Solving Nonograms by combining relaxations
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Abstract

Nonograms, also known as Japanese puzzles, are a specific type of logic drawing
puzzles. The challenge is to fill a grid with black and white pixels in such a way that
a given description for each row and column, indicating the lengths of consecutive
segments of black pixels, is adhered to. Although the Nonograms in puzzle books can
usually be solved by hand, the general problem of solving Nonograms is NP-hard.
In this paper, we propose a reasoning framework that can be used to determine the
value of certain pixels in the puzzle, given a partial filling. Constraints obtained from
relaxations of the Nonogram problem are combined into a 2-SAT problem, which is
used to deduce pixel values in the Nonogram solution. By iterating this procedure,
starting from an empty grid, it is often possible to solve the puzzle completely. All
the computations involved in the solution process can be performed in polynomial
time. Our experimental results demonstrate that the approach is capable of solving
a variety of Nonograms that cannot be solved by simple logic reasoning within
individual rows and columns, without resorting to branching operations. In addition,
we present statistical results on the solvability of Nonograms, obtained by applying
our method to a large number of Nonograms.
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1 Introduction

Logic puzzles are very popular nowadays. The most famous example of such
a puzzle is the Sudoku, where the puzzler has to insert a series of numbers
in a grid, while satisfying certain constraints on the placement of those num-
bers. A Nonogram, also known as a Japanese puzzle in some countries, is a
different kind of logic puzzle, where the goal is to draw a rectangular image

Preprint submitted to Elsevier 2 November 2008



that adheres to certain row and column constraints. Usually, the image is
black-and-white, although Nonograms with more than two grey values exist
as well. Nonograms require (contrary to Sudoku) some elementary knowledge
of integer calculations, so perhaps they cannot be considered as pure logic
puzzles. The combination of a logic problem with integer calculations results
in a combinatorial problem that can be approached using methods from com-
binatorial optimization, logical reasoning or both, which makes Nonograms
highly suitable for educational use in Computer Science [1].
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Fig. 1. An elementary 5 x 5 Nonogram. In the partial solution (b), the grey cells
indicate which puzzle entries are still undecided. The partial solution cannot be
extended to a full solution by using only information from a single row or column
at each step.

Fig. 1 shows an example of a Nonogram. The puzzle has a rectangular shape,
which is subdivided in unit cells. We will also refer to these cells as pizels. For
each row and each column, a description is given. The description indicates the
lengths of the consecutive segments of black pixels along the corresponding
line, in order. For example, the description “1 1”7 in the first row indicates
that when traversing the pixels in that row from left to right, there should
first be zero or more white pixels, followed by one black pixel. Then, at least
one white pixel must occur, followed by exactly one black pixel. There may
be additional white pixels at the end of the line. The symbol e denotes the
empty description, leading to an all white line. The goal of the puzzle is to
colour all pixels with either black or white, in such a way that each horizontal
and vertical line is consistent with the given description. As we shall see later,
when using only information concerning single rows and columns, puzzles can
often be solved partially, but not fully; see Fig. 1(b). For instance, one can infer
that the middle pixel in the bottom row must be black. Using 2-Satisfiability
(2-SAT) rules this elementary puzzle can be solved completely; see Fig. 1(c).
More complicated puzzles require more sophisticated techniques, as we will
also demonstrate.

Nonograms can be considered as a generalization of a well-known problem
in Discrete Tomography [2,3]: reconstructing hv-convex sets (where the black
pixels in each row and column must be consecutive). For this Discrete Tomog-
raphy problem, the description for each line consists of a single number, indi-
cating the length of the segment of black pixels along that line. The problem of



reconstructing hv-convex polyominoes can be solved in polynomial time [4,5],
whereas the reconstruction problem for general hv-convex sets is NP-hard [6].
Therefore, the reconstruction problem for Nonograms is also NP-hard (and,
clearly, NP-complete). In [7] this is shown through the more general concept
of parsimonious reductions. In [8], the general Discrete Tomography problem
(without geometric constraints) was analyzed as a simplification of the Nono-
gram problem. The methods from this paper perform well in this situation,
see Section 7.2.

The Nonogram problem can also be related to several job scheduling problems,
where each row corresponds to a single processor and the jobs for the proces-
sors are indicated by the row descriptions. In many scheduling problems, the
type of constraints that occur in Nonograms only apply to the rows, or the
columns, but usually not both. The reasoning framework presented in this
paper can be extended to include such cases as well. Even for the Nonogram
problem there are concrete instances, such as the following. The rows corre-
spond with employees, that have to perform confidential tasks. The employees
are ordered, where employees with higher row index perform better. Each em-
ployee has a series of work shifts, separated by mandatory breaks. The columns
correspond with the consecutive time slots. For each time slot the description
defines the numbers of employees needed for the different tasks, where the
tasks are ordered in increasing difficulty (needing better employees for more
difficult tasks). The confidentiality of the tasks requires that the groups of co-
operating employees are physically separated. As an example, in the problem
from Fig. 1 all tasks are for single employees, and the best employee has a
single shift of 3 time slots.

There can be considerable differences in the difficulty level of Nonograms.
On the one hand, the Nonograms that appear in newspapers can typically
be solved by applying a series of simple logical rules, each of which considers
only a single horizontal or vertical line. Later on we will refer to them as being
simple. These puzzles will always have a unique solution. In fact, knowledge
about uniqueness of the solution of a Nonogram provides extra information.
As an example, for the Nonogram in Fig. 1, a symmetry argument infers the
bottom line. On the other hand, large random puzzles can be very difficult
to solve, even using a computer, and may have many different solutions —
or none at all. Clearly, the fact that solving Nonograms is NP-hard indicates
that not all puzzles can be solved using simple logic reasoning.

