, we
expect that for crystals the atoms will tend to lie in columns, resulting in separated peaks.
It may happen that a single peak in the projection data can be approximated well by several
different atom configurations. Suppose that such a peak is followed by one or more zero
measurements. If we can extend any of the partial atom configurations (up to the peak) to
a configuration that fits the whole projection, we can extend all the other configurations in
exactly the same way. Therefore, we delete almost all configurations s € S, for which

M min () = Mimax(s) =0 for all detectors i to the right of b.

We keep only those configurations s for which the k,-distance of the corresponding exact
configuration § to the measured data is minimal. Note that we can store the deleted con-
figurations so that we can retrieve alternative partial solutions later if desired. This form of
culling reduces the number of configurations enormously between consecutive peaks.

Different configurations always result in different sets of boundary constraints for the
LM algorithm. This does not mean, however, that the corresponding exact configurations
cannot be very similar. For example, suppose that in the measured atom configuration, an
atom is near a fine cell boundary. There will be two configurations that approximate the
actual configuration very well: one that places the atom in the cell to the left of the bound-
ary and one that places the atom to the right. After the fitting phase, the resulting exact
configurations will typically be almost identical.

Note that the penalty approach in the fitting phase allows atoms to move slightly out of
their boundaries. We define the boundary violation of an atom a as the squared distance to
its nearest cell bound if a lies outside its assigned cell and zero otherwise.

To prevent the superfluous processing of nearly identical configurations, we delete con-
figurations for which the corresponding exact configuration is almost identical to another
one, retaining only the configuration for which the exact configuration adheres best to its
cell boundaries, i.e., for which the sum of the boundary violations is minimal. We say that
two exact configurations § and § are almost identical if

e the number of atoms of each type is the same in § and §;

e for each pair of corresponding atoms between § and §' (when sorted by x-coordinate)
the distance between their respective x-coordinates is smaller than a positive con-
stant C.

This form of culling reduces the number of configurations significantly while processing
peaks in the projection data.

6.4. Experimental results 141

6.3.4. Noise

The algorithm that we described does not take noise into account. When working with prac-
tical data, however, noise will always be present. We assume that we have a good indication
of the noise level in advance. It is not difficult to adapt our algorithm to find solutions in the
case of noise. Comparisons of m; min Or m; max With the projection data are made less strict,
allowing a margin that depends on the noise level. Additionally, the fitting cutoff D has to
be increased since solutions will fit the data less accurately.

6.4. Experimental results

In this section we report reconstruction results of our algorithm for a set of characteristic
test images. As the purpose of these experiments is mainly to show the feasibility of the
approach, we do not provide large-scale statistical data on the performance.

We implemented the algorithm in C++. For solving the nonlinear least squares problems,
we used the MINPACK implementation of the LM-algorithm. We used a 1.4GHz Opteron
machine with 2Gb of RAM.

In some of the tests we added noise to the projection data to simulate noisy measure-
ments. For each detector i a random sample 7 from a normal distribution with average y =1
and variance 67 is generated. The original measurement m; for that detector is replaced by
7m;. For each test the value of G is indicated in the table. If ¢ = 0 no noise was added.

For all tests, we set wgey = 1 and scaled all other quantities accordingly. We used the
circle projections, described in Section 6.2. We set the value of the constant H (see Section
6.3.2) to 40 times the number of fine cells per detector. The constant C (see Section 6.3.3)
was set to 0.2 times the width of a fine cell. The fitting cutoff D was typically set to 0.01 for
test cases without noise, to 3 for test cases with noise level 6 = 0.01, to 5 for 6 = 0.03, and
to 10 for 6 = 0.05. In cases where this value of D did not result in a solution, we increased
the fitting cutoff slightly.

The first test set is the atom configuration in Figure 6.3. Table 6.1 shows the reconstruc-
tion results for two choices of atom radii. The atom densities are the same for both tests and
the data contains no noise. Each block of fine grid cells has a size of two detector cells. For
the first choice of atom radii each detector cell is split into two fine cells. For the second
choice the fine cells correspond directly to the actual detector cells. The number of fine grid
cells per detector cell is indicated in the table. In the column “atoms(type)” the number of
atoms of types 0 and 1 is listed. The column “type errors” indicates the number of atoms
that were classified as the wrong atom type in the reconstruction. The column “cell errors”
indicates the number of atoms that the algorithm placed in the wrong cell. We call a cell
error an “off by one error” if the cell in the reconstruction is directly adjacent to the actual
cell and an “off by > 1 error” if this is not the case.

