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Abstract

Segmentation is an important step to obtain quantitative information from to-
mographic data sets. However, it is usually not possible to obtain an accurate seg-
mentation based on a single, global threshold. Instead, local thresholding schemes
can be applied that use a varying threshold. Selecting the best local thresholds is
not a straightforward task, as local image features often do not provide sufficient
information for choosing a proper threshold.

Recently, the concept of projection distance was proposed by the authors as a new
criterion for evaluating the quality of a tomogram segmentation [1]. In this paper,
we describe how Projection Distance Minimization (PDM) can be used to select
local thresholds, based on the available projection data from which the tomogram
was initially computed.

The results of several experiments are presented in which our local thresholding
approach is compared with alternative thresholding methods. These results demon-
strate that the local thresholding approach yields segmentations that are signifi-
cantly more accurate compared to previously published methods, in particular when
the initial reconstruction contains artifacts.
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1 Introduction

Fig. 1. Reconstructed
slice of a mouse femur.

Tomography is a powerful technique for three-
dimensional imaging of physical objects, without
the need to take the object apart. Projection im-
ages of the object are acquired along a range of an-
gles, while rotating around the object. An image
of the object (a tomogram) is then reconstructed
from the series of projection images. Besides its
well-known applications in medical imaging, to-
mography is also an important tool in materials
science, microbiology and in industrial applica-
tions. In this paper, we focus on tomography of
objects that consist of a single material (or tissue,
in the medical case). An example of such an ob-
ject can be seen in Fig. 1, which shows a reconstructed slice of a mouse femur,
where the trabecular bone has a rather complex morphology. Such images
are commonly used in biomedical bone research [2–5]. Even though the bone
density is not perfectly constant, it can still be approximated by a constant
density fairly well. An example of an industrial application is the reconstruc-
tion of raw diamonds from X-ray projections [6]. If the diamond does not
contain any impurities, it consists of a single material of constant density. In
materials science, electron tomography is used to study the morphology of
homogeneous nanoparticles [7,8].

Tomographic reconstructions, which are generally gray-scale images, are of-
ten segmented as to extract quantitative information, such as the shape or
volume of image objects. Such segmentations are usually performed by global
or local thresholding [2–5,7,8]. However, the process of threshold selection is
often somewhat arbitrary. A variety of classical algorithms exists for selecting
“optimal” thresholds with respect to various optimality measures [9]. Global
thresholds are typically selected from the histogram of the image [10–13].

To our knowledge, all previously proposed thresholding methods only use the
tomographic reconstruction to select the threshold, while discarding the in-
formation contained in the projection data. A reconstructed image, however,
generally suffers from various reconstruction artifacts. In materials sciences,
for example, where the projection images are acquired using an electron micro-
scope, it is usually not possible to sample the full range of projection angles,
which leads to so-called missing wedge artifacts in the reconstruction. Also, if
the projection of the object falls outside the detector, the reconstruction will
suffer from truncation artifacts. To reduce the impact of these artefacts in the
selection of the thresholds, Batenburg and Sijbers proposed a new approach
for global threshold selection that makes use of the available tomographic pro-
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jection data [14,1]. By reprojecting the segmented volume, the norm of the
difference between the projections of the current segmentation and the mea-
sured projection data, called the projection distance, can be computed. This
yields a quantitative measure of the quality of the segmentation. By minimi-
zing the difference between the computed and measured projections (Projec-
tion Distance Minimization, or PDM ), an optimal threshold can be computed.
It was demonstrated in [1], that PDM leads to a significant improvement in
segmentation accuracy, compared to histogram-based methods.

However, the capabilities of global threshold selection methods are limited
by the maximum accuracy that can be obtained using global thresholding. If
the tomogram exhibits variations in the intensity of certain image features,
global thresholding can never lead to an accurate segmentation. For example,
thick structures typically tend to be brighter than very thin structures in a
tomogram, even if both structures consist of the same material in the original
object. To account for local image variations, local thresholding methods were
proposed. Abutaleb developed a local thresholding method based on the joint
(2D) entropy of a pixel neighborhood [15,16]. White and Rohrer developed a
nonlinear, local thresholding method in which the gray value of the pixel is
compared with the average of the gray values in a small neighborhood [17].
Similarly, the local thresholding method of Niblack adapts the local threshold
according to the local mean and standard deviation over a sliding window
[18]. Eikvil et al. developed a thresholding method in which a large window,
with a small window positioned at its center, is moved across the image, and
each pixel inside the small window is labeled on the basis of the clustering of
the pixels inside the large window [19]. Blayvas et al. proposed an adaptive
binarization method where the threshold is determined by interpolation of the
image gray levels at points where the image gradient is high [20].