Although several implementations of Nonogram solvers can be found on the
Internet (see [9] for a list of solvers), we have not found any thorough studies
of this problem in the scientific literature. In [10], an evolutionary algorithm is
described for solving Nonograms. Although this algorithm is quite effective at
solving Nonograms, it cannot be used to find all solutions, if more than one
solution exists. A heuristic algorithm for solving Nonograms is proposed in



[11]. The related problem of generating Nonograms that are uniquely solvable
is discussed in [12].

Any Nonogram problem can be considered as a Constraint Satisfaction Prob-
lem (CSP, see, e.g., Chapter 5 from [13]). The line descriptions can be trans-
lated into constraints in several different ways. One such method will be dis-
cussed later. An advantage of this approach is that a general CSP solver can
be used to solve the problem. A wide range of such solvers is available. For-
mulating a Nonogram problem as a CSP requires a relatively large number
of constraints, and its solution lacks the intuitive interpretation characteristic
for more specialized Nonogram solvers, such as the approach presented here.

In this paper we propose a reasoning framework for solving Nonograms. We
consider relaxations of the Nonogram problem that can be solved in polyno-
mial time and, in many cases, can already determine the value of certain pixels
in the Nonogram solution. In addition, relations between pairs of pixels are
collected from these relaxations, and combined into a 2-Satisfiability (2-SAT)
problem. This 2-SAT problem, which may involve information from several
rows and columns, can be used to deduce the value of pixels that were not
determined directly by the individual relaxations. By iterating this procedure,
starting from an empty grid, it is often possible to either solve the puzzle com-
pletely or to determine a substantial part of the pixels. In the latter case, one
can distinguish between situations where there exist different solutions (that
can sometimes be enumerated), and situations where no further information
can be deduced by our solver.

The paper is organized as follows: Section 2 introduces Nonograms in a for-
mal, somewhat more general context; in Section 3 we show solutions to some
relaxed versions (i.e., single lines, and the Discrete Tomography version); we
combine these techniques into a general framework in Section 4 and Section 5,
also incorporating 2-SAT rules. In Section 6, (non-)uniqueness properties of
Nonograms are discussed. Experimental results are presented in Section 7;
Section 8 provides a discussion of advantages and limitations of the proposed
approach, and concludes this paper. We note that this paper is an extended
version of the conference paper [14].

2 Notation and concepts

We now define notation for a single line (i.e., row or column) of a Nonogram.
After that, we combine these into rectangular puzzles.

Let 3 be a finite alphabet. Its elements are referred to as pizel values. In
this paper we focus on the case ¥ = {0,1}, but most concepts apply to sets



consisting of more than two elements as well. The symbols 0 and 1 represent
the white (0) and black (1) pixels in the puzzle. In addition, we introduce a
special symbol, x € 3, indicating that a pixel is not decided yet. Put I' =
YU {x}. For £ >0, let ©* (resp. I'Y) denote the set of all strings over X (resp.
') of length ¢.

For describing a Nonogram, we introduce more general concepts of row and
column descriptions, such that Nonograms are in fact a special case. Most of
the concepts in this paper can be applied to all logic problems that follow the
more general definitions.

A description d of length k > 0 is an ordered series (d,ds, ..., d;) with d; =
oi{a;j,b;}, where o; € ¥ and a;j, b; € {0,1,2,.. .} witha; <b; (j =1,2,...,k).
The curly braces are used here in order to stick to the conventions from regular
expressions; so, in 0;{a;, b;} they do not refer to a set, but to an ordered pair.
Any such d; will correspond with between a; and b; characters o;, as defined
below. Without loss of generality we will assume that consecutive characters
o; differ, so 0; # 0,41 for j =1,2,... k — 1. Let D, denote the (infinite) set
of all descriptions of length k, and put D = U2, Dy, where Dy consists of the
empty description e. A single d; = o;{a;,b;} is called a segment description.
We will sometimes write o* as a shortcut for 0{0,00} (for o € ) and o™
as a shortcut for o{1, 00}, where oo is suitably large number. We use o as
a shortcut for o{a,a} (a € {0,1,2,...}), and we sometimes omit parentheses
and commas; also o is omitted.

A finite string s over X adheres to a description d (as defined above) if s =
oitos? ... ok, where a; < ¢; < b; for j = 1,..., k. As an example, consider

the following description for ¥ = {0, 1}:

d = (0{0,00}, 1{a, a1 },0{1, 00}, 1{as, as},
0{1,00},...,{a,,a,},0{0,00}).

This is precisely the Nonogram-type description ay, as, . .., a, for a line (row
or column). Note that it has length 2r + 1 and can also be written as

0*1%10%1%20" ... 170"

We denote the set of all Nonogram-type descriptions by Disnogran © D. In the
sequel we will concentrate on this type of description.

Let s be a finite string over I'. If zero or more occurrences of x are replaced
with elements from 3, the resulting string is called a specification of s. A
specification to a string over X (i.e., no longer containing any “x” symbols) is
called a fiz. If a string s has a fix that adheres to a given description d, s is
called fizable with respect to d. By definition, the boolean function Fiz(s,d)

is true if and only if s is fixable with respect to d. In a somewhat different



context, we also use the term fizing a pizel to indicate that a pixel has only
one possible value, and can therefore be assigned that value.