For the next set of tests, we decomposed Figure 6.3 into several slices and modified
some slices to create additional test cases (see Figure 6.10). The slices each have their own
characteristics. Some contain two atom types, others only one. Yet, we assume for the cases
a, b, c, d, e, f and g that the slices contain two atom types, so that the algorithm must find
out by itself if only one atom type occurs. The results are shown in Table 6.2. The test case

142 6. On the reconstruction of crystals by discrete tomography

atoms(type) | (ro,po) (r1,p1) |fine cells || runtime | type cell errors
perdet. || (min) |errors |off by one | off by > 1
Fig. 6.3 241(0) 8(1) | (5, 1) (4.5, 1.41) 2 26 0 6 0
(7,1) (6, 1.41) 1 78 0 6 0
Table 6.1: Reconstruction results for the atom configuration in Figure 6.3, using different pairs of
atom radii.
o 0 0o o 000 © 0% 0 0 0 o0 © 0 6 06 0 o o 0 o0 o OOOO O @0 e @ © O O
o oo ©o o000 ©00 000 ©0 0000 oo oo © 0 0o ® oeo e oo o
o 0o 0000 00000 0 ° 0 o o o 0 © © o © 9 0 o oeo0e ceee
o oo oo o0o0 000 o450 o o °© o e 0 0 o e o o e o0 eo0 eo0oe@
o oo o000 o0 o0 o) 009900 © o0 00 © 0090 0ce0e @ e O e
o o o 00 00 oo o0 0°%o0 e 0 © 0 00 oco0o0o0oO0 900900 ® 0 @0 ®eo0 00
o0 o0 o0 o 000 00 © ©0 0000 ©c000o0 ©0o0 o0 o oo o oe o
© o o © o o 0009° 99 O 0 eee O o000 O 9000 o ® o © e o0 o
OO.O o o o0 ooooooo 0O 0 eee O 0000 O 9000 o o e O @ e O
o0 o o oo © 090 00 0 o0 000 o o 00 0 © 0900 e 0 @ e 0 o
0 oo o o0 © 0o 0000 © o0 00 0 o0 © 0 0 o 00 o0 o © e O © e O
a b c d e f g h

Figure 6.10: Test configurations with their projections.

c* is the same as test case c, except that we assume that the slice contains only one atom
type. Therefore type errors cannot be made by the algorithm.

For reconstructing the slice in test case h, three atom types are used. For the values (r,p)
of the three atom types we used (5, 1), (4.5,1.41) and (5.4, 1.37) respectively.

6.5. Discussion

The experimental results show that our algorithm is able to reconstruct all test sets accurately
when there is no noise. Noise is clearly a problem for our algorithm. When reconstructing
atom configurations for which we know in advance that they contain only a single atom
type, the tolerance for noise is much higher than for the case of multiple atom types. Even
for a noise level of 6 = 0.05 the reconstruction is still quite accurate, considering that the
size of a fine grid cell is 1/10th the size of an atom. When there is more than one atom
type the runtime becomes prohibitively large for noisy data. For three atom types a noise
level of 6 = 0.01 already resulted in a runtime that was unacceptably large (not shown in
the table, as we terminated the computation after one day). Our experiments suggest that
for two atom types a noise level around ¢ = 0.01 still allows accurate reconstruction in
reasonable time. We performed some additional experiments with projection data of thicker
samples, containing longer atom columns. The results suggest that the runtime increases
strongly when the column height increases.

6.6. Conclusions

143

atoms(type) c fine cells || runtime | type cell errors
per det. (min) | errors | off by one | off by > 1
Fig. 6.10a 33(0) 1(1) 0 2 8 0 1 0
0.01 1 15 0 5 0
Fig. 6.10b 39(0) 0(1) 0 2 17s 0 0 0
0.01 1 13 0 6 0
Fig. 6.10c 66(0) 0(1) 0 2 2 0 0 0
0.01 1 27 0 9 0
Fig. 6.10c* 66 0.03 1 26s N/A 17 0
0.05 1 2 21 2
Fig. 6.10d 56(0) 6(1) 0 2 15 0 4 0
0.01 1 19 0 7 0
Fig. 6.10e 47(0) 1(1) 0 2 5 0 3 0
0.01 1 172 5 9 1
Fig. 6.10f 47(0) 1(1) 0 2 17s 0 0 0
0.01 1 91 0 4 0
Fig. 6.10g 20(0) 19(1) 0 2 1 0 0 0
0.01 1 35 0 7 0
Fig. 6.10h | 13(0) 13(1) 13(2) 0 1 187 0 0 0

Table 6.2: Reconstruction results for the slices in Figure 6.10 using different noise levels.

6.6. Conclusions

In this chapter we demonstrated that it is indeed possible to reconstruct the atom types and
their approximate x-coordinates from the measured projection data, even in the presence of
limited noise. For a noise level of 6 = 0.01 we are able to obtain quite accurate reconstruc-
tions even when the sample contains two atom types. Our algorithm is not guaranteed to
find the optimal solution of the reconstruction problem, yet it provides good reconstruction
results on our set of characteristic test images. In future research we will address the second
step in the reconstruction procedure: solving the 2D tomography problem that results after
the individual projections have been processed by our algorithm.

Bibliography

[1] Gill, P. E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London
and New York (1981).