These adaptive thresholding methods that use a varying threshold for differ-
ent regions of the image lead to better results than global thresholding in
some cases. However, they suffer from the same drawback as global threshold-
ing algorithms in the sense that no objective criterion for the segmentation
quality is available if only the information from the reconstructed image is
used for segmentation. Moreover, in cases where reconstruction artifacts are
not negligible, most adaptive thresholding methods perform even worse than
global thresholding methods since adaptive thresholding techniques ar more
vulnerable to local variations originating from these artifacts.

In this paper, we propose an extension of the projection-based threshold se-
lection method from [1], that uses a locally varying threshold field, instead of
a single global threshold. The same optimization criterion, PDM, is now used
to find an “optimal” threshold field. The threshold field is represented on a
square grid that is coarser than the pixel grid of the tomogram. The thresholds
for pixels that do not coincide with grid points in the coarse grid are computed
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by bilinear interpolation. Computing the threshold field for which the projec-
tion distance is minimal appears to be computationally hard. We describe how
a minimum of the projection distance can be computed efficiently for the case
that the threshold is only allowed to vary for a single grid point in the coarse
grid, while keeping the threshold values fixed for the remaining grid points.
By iterating this procedure several times for all coarse grid points, a local
minimum of the projection distance is reached. To avoid early convergence
to a local minimum that is far away from the global minimum, a stochastic
algorithm is proposed which is capable of escaping from local minima before
finally converging.

This paper is structured as follows. In Section 2, the local thresholding prob-
lem for tomograms is introduced and our local thresholding approach based on
PDM is described. Simulation experiments have been performed, comparing
the result of local thresholding based on PDM with alternative local thresh-
olding methods and with global thresholding based on PDM [1]. A description
of these experiments and their results is given in Section 3. Section 4 concludes
the paper.

2 Method

In what follows, we will assume that a reconstruction, containing noise and
possible reconstruction artifacts, from an originally binary image is to be seg-
mented. For simplicity reasons, we will restrict ourselves to two-dimensional
tomograms. All concepts can be generalized to a 3D setting in a straightfor-
ward manner.

2.1 Tomography setting

The grey value image that we want to segment is a tomographic reconstruction
of some unknown homogenous object, which can be represented by a function
f : R2 → {0, 1}. We assume that the support of f (i.e., the set {(x, y) ∈ R2 :
f(x, y) 6= 0}) is included in a circle having radius R. Projections are measured
along lines lθ,t = {(x, y) ∈ R2 : x cos θ + y sin θ = t} where θ represents the
angle between the line and the y-axis and t represents the coordinate along
the projection axis; see Fig. 2.

The projection function Pθ : R→ R of f for projection angle θ is defined as

Pθ,f (t) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − t) dx dy. (1)

4



with δ(.) denoting the Dirac delta function. The function Pθ,f (t) is often called
the Radon transform of f . Usually, the line projections Pθ,f (t) cannot be mea-
sured as continuous functions. Instead, the line projections are measured in a
discrete set of t-values as well in a discrete set of projection angles θ.

Fig. 2. Basic setting of trans-
mission tomography

Suppose now that a tomogram v is recon-
structed from the discrete set of projections.
Usually, v is represented on a rectangular grid
of width w and height h. Put n = wh. In what
follows, we will assume that v is represented
by a vector v ∈ Rn, where the entries of v
correspond to the pixels of the tomogram.

2.2 Projection Distance Minimization

As mentioned above, the grey value image
v ∈ Rn that we want to segment is a to-
mographic reconstruction of some physical ob-
ject, of which projections were acquired using
a tomographic scanner. Projections are mea-
sured as sets of detector values for various an-
gles, rotating around the object. Let m denote the total number of measured
detector values (for all angles) and let p ∈ Rm denote the measured data.
The physical projection process in tomography can be modeled as a linear
operator W that maps the image v (representing the object) to the vector p
of measured data:

Wv = p. (2)

For parallel projection data, the operator W is a discretized version of the
well-known Radon transform. We represent W by an m×n matrix.

For all experiments in Section 3, we used a matrix W for which each row
corresponds to a two-dimensional strip through the object, bounded by the
left and right side of a detector cell. The entry wij equals the intersection area
between the projected strip i and image pixel j.

From this point on, we assume that an image v has been computed that
approximately satisfies Eq. (2). This image now has to be segmented using a
locally varying threshold.

In this paper, we focus on the segmentation of objects that consist of a sin-
gle material, so there are only two segmentation classes, for the object and
the background. We assume that the material is homogenous, i.e., a perfect
reconstruction of the original object should contain only two grey levels. How-
ever, most common tomographic reconstruction algorithms yield an image
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that consists of a range of grey levels, instead of a binary image, even if the
object in the scanner is perfectly homogeneous. This becomes particularly no-
ticeable if a reconstruction is computed from relatively few projections or if
certain parts of the projection data are missing (e.g., truncated projections,
where the object is larger than the field of view of the scanner). In such cases,
the reconstruction problem is severely underdetermined, and many grey level
images can have the same projections. Typically, continuous reconstruction
algorithms do not use the prior knowledge about the discrete grey levels, but
rather compute an image that contains many grey levels.