An m x n Nonogram description N consists of m > 0 row descriptions
71,72, -3 Tm € Dionogran and n > 0 column descriptions ¢y, ¢a, . . ., ¢, € Dyonogran-
A partial filling is an m x n matrix over I'. The set of all partial fillings is de-
noted by I'"*"; its elements can also be considered as strings of length m x n.
If a partial filling contains no occurrences of x, it is called a full fiz. A full fix
F e Y™™ adheres to the Nonogram description N if the ith row of F' adheres
to r; (for all « = 1,2,...,m) and the jth column of F' adheres to ¢; (for all
j =1,2,...,n). We generalize the concepts of specification and fizable that
were defined for single lines in the natural way to mxn Nonograms.

3 Partial solution methods

In this section we study two relaxations of the Nonogram problem. In Sec-
tion 3.1 we confine the puzzle to a single line. In Section 3.2 we only require
that the total number of black pixels in each line (i.e., row or column) adheres
to its description. Clearly, any pixel that can only have a single value in all
solutions of the relaxation, must also have this same value in any solution of
the complete Nonogram. For both relaxations we show that such pixels can
be found efficiently.

Although in some cases these relaxations can directly yield information on the
value of a given pixel in any solution of the Nonogram, they can also be used
to obtain information about pairs of pixels. In Section 4, we will show how
these relations between pairs of pixels obtained from the relaxed problems can
be combined efficiently, obtaining a powerful Nonogram solver.

3.1 Solving a single line

Deciding fixability for a single horizontal or vertical line is a fundamental
operation in our approach. Although the number of possible specifications of
a line increases exponentially with the number of undecided pixels on that
line, it is possible to determine whether or not a line is fixable with respect to
its description in polynomial time.

First we introduce some notations. For a string s = 5185 ... s, of length ¢ over
I, define its prefix of length i by s®) = s155...5; (1 <i < /), s0 5 = s); 50
is the empty string. Similarly, for a description d = (dy, ds, . .., d;), put d¥) =
(di,dg,...,d;) for 1 < j <k, sod=d"¥; d® = ¢ is the empty description.



Furthermore, let A; = E§:1 a, and B; = 22:1 by; put Ag = By = 0. We note
that a string of length ¢ < Ay is certainly not fixable with respect to d, simply
because it has too few elements; similarly, a string of length ¢ > By is not
fixable with respect to d. Finally, for 0 € ¥, s € ¥ and 1 < i < £, let LI(s)
denote the largest index h < i such that s, ¢ {o,x}, if such an index exists,
and 0 otherwise. We will put Fiz(i,j) = Fir(s®,dY)). The value Fiz({,k)
then determines whether s is fixable with respect to d.

The value Fiz(i,j) can be expressed recursively using only terms Fiz(7', j)
with ¢/ < ¢ and j' < j. This allows for efficient evaluation of Fiz(z,7) by
dynamic programming. As boundary values we note that Fiz(0,7) = true if
andonlyif A; =0(j=0,1,2,...,k); and Fiz(i,0) = false fori = 1,2,..., /.
We clearly have Fiz(i,j) = falseifi < Ajori > B; (0<i</(,0<j<k),
as indicated above.

Our main recursion is:

Proposition 1 The function Fix satisfies

IIllIl(Z — 4y, Bj—l)
Fiz(i,j) = V Fiz(p,j — 1) (1)
p =max(i — bj, Aj_1, L] (s))

This holds for i and j with1 <1 </{,1<j <k and A; <1 < B,.

Note that an empty disjunction is false; this happens for example if L]’ (s) >
i—aj;+ 1. For j =1 we have Fiz(i,1) = true if and only if L' (s) =

Proof The validity of the recursion can be shown as follows. The last part
of s must consist of between a; and b; characters o;; say we want o; at
positions p + 1,p + 2,...,7. We then must have a; < i —p < b;. Also note
that all elements s,1, Spy2,...,s; must be either x or o;; this holds exactly if
L{’(s) < p. Finally, the first part of s, i.e., s(?), must adhere to dV=1. Clearly,
p must be between A;_; and B,_;, otherwise this would not be possible. O

Note that the A; and B; terms can be considered to represent general tomo-
graphic restrictions. It is natural to implement this recursive formula by means
of dynamic programming, using lazy evaluation: once a true Fiz(p,j — 1) is
found, the others need not be computed.

Now given a string s over I that is fixable with respect to a description d, it is
easy to find those string elements x that have the same value from ¥ in every
fix: these elements are then set at that value. Indeed, during the computation
of Fiz(s,d) (which of course yields true), one can keep track of all possible
specifications that lead to a fix. In Equation (1) those Fiz(p,j — 1) that are



true correspond with a fix, where the string elements s,.1, sp49, ..., s; are all
equal to o;. Now one only has to verify, for each string element of s, whether
precisely one element from X is allowed. In practice this can be realized by
using a separate string, whose elements are filled when specifying s, and where
those elements that are filled only once are tagged. Note that for this purpose
lazy evaluation is not an option, since we need to examine all fixes. As an
example, if the description for a five character string s = s182835485 over
{0,1,x} is 0¥1%0* (cf. the bottom row from the example in Section 1), one can
derive that s3 must be equal to 1. The algorithm that performs this operation
is called Settle, and the resulting string s’ is denoted by & = Settle(s,d).
The complexity of the computation of Fiz(¢, k) is bounded by & - £*: at most
k - ¢ values of Fiz(i,j) must be computed, and each such computation can
be performed in O(f) time, including the evaluation of L:’(s). In practice,
especially when using lazy evaluation, the complexity is much lower.

If |X] > 2, it could be that besides deciding certain pixels as in the example
from the previous paragraph, also one or more (but perhaps not |X| — 1) pixel
values are excluded for certain pixels. In this case, Settle can be implemented
such that it yields a list of these forbidden values for each pixel. Formulating
the Nonogram problem as a Constraint Satisfaction Problem (CSP), for each
pixel a domain is initialized to I' and gradually reduced by a search algorithm
until only a single value remains.