[2] Herman, G.T., Kuba, A., eds.: Discrete tomography: foundations, algorithms and ap-
plications. Birkhduser, Boston (1999).

[3] Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Van Dyck, D., Chen, F.-R.,
Kisielowski, C.: Prospects for bright field and dark field electron tomography on a dis-
crete grid. Microsc. Microanal., 10, suppl. 3 (2004).

Nederlandse samenvatting

Sinds het begin van de ontwikkeling van de Rontgenfotografie, aan het eind van de 19e
eeuw, is het mogelijk om beelden te maken van het inwendige van mensen zonder te opere-
ren. De mate waarin de Rontgenstraling geabsorbeerd wordt hangt af van het type weefsel.
Hoe meer straling door een orgaan wordt geabsorbeerd, des te lichter is de Rontgenfoto
op de overeenkomstige positie. Een belangrijk nadeel van Rontgenfoto’s is dat het feitelijk
projectiebeelden zijn. Twee organen die achter elkaar liggen, gezien in de richting van de
Rontgenbundel, worden op elkaar “geprojecteerd”, waardoor het lastig kan zijn om ze van
elkaar te onderscheiden.

De opkomst van de computer in de jaren *70 maakte het mogelijk om op efficiénte
wijze beelden te berekenen uit Rontgenfoto’s die deze nadelen niet hebben, door middel
van fomografie. Bij tomografie wordt niet één, maar een hele reeks van Rontgenfoto’s ge-
maakt vanuit verschillende hoeken. Op deze manier wordt een groot aantal projectiebeelden
verkregen (vaak enkele honderden). Uit al deze twee-dimensionale projectiebeelden wordt
vervolgens met de computer een drie-dimensionaal beeld berekend van het inwendige van
de patiént.

Tomografie heeft niet alleen medische toepassingen. In de industrie is het vaak belang-
rijk om op een niet-destructieve manier in beeld te brengen hoe objecten er van binnen
uitzien, bijvoorbeeld voor kwaliteitscontrole, of om kennis op te doen van producten van
de concurrentie. Omdat de meeste industri€le objecten niet beschadigen onder invloed van
Rontgenstraling kunnen hiervoor Rontgenbundels met een hoge intensiteit worden gebruikt,
zodat ook materialen die veel straling absorberen in beeld gebracht kunnen worden. Aan de
andere kant wil men het aantal projectiebeelden graag zo klein mogelijk houden, om de
totale opnametijd te beperken.

Een andere interessante toepassing van tomografie is te vinden in de electronenmicro-
scopie. Het doel is hier wederom het in beeld brengen van het inwendige van een preparaat,
zonder in het preparaat te snijden. In plaats van een Rontgenbundel wordt in dit geval een
electronenbundel gebruikt. Door het preparaat in de microscoop te draaien kunen projectie-
beelden vanuit verschillende hoeken worden gemaakt. Vaak beschadigt de electronenbundel
het preparaat, zodat slechts een klein aantal projectiebeelden kan worden gemaakt.

De meeste bestaande reconstructie-algoritmes voor tomografie geven onbevredigende
resultaten als het aantal projectiebeelden zeer gering is (bijvoorbeeld minder dan 10). Een
manier om het aantal projectiebeelden te beperken en toch goede resultaten te krijgen is het
gebruik van extra voorkennis in het reconstructie-algoritme. In de industriéle tomografie

146 Nederlandse samenvatting

0 0| O O Of 1| 1| 1| 3 0 0 O] 1| O 1] 1| 0] 3
0 O 1| O] O O] 1| 1| 3 0O O 1] O] O O] 1| 1| 3
0 0| O 1| O] O 1| O] 2 0O O 1] O] O 1] O] O 2
0| O 1| 1) 1] 0| 1| O 4 0 O 1{ O 1| O} 1| 1| 4
Of 1| 1| 1| 1| 1| 1| O] 6 O 1| 1{ 1| 1| 1} 1| O 6
0O 1| Of 1| O 1| O] O 3 O 1| 0] 1| O O] 1| O 3
Of 1| 1| Of O 1| 1| O] 4 O 1| 0] 1] O 1| 1| O 4
1{ 1] 0f 0] O O 1| O 3 1/ 1) 0f 0] O] O 1| O 3
1 4 4 4 2 4 7 2 1 4 4 4 2 4 7 2

Figure 6.11: a. (links): Een binair beeld met de bijbehorende horizontale en verticale projecties. b.
(rechts): Een tweede beeld met dezelfde projecties als het eerste beeld.

is het bijvoorbeeld vaak van tevoren bekend uit welke materialen het object bestaat. Een
goede reconstructie zal dus slechts enkele grijswaarden bevatten, overeenkomend met de
verschillende materialen.