Even if prior knowledge about the two grey levels is not used in the recon-
struction algorithm, this knowledge can still be exploited by the segmentation
algorithm used after reconstruction. Our segmentation approach assigns a sin-
gle real-valued grey value to both segmentation classes. The projections of the
segmented image are then computed and compared to the measured projec-
tion data. The difference between the computed and measured projections
provides a measure for the quality of the segmentation.

Although we assume that the original object consists of a single material, we
do not assume prior knowledge of the actual grey levels of the background
and the interior. These grey levels are treated as variables in the segmentation
problem. We denote the grey level for the background and the interior of the
object by ρ1 and ρ2, respectively. Put ρ = (ρ1 ρ2)

T .

We first define a segmentation problem where the local threshold can vary
independently for each of the image pixels. The set of local thresholds for all
pixels is represented by a vector τ ∈ Rn. We will refer to this vector as the
threshold field.

For any ρ ∈ R2, τ ∈ R, define the threshold function rρ,τ : R→ {ρ1, ρ2} by

rρ,t(v) =

 ρ1 (v ≤ τ)

ρ2 (v > τ)
. (3)

We also define the threshold function rρ,τ of an entire image v ∈ Rn, which
yields a vector containing the thresholded pixel values:

rρ,τ (v) = (rρ,τ1(v1) . . . rρ,τn(vn))T . (4)

For grey levels ρ ∈ R2 and a threshold field τ ∈ Rn, define the projection
difference d(ρ, τ ) by

d(ρ, τ ) = ||Wrρ,τ (v)− p||2. (5)
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The projection difference is used as the optimization criterion for finding the
optimal threshold parameters. From this point, we will refer to this concept
as Projection Distance Minimization (PDM).

Problem 1 Let W ∈ Rm×n be a given projection matrix, let v ∈ Rn be a
grey level image and let p ∈ Rm be a vector of measured projection data. Find
τ ∈ Rn and ρ ∈ R2, such that d(ρ, τ ) is minimal.

In Problem 1, the threshold for each pixel is allowed to vary independently.
This means that the resulting segmentation class for each pixel i (either back-
ground or interior) is independent of the grey value vi, as the threshold τi
can always be chosen either smaller or larger than vi. In fact, this threshold
selection problem is equivalent to a reconstruction problem from Discrete To-
mography, where the main objective is to reconstruct a binary image from
its projections [21]. Although solving this discrete tomography problem can
lead to very accurate segmentation results, even if few projections are used,
the problem is computationally very hard (see, e.g., [22]). In cases where it
is relatively easy to acquire more projection images, continuous tomography
followed by thresholding (either local or global) is often preferable.

At the other end of the granularity spectrum is the case where all entries of τ
must have the same value, i.e., global thresholding. This approach was already
proposed in [1]. For binary images, it was demonstrated that only the global
threshold τ has to be optimized, as the optimal grey values ρ1 and ρ2 can be
computed directly once the threshold τ has been set.

2.3 Projection-based local thresholding

In this paper, we focus on a segmentation problem that can be considered as an
“intermediate” problem, between discrete tomography and global thresholding
based on PDM. Instead of allowing the threshold field τ to vary independently
for each pixel, the value of the threshold is specified on a coarse grid, which is
superimposed on the pixel grid of the image v. The threshold value for each
pixel of vi is then computed by bilinear interpolation from the set threshold
values. In this way, the local thresholds will vary only gradually, while the
threshold field can still vary significantly throughout the image. The choice
for bilinear interpolation is mainly motivated by computational convenience.
More sophisticated interpolation schemes (i.e., bicubic interpolation) may lead
to better results. However, such schemes typically yield more variables in the
resulting optimization problem.

Fig. 3 illustrates how the coarse grid is superimposed onto the finer pixel grid
of the image v. Note that only a small portion of the image is depicted.
As an example, suppose that the thresholds are given for the four points
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indicated in the figure (with corresponding threshold values τ1, . . . , τ4. Let the
(x, y)-coordinates of these four points be given by (0, 0), (1, 0), (1, 1) and (0, 1),
respectively. We refer to the four squares between (0, 0) and its surrounding
coarse grid points as the quadrants surrounding (0, 0). For any pixel p with
center (xp, yp) in the topright quadrant, the threshold τp is defined by bilinear
interpolation:

τp = (1− xp)(1− yp)τ1 + xp(1− yp)τ2 + (1− xp)ypτ4 + xpypτ3 . (6)

Fig. 3. A coarse grid
is superimposed on the
finer pixel grid of the re-
constructed image.