3.2 Discrete Tomography problem

The Nonogram problem can be considered as a special case of a well-known
problem from Discrete Tomography (DT), which deals with the reconstruction
of a binary image from its horizontal and vertical linesums. These horizontal
and vertical linesums can be easily computed from the Nonogram descriptions,
by adding the segment descriptions for each line. (In the more general setting
from Section 2 we get lower and upper bounds for the linesums.) Suppose that
we have a partially filled Nonogram X € I'"*", which we would like to extend
further. Clearly, any solution of the Nonogram must also be a solution of
the corresponding DT problem. The DT problem can be solved in polynomial
time, even if an arbitrary subset of the image is kept fixed. It is also possible to
compute the set of all pixels that must have the same value in all solutions of
the DT problem in polynomial time. These pixels can be fixed immediately in
the partial Nonogram solution. The paper [15] gives a constructive procedure
for finding all such pixels.

Fixability to a solution of the DT problem can easily be checked using network
flow methods. We refer to [16] for the details of this model. Fig. 2a shows a
small 3x3 DT problem. We put linesums to the right of the rows and below



the columns, to distinguish them from our earlier descriptions. This problem
can be modelled as the transportation problem in Fig. 2b, which can be solved
efficiently by network flow methods; thick arcs denote the solution. This net-
work has three source nodes, one for each column, and three sink nodes, one
for each row. The surplus/demand for each node is determined by its corre-
sponding linesum. If none of the pixels are fixed, each pixel arc has a capacity
of one. To fix a pixel at value v € {0, 1}, we simply set the capacity of the
corresponding pixel arc to 0 and subtract/add v to the surplus/demand at the
corresponding column and row nodes. The resulting transportation problem
has a solution if and only if the partial filling can be extended to a complete
filling satisfying the DT constraints.
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Fig. 2. a) DT problem and one of its solutions, where bold figures denote the line-
sums; b) associated network of the DT problem

4 Combining the partial methods using 2-SAT

The method from Section 3.1 can only take into account the description of
a single line. On the other hand, the Discrete Tomography approach from
Section 3.2 can deal with all lines simultaneously, but only incorporates par-
tial knowledge from the descriptions. We will now describe how a large part
of the information from different lines, and from different relaxations of the
Nonogram problem, can be combined.

Consider the example in Fig. 3a (which is the same as that from Fig. 1).
Using only the information from single lines, or from the Discrete Tomography
problem, the values of the remaining undecided pixels cannot be derived. Four
of the undecided pixels are denoted by the variables a, b, ¢ and d respectively,
which can take the values 0 (false) or 1 (true).

Using the partial solution methods, dependencies can be derived between pairs
of undecided pixels. For example, on the bottom row, the description dictates
that ¢ = d (or, equivalently, —c V d). Similarly, one can deduce that ¢ = —a
(first column), —~a = b (third row) and b = —d. This provides us with both
implications ¢ = d and ¢ = —d, resulting in the conclusion that ¢ must be 0.

Note that any such implication relation between two variables can be written



in one of the forms = V y, x V -y, -2 V y or -~z V —y. This is the standard
form of a 2-SAT clause, see [17]. The 2-SAT problem is to decide whether or
not there exists an assignment of truth values to all the variables, such that
a given series of such clauses is simultaneously satisfied. It can be solved in
polynomial time, using the concept of a dependency graph, as shown in Fig. 3b
for our elementary example.

Fig. 3. a) Partially solved Nonogram; b) (part of) its corresponding dependency
graph

Combining partial information from different relaxations into a 2-SAT problem
allows for deducing substantially more pixel values than can be found using
the individual relaxations, even though it does not capture the full puzzle
specification. When solving a Nonogram, the goal is not to find an assignment
of all variables that satisfies the 2-SAT constraints. Rather, we search for
variables that must have the same truth value in all satisfying assignments.
Assume that at least one such assignment exists. Then a variable x is false
in all satisfying assignments if and only if there is a path from x to —x in the
dependency graph. Alternatively, x must be true in all satisfying assignments
if and only if there is such a path from —x to x.

Note that existence of a cycle in the dependency graph, containing both x and
-z implies that no satisfying truth assignment exists. If we can assume that
a given Nonogram has at least one solution, and that we only fix the value of
pixels that must have the same value in all solutions, such a cycle will never
occur.

The dependency graph model provides a polynomial-time algorithm for finding
all variables that must have the same value in all satisfying assignments of the
2-SAT problem. In the example from Fig. 3a, many more 2-SAT clauses can
be found from the single rows and columns, or from the Discrete Tomography
problem.

Our procedure for combining the information from the subproblems (one for
each line, and a complete DT problem) is as follows: for each pair of undecided
pixels (z,y) involved in the subproblem, all four assignments are tested. If z
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and y are on one line, for each assignment the fixability computation from
Section 3.1 is performed. Each such test that returns false provides an addi-
tional 2-SAT clause (e.g., zV—y). Similarly, the technique from Section 3.2 can
generate clauses, also for pixels that are not on the same line. The resulting
dependency graph captures information from all subproblems simultaneously.
If one considers this process as “guessing”, it can also be performed in a way
similar to the Settle operation. Indeed, when computing the Fiz value for a
line, one can keep track of all pairs of pixels, and determine those values of
pairs that cannot occur.