Het reconstrueren van beelden die slechts uit een klein aantal verschillende grijswaarden
bevatten is het domein van de discrete tomografie, het vakgebied waar dit proefschrift over
gaat. Het proefschrift gaat over het reconstrueren van beelden uit een klein aantal projecties.
In het bijzonder gaat het over het reconstrueren van binaire beelden: beelden waarvoor elke
pixel een waarde O of 1 heeft, oftewel zwart-wit plaatjes. Figuur 6.11a toont een voorbeeld
van een binair beeld, met daarbij de horizontale en verticale projecties. De horizontale pro-
jectie kan uit het beeld worden berekend door in elke (horizontale) rij het aantal enen te
tellen. Op dezelfde manier verkrijgen we de verticale projectie door in elke (verticale) ko-
lom het aantal enen te tellen. Het aantal enen op een bepaalde lijn door het beeld noemen
we een lijnprojectie. De verzameling van alle lijnprojecties in een bepaalde richting noemen
we kortweg een projectie.

Eén van de belangrijkste problemen uit de discrete tomografie is het reconstrueren van
afbeeldingen uit slechts twee projecties, zoals in Figuur 6.11a. Uit een gegeven aantal enen
voor elke rij en kolom moet nu een beeld worden berekend dat de gegeven projecties heeft.
Er bestaat niet altijd een oplossing van dit reconstructieprobleem. Als bijvoorbeeld de som
van de lijnprojecties van de kolommen niet gelijk is aan de som van de lijnprojecties van de
rijen, heeft het probleem zeker geen oplossing. De som van de lijnprojecties in een wille-
keurige richting is immers gelijk aan het totale aantal enen in het (onbekende) beeld.

Al in de jaren ’50 publiceerde Ryser een zeer efficient algoritme om een binair beeld
te vinden met voorgeschreven horizontale en verticale projecties. In strikt wiskundige zin
heeft hij daarmee het reconstructieprobleem voor twee projecties volledig opgelost. In de
praktijk kleeft er echter een groot nadeel aan het reconstrueren van beelden uit slechts twee
projecties, en zonder het gebruik van extra voorkennis. Een illustratie hiervan is te zien in
Figuur 6.11. Het beeld in Figuur 6.11b heeft dezelfde horizontale en verticale projecties als
het beeld in Figuur 6.11a en toch zijn de beide beelden behoorlijk verschillend. De oplos-

147

01 110

Figure 6.12: Een switching component kan worden omgevormd in een tweede beeld met dezelfde
projecties door de enen en nullen te verwisselen.

sing van het reconstructieprobleem is in dit geval namelijk niet uniek. Dit hangt samen met
het bestaan van zogenaamde ‘“‘switching components”, zie Figuur 6.12. Als je in de swit-
ching component de enen en de nullen verwisselt, ontstaat er een nieuw beeld dat dezelfde
projecties heeft. Voor praktische toepassingen van discrete tomografie is het van groot be-
lang dat we er redelijk zeker van kunnen zijn dat de reconstructie daadwerkelijk lijkt op het
object waar de projectiedata van afkomstig zijn. Denk bijvoorbeeld maar eens aan medische
toepassingen, waar het essentieel is dat de reconstructie een nauwkeurig beeld geeft van de
organen van de patiént. Het is duidelijk dat we hier niet op zoek zijn naar een willekeurige
reconstructie, maar naar een reconstructie die lijkt op het origineel.

Het netwerk-stroom model, dat de rode draad vormt in dit proefschrift, kan worden ge-
bruikt om een reconstructie te vinden die de voorgeschreven projecties heeft, maar ook nog
aan aanvullende voorwaarden voldoet. De theorie van netwerk-stromen is afkomstig uit de
besliskunde. Bij netwerk-stromen gaat het om het vervoer van een bepaalde grootheid, bij-
voorbeeld olie, door een netwerk van pijpleidingen die elk een beperkte capaciteit hebben.
Eén van de bekendste problemen op dit gebied is het maximale stroom probleem, waarbij het
erom gaat zoveel mogelijk olie van een bron naar een nieuwe bestemming te transporteren
zonder de capaciteit van de leidingen te overschrijden. Netwerk-stroom problemen komen
in allerlei varianten voor in de praktijk en zijn daarom in de afgelopen eeuw uitvoerig be-
studeerd. In het bijzonder zijn er efficiénte methoden ontwikkeld om het maximale stroom
probleem op te lossen.

Hoewel discrete tomografie en de theorie van netwerk-stromen op het eerste gezicht
niet gerelateerd lijken, bestaat er een verassende relatie tussen beide gebieden. Het discre-
te tomografieprobleem voor twee projecties kan namelijk ook worden beschreven als een
maximale stroom probleem in een netwerk, waarbij de capaciteiten van de pijpleidingen
afhangen van de voorgeschreven lijnprojecties. Figuur 6.13a toont een (heel klein) binair
tomografieprobleem met twee projecties, horizontaal en verticaal. Figuur 6.13b toont het
bijbehorende netwerk. De “pijpleidingen” van het netwerk worden in de besliskunde meest-
al “takken” genoemd. De verbindingspunten tussen takken heten “knooppunten” of kortweg
“knopen”. In de figuur is naast elke tak de capaciteit aangegeven. De drie takken van de
“bron” (boven) naar de knopen in de laag daaronder hebben als capaciteiten de lijnprojec-
ties van resp. de eerste, tweede en derde rij in het tomografieprobleem. Alle takken in de
middelste laag hebben capaciteit 1. De drie takken naar de “bestemming” (onderaan) hebben
als capaciteiten de verticale lijnprojecties van het tomografieprobleem. Om het tomografie-
probleem op te lossen berekenen we een maximale stroom in dit netwerk. Het blijkt dat
we dan uit de hoeveelheid stroom die door elk van de takken in de middelste laag loopt di-