Let k be the total number of grid points on the
coarse interpolation grid. We refer to the vector of
thresholds for these points by τ ′ ∈ Rk. The map-
ping I : Rk → Rn assigns the corresponding inter-
polated threshold to each pixel in the fine grid:

τ = I(τ ′) (7)

Using these definitions, we can now formulate the
central problem of this paper:

Problem 2 Let W ∈ Rm×n be a given projection
matrix, let v ∈ Rn be a grey scale image and let
p ∈ Rm be a vector of measured projection data.
Find τ ′ ∈ Rk and ρ ∈ R2, such that d(ρ, I(τ ′)) is
minimal.

We will now describe how a constrained version of Problem 2 can be solved
efficiently, where only one of the entries of τ ′ is allowed to vary, while the
remaining entries are kept fixed. Again, consider the example from Fig. 3.
Suppose that all thresholds on the coarse grid are kept fixed, except for τ1.
The only pixels for which the thresholds are affected by a change of τ1 are
those in the four quadrants surrounding τ1, as shown in the figure.

Consider a pixel p with grey level vp and center (xp, yp) in the topright quad-
rant. Then, taking Eq. (6) into account, the inequality vp ≥ τp is equivalent
to

g(p) ≥ τp (8)

with

g(p) :=
vp − xp(1− yp)τ2 − (1− xp)ypτ4 − xpypτ3

(1− xp)(1− yp)
(9)

The g(p) term will be called the relative grey level of p with respect to τ1.
This term is different for each of the quadrants surrounding the coarse grid
point. Note that g(p) indicates the value of τ1 at which the segmentation
class of p will change, while keeping the other thresholds in the coarse grid
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fixed. Therefore, the task of finding a solution of Problem 2 in case only τ1
is allowed to vary, can be considered as a variant of the global thresholding
problem from [1]. In this global thresholding problem, only pixels in the four
quadrants surrounding the coarse grid point have to be considered (as the
remaining pixels are unaffected by a change of this threshold) and the relative
grey level of each surrounding pixel is used instead of the grey levels from v.

In [1], an efficient algorithm was presented for finding the optimal global
threshold w.r.t. the PDM criterion. The basic idea is as follows. First, the pix-
els are sorted by their grey level. Starting from the lowest possible threshold,
the threshold is gradually increased, while moving pixels from one segmen-
tation class to the other. Each time a pixel is moved, both the optimal grey
levels and the corresponding projection distance can be computed efficiently,
by performing a small update operation, thereby avoiding a computationally
expensive recomputation. For the sake of completeness, we will briefly revisit
the approach from [1].

We first describe how the optimal grey levels can be computed for a given
segmentation. Let τ ′ ∈ Rk be the current local threshold field. For j = 1, . . . , n,
let s(j) ∈ {1, 2} denote the segmentation class of pixel j. Define A = (ait) ∈
Rm×2 by

ait =
∑

j: s(j)=t

wij . (10)

Then, the mean squared distance between the projected segmentation Aρ
and the measured projection p, that is d(ρ, I(τ ′))2 = ‖Aρ− p‖2, is mini-
mized with respect to ρ. Classically, the solution of this least squares sense
minimization problem is found by solving

Q̄ρ = c̄ (11)

for ρ, with Q̄ = ATA and c̄ = ATp (see e.g., Chapter 5 of [23]).

To compute the optimal value of a coarse threshold τ ′i , the pixels in the four
quadrants surrounding grid point i are first sorted by their relative grey level
w.r.t. τ ′i . The threshold τ ′i is then gradually changed, while at each change one
or more pixels move from one threshold class to the other class.

Let ai denote the ith row vector of A. Put ci = piai and Qi = aia
T
i . Suppose

that we have computed c̄ and Q̄ for the current segmentation. We now change
the segmentation class s(j) of pixel j. The only rows of A that are affected
by this transition are the rows i for which wij 6= 0. This means that the new
vector c̄′ and matrix Q̄′ can be computed by the following updates:

c̄′ = c̄+
∑

i:wij 6=0

(c′i − ci) (12)
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and

Q̄′ = Q̄+
∑

i:wij 6=0

(Q′i −Qi) . (13)

This update step is independent of the algorithm that is used to compute
the segmentation, so it can be used in our new local threshold method with-
out much modification. Fig. 4 shows the basic steps for solving the variant
of Problem 2 where only one of the entries of τ ′ is allowed to vary. Using
the fast update operation, the time complexity of minimizing the projection
distance for a single threshold in the coarse grid is reduced to the complexity
of computing the forward projection for the four quadrants in all projection
directions just once [1].

Computing a global minimum of d(ρ, I(τ ′)) as stated in Problem 2 appears to
be computationally very hard. In fact, if the coarse grid is taken to have the
same resolution as the pixel grid of the reconstructed image, solving Problem
2 is equivalent to solving a variant of the discrete tomography problem. For
certain weight matrices W , this problem is known to be NP-hard [22].

