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Abstract

Discrete tomography is a powerful approach for reconstructing images that con-

tain only a few grey levels from their projections. Most theory and reconstruc-

tion algorithms for discrete tomography assume that the values of these grey

levels are known in advance. In many practical applications, however, the grey

levels are unknown and difficult to estimate. In this paper, we propose a semi-

automatic approach for grey level estimation that can be used as a preprocessing

step before applying discrete tomography algorithms. We present experimental

results on its accuracy in simulation experiments.
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1. Introduction

The field of tomography deals with the reconstruction of images (known as

tomograms) from their projections, taken along a range of angles. Tomography

has a wide range of applications in medicine, industry, and science. According

to Herman and Kuba [1, 2], the field of discrete tomography is concerned with

the reconstruction of images from a small number of projections, where the set

of pixel values is known to have only a few discrete values. It must be noted

that the term “discrete” is often used to indicate the discrete domain of the

image, i.e., when reconstructing lattice sets. In this paper, we adhere to the

former definition, and focus on the reconstruction of images that consist of a
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small number of grey levels from their (non-lattice) X-ray projections.

A variety of reconstruction algorithms have been proposed for discrete to-

mography problems. In Schüle et al. [3], an algorithm is presented for recon-

structing binary images from a small number of projections. This primal-dual

subgradient algorithm is applied to a suitable decomposition of the objective

functional, yielding provable convergence to a binary solution. In Batenburg

[4], a similar reconstruction problem is modeled as a series of network flow

problems in graphs, that are solved iteratively. Both Liao and Herman [5] and

Alpers et al. [6] consider reconstruction problems that may involve more than

two grey levels, employing statistical models based on Gibbs priors for their

solution. The iterative DART algorithm was recently proposed as an efficient

heuristic reconstruction algorithm for large-scale discrete tomography problems

Batenburg and Sijbers [7], Batenburg et al. [8]. It has been applied successfully

to a range of experimental electron tomography datasets, leading to various new

insights in the structure of nanomaterials (Bals et al. [9, 10]).

Besides the assumption on the grey levels, many of these algorithms incor-

porate additional prior knowledge of the original object that needs to be recon-

structed. A preference for locally smooth regions is typically incorporated, as it

corresponds to a range of practical images. By combining such prior knowledge

with knowledge of the grey levels, it is often possible to compute accurate re-

constructions from just a small number of projections. In some cases, as few as

three projections are already sufficient to compute a high-quality reconstruction.

A common assumption in all these reconstruction algorithms, is that the

set of admissible grey levels is known a priori. Although this assumption is

easy to satisfy in simulation experiments, obtaining prior knowledge of the set

of possible grey levels is often not straightforward in practical applications, for

several reasons:

• Even when the number of materials that constitute the scanned object is

known, the densities of these materials may be unknown.

• When the materials and their densities are known in advance, calibra-
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tion is required to translate the material properties into a reconstructed

grey level. The calibration parameters depend not only on the scanned

materials, but also on various properties of the scanner system. In many

experimental settings, such information is not available.

• Calibration parameters of the scanning system may change over time. For

example, the X-ray source of a micro-CT scanner heats up while scanning,

changing the spectrum of emitted X-rays. While this may have a negligible

effect on the calibration parameters during a single scan, batch processing

of scans may change the parameters, and consequently change the grey

levels in the reconstruction.

When several similar objects are scanned as a single batch, it may be pos-

sible to obtain a high quality reconstruction of one of those objects, based on

a large number of projections. This reconstruction can then be used to esti-

mate the admissible grey levels for the remaining objects, which can then be

reconstructed from few projections. However, many important applications of

discrete tomography deal with acquisition systems where it is not possible at all

to obtain an accurate reconstruction by conventional, non-discrete reconstruc-

tion algorithms. In Materials Science, for example, discrete tomography is used

to reconstruct 3D images of nanomaterials from a series of projection images

acquired by an electron microscope (Batenburg et al. [8]). Due to the structure

of the sample holder, projections can only be obtained for a limited range of

angles, resulting in severe reconstruction artifacts for conventional algorithms.