148 Nederlandse samenvatting

Tak-capaciteit Bron
\
\

Takken, één voor elke horizontale lijnprojectie

Knooppunten, één voor elke horizontale lijnprojectie

Takken, één voor elke pixel

Knooppunten, één voor elke verticale lijnprojectie

Takken, één voor elke verticale lijnprojectie

Bestemming

Figure 6.13: a. (links): Een 3% 3 binair tomografieprobleem. b. (rechts): Het bijbehorende netwerk.

rect een oplossing van het tomografieprobleem kunnen aflezen. Deze bijzondere eigenschap
werd voor het eerst in de jaren 50 beschreven door Gale.

Het probleem dat de oplossing niet uniek hoeft te zijn kunnen we aanpakken binnen
het netwerk-stroom model door een voorkeur aan te geven voor bepaalde oplossingen.
Aan elk van de takken in de middelste laag, die overeenkomen met de pixels in het
tomografieprobleem, kennen we een gewicht toe. Hoe hoger dit gewicht voor een pixel, des
te sterker is de voorkeur voor een oplossing waarbij die pixel de waarde 1 heeft. Het vinden
van een reconstructie waarvoor het totale gewicht maximaal is (van alle pixels opgeteld)
kan eveneens efficiént worden opgelost met bestaande technieken uit de besliskunde. Met
behulp van de gewichten kunnen we dus voorkennis over het onbekende beeld gebruiken
bij het vinden van een reconstructie.

Dit proefschrift gaat hoofdzakelijk over nieuwe algoritmes voor discrete tomogra-
fie die gebaseerd zijn op het netwerk-stroom model. In Hoofdstuk 1 wordt het model
geintroduceerd en wordt bewezen dat met behulp van dit model een aantal discrete tomogra-
fieproblemen direct kunnen worden opgelost. Het eerste hoofdstuk blikt tevens vooruit op de
onderwerpen die in de resterende hoofdstukken aan de orde komen. Eén van de belangrijk-
ste toepassingen van discrete tomografie is het berekenen van drie-dimensionale reconstruc-
ties van nanokristallen met atomaire resolutie. Nanokristallen zijn zeer kleine kristallen die
uit een paar honderd, of soms een paar duizend atomen bestaan. Nanokristallen hebben
een roosterstructuur: de posities van de atomen zijn gerangschikt in een periodieke struc-
tuur. Met een electronen microscoop kunnen twee-dimensionale projectiebeelden worden

149

gemaakt van het kristal. Door de juiste kijkrichtingen uit te kiezen kan men ervoor zorgen
dat een aantal atomen, die op een lijn liggen in dezelfde richting als de kijkrichting, alle op
hetzelfde punt van het projectiebeeld worden afgebeeld. Vervolgens kan met behulp van het
projectiebeeld het aantal atomen in zo’n “geprojecteerde kolom” worden geteld. De lijnpro-
jecties die op deze manier gemeten worden resulteren in een discreet tomografieprobleem.
De laatste sectie van Hoofdstuk 1 introduceert deze toepassing.

In het tweede hoofdstuk wordt ingegaan op het reconstructieprobleem uit twee projec-
ties, horizontaal en verticaal. In het bijzonder wordt er gekeken naar het geval dat er extra
voorkennis beschikbaar is over het te reconstrueren beeld. Als we bijvoorbeeld al weten
dat het te reconstrueren object convex is, d.w.z. dat het object geen “inhammen” of “ga-
ten” bevat, kunnen we deze eigenschap gebruiken in het reconstructie-algoritme. Ook kan
het voorkomen dat we voor een bepaalde toepassing van discrete tomografie al een grote
verzameling beelden tot onze beschikking hebben die alle enigszins op elkaar lijken. In dat
geval kan met behulp van statistische methoden voor elke mogelijke reconstructie bepaald
worden hoe groot de kans is dat die reconstructie past bij het karakteristieke beeld van die
toepassing.

