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DART: A practical reconstruction algorithm
for discrete tomography

Kees Joost Batenburg and Jan Sijbers

Abstract In this paper, we present an iterative re-
construction algorithm for discrete tomography, called
DART (Discrete Algebraic Reconstruction Technique).
DART can be applied if the scanned object is known
to consist of only a few different compositions, each
corresponding to a constant grey value in the recon-
struction. Prior knowledge of the grey values for each
of the compositions is exploited to steer the current
reconstruction towards a reconstruction that contains
only these grey values.

Based on experiments with both simulated CT data
and experimental µCT data, it is shown that DART is
capable of computing more accurate reconstructions
from a small number of projection images, or from
a small angular range, than alternative methods. It is
also shown that DART can deal effectively with noisy
projection data and that the algorithm is robust with
respect to errors in the estimation of the grey values.

Index Terms—Discrete tomography; image reconstruc-
tion; segmentation; prior knowledge

EDICS categories: COI-TOM, TEC-FOR

I. INTRODUCTION

Tomography is an important technique for non-
invasive imaging with applications in medicine, indus-
try, and science. It is applicable in scenarios where
series of projection images of an object are available,
acquired for a range of angles. A reconstruction of the
object is subsequently computed from the projection
images by a reconstruction algorithm.

A range of reconstruction algorithms are available,
which differ in reconstruction accuracy, requirements
on the projection geometry, computational load, etc.
(see, e.g., [8], [15], [18], [22]). Classical Filtered
Backprojection (FBP) techniques are still commonly
used. Algebraic reconstruction methods, that are based
on modelling the reconstruction problem as a large
system of linear equations which is solved by iterative
methods, are gradually becoming more common in
tomography practice. Such algorithms can potentially
yield more accurate reconstructions in some cases, at
the expense of increased computation time.
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In many applications of tomography, it makes sense
to exploit available prior knowledge of the unknown
object. Incorporation of this knowledge in the recon-
struction algorithm can potentially result in a reduction
of the required number of projections, increased accu-
racy of the reconstruction, or an improved ability to
deal with noisy projection data.

The problem of reconstructing images, or more
general signals, from a small number of weighted
sums of their values has recently attracted considerable
interest in the field of Compressed Sensing [12], [13],
[27], [28]. In particular, it was proved that if the
image is sparse, it can be reconstructed accurately
from a small number of measurements with very high
probability, as long as the set of measurements satisfies
certain randomization properties [10]. In many images
of objects that occur in practice, the image itself is
not sparse, yet the boundary of the object is relatively
small compared to the total number of pixels. In such
cases, sparsity of the gradient image can be exploited
by Total Variation Minimization [9], [29].

In this paper, we consider a different type of prior
knowledge, where it is assumed that the unknown
object consists of a small number (i.e., 2-5) of different
materials, each corresponding to a characteristic, ap-
proximately constant grey level in the reconstruction.
Such prior knowledge is available in a wide range
of tomography applications: when performing X-ray
tomography of industrial objects, the compositions in
these objects (e.g., aluminum, plastic, air) are often
known in advance [24], [25]. If a bone is scanned
(in-vitro) in a micro-CT scanner, one can sometimes
assume that the bone has a single constant density
[7]. As a third example we mention the reconstruction
of homogeneous nanoparticles by electron tomography
[6].

The problem of reconstructing images containing
a small set of grey levels from their projections has
been studied in the fields of Discrete Tomography
and Geometric Tomography. Geometric tomography
deals with the reconstruction of geometric objects
from data about its sections, its projections, or both
[14]. Images of such objects can be considered as
binary images, where the first grey level (i.e., black)
corresponds to the exterior of the object and the second
grey level (white) corresponds to the interior. Much



of the work on geometric tomography is concerned
with rather specific objects, such as convex or star-
shaped objects. According to [16], [17], the field of
discrete tomography deals with the reconstruction of
images from a small number of projections, where the
set of pixel values is known to have only a few discrete
values. The literature on discrete tomography contains
some conflicting definitions of the field. Originally,
the main focus was on the reconstruction of (typically
binary) images for which the domain was a discrete
set, inspired by applications in crystallography.

The focus of the algorithm described in this paper is
somewhat different from both geometric and discrete
tomography. Firstly, our approach deals not only with
binary images, but also with images that contain three
or more grey levels. There is no fixed upper bound
on the number of grey levels. Yet, the proposed tech-
niques will only be effective if the number of grey
levels is small (i.e., 5 or fewer). Compared to discrete
tomography, which focuses on reconstruction from a
small number of projections (i.e., 4 or fewer), our
approach is more general. If tens or even hundreds
of projection images are available, prior knowledge of
the grey levels in the reconstruction can still be used
effectively to improve the quality of the reconstruction,
in particular when the projection data are noisy.

A variety of reconstruction algorithms have been
proposed for discrete tomography problems. In [26],
a primal-dual subgradient algorithm is presented for
reconstructing binary images from a small number of
projections. This algorithm is applied to a suitable
decomposition of the objective functional, yielding
provable convergence to a binary solution. In [5], a
similar reconstruction problem is modeled as a series
of network flow problems in graphs, that are solved
iteratively. Both [19] and [1] consider reconstruction
problems that may involve more than two grey levels,
employing statistical models based on Gibbs priors for
their solution. For all these approaches, the required
computation time becomes a major obstacles when
dealing with image sizes used in practice.