In [24], the authors proposed a simple iterative algorithm that is guaranteed
to converge to a local minimum of the projection distance. In each iteration,
a random grid point on the coarse grid is selected. The optimal threshold for
this grid point is computed, while keeping the thresholds in all other coarse
grid points fixed. The algorithm terminates if no further improvement in the
projection distance is obtained after a certain number of iterations. This al-
gorithm was compared to global thresholding based on PDM [1] and the local
segmentation algorithm of Niblack [18]. It was shown that the local thresh-
olding based on PDM yields more accurate segmentations than the two alter-
native methods. A disadvantage of the algorithm proposed in [1], is that the
resulting segmentation depends quite heavily on the random order in which
the coarse grid points are visited. Without the possibility to continue after
reaching a local minimum of the projection distance measure, it may happen
that the algorithm gets stuck in a local minimum prematurely, far from the
global minimum. To alleviate this problem, we now propose a stochastic al-
gorithm which has the ability to leave local minima during the optimization
procedure. The algorithm is somewhat similar to simulated annealing: when
a threshold in the coarse grid is visited, the optimal value for that threshold
is determined. Instead of setting the threshold to that value, a random value
sampled uniformly from the interval [−r, r] with r > 0 is added to this optimal
value. As the iteration counter increases, the parameter r is made progressively
smaller, until it finally reaches 0. From that point on, the algorithm behaves
exactly the same as the original algorithm from [1]. Fig. 5 shows the algo-
rithmic steps of our stochastic local thresholding method. For all experiments
in Section 3, we used U = 35 and C = 768 as algorithm parameters, which
were determined by trial experiments. In experiments we observed that the
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Let τ ′ ∈ Rk be a given vector of thresholds for the coarse grid points
and assume that Q̄ and c̄ have already been computed [1];

Make a list L containing the index j of all pixels in the four quadrants
surrounding the coarse grid point i, sorted in ascending order of the
relative grey level g(j) w.r.t. i; Denote the size of this list by |L|;
Let u be the largest number with u ≤ |L| such that g(Lu) ≤ τ ′i ;

Let τ ′ ∈ Rk be a given vector of thresholds for the coarse grid points
and assume that Q̄ and c̄ have already been computed [1];

Set u′ := u; Q̄′ := Q̄; c̄′ := c̄;

while u > 1 do
begin

u := u− 1; τ ′i := g(Lu);
Move pixel Lu from the background class to the foreground class and
update c̄ and Q̄ accordingly;

Compute the minimizer ρ of d(ρ) for the current segmentation;

if a new minimum of the projection distance has been found
save the optimal threshold τ ′i ;

end Set u := u′; Q̄ := Q̄′; c̄ := c̄′;

while u < |L| do
begin

u := u+ 1; τ ′i := g(Lu);

Move pixel Lu from the foreground class to the background class and
update c̄ and Q̄ accordingly;

Compute the minimizer ρ of d(ρ) for the current segmentation;

if a new minimum of the projection distance has been found
save the optimal threshold τ ′i ;

end

Fig. 4. Basic steps for finding the optimal threshold in a given coarse grid point i,
while keeping the thresholds in all remaining coarse grid points fixed.

stochastic algorithm yields segmentations that are significantly more accurate
compared to the non-stochastic version. In addition, the stochastic algorithm
appears to be robust with respect to changes in the random seed, as will be
demonstrated in the next section.
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Compute the optimal global threshold τ , using the algorithm
described in [1];

Set τ ′i = τ for each point i = 1, . . . , k on the coarse grid;

for u := 1 to U do
begin

r := bτ(U − u)/Cc;
Generate a random permutation (σ1, . . . , σk) of (1, . . . , k);

for j := 1 to k do
begin

i := σj;

Compute the value τ̃ for which the optimal projection
difference d(ρ, I(τ ′)) is obtained by setting τ ′i = τ̃ ,
while keeping the values of the other thresholds fixed;

Set τ ′i := τ̃ + random(−r, r); (changing the local threshold field);

end
end

Fig. 5. Basic steps of the threshold selection algorithm. The variables U and C refer
to integer constants.

3 Results

Simulation experiments have been performed, starting from four phantom im-
ages of size 512 × 512: a vascular structure (referred to as ’vessel image’), a
femur image, a foam image, and a rice image, which are shown in Fig. 6(a)-
(d), respectively. For each experiment, simulated parallel beam projections
were computed using equally spaced projection angles. Based on the pro-
jection data, three types of reconstructions were computed using the SART
algorithm [25]: a full range reconstruction with 90 projections, an angle step
of 2 degrees, and 512 detector elements; a missing wedge reconstruction with
91 projections, an angle step of 1 degree, and 512 detector elements, and a
truncation reconstruction with 90 projections, an angle step of 2 degrees, and
450 detector elements. The resulting SART reconstructions for the femur and
rice phantom image are shown in Fig. 7.