Although the 2-SAT approach is a powerful way to combine the knowledge
from different partial problems, it generally does not capture all information
that is present. For example, the three character string s over {0, 1,x} with
description d = 0*1'0* yields rules that do not forbid the fix 000, which is
not a good fix. If one introduces clauses that can involve three variables, this
leads to a clause s1 # 0V sy # 0V s3 # 0, which is in 3-SAT format. Although
the general 3-SAT problem is NP-hard, there are certain subclasses of 3-SAT
problems that can be solved in polynomial time [18]. For our purpose, we found
the 2-SAT formulation to be both powerful and computationally efficient, yet it
may be possible to create a more powerful solver by using a 3-SAT formulation
that fits the type of 3-SAT clauses obtained from the relaxed problems and
can still be solved in polynomial time.

5 Iterative solving of Nonograms

Each relaxation of the Nonogram problem, such as the single line and Discrete
Tomography relaxations from Section 3, can be used to deduce the value of
certain pixels. By using such methods iteratively, filling in the new known
pixels in each iteration, it is often possible to deduce even more pixel values.
For clarity, we now focus on the iterative application of the Settle operation
from Section 3.1; this yields a powerful approach, as will be shown in Section 7.
It can even be combined with other relaxations, as that from Section 3.2, to
form a more complete iterative algorithm. The Settle operation produces, given
a string s over I and a description d, the string where all string elements that
have the same value in every fix are set: s « Settle(s,d). Given X € ['"*"
and a Nonogram description N, we can repeat the Settle operation for all rows
and columns of X (using the appropriate descriptions from N) until no new,
previously unknown pixels are set. Note that we can use several heuristics to
determine the order in which lines are examined, but the order does not affect
the result obtained when no further elements can be fixed. The operation of
repeatedly applying the Settle operation until no further elements are fixed is
called FullSettle: X « FullSettle(X, N) € I'"*". If X now happens to be in
Y™ the puzzle is solved. Such a puzzle is called simple.
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Note that the Settle operation, or rather the induced Fiz operations, can also
be used to detect certain contradictions, i.e., unsolvable puzzles. Indeed, if
some line s of a proposed (partial) solution satisfies Fiz(s,d) = false, there
is no full solution.

Now, given X € I'"*"™ and a Nonogram description N such that

X = FullSettle(X, N), 2-SAT expressions are collected: for each relaxed prob-
lem (e.g., the single rows and columns), for each pair of undecided pixels and
for each assignment of values to these pixels, it is checked if for this value
assignment the relaxed problem can still be solved. If this is not the case, the
relation between both pixel values is captured in a 2-SAT clause. We denote
the set of all 2-SAT clauses found in this way by S. Subsequently, all pixels
that have the same value in all solutions of the 2-SAT problem S are fixed to
these values, as described in Section 4. This operation is called 2SATSolve:
X « 2SATSolve(X,S,N). The operations FullSettle and 2SATSolve can
be intertwined, until no further progress is made; this combination is called
Solver0: X « Solver0(X, N), cf. Fig. 4. Again, if the resulting X happens to
be in X™*™ the puzzle is solved. Such a puzzle is called 0—Solvable. Note that
this whole process takes polynomial time (expressed in height and width of
the puzzle).

Now suppose that X = Solver0(X, N), but the puzzle is not solved yet. We
now consider one unknown element X;; from X. In a copy Y of X we ¢ry both
Y;; = 0 and Y;; = 1. If for one of these Solver0(Y, N) contains a contradiction,
we know that X;; must have the other value. We can, again in some order,
examine all unknown pixels. Note that only those pixels that occur in a 2-
SAT clause need to be examined and that the ordering of those pixels does
not affect the final results of the solver. This procedure can be repeated, until
no further progress is made, again intertwined with the use of Solver(. This
procedure is called Solverl, ct. Fig. 4. If a Nonogram can be solved in this
way, it is called 1-Solvable.

Although the procedure Solverl can be considered as a form of backtracking,
the algorithm only makes a single guess at a time (i.e., no recursive guesses),
thereby avoiding the creation of a search tree.

So, to summarize these efforts, Nonograms can be simple (if FullSettle solves
them), 0—Solvable (if Solver(0 solves them), 1-Solvable (if Solver1 solves them),
or more complicated. Many puzzles from newspapers are simple; the example
from Fig. 1 is 0—=Solvable. In Section 7, we will give several examples. Also note
that FullSettle, Solver0 and Solverl are capable of providing partial solutions,
where the fixed pixels that have been assigned a value from > must have that
value in all solutions (if any) of the Nonogram.
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Solver0(X, N)
begin
Input: Nonogram N of size mxn; partial filling X;
repeat
X « FullSettle(X,N);
Collect a set S of 2-SAT clauses from relaxations;
X «— 25ATSolve(X, S, N);
until (no new fixed pixel(s) found) or (contradiction found);

if (contradiction found) Output: “contradiction”;
else Output: X;

end

Solver1 (X, N)
begin
Input: Nonogram N of size mxn; partial filling X;
repeat
X « Solver0(X,N);
repeat
Select an undecided pixel X;;
for each pixel value o € {0,1}
Y« X; Yy — o
Y « Solver0(Y, N);
if (contradiction found) X;; — 1 — o;
until (new pixel value(s) found) or (all undecided pixels tried);
until (no new fixed pixel(s) found);
Output: X;

end

~ |

Fig. 4. High level overview of the Solver0 and Solver! algorithms.

1|1

X X X XX X X X X
111 .
1 X . .>:<. X X
1 X X X >< . X >< ....... >< g >< X
(a) Elemen- (b) More complex types of switching components for Nonograms
tary  switching
component

Fig. 5. Switching components that can occur in Nonograms, containing up to six

unknowns.
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6 Some remarks on (non-)uniqueness

In this section, we examine some issues concerning (non-)solvability of Nono-
grams, and we pay special attention to puzzles with multiple solutions.