Even in such cases, it may still be possible for an expert user to delineate

certain areas in the reconstruction that are likely to have a constant composition

in the original object. In this paper, we therefore consider a simpler version of

the grey level estimation problem, where the user first selects an image region

that can be expected to correspond to a homogenous region in the original

object, based on an initial grey-level reconstruction. This initial reconstruction

can be obtained by classical, non-discrete reconstruction algorithms. In certain

cases, knowledge of such a constant region allows for reliable estimation of the
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grey level corresponding to the selected region.

The outline of this paper is as follows. In Section 2, the problem of grey level

estimation is introduced, along with formal notation. In Section 3, we present

a semi-automatic approach for estimating the grey levels when for each grey

level a subset of corresponding pixels is given. Experimental results for a range

of simulation experiments are described in Section 4. Section 5 discusses the

possibilities for obtaining more accurate estimates, compared to the approach

of this paper. Section 6 concludes the paper.

2. Problem and model

The unknown physical object from which projection data has been acquired

is represented by a grey value image f : R2 → R. We denote the set of all such

functions f that are measurable and have bounded support by F , also called

the set of images.

O
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y

Figure 1: Basic set-

ting of transmission

tomography.

Projections are measured along lines lθ,t = {(x, y) ∈

R2 : x cos θ + y sin θ = t}, where θ represents the angle

between the line and the y-axis and t represents the coor-

dinate along the projection axis; see Fig. 1.

Denote the set of all functions s : R × [0, 2π) → R by

S. The Radon transform F → S is defined by

R(f)(t, θ) =

∫∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − t) dxdy.

with δ(.) denoting the Dirac delta function. The function

R(f) ∈ S is also called the sinogram of f .

2.1. Grey level estimation problem

The reconstruction problem in tomography concerns the recovery of a func-

tion f from its Radon transform R(f). Here, we focus on a restriction of f to

functions for which the set of grey levels is a small, discrete set G = {g1, . . . , gk}.

We denote the set of all such images f : R2 → G by G. The main problem of
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this paper consists of estimating the grey levels G from given projection data

along a finite set of angles. It is clear that this problem does not have a unique

solution in general. A first requirement for a grey level to be recoverable is that

it occurs in f as a subset of R2 of measure greater than 0. Also, when a small

number of projections is available and k is large, it is straightforward to find

examples where the grey values cannot be determined uniquely. In this paper,

we therefore assume that additional prior knowledge is available, prescribing for

each grey level i = 1, . . . , k a region Ai ⊂ R2 on which the image is known to

have a constant grey level. This prior knowledge is obtained by computing an

initial greylevel reconstruction, using a standard tomography algorithm, and let

an expert user select regions in this reconstruction that are likely to be constant

in the original scanned object.

Figure 2: Example

of a switching compo-

nent for three direc-

tions, which is con-

stant and nonzero on

each of the black and

white regions.

However, even specifying an entire region where the im-

age is known to be constant is not sufficient to guarantee

that the grey levels are uniquely determined by the pro-

jection data. In particular, this problem occurs when the

number of projections is small. Fig. 2 shows a well-known

procedure to generate a so-called switching component : a

non-zero image that has a zero projection in a given set of

projection angles. The procedure is described in Herman

and Kuba [1] (Section 4.3, p. 88), where it is used to gen-

erate a switching component in the context of lattice sets.