In a first phase, the results of our proposed local PDM thresholding approach
were compared with global thresholding. For the global segmentation, we used
the PDM algorithm from [1], which computes a global minimum of the pro-
jection distance and which was proved to yield significantly better results
than conventional global thresholding techniques. The global PDM results are
shown in the second column of Fig. 10. Furthermore, the SART reconstruc-
tions were segmented using the best possible global threshold that minimizes
the number of different pixels between the segmented image and the original
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phantom image. This, of course, is only possible with simulation experiments
in which the original image is available.

Next, the SART reconstructions were segmented using previously proposed lo-
cal thresholding methods. A commonly applied adaptive thresholding method
was proposed by Niblack [18]; a method that is commonly used as a refer-
ence for performance evaluation of local thresholding methods. The Niblack
method adapts the local threshold according to the local mean and standard
deviation of a sliding window. The method depends on two parameters: the
width of the sliding window and the threshold weight of the standard devia-
tion. In practice, these Niblack parameters cannot be optimized because of the
lack of “ground truth”. In our simulation experiments, in which the “ground
truth” was available, we selected the window width and the weight parameter
such that the difference between the Niblack segmentation result and the orig-
inal was minimal. Furthermore, we applied to the SART reconstructions the
Minimax local thresholding method, which was recently proposed by Ray and
Saha [26]. The method is fully automatic and is based on the minimization
of variational energy. Surprisingly, the local thresholding methods performed
significantly worse than the global thresholding methods with respect to the
pixel error (the number of different pixels between the original image and the
segmented result). The reason for this is that local thresholding methods that
are solely based on the reconstruction tend to adapt to the reconstruction arte-
facts in the image, which causes the pixel error to increase. As an example,
the Niblack and Minimax thresholding result of the vessel reconstruction are
shown in Fig. 8, along with the thresholding result of the global PDM method.
It is clear that for this example, the global thresholding outperforms the local
thresholding methods. Similar observations were made for all other simulation
experiments (visual as well as quantitative evaluation). Hence, global thresh-
olding seems to outperform local thresholding for tomographic reconstructions
of binary images. Therefore, in the remainder of this section, we will only show
the results of global thresholding and our proposed local PDM method.

Finally, the SART reconstructions shown in the first column of Fig. 10 were
segmented using the local PDM thresholding scheme as proposed in this paper.
The threshold fields generated by the local PDM method were formed by
bilinear interpolation from the threshold values τ ′ on the coarse grid.

For all local PDM threshold experiments, a spacing of 16 pixels between con-
secutive coarse grid points was used to compute the threshold field. The op-
timal grid spacing can vary depending on image features, number of projec-
tions, etc. The spacing of 16 pixels resulted in good reconstruction results
over the entire range of experiments. Fig. 9 shows the result of applying our
local thresholding approach for the rice phantom (missing wedge case), using
a spacing of 4, 16, and 64 pixels, respectively. It can be observed that if the
spacing is too small, a form of overfitting occurs, while a large spacing does
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not allow enough freedom in the threshold field to reduce the missing wedge
artifacts.

Table 1 shows the pixel error for the global PDM method, for the method
in which the best global threshold was set, and for the local PDM method.
The pixel error was computed by comparing the number of different pixels
between the thresholded image and the original phantom. On a Pentium IV
PC running at 3GHz, the running time of each test was around 30s, consisting
of 5s for computing the optimal global threshold and 25s for computing the
local threshold field. From Table 1, it is clear that the proposed local PDM
thresholding method outperforms the global (and hence also existing local)
thresholding methods in terms of the total pixel error.

The thresholding results are also visually shown in Fig. 10. For each phan-
tom image, the SART reconstructions (column 1), the results from the global
PDM thresholding method (column 2) and the results from the local PDM
thresholding method (column 3) are shown. For the latter method, also the
resulting thresholding field is shown (column 4). Note that the deviation from
the threshold field mean is a measure for the difference between the global
and local PDM thresholding result.

Fig. 11 shows the convergence of our local PDM algorithm for the rice phan-
tom, for the missing wedge and truncated datasets. In each graph, both the
projection distance and the pixel error w.r.t. the phantom are plotted. Note
that the iteration count along the horizontal axis refers to the number of lo-
cal updates performed, for a single threshold in the coarse grid. The graphs
show that the projection distance and the phantom error are in fairly good
correspondence, which makes the projection distance a suitable criterion for
determining the quality of a segmentation.