Similar to the Discrete Tomography problem, Nonograms can have more than
one solution. However, where the non-uniqueness problem for Discrete To-
mography allows an elegant description based on elementary switching com-
ponents [19], the non-uniqueness problem for Nonograms appears to be much
more complex. The problem of deciding if another solution of a Nonogram
exists, given a particular solution, is NP-hard [7].

We now focus on cases, where only a small subset of the pixel values is not
uniquely determined by the Nonogram description. Suppose that we have a
given Nonogram, and that it is possible (using the approach of this paper, for
example) to determine the value of all pixels, except for a small set of u > 0
unknown pixels or unknowns. We first note that each line with unknown pixels
should contain at least 2 unknowns. This implies that ©v > 4 and u # 5. If
u = 4, the unknowns form a rectangle (Fig. 5b, left), similar to the elementary
switching component of the Discrete Tomography problem (i.e., four pixels,
two black and two white, such that interchanging the black and the white
pixels does not change the description; see Fig. 5a). However, in Nonograms
the existence of such switching components is not only determined by the
value of the four corner pixels, but also by the values of the pixels along the
four sides of the rectangle and by the pixels adjacent to the four corners. On
a single line with 2 unknowns, depicted from left to right, we note that left
of the leftmost unknown we must have a 0 pixel (or the image boundary),
and a similar observation holds for the rightmost unknown. We note that we
have precisely 2 solutions here. Between the two unknowns we must have only
1s, or a series of solitary 1s with variable length blocks of 0s in between: in
regular expression notation (071)*0%.

If we consider u = 6, we either have two lines with 3 unknowns each (and in
the other direction three lines with 2 unknowns each), or three lines with 2
unknowns each in both directions (Fig. 5, right). In the former case we have
3 solutions, where in between two unknowns we can only have the (071)*0"
situation, in the latter case there are precisely 2 solutions — as in the u = 4
case. In all these situations, unknowns cannot touch.
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7 Experimental results

In this section, we present a variety of experimental results obtained with the
proposed iterative Nonogram solvers. All considered puzzles will have at least
one solution: the image that was used to construct the puzzle. We mention
that in our experience, most puzzles from newspapers are of the simple type.
Although one could attribute this to the relatively small size of these puzzles,
this is contradicted by the example from Fig. 1, which shows that small puzzles
do not have to be of simple type. On the other hand, the 80 x50 puzzle shown
in Fig. 6 is rather large, but can still be solved by hand, belonging to the simple
type. Nevertheless, the larger the puzzle, the more complicated it can be. All
puzzles of simple type can be solved very fast by the FullSettle operation,
as the dynamic programming approach described in Section 3.1 effectively
captures all information contained in the description of each single horizontal
or vertical line.

This section is structured as follows. First, we consider random images, pre-
senting both characteristic examples and statistical results. Next, we consider
the case of hv-convex images. Finally, we provide solvability results for the set
of all Nonograms of size 5x5.

Unless mentioned otherwise, the experimental results have been obtained by
Solverl, which is the most powerful method of those described in this paper.
Our focus is on the solution quality, determined by the number of unknowns
left after running the Nonogram solver. For the hv-convex images in Section
7.2, we also present timing results. For all experimental results presented, the
running time for a single Nonogram never exceeded 60 seconds (and is usually
much shorter) on a Pentium IV PC, running at 2.4 GHz. For general images,
there is no direct relationship between the reconstruction time and the size
of the Nonogram, as the reconstruction time is largely determined by the
complexity properties of the particular image being reconstructed.

7.1 Random Nonograms

As an illustrative example for a more difficult puzzle, consider the 30 x 30
Nonogram in Fig. 7a. The Nonogram was randomly generated with 50 %
black pixels. Using only FullSettle just 11 pixel values can be determined.
Using Solver? (which only takes approximately one second on a standard PC),
the puzzle is solved but for 15 pixels. One can verify that there are 6 different
solutions, where it turns out that for all 15 unknown pixels both black and
white can occur; this can easily be accomplished by repeatedly fixing one of
the unknowns to either 0 or 1, and then re-solving the puzzle. This Nonogram
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T
1T

Fig. 6. Large Nonogram of the simple type

(a) Random 30x30 (b) Random 40x40

Fig. 7. a) Randomly generated partially solved 30x30 Nonogram, with 50 % black
pixels; the grey cells denote the unknown pixels. This Nonogram has six solutions;
b) Randomly generated partially solved 40 x 40 Nonogram, with 881 black pixels;
the four grey pixels denote an elementary switching component, leading to two
solutions.

was also included in [10], where an evolutionary algorithm was used to find
one of the six solutions. A clear advantage of our reasoning framework over
the algorithm presented in the former paper, is that our current approach
finds the set of all solutions (or rather those pixels that have the same value
in every solution), along with a proof that there are no others. In addition,
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our method is much faster: seconds versus hours. On the other hand, both
approaches can be considered as complementary, as the evolutionary algorithm
can sometimes find a solution that cannot be deduced using our reasoning
approach. In particular, pixels that can be either black or white, depending
on the particular solution of the Nonogram, can never be fixed in our approach.

Fig. 7b shows a randomly generated 40 x 40 Nonogram, with 881, i.e., 55 %,
black pixels. In this case the puzzle has a nearly unique solution: there is only
one elementary 2 x 2 switching component (cf. Fig. 5a), so there are 2 different
solutions. Again, Solver! is necessary: FullSettle finds 101 pixels.