For each new direction, a negated copy of the switching

component is added, that is translated in the given di-

rection. As shown in Fig. 2, the same procedure applies

to images defined on R2, and can also be used to create

switching components that are constant, and non-zero, on

a given region. The figure shows the subsequent addition

of switching components in the horizontal, vertical, and di-

agonal direction, respectively. A similar construction can

be be applied for any finite set of projection directions.
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Proposition 1. Let D = {θ1, . . . , θd} be a given set of projection angles. Let

G = {g1, . . . , gk}, A ⊂ R2 and g ∈ G. Let f ∈ G such that f(x, y) = g for all

(x, y) ∈ A. Then for each grey level g̃ ∈ R, there is an image f̃ ∈ F such that

f̃(x, y) = g̃ for all (x, y) ∈ A and R(f)(t, θi) = R(f̃)(t, θi) for i = 1, . . . , d, t ∈

R. Moreover, there is such an image f̃ that has at most 3k grey levels.

Proof. (sketch) By the construction depicted in Fig. 2, an image can be created

that has a constant value of 1 on A, has constant zero projections in all given

directions and only contains grey levels from {−1, 0, 1}. Let ρ = g̃−g. By adding

a multiple of ρ times the switching component to f , an image f̃ that conforms

to the proposition can be created. This image will have at most 3k grey levels,

included in the set {g1 − ρ, g1, g1 + ρ, g2 − ρ, g2, g2 + ρ, . . . , gk − ρ, gk, gk + ρ}.

Note that some of these grey levels may be negative, even if the image f has

only nonnegative grey levels.

2.2. Discretization

In practice, a projection is measured at a finite set of detector cells, each

measuring the integral of the object density along a line. Let m denote the

total number of measured detector values (for all angles) and let p ∈ Rm denote

the measured projection data. We now discretize the images f ∈ F as well,

represented on a square grid of width w. Let n = w2, the number of pixels in

the image. We assume that the image is zero outside this rectangle. Let v ∈ Rn

denote the discretized image of the object. The Radon transform for a finite

set of angles can now be modeled as a linear operator W , called the projection

operator, that maps the image v to the projection data p:

Wv = p. (1)

We represent W by an m×n matrix W = (wij). The vector p is called the

forward projection or sinogram of v.

The notation introduced above allows us to define the key problem of this

paper:
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Problem 1. Let v ∈ Rn be an unknown image and let g ∈ R be an unknown

grey level. Suppose that p = Wv is given, and that a set A ⊂ {1, . . . , n} is

given such that vi = g for all i ∈ A. Find g.

2.3. Grey level penalty function

Let A ⊂ {1, . . . , n} and g ∈ R, as in Problem 1. Reorder the pixels {1, . . . , n}

and the corresponding columns of W , such that

W =
(
WAWB

)
, (2)

where WA contains the columns of W corresponding to the pixels in A. We

then have

Wx =
(
WAWB

) g

vB

 = p, (3)

where g denotes a constant vector for which all entries are g. This leads to

WBvB = p−WAg, (4)

which provides a necessary condition for a grey level estimate to be correct:

Eq. (4) must have a solution. Clearly, this condition is not always sufficient, as

emphasized by Prop. 1. Yet, if |A| is a relatively large fraction of n, it can

be expected that the condition is also sufficient, at least in many cases. Note

that in practice, it may not be possible to solve Eq. (4) exactly, due to noise

and discretization errors. Given A, one can measure the inconsistency of a grey

level g̃ with the projection data p using the following grey level penalty function

P (g̃) = min
vB

||p−WAg̃ −WBvB ||, (5)

where || · || denotes a certain norm, to be defined below.