Er zijn veel variaties denkbaar in het soort voorkennis dat gebruikt kan worden. Daarom
vraagt het reconstructieprobleem om een flexibele aanpak, die voor al deze variaties bruik-
baar is. De aanpak van Hoofdstuk 2 beschouwt het reconstructieprobleem als een optima-
liseringsprobleem. Aan elk van de beelden die de beide voorgeschreven projecties hebben
wordt een “waarde” toegekend, die aangeeft hoe goed het beeld overeenkomt met de be-
schikbare voorkennis. De beste reconstructie is het beeld waarvoor de waarde het hoogst is.
Het vinden van de beste reconstructie is een moeilijk algoritmisch probleem. Daarom moe-
ten we in het algemeen genoegen nemen met een benadering van de beste oplossing: een
beeld waarvan de waarde hoger is dan van bijna alle andere mogelijke beelden. In Hoofd-
stuk 2 wordt een evolutionair algoritme beschreven om zo’n benadering te vinden. De term
“evolutionair algoritme” is een verzamelnaam voor optimalisatie-algoritmes die gebaseerd
zijn op ideeén uit de evolutietheorie. Het algoritme houdt voortdurend een verzameling
“kandidaat-beelden” bij, die ook wel de “populatie” wordt genoemd. Nieuwe beelden wor-
den gecreéerd, door beelden uit de huidige populatie licht te wijzigen (mutatie) of met el-
kaar te combineren (cross-over). Nadat op deze wijze een groep nieuwe beelden is gevormd
wordt een aantal beelden die een relatief hoge waarde hebben toegevoegd aan de huidige
populatie en beelden met een relatief lage waarde worden uit de populatie verwijderd (se-
lectie). Op deze manier wordt de gemiddelde waarde van beelden in de populatie steeds
hoger, tot de waardering afvlakt in de buurt van een maximum. Het evolutionaire algoritme
uit Hoofdstuk 2 maakt telkens gebruik van het netwerk-stroom model om nieuwe beelden
te berekenen die de beide voorgeschreven projecties hebben. Een nadeel van het evolutio-
naire algoritme is dat het berekenen van een goede reconstructie veel rekentijd vraagt. Voor
beelden van meer dan 50x50 pixels wordt deze rekentijd zo lang dat het algoritme in de
praktijk niet bruikbaar is.

In Hoofdstuk 3 wordt een ander algoritme beschreven dat ook gebruik maakt van het
netwerk-stroom model. Dit keer worden tenminste drie projecties gebruikt. Het gebruik
van meer projecties zorgt er over het algemeen voor dat het reconstructieprobleem minder
oplossingen heeft, zodat we kunnen verwachten dat een reconstructie beter lijkt op het “on-

150 Nederlandse samenvatting

bekende originele beeld”. Toch is ook wanneer bijvoorbeeld 4 of 5 projecties beschikbaar
zijn het gebruik van extra voorkennis door het reconstructie-algoritme essentieel. In dit ge-
val is de voorkennis die we gebruiken, dat het te reconstrueren beeld redelijk “glad” is. Dit
betekent dat het beeld bestaat uit een betrekkelijk klein aantal samenhangende gebieden,
die elk geheel wit of geheel zwart zijn. Het reconstructie-algoritme heeft een voorkeur voor
gladde oplossingen, maar dit is geen harde eis: fijne details, zoals een enkele witte pixel die
omgeven is door zwarte pixels, kunnen ook worden gereconstrueerd.

Het algoritme uit Hoofdstuk 3 berekent een reconstructie uit meer dan twee projecties
door een reeks van eenvoudigere reconstructieproblemen op te lossen, elk met maar twee
projecties. Een voorbeeld: als er vier projecties beschikbaar zijn, wordt eerst een beeld be-
rekend dat goed overeenkomt met de eerste twee projecties. Vervolgens wordt een beeld
berekend dat goed overeenkomt met de resterende twee projecties. Zoals we reeds eerder
zagen heeft het reconstructieprobleem uit twee projecties over het algemeen een meerdere
oplossingen. Het algoritme zoekt voor de tweede stap de reconstructie die zo goed mogelijk
overeenkomt met het beeld dat in de eerste stap was berekend. Dit proces wordt herhaald
met een nieuw tweetal projecties, bijvoorbeeld de eerste en de derde projectie, enzovoort.
Als alle paren van projecties aan de beurt zijn geweest wordt weer met het eerste paar ver-
der gegaan. Tijdens elke stap worden dus niet alleen twee projecties gebruikt, maar ook het
beeld dat in de vorige stap is berekend, waarbij een ander tweetal projecties werd gebruikt.
Zodoende worden uiteindelijk alle projecties verwerkt in de reconstructie. Hoofdstuk 3 be-
vat naast een beschrijving van dit algoritme ook diverse reconstructieresultaten van test-
beelden. Het algoritme blijkt zeer effectief te zijn voor het reconstrueren van beelden die
redelijk glad zijn. In tegenstelling tot het evolutionaire algoritme uit Hoofdstuk 2 kan men
met dit algoritme ook grotere beelden (bijv. 256256 pixels) in korte tijd reconstrueren.