For practical usefulness of our approach, it is important that the method
also works if the scanned object does not correspond perfectly with the bi-
nary model. For example, the bone in Fig. 1 is not perfectly homogeneous. We
performed simulation experiments for the rice phantom, where i.i.d. additive
Gaussian noise was applied to each pixel of the phantom before computing the
projection data. The resulting sinogram was then reconstructed using SART
and subsequently segmented. Fig. 12 shows the resulting phantoms for three
different noise levels, where the noise level (i.e., the standard deviation of the
Gaussian distribution) is indicated as a fraction of the maximum grey level in
the phantom. Fig. 12 shows the number of misclassified pixels in the segmen-
tation for our local PDM approach and for the best possible global threshold,
as a function of the noise level. For noise levels up to 15%, our local threshold
algorithm yields more accurate segmentations than global thresholding. For
higher noise levels, it appears that some form of overfitting occurs in the local
threshold approach, so that using a single global threshold becomes preferable.
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4 Conclusion

Local grey value thresholding is a common segmentation procedure. However,
finding the optimal grey level thresholds is far from trivial. Many procedures
have been proposed to select the thresholds based on various image features.
Unfortunately, these methods suffer from a clear objective threshold selection
criterion.

In our paper, we have presented an innovative approach, called local PDM
(Projection Distance Minimization), to find the optimal local threshold grey
levels by exploiting the available projection data. Reprojection of the seg-
mented image and subsequent comparison with the measured projection data,
yields an objective criterion for the quality of a segmentation. Our approach
aims at minimizing the projection distance.

The experimental results show that the proposed local PDM method results
in a small difference between the original object and the reconstruction. Simu-
lation experiments were performed for four phantom images, simulating three
cases: a full range of projections, a limited range of projections (missing wedge)
and truncated projection data. In all test cases, PDM clearly leads to signif-
icantly better segmentation results than global thresholding based on PDM
and much better results than alternative local threshold methods that only
make use of information in the reconstructed image itself, while not using the
available projection data.

Acknowledgement

This work was financially supported by the F.W.O. (Fund for Scientific Re-
search - Flanders, Belgium)

References

[1] K. J. Batenburg, J. Sijbers, Automatic threshold selection for tomogram
segmentation by reprojection of the reconstructed image, in: Computer Analysis
of Images and Patterns, Vol. 4673 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2007, pp. 563–570.

[2] M. J. Eichler, C. H. Kim, R. Müller, X. E. Guo, Impact of thresholding
techniques on micro-CT image based computational models of trabecular bone,
in: ASME Advances in Bioengineering, Vol. 48, 2000, pp. 215–216.

[3] H. R. Buie, G. M. Campbell, R. J. Klinck, J. A. MacNeil, S. K. Boyd, Automatic
segmentation of cortical and trabecular compartments based on a dual threshold
technique for in vivo micro-CT bone analysis, Bone 41 (2007) 505–515.

15



[4] A. J. Burghardt, G. J. Kazakia, S. Majumdar, A local adaptive threshold
strategy for high resolution peripheral quantitative computed tomography of
trabecular bone, Annual Biomedical Engineering 35 (10) (2007) 1678–1686.

[5] K. A. Davis, A. J. Burghardt, T. M. Link, S. Majumdar, The effects of
geometric and threshold definitions on cortical bone metrics assessed by in vivo
high-resolution peripheral quantitative computed tomography, Calcified tissue
international 81 (5) (2007) 364–371.

[6] K. J. Batenburg, A network flow algorithm for reconstructing binary images
from continuous X-rays, J. Math. Im. Vision 30 (3) (2008) 231–248.

[7] L. Cervera Gontard, R. E. Dunin-Borkowski, D. Ozkaya, T. Hyde, P. A. Midgley,
P. Ash, Crystal size and shape analysis of Pt nanoparticles in two and three
dimensions, Journal of Physics Conference Series 26 (2006) 367–370.

[8] D. Ozkaya, A threshold selection method from gray level histograms, Platinum
Metals Review 52 (1) (2008) 61–62.

[9] C. A. Glasbey, An analysis of histogram-based thresholding algorithms,
Graphical Models and Image Processing 55 (6) (1993) 532 – 537.

[10] T. W. Ridler, S. Calvard, Picture thresholding using an iterative selection
method, IEEE Transactions on Systems, Man, and Cybernetics 8 (1978) 630–
632.

[11] N. Otsu, A threshold selection method from gray level histograms, IEEE Trans.
Syst., Man, Cybern. 9 (1979) 62–66.

[12] A. Rosenfeld, P. Torre, Histogram concavity analysis as an aid in threshold
selection, IEEE Trans. Syst., Man, Cybern. 13 (1983) 231–235.

[13] J. Kapur, P. Sahoo, A. Wong, A new method for gray-level picture thresholding
using the entropy of the histogram, Comp Vision, Graph, and Image Proc 29 (3)
(1985) 273–285.

[14] K. J. Batenburg, J. Sijbers, Automatic multiple threshold scheme for
segmentation of tomograms, in: J. M. Pluim, Josien P. W.; Reinhardt (Ed.),
Proceedings of SPIE Medical Imaging, Vol. 6512, San Diego, CA, USA, 2007.