Note that for each grey level g̃, there may be multiple vectors vB for which

the minimum penalty is attained. This does not have to be a problem for grey

level estimation, as long as the grey level for which the penalty is minimal is

uniquely determined by the projection data. According to Prop. 1, it may occur

that the grey level cannot be determined uniquely, in which case we seek to find

at least one of the grey levels for which the penalty is minimal.
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To minimize the grey level penalty, the penalty function must typically be

evaluated in several points. A range of iterative methods are available for solving

the minimization problem in Eq. (5). In this paper, we use the SIRT algorithm;

see Gilbert [11], Gregor and Benson [12]. Let v(0) = 0. For q = 1, 2, . . ., let

r(q) = p −Wv(q−1). In each iteration q, the current reconstruction v(q−1) is

updated, yielding a new reconstruction v(q), as follows:

v
(q)
j = v

(q−1)
j +

1∑n
i=1 wij

m∑
i=1

wijr
(q)
i∑m

j=1 wij
. (6)

The SIRT algorithm converges to a solution of Eq. (5) where the norm to be

minimized is a weighted sum of squares Gregor and Benson [12]. To be more

precise, let R = (rij) ∈ Rm×m be a diagonal matrix with rii = 1/
∑n
j=1 wij .

Then SIRT minimizes the norm ||Wv − p||R = (Wv − p)TR(Wv − p).

An important physical constraint in most tomography problems, is that the

attenuation coefficients of the scanned materials, corresponding to the grey lev-

els in the reconstructed image, cannot be negative. Therefore, it seems that

solving Eq. (5) for nonnegative vB would yield a more powerful penalty func-

tion for such cases. However, this problem typically requires significantly more

computation effort compared to the unconstrained variant (depending on the

norm). As an alternative, we use a heuristic adaptation of the SIRT algorithm,

where nonnegative entries of vB are set to 0 after each iteration. This approach

was already suggested in Gilbert [11], and often results in more accurate recon-

structions than the unconstrained version. We denote this version of SIRT by

SIRT-P.

3. Estimation approach

In this section, we propose the Discrete Grey Level Selection approach (DGLS)

for estimating grey levels from projection data. Fig. 3 shows a schematic overview

of the steps involved in estimating one or more grey levels. The first part of the

procedure requires user interaction. Based on an initial reconstruction, obtained

by a conventional (i.e., non-discrete) reconstruction algorithm, the user selects
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a region, the user-selected part (USP), which is expected to belong to a single

grey level in the ground truth image, i.e., it should be constant. Note that this

region does not have to be constant in the initial grey level reconstruction. The

user, who typically has substantial implicit prior knowledge of the particular

object under investigation, is responsible for selecting a proper region. In this

phase, a significant amount of implicit prior knowledge can be input by the user.

For example, if the object is known to contain no holes, it will be safe to select a

USP that is clearly within the interior of the object. It can be difficult to select

a proper region if the number of projections is small. The selected region should

not be too small, but should certainly not contain any pixels that correspond to

a different grey level. If the original image contains several grey levels, a region

must be selected for each grey level that needs to be estimated. The regions Ai,

along with the projection data, now form the input of the estimation algorithm.
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reconstruction

reconstruction USP
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Figure 3: Schematic overview of the Discrete Grey Level Selection procedure.

After selecting the USP of a single grey level, an optimization algorithm is

used to minimize the grey level penalty function. To evaluate the penalty func-
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tion for a given grey level g, the sinogram WAg of the USP is first subtracted

from the complete sinogram p, forming the right-hand side of Eq. (4). Subse-

quently, inconsistency of the remaining part of the image with the remaining

projection data is determined by evaluating the penalty function (e.g., using

SIRT or SIRT-P). Based on the value of the penalty function, the grey level

estimate is updated iteratively, until the penalty function is minimized. Eval-

uating the grey level penalty function can be computationally expensive. To

find the minimum of this function using a small number of evaluations, Brent’s

method is used, as described in Chapter 5 of Brent [13]. Note that for the

SIRT-variant of DGLS, the minimization problem to be solved corresponds to

Eq. (5) and is in fact a quadratic problem in the unknown grey level g and the

unknown image vB . In this case, solving for both g and vB in a combined op-

timization algorithm, that exploits this structure, can yield the same results in

much less computation time. Here, we opted for Brent’s method, as it can be

used without changes for both the SIRT and SIRT-P variants of DGLS and it

can be easily extended to incorporate other reconstruction algorithms, even if

their implementation is considered a black box.