De algoritmes uit het tweede en derde hoofdstuk zijn geschikt voor het reconstrueren
van twee-dimensionale beelden. In de praktijk is het vaak belangrijk om drie-dimensionale
beelden te reconstrueren, uit een aantal twee-dimensionale projecties. In de medische to-
mografie bijvoorbeeld, wil men vaak een drie-dimensionaal beeld van het inwendige van
de patiént reconstrueren uit een aantal twee-dimensionale Rontgenfotos die gemaakt zijn
vanuit verschillende hoeken. Als alle projectierichtingen in één vlak liggen — dus als de
beelden zijn opgenomen door de Rontgenbron en de camera stapsgewijs te draaien om een
bepaalde as — is het mogelijk om een drie-dimensionale reconstructie te berekenen door
het beeld simpelweg op te splitsen in twee-dimensionale plakjes die loodrecht staan op de
rotatie-as, en elk van de plakjes apart te reconstrueren. Als de projectierichtingen niet in een
vlak liggen is dit niet mogelijk. In Hoofdstuk 4 wordt een uitbreiding van het algoritme uit
Hoofdstuk 3 geintroduceerd die geschikt is voor het reconstrueren van drie-dimensionale
beelden. De projectie-richtingen hoeven bij dit algoritme niet in een vlak te liggen.

Het reconstructieprobleem dat in Hoofdstuk 3 en 4 aan de orde komt heeft betrekking
op beelden met een roosterstructuur. Dit betekent dat het beeld op een natuurlijke wijze
kan worden opgedeeld in cellen (de pixels van het beeld) die ofwel waarde 0 ofwel waar-
de 1 kunnen hebben. Een lijnprojectie van het beeld wordt verkregen door de waarde van
alle cellen waarvan het middelpunt precies op een bepaalde lijn ligt bij elkaar op te tel-
len. In sommige gevallen kan zo’n lijn “gaten” bevatten, zoals te zien is in Figuur 6.14a.
Dit roostermodel is geschikt voor tomografie van nanokristallen: de nanokristallen hebben

151

/I /

? /
/ /

Figure 6.14: a. (links): Als het beeld op een rooster gedefinieerd is, telt een pixel alleen mee in

een lijnprojectie als de lijn door het middelpunt van de pixel gaat. b. (rechts): Bij beelden zonder

roosterstructuur hangt de bijdrage van een pixel aan de lijnprojectie af van de lengte van het lijnstuk
dat door die pixel loopt.

een natuurlijke roosterstructuur en een lijnprojectie komt overeen met het aantal atomen in
een geprojecteerde atoomkolom. Een lijnprojectie is hier dus altijd een geheel getal. Bij de
meeste andere toepassingen van tomografie, bijvoorbeeld medische tomografie, is er geen
sprake van zo’n natuurlijke roosterstructuur. Het beeld moet nog steeds worden onderver-
deeld in pixels, om het in de computer te kunnen representeren, maar deze roosterstructuur
is slechts kunstmatig. De bijdrage van een pixel aan een bepaalde lijnprojectie hangt nu af
van de lengte van de doorsnede van de lijn met de betreffende pixel, zie Figuur 6.14b. Dit is
een duidelijk verschil t.o.v. het roostergeval, waar een cel ofwel in zijn geheel tot een lijn be-
hoort, ofwel helemaal niet. In Hoofdstuk 5 wordt een netwerk-stroom algoritme beschreven
dat geschikt is voor het reconstrueren van beelden die geen natuurlijke roosterstructuur heb-
ben. Behalve reconstructieresultaten voor een aantal gesimuleerde testbeelden worden ook
resultaten beschreven voor “echte” meetdata. Met behulp van een micro-CT-scanner (die
werkt op basis van Rontgenstraling) zijn projectiebeelden gemaakt van een ruwe diamant.
Een plaatje van zo’n diamant kan men opvatten als een binair beeld, omdat de dichtheid bin-
nenin de diamant constant is. De resultaten laten zien dat het algoritme voor objecten zonder
natuurlijke roosterstructuur ook goede resultaten geeft bij het gebruik van echte meetdata.

Het laatste hoofdstuk van dit proefschrift, Hoofdstuk 6, gaat over het reconstrueren van
nanokristallen met discrete tomografie, wat reeds eerder werd geintroduceerd aan het eind
van Hoofdstuk 1. In principe kunnen de algoritmes uit Hoofdstuk 2 t/m 4 direct worden
gebruikt voor de reconstructie van nanokristallen met atomaire resolutie. In de praktijk is de
roosterstructuur van dergelijke kristallen echter bijna nooit perfect. Verstoringen in de ideale
roosterstructuur worden ook wel defecten genoemd en het in beeld brengen van deze versto-
ringen is zeer belangrijk in de materiaalwetenschappen. In Hoofdstuk 6 wordt een methode
geintroduceerd om discrete tomografie te kunnen gebruiken, ook als de roosterstructuur niet
perfect is.