[15] A. S. Abutaleb, Automatic thresholding of grey-level pictures using two-
dimensional entropies, Pattern Recognition 47 (1989) 22–32.

[16] A. D. Brink, Thresholding of digital images using two-dimensional entropies,
Pattern Recognition 25 (1992) 803–808.

[17] J. M. White, G. D. Rohrer, Image thresholding for optical character recognition
and other applications requiring character image extraction, IBM Journal of
Research and Development 27 (4) (1983) 400–411.

[18] W. Niblack, An introduction to image processing, Englewood Cliffs, New York,
1986.

16



[19] L. Eikvil, T. Taxt, K. Moen, A fast adaptive method for binarization of
document images, in: Proceedings of the International Conference on Document
Analysis and Recognition, 1991, pp. 435–443.

[20] I. Blayvas, A. Bruckstein, R. Kimmel, Efficient computation of adaptive
threshold surfaces for image binarization, Pattern Recognition 39 (1) (2006)
89–101.

[21] G. T. Herman, A. Kuba (Eds.), Advances in Discrete Tomography and Its
Applications, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston,
2007.

[22] R. J. Gardner, P. Gritzmann, D. Prangenberg, On the computational
complexity of reconstructing lattice sets from their X-rays, Discrete Math. 202
(1999) 45–71.

[23] G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins
University Press, 1996.

[24] K. J. Batenburg, J. Sijbers, Selection of local thresholds for tomogram
segmentation by projection, in: Digital Geometry for Computer Imagery, Vol.
4992 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2008,
pp. 380–391.

[25] A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, Vol.
Algorithms for reconstruction with non-diffracting sources, IEEP Press, New
York, NY, 1988, 49-112.

[26] N. Ray, B. Saha, Edge sensitive variational image thresholding, in: IEEE
International conference on Image Processing, Vol. 6, 2007, pp. 37–40.

17



(a) Vessel (b) Femur (c) Foam (d) Rice

Fig. 6. Phantom images used in our simulation experiments: (a) vessel, (b) femur,
(c) foam, and (d) rice image.

(a) Original (b) Full range (c) Missing wedge (d) Truncated

(e) Original (f) Full range (g) Missing wedge (h) Truncated

Fig. 7. For the femur (row 1) and the rice image (row 2), the original image (column
1), the full projection range reconstruction (column 2), the missing wedge recon-
struction (column 3), and the reconstruction from truncated projections (column
4) are shown.

(a) SART (b) Niblack (c) Minimax (d) Global PDM

Fig. 8. Result of local thresholding using the Niblack (b) and Minimax (c) method
applied to the SART reconstruction in (a). For comparison, also the result of global
PDM thresholding (d) is shown.
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(a) 4 pixels spacing (b) 16 pixels spacing (c) 64 pixels spacing

Fig. 9. Results of local PDM for the rice phantom (missing wedge case) for three
different spacings of the coarse grid points.

(a) SART (b) Global PDM (c) Local PDM (d) Thresh field

(e) SART (f) Global PDM (g) Local PDM (h) Thresh field

(i) SART (j) Global PDM (k) Local PDM (`) Thresh field

Fig. 10. For the vessel (row 1, all projections), foam (row 2, truncated projections)
and rice (row 3, missing wedge) phantom image, the SART reconstruction (column
1), the result of the PDM global thresholding (column 2), the result of the PDM
local thresholding (column 3), and the PDM threshold field (column 4) are shown.
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(a) missing wedge (b) truncated

Fig. 11. Convergence graphs for our local thresholding algorithm for the rice phan-
tom, for the missing wedge and truncated datasets. The plots show both the pro-
jection distance and the pixel error w.r.t. the original phantom, as a function of the
iteration number.

Global PDM Best global Local PDM

error error error

missing wedge 23.666 19.341 18.210± 240

femur truncated 3.220 3.175 2.212± 6

full range 2.764 2.737 2.039± 4

missing wedge 12.113 11.089 9.491± 35

foam truncated 3.428 3.366 2.284± 11

full range 2.084 2.047 1.407± 4

missing wedge 12.799 12.694 11.950± 200

vessel truncated 2.794 2.652 1.716± 5

full range 1.521 1.502 949± 6

missing wedge 19.433 17.736 9.970± 220

rice truncated 856 854 396± 7

full range 482 476 247± 4

Table 1
Comparison of the global PDM method, the best global error and the local PDM
method for the femur, foam, vessel, and rice phantom images. For each phantom
image, a reconstruction with a missing wedge, with truncation, and with the full
angular range was thresholded, after which the number of different pixels with
respect to the original image was computed.
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Orig. image SART recon.

Fig. 12. Left: The rice phantom with noise on the original image (column 1) and the
corresponding SART reconstruction (column 2) for a noise level 0.1 (row 1) and 0.2
(row 2). Right: the thresholding error for the best global error and the local PDM
method.
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