The proposed algorithm estimates a single grey level at a time. If there

are multiple grey levels, the USPs for each grey level are selected based on

the same initial reconstruction, and the grey level estimations are performed

independently for each grey level. A combined approach, that maintains a

constant USP for each grey level simultaneously, could also be used. However,

this would lead to errors in all estimated grey levels if just one of the USPs is

not properly selected. For the experiments in this paper, we therefore focus on

independent estimation, as it is likely to be more robust in practice.

4. Experiments and results

4.1. Grey level estimation

Simulation experiments were performed based on four 256 × 256 phantom

images: two binary images (Fig. 4a and b), one image with 3 grey levels (Fig. 4c)
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and one with 7 grey levels (Fig. 4d). Additional simulation were performed for

a phantom family of 100 phantom images of size 256 × 256 (four are depicted

in Fig. 4e). These images each contain between 3 and 12 ellipses, randomly

generated with radii between 10 and 50; for 20% of the ellipses, the value of the

corresponding pixels are set to zero, which allows for the creation of gaps inside

ellipses already present.

(a) (b) (c) (d) (e)

Figure 4: Phantom images used for our simulation experiments.

From each phantom image, a parallel beam sinogram was computed with

a varying number of projections, angular range, or noise level. The spacing

between projected parallel lines equals the pixel size of the phantom image.

Next, the phantom image was reconstructed using both the SIRT and SIRT-P

algorithm. Finally, the grey levels of the reconstructed phantom were estimated,

either with a simple median value (MED) of the pixels of the user-selected part

on the initial reconstruction or with the proposed DGLS approach based on the

same USP, using either SIRT or SIRT-P to compute the grey level penalty. For

all images, the grey level of the background was assumed to be zero and was

therefore not estimated.

(a) 180 angles,

180◦ range

(b) 15 angles, 180◦

range

(c) 30 angles, 100◦

range

Figure 5: SIRT reconstructions of phantom image 4(c)
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(a) no noise (b) 5000 counts per

detector element

Figure 6: SIRT reconstructions of phantom image 4(b)

Figure 7: USP’s of phantom image 4(a) and 4(c)

In practice, the USP will be selected by the user, based on the initial re-

construction. To avoid the subjectiveness of an actual user in the experimen-

tal results, the USPs for the experiments were automatically generated, using

knowledge of the phantom. The USP for each grey level was computed by it-

eratively applying a binary erosion operation on the phantom region for that

grey level, until a certain fraction of the pixels was left. The results are sim-

ilar to a USP selection made by an actual user based on an initial grey level

reconstruction, who selects a region that is well within the interior of the region

for that grey level. In all experiments, the same USP was used to obtain the

DGLS and MED results. For all grey level estimation procedures, the absolute

difference with respect to the true grey level was computed. In case multiple

grey levels had to be estimated (such as for phantom image 4(c) and 4(d)), the

absolute differences were summed. For the family of phantom images in 4(d)),

we plotted the average absolute differences and their confidence intervals. The

following series of experiments were run, varying only one parameter at a time:

• The number of projections from which the image was reconstructed

was varied from 15 up to 180. In this experiment, the projections were
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equiangularly selected in the interval [0◦, 180◦]. For each grey level, the

USP contains 25% of the pixels for that grey level. Fig. 5(a) and 5(b) show

reconstructions of phantom image 4(c) for 180 and 15 projection angles,

respectively.

The results, plotted in Fig. 12, show that DGLS for both SIRT and SIRT-

P generally yields much more accurate estimations than the MED esti-

mations. Only when there are very few projection angles (e.g. 15), a

significant error is visible. In phantom image 4(c) and 4(d), DGLS based

on the unconstrained SIRT penalty function shows a large error when a

small number of projection angles is used. We believe that this is related

to the nonuniqueness issues of Prop. 1. In all subsequent experiments,

only 30 projection angles were used as we can conclude that adding more

projection angles does not improve the estimation accuracy by much.