Curriculum Vitae

Kees Joost Batenburg werd geboren op 15 augustus 1980 te Rotterdam. In 1998 behaalde
hij het VWO-diploma op het Farel College in Ridderkerk. In datzelfde jaar begon hij met de
studies Wiskunde, Natuurkunde en Informatica aan de Universiteit Leiden. Dit resulteerde
na een jaar in drie propedeuses. Vanaf het tweede jaar richtte hij zich exclusief op de studies
Wiskunde en Informatica. Gedurende zijn middelbare schooltijd en de eerste jaren van zijn
studie nam hij regelmatig deel aan internationale programmeerwedstrijden. In 2002 schreef
hij onder begeleiding van prof. dr. R. Tijdeman zijn afstudeerscriptie in de Wiskunde, “Ana-
lysis and optimization of an algorithm for discrete tomography”, waarmee hij cum laude
afstudeerde.

In september 2002 begon hij als Onderzoeker in Opleiding bij het Centrum voor Wis-
kunde en Informatica (CWI) in Amsterdam en bij de Universiteit Leiden. Zijn onder-
zoek werd gefinancierd door de Nederlandse Organisatie voor Wetenschappelijk Onder-
zoek (NWO). Op het CWI werd hij begeleid door dr. ir. H. J. J. te Riele en in Leiden door
prof. dr. R. Tijdeman. In het eerste jaar van zijn promotieonderzoek voltooide hij zijn studie
Informatica. Hij studeerde in 2003 cum laude af met de scriptie “An evolutionary algorithm
for discrete tomography”, begeleid door dr. W. A. Kosters.

Naast de artikelen die zijn opgenomen in dit proefschrift schreef hij gedurende zijn
promotieonderzoek diverse andere artikelen op het gebied van discrete tomografie. Hij gaf
regelmatig voordrachten op internationale conferenties en ontwikkelde samenwerkingsver-
banden met enkele buitenlandse onderzoeksgroepen. In het bijzonder richtte hij zich ook
op toepassingen van discrete tomografie. In dit kader bezocht hij in 2006 gedurende twee
maanden het Lawrence Berkely Lab in Californi€, om te werken aan de toepassing van
discrete tomografie in de electronen microscopie.

Vanaf 1 september 2006 is hij werkzaam als postdoc bij de Universiteit Antwerpen, in
de groep van prof. dr. J. Sijbers.

Other publications

The author has published several articles on discrete tomography that are not part of this
thesis. The following papers describe (new) reconstruction algorithms:

Batenburg, K.J.: A learning classifier approach to tomography. Proc. of the 17th European
Conference on Artifical Intelligence (ECAT’06), I0S Press (2006).

Batenburg, K.J., Kosters, W.A.: A neural network approach to real-time discrete tomogra-
phy. Lecture Notes in Comput. Sci., 4040, 389—403 (2006).

Batenburg, K.J., Kosters, W.A.: Neural networks for discrete tomography. Proc. of
BNAIC’05, 21-27 (2005).

Batenburg, K.J., Kosters, W.A.: A discrete tomography approach to Japanese puzzles. Proc.
of BNAIC’04, 243-250 (2004).

Batenburg, K.J.: Analysis and optimization of an algorithm for discrete tomography.
Electron. Notes Discrete Math., 12 (2003).

The following papers deal with applications of discrete tomography:

Batenburg, K.J., Jinschek, J.R., Calderon, H.A., Kisielowski, C.: Incorporating prior
knowledge for atomic resolution discrete tomography. Proc. of the 16th International
Microscopy Congress, Sapporo, Japan (2006).

Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Kilaas, R., Radmilovic, V., Kisielowski, C.:
Atomic resolution electron tomography based on discrete mathematics. Proc. of the 16th
International Microscopy Congress, Sapporo, Japan (2006).

Batenburg, K.J., Kiibel, C., Kaiser, U.: 3D imaging of nanomaterials by discrete tomogra-
phy. Proc. of Microsc. & Microanal., Chicago, USA (2006).

156 Other publications

Batenburg, K.J., Sijbers, J.: Discrete tomography from micro-CT data: application to the
mouse trabecular bone structure. Proc. SPIE, 6142 (2006).

Batenburg, K.J., Sijbers, J.: Trabecular bone reconstruction from micro-CT data using
discrete tomography. Proc. of SPS-DARTS 06 (2006).

Batenburg, K.J., Jinschek, J.R., Kisielowski, C.: Atomic resolution electron tomography on
a discrete grid: atom count errors. Microsc. Microanal., 11, suppl. 2 (2005).

Jinschek, J.R., Calderon, H.A., Batenburg, K.J., Radmilovic, V., Kisielowski, C.: Discrete
tomography of Ga and InGa particles from HREM image simulation and exit wave
reconstruction. MRS Proc., 839, 4.5.1-4.5.6 (2004).

Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Van Dyck, D., Chen, F.-R., Kisielowski, C.:
Prospects for bright field and dark field electron tomography on a discrete grid. Microsc.
Microanal., 10, suppl. 3 (2004).