In Fig. 8a, results for a set of 7,000 images are summarized. For each p in
{1,2,...,70} the Solver? algorithm has been run 100 times on a randomly
generated 30 x 30 puzzle, with p % black pixels. The piecewise linear curve
connects the averages of the number of unsolved pixels (at most 900); also
plotted is the standard deviation for each point on the graph, truncated at 0
and 900. Fig. 8b shows the results of applying the three methods FullSettle,
Solver() and Solverl to these puzzles (the graph for Solver! being the same
as that from Fig. 8a). Note that between 40 % and 60 % of black pixels,
the behaviour of the three algorithms clearly differs, where indeed Solveri!
performs best.

For small and large black percentages nearly all puzzles are solvable, in some
cases leaving small switching components. Fig. 9 shows, for each size s in
{1,2,3,...,50}, the average number of unsolved pixels for randomly generated
square s X s Nonograms, all with 50 % black pixels. The results are averaged
over 100 runs for each graph point. The smooth curve in Fig. 9a depicts the
total number of pixels, i.e., s2. Fig. 9b shows percentages.

900 T vmeiH\ T T 900

500 -

400 |

unsolved pixels
unsolved pixels

300 - 4 300 -

200 - 4 200 -

100 \{\HM ! 100 -
0 . . . o

. . . . . .
o 10 20 30 40 50 60 70 o 10 20 30 40 50 60 70
percentage black percentage black

Fig. 8. a) Average number of unsolved pixels for randomly generated 30 x 30 puzzles,
for a varying percentage of black pixels, when using Solver!; error bars indicate the
standard deviation. b) As a), for FullSettle (top graph), Solver0 (middle graph) and
Solver1 (bottom graph), without standard deviation

Fig. 10 depicts, for each size s in {10,11,12,...,50}, the average percentage
of unsolved pixels over 20 runs, for randomly generated square s X s puzzles,
where the percentage of black pixels ranges from 40 % to 60 %. This percentage
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Fig. 9. a) Average number of unsolved pixels for randomly generated puzzles of
different size, with a fixed percentage of 50 % black pixels; error bars indicate the

standard deviation. b) As a), but now showing these values as percentage of the
total number of pixels

range has been chosen to highlight the transition from completely unsolvable
puzzles to largely solvable ones (cf. also Fig. 8b). Here, we compare the results
for the less powerful FullSettle solver that only uses the information from
single lines (Fig. 10a) with Solver! (Fig. 10b). Even though the general shape
of both graphs is similar, it is clear that the 2-SAT approach employed by
Solver] results in a significantly larger number of solved pixels.

unsolved pixels (%) unsolved pixels (%)

Fig. 10. a) Average percentage of unsolved pixels, for randomly generated puzzles
of different size and black percentage, for FullSettle. b) Idem, for Solverl

7.2 hv-conver images

The class of hv-conver images forms an interesting test case for Nonogram
solvers. For such images, the Nonogram problem is identical to the problem of
reconstructing hv-convex images from given linesums, which has been studied
extensively in the Discrete Tomography literature.

The framework for generating certain discrete images using uniform distribu-
tions proposed in [20] was utilized to generate a set of hv-convex test images.
In preliminary experiments, it was found that if the test images are sampled
from the set of all hv-convex images, they typically contain a large number
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components 1 2 3 4 avg. time

size (s)
10x10 1.53 4.10 | 13.57 | 36.30 0.03
2020 0.72 2.13 7.15 | 16.40 0.1
30%30 0.35 2.53 4.63 9.81 0.4
40x40 0.32 1.23 4.06 5.87 1.5
5050 0.29 1.29 2.79 5.77 2.7
60x60 0.46 1.50 2.42 4.81 7.1
70x70 0.27 1.29 2.88 3.68 15.5
80x 80 0.56 0.81 1.74 3.49 25.4

Table 1
Reconstruction results for the Solver! algorithm for the dataset of hv-convex images.
For each test case, the average number of unknown pixels is shown.

of very small hv-convex components. Such Nonograms often have a very high
degree of non-uniqueness, which makes them unattractive as test images for
our algorithms. We therefore restricted the test set to hv-convex images that
have a fixed number of components, ranging from 1 up to 4. We only consid-
ered images that contain at least one black pixel in each row and column. For
each number of components, and for sizes ranging from 10x10 up to 80x80,
a set of 100 images was generated, sampled uniformly from the collection of
all hv-convex images having that size and number of components.

Table 1 shows the average number of unknown pixels left by the Solveri
algorithm for each test case. The rightmost column shows the average running
time in seconds over all test cases of each size. We can observe two general
patterns in the reconstruction results. Firstly, the number of unknown pixels
increases with the number of components in the image. Secondly, the number
of unknown pixels generally decreases with the image size.

As the number of components increases, the number of solutions of the Nono-
gram will typically also increase. In fact, for the limiting case where the num-
ber of components equals the number of rows (and columns), any permutation
matrix will be a solution. As our algorithm will only determine the value of
pixels that have the same value in all solutions, this non-uniqueness directly
leads to unknown pixels in the reconstruction. A second explanation for the
increase of unknown pixels with the number of components, is that the average
number of black pixels on each line will decrease as the number of components
increases. Long segments of 1’s are very useful in solving Nonograms, as it is
usually possible to directly determine a subset of pixels that must be 1 in
any solution. An example of the non-uniqueness problem is shown in Fig. 11a.
The hv-convex component in the top-left corner cannot be determined, even
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(a) Nonogram that was not (b) Nonogram that was solved
solved completely completely

Fig. 11. Two 70x70 Nonograms from the dataset of hv-convex images.

though there is a large number of 2-SAT relations in that region. Further
inspection reveals that there are in fact two solutions for this region, shown
in Fig. 12. In such cases, combining our reasoning framework with a simple
branching algorithm would easily find both solutions. In cases where there is
no such non-uniqueness, we found that our reasoning approach is nearly al-
ways capable of completely solving the Nonogram. An example image of size
70x70 consisting of four hv-convex components that is solved completely, is
shown in Fig. 11b.