• The angular range of the projections was varied from 180◦ down to 100◦,

from which 30 equiangular projections were selected. For each grey level,

the USP contains 25% of the pixels for that grey level. Fig. 5(c) shows

that reducing the angular range has a degrading effect on reconstructions,

leading to artifacts. Fig. 13 shows that although the estimation error in

absolute value is larger than in the previous experiment, the DGLS error

is significantly lower than the error of the median value. The results

for the family of phantoms, plotted in Fig. 13e, show that for both SIRT

and SIRT-P, the corresponding DGLS variants yield far more accurate

estimates than the respective MED resuls.

• The noise level of the projections was varied. In this experiment, Poisson

noise was applied to the projection data, for a varying source intensity. By

number of counts per detector element, we refer to the measured detector

count when there is no object blocking the path from source to detector.

The higher this count, the higher the Signal-to-Noise ratio. For the recon-

struction, 30 projection angles were equally spaced in [0◦, 180◦]. For each

grey level, the USP again contains 25% of the pixels for that grey level.
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The effect of Poisson noise on a reconstruction is visible in Fig. 6. Fig. 14

shows that for the investigated noise range, the noise level does not have

a major impact on the estimation error, for both the MED and DGLS

estimates. This can be explained by the fact that only 30 projections are

used, such that the reconstruction errors due to the small number of pro-

jections are much more significant than those related to the noise in the

projection data.

• The size of the USP, as a percentage of the total region for each grey

level, was varied by iteratively applying an erosion filter as discussed

above. Fig. 7 shows the user-selected part for phantom image 4(a) and

4(c), 20% the size of the original phantom. Fig. 15 shows that accurate

grey level estimation is possible even if the USP is relatively small, down

to 10% of the object size.

The results suggest that the DGLS method is robust with respect to the num-

ber of projection angles, the angular range, the level of noise and the size of the

user-selected part. Moreover, DGLS typically yields a significantly more accu-

rate estimate compared to computing the median value of the user-selected part.

The results also demonstrate that more accurate estimation can be achieved by

using the heuristic SIRT-P method as a scoring function instead of SIRT.

On our test PC, running at 2.4GHz, the running time of a single grey level

estimation in all experiments but the first one was around 4 minutes. This is

mostly attributed to the SIRT or SIRT-P algorithm that has to be performed

every time while minimizing the grey level penalty function.

In all experiments described above, the USP for each grey level was selected

as a proper subset of the actual regions in the phantom image. In practice,

these regions must be selected by the user, based on an initial non-discrete

reconstruction that may be inaccurate and difficult to interpret. If the user

selects a region that partially corresponds to a different grey level, the DGLS

approach may fail. To investigate this, we performed the following experiment

for phantom image 4(a): the USP was selected as a circle of varying radius,
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centered in a fixed point (see Fig. 8). The DGLS methods, based on SIRT

and SIRT-P respectively, were then applied based on 30 projections, distributed

equally between 0◦ and 180◦. Fig. 9 shows the estimated grey level as a function

of the radius of the circular region. It can be clearly observed that the grey

level estimate becomes highly unreliable if part of the USP extends beyond the

actual grey level region. Therefore, proper selection of the USP is crucial

to obtaining reliable grey level estimation.

(a) radius = 20 pix-

els

(b) radius = 90 pix-

els

Figure 8: Circular USP of two different sizes on phantom image 4(a). Green pixels in the

USP are part of the object, red pixels are not.
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Figure 9: Grey level estimation using the proposed method when the USP is chosen too large.

4.2. Discrete tomography

The key motivation for the presented grey level estimation algorithm is that

it allows for subsequent application of discrete tomography reconstruction al-

gorithms. In this section, we will investigate how the reconstruction accuracy

depends on the method used to estimate the grey level(s), for one particular dis-

crete tomography algorithm called DART (Discrete Algebraic Reconstruction

Technique). We remark that a full comparison between a range of proposed
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(a) MED (SIRT)

NMP=1093 (6,58%)

(b) MED (SIRT-P)

NMP=1213 (7,30%)

(c) DGLS (SIRT)

NMP=12 (0,07%)

(d) DGLS (SIRT-P)

NMP=4 (0,02%)

Figure 10: DART reconstructions of Phantom (b) with various grey level estimation methods.

(a) Phantom Image (b) SIRT recon-

struction

(c) Manually cho-

sen USP

(d) correct values;

NMP = 144 (3,38%)

(e) Otsu’s segmen-

tation; NMP = 669

(15,72%)

(f) MED (SIRT);

NMP = 212 (4,98%)

(g) MED (SIRT-P);

NMP = 186 (4,37%)

(h) DGLS (SIRT);

NMP = 140 (3,29%)

(i) DGLS (SIRT-P);

NMP = 138 (3,24%)

Figure 11: (f-i) DART reconstructions with various grey level estimation techniques.
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discrete tomography algorithms would be a worthy subject for further inves-

tigation, yet we confine our experiments to a single algorithm to demonstrate

the reconstruction accuracy that can be achieved by combining both methods

(DGLS and DART).

Here, we briefly outline the DART algorithm. We refer to Batenburg and

Sijbers [7], Batenburg et al. [8] for a more extensive description. DART is a

heuristic algorithm that iterates between steps of an algebraic continuous recon-

struction method, such as ART or SIRT, and discretization steps. In each DART

iteration, the current reconstruction is segmented, after which the boundary of

the segmentation regions is determined. Subsequently, one or more iterations

of the continuous algebraic method are performed, while keeping the interior

(i.e., non-boundary) pixels of the segmentation regions fixed at their known

grey levels. Segmentation of the new reconstruction will result in a different

boundary. Iterating this procedure leads to accurate discrete reconstructions

in many cases, although convergence to a solution that satisfies the projection

data cannot be guaranteed.

To evaluate the dependency of the reconstruction accuracy on the estimated

grey levels, experiments were performed for phantom image 4(b), based on 30

noiseless projections, at equal angular intervals. After estimating the grey levels

by either the MED or DGLS approach, a DART reconstruction was performed

based on these grey levels, using SIRT as the underlying continuous algorithm.

Fig. 10 shows the misclassified pixels in the DART reconstruction for the various

estimation approaches, as well as for perfectly estimated grey levels (based on

the phantom). The overlap between the phantom image and the reconstruction

is coloured yellow. The differences are indicated in red (falsely reconstructed

foreground pixel) and green (false background pixel) respectively. The total

number of misclassified pixels is denoted by NMP in the figure captions.

As a second experiment, we performed a simulation of an electron tomog-

raphy experiment, similar to the experiments reported in Batenburg et al. [8]

(Section 5.2), using a phantom based on an experimental dataset of a bamboo-

like carbone nanotube that was formed around a Copper catalyst particle. Fig.
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11(a) represents a cross-section of the catalyst nanoparticle that contains both

Copper (Cu, white) and Copper-Oxide (CuO, grey), as well as several voids.

Projection data was simulated for an angular range of −77,◦ to +77,◦. Experi-

mental instability in the alignment of the projections was simulated by shifting

each projection by a random distance in the interval [−1,+1], and Poisson noise

was incorporated in the projection simulation. Fig. 11(b) shows the resulting

SIRT reconstruction. To mimic a real experiment, the USP was selected man-

ually, as shown in Fig. 11(c). Fig. 11(d) shows the reconstruction image of

11(b) segmented with the well-known Otsu’s segmentation method. The next

five images show the segmented DART reconstructions based on perfect prior

knowledge of the grey levels (e), MED (SIRT) (f), MED (SIRT-P) (g), DGLS

(SIRT) (h) and DGLS (SIRT-P) (i). Although the difference between the DGLS

and MED approaches is not as large as for the experiment based on phantom

4(b), the number of misclassified pixels for DGLS is very close (and even slightly

better) to the value obtained using perfect prior knowledge, whereas the MED

estimations result in significantly more misclassified pixels.