Even though the number of unknown pixels generally decreases with the size
of the image, the columns of Table 1 are not strictly decreasing, because of
outliers. For example, the 70 x 70 image in Fig. 11a with 3 components, leads
to 62 unknowns with a contribution of 0.62 to the table value.

The running time clearly increases more than linearly with the number of
pixels in the image. Still, rather large Nonograms containing thousands of
unknowns can be solved within one minute.

112]3]3]3]3]6]5]5]6

-
S
'S
—

(a) First solution (b) Second solution

Fig. 12. Two hv-convex images corresponding to the Nonogram description in the
top-left corner of the larger hv-convex Nonogram in Fig. 11.
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7.8 Small Nonograms

Consider Nonogram descriptions of size n x n for integer n > 1. If we start
with any of the 2" possible positions, say S, we can see whether FullSettle is
capable of solving the corresponding puzzle, i.e., retrieving S; in this case the
puzzle is clearly uniquely solvable. We can also verify whether the stronger
Solverl can solve the puzzle. For the case n = 5, we have reconstructed all
possible Nonograms using both solvers. Fig. 13 shows the number of positions
leaving u unknowns, for all 2°° = 225 = 33,554,432 possible positions, for
these two solvers, where u > 5. The dashed line is for Solver!, the solid line
for FullSettle. Note that v = 1,2,3,5 cannot occur, as observed before. For
u = 0, i.e., the uniquely solvable situations, we have 24,976,511 (FullSettle)
and 25,309,575 (Solverl) positions, respectively. For u = 4, these numbers
are 4,363,030 and 4,623,570, respectively. These cases amount to 87%, resp.
89%, of all positions. Note that in general (among others) the situations with
exactly one black pixel in every line give rise to puzzles with a maximal value

for u, i.e., u = n?.

1.4e+06

1.2e+06 |-

1e+06

800000

600000

number of positions

400000 |

200000

| | | | | P s
6 8 10 12 14 16 18 20 22 24 26
unknown pixels

0

Fig. 13. Number of positions for 5 x 5 Nonograms with a given number of unknowns
after solving, for two different solvers: FullSettle (solid line) and Solver! (dashed
line)

Even if a Nonogram does have a unique solution, our approach of combining
2-SAT rules from several relaxed problems may not capture the full set of con-
straints present in the Nonogram and, as a consequence, get stuck prematurely
without being able to make any further deductions. This can even occur for
very small Nonograms, as demonstrated by the example in Fig. 14. Here the
six white pixels are easily inferred, while all other pixels (colored grey) are still
undecided. In this case, even Solver! cannot make any further progress, while
one can still infer that the rightmost pixel in the third row must be white. Of
course, such small examples could easily be solved by a branching algorithm.
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Fig. 14. Partially solved 5 x 5 Nonogram, where the fact that pixel x must be white
(0) is hard to infer. Note that the grey pixels are still undecided.

8 Discussion and Conclusions

The general Nonogram problem is known to be NP-hard. However, it appears
that in practice many instances can be solved quickly. We presented a general
framework for solving Nonograms. By combining several relaxations, that can
each be solved in polynomial time, a solution of the Nonogram is computed
iteratively. The different solution methods are combined using a 2-SAT formu-
lation. We demonstrated that this approach can solve a variety of interesting
Nonograms. More importantly, the algorithm generates a logical proof for all
pixels that are decided. Even if the puzzle cannot be solved completely, it may
still be possible to decide the value of a substantial part of the pixels. The
proposed method does not have to start from scratch: if prior knowledge is
available on the value of certain pixels, it can be used to deduce the value of
the remaining ones.

The approach is closely related to the reasoning of human puzzlers, in partic-
ular for puzzles of the simple type. Even for more complex instances, where
information from several lines is combined, our framework yields an intuitive
deduction. In this way, the method allows for determining a difficulty level.

Alternatively, as mentioned in the Introduction, Nonograms can be consid-
ered as instances of general CSP problems. This approach was, e.g., explored
in [21,22], where SAT solvers are employed. Note that a Nonogram puzzle
is first translated into a (large) CSP, which is further translated into a SAT
problem, and finally solved by a SAT solver. For instance, for the problem
from Fig. 7, a SAT problem with 20,548 variables and 31,499 clauses is built.
Solution times are comparable with our approach. However, apart from but
also caused by the large intermediate problem size, the solution does not give
clear clues concerning the deduction, because of the translation steps involved.

Our reasoning framework can be considered as a CSP solver tailored for the
specific problem category, which works directly in the original problem do-
main, without any translation steps involved. In particular for puzzles of the
simple type, where it is not necessary to harvest 2-SAT expressions and only
the dynamic programming approach from Section 3.1 is utilized, huge Nono-
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grams can be solved quickly without the need to generate large numbers of
constraints as required by a standard CSP formulation.

The class of Nonograms that can be solved effectively using our approach
includes the simple puzzles that can be found in puzzle books, but also includes
random images and hv-convex images, which can often not be solved by simple
logic reasoning, considering one line at a time. For the simple puzzles the
method is extremely fast, even if the puzzles are very large.

Our framework is quite general. For example, as indicated in Section 2, the
concept of a description can be generalized in a straightforward manner. In
future work, we intend to study several such generalizations.
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