5. Discussion

The grey level estimation problem, when posed in its general form, does not

guarantee a unique solution. The experimental results show that even for a mod-

erately large number of 15 projections, additional constraints may be necessary

to obtain an accurate estimate of the grey levels using our proposed approach.

Several techniques can be used to improve the accuracy of the estimate:

• Use a more accurate scoring function. The projection distance, as

computed using SIRT, does not incorporate nonnegativity constraints.

Adding a nonnegativity heuristic to the reconstruction algorithm seems

to result in improved accuracy of the grey level estimate, but its the-

oretical properties are hard to verify. A scoring function that incorpo-

rates both minimization of the projection distance and nonnegativity con-

straints (based on the nonnegative least squares problem) could result in
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more accurate scoring, at the expense of long running times.

• Simultaneous estimation of several grey levels. In the approach

presented in this paper, each of the grey levels is estimated independently.

Simultaneous estimation of all grey levels, where the grey level in all user-

selected parts is required to be constant, would provide more constraints

for the estimation problem. However, this would also make the approach

less robust, as an error in the choice of one USP will lead to errors all

estimated grey levels.

Still, restricting the reconstruction outside the user-selected part to nonnegative

values still does not capture the full set of available constraints. To incorpo-

rate the fact that the entire image should contain only a small, discrete set of

grey levels, it seems necessary to actually attempt to compute such a discrete

reconstruction for varying grey levels, and check which grey levels correspond

to a consistent reconstruction. At present, the enormous computational re-

quirements render this approach infeasible. We feel that estimation based on

continuous methods using the DGLS approach, followed by a discrete recon-

struction algorithm, results in a good trade-off between accuracy and speed.

As demonstrated in Section 4.1, proper selection of the USP is crucial to the

accuracy of the resulting DGLS estimate. The proposed approach still requires

user interaction and leaves the possibility of user mistakes in the USP selection

procedure. In future research, we aim at the development of algorithms for

carrying out the USP selection task. A basic algorithm that is based on a rudi-

mentary segmentation of the image may already be suitable for objects that are

relatively simple, or for which a high quality reconstruction is already available.

More complex objects will require more advanced algorithms that can change

the USP depending on the scoring function.

6. Conclusions

In this paper, we presented the DGLS approach: a semi-automatic method

for estimating the grey levels of an unknown image from its projections. Grey
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level estimation is a necessary step before applying discrete tomography algo-

rithms, as these algorithms typically assume the set of admissible grey levels to

be known a priori. In its general form, the grey level estimation problem does

not guarantee a unique solution. To allow for reliable estimates, additional prior

knowledge must be incorporated. In our semi-automatic approach, this prior

knowledge is included by letting the user select a region that is known to corre-

spond to a constant grey level, based on an initial non-discrete reconstruction.

The proposed algorithm, which minimizes a penalty function while varying

the grey level of the user-selected part, was shown to yield more accurate grey

level estimates compared to direct estimation based on a continuous reconstruc-

tion. In particular, when a heuristic is used to enforce positivity of the image

reconstructed during the penalty computation, accurate estimates can be ob-

tained even from a small number of projection images, or a small angular range.

An important question that remains for future research, is to determine what

accuracy is actually required for the estimation step to use discrete tomography

effectively.
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Figure 12: Error of grey level estimation with varying numbers of projection angles.
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Figure 13: Error of grey level estimation with varying ranges of projection angles.
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Figure 14: Error of grey level estimation with different noise levels.
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Figure 15: Error of grey level estimation with different sizes of the user-selected part.