Recently, a new reconstruction algorithm for dis-
crete tomography, called DART (Discrete Algebraic
Reconstruction Technique) was proposed. DART al-
ternates iteratively between “continuous” update steps,
where the reconstruction is considered as an array of
real-valued unknowns, and discretization steps, which
incorporate the prior knowledge of the grey levels in
the image.

Application of this algorithm to experimental elec-
tron tomography data has already resulted in several
important new insights in the properties of nanomate-
rials, as alternative techniques are not available at this
scale [3], [4], [6], [30]. However, a full description
of the algorithmic details has been lacking thus far.
Also, DART is a heuristic algorithm without guaran-

teed convergence properties which calls for a thor-
ough experimental validation of algorithm properties.
In this paper, we provide a detailed presentation of
the DART algorithm and validate this technique by
extensive experiments based on simulated projection
data, as well as real X-ray µCT data. We investigate
its ability to reconstruct images from a small number
of projections and from projections acquired along a
small angular range, comparing DART with several
alternative algorithms. We also present experimental
results on the robustness of DART with respect to
noise in the projection data and errors in the discrete
grey levels used for reconstruction.

The outline of this paper is as follows. In Section
II, mathematical notation is introduced to describe the
tomographic reconstruction problem and the recon-
struction problem for discrete tomography is stated
formally. The Simultaneous Algebraic Reconstruction
Technique (SART) algorithm for continuous tomogra-
phy is briefly reviewed, as it is used as a subroutine in
our implementation of DART. The DART algorithm is
described in Section III. In Section IV, we discuss how
this algorithm can be implemented efficiently. Section
V presents the set of phantom images used in our
simulation experiments and describes the experimental
setup. Section VI reports on extensive experiments,
comparing DART with three alternative reconstruction
algorithms, investigating its robustness with respect
to noise and errors in the grey level assumptions,
and describing experimental convergence properties.
Section VII concludes this paper.

II. NOTATION AND CONCEPTS

A. Problem definition

This paper deals with an algebraic reconstruction
algorithm, where the reconstruction problem is rep-
resented by a system of linear equations. Our de-
scription is restricted to the reconstruction of two-
dimensional images from one-dimensional projections,
but can be generalized to higher-dimensional settings
in a straightforward manner. The reconstructed image
is represented on a rectangular grid of size n = w×h.
Projections are measured as sets of detector values for
various angles, rotating around the object. We denote
the number of projection angles by d and the number
of detector values for each projection by k. Hence,
the total number of measured detector values is given
by m = dk. Put R≥0 = {x ∈ R : x ≥ 0}. Let
p = (pi) ∈ Rm denote the measured data elements
for all projections, collapsed into a single vector. The
projection process in tomography can be modeled as a
linear operator W that maps the image x = (xi) ∈ Rn
(representing the object) to the vector p of measured
data:

Wx = p. (1)
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The m×n matrix W = (wij) is called the projection
matrix. The entries of x correspond to the pixel values
of the reconstruction. The entry wij determines the
weight of the contribution of pixel i to measurement j,
which usually represents the length of the intersection
between the pixel and the projected line.

This leads to the following standard reconstruction
problem in tomography:

Problem 1: Let W ∈ Rm×n≥0 be a given projection
matrix and p ∈ Rm be a vector of measured projection
data. Find x ∈ Rn such that Wx = p.

In practice, the projection data often contains noise
or other errors, in which case a solution is sought for
which ||Wx− p|| is minimal w.r.t. some norm || · ||.

In this paper, we consider the reconstruction of
images that consist of only a few different grey levels,
which are known a priori. This results in the following
reconstruction problem for Discrete Tomography:

Problem 2: Let W ∈ Rm×n≥0 be a given projection
matrix and p ∈ Rm be a vector of measured projection
data. Let ` > 0 be the prescribed number of image
grey levels and R = {ρ1, . . . , ρ`} denote the set of
grey levels. Find x ∈ Rn such that Wx = p.

Note that the set Rn is not convex. As a conse-
quence, many algorithms from convex optimization
that can be used to solve the general algebraic recon-
struction problem cannot be used directly for discrete
tomography.

B. The SART algorithm

The DART algorithm that will be proposed in
Section III alternates iteratively between “continuous”
update steps, where the reconstruction is considered as
an array of real-valued unknowns, and discretization
steps, which incorporate the prior knowledge of the
grey levels in the image. For the continuous step,
a range of algebraic reconstruction methods can be
used (e.g., ART, SART, SIRT). For the experiments in
this paper, we have implemented a version of DART
that uses the SART algorithm as a subroutine. Here,
we briefly review the SART algorithm for continuous
tomography.

In the SART algorithm [2], the current reconstruc-
tion is updated for each projection angle separately.
Various ordering schemes can be used for the angle
selection. The description given below related to our
specific implementation of SART, which uses a ran-
domized scheme.

The projection matrix W and vector p can be

decomposed into d blocks of k rows as

W =

W 1

...
W d

 , p =

p1

...
pd

 (2)

where each block W t = (wtij) represents the pro-
jection operator for a single angle and each block pt

represents the corresponding projection data.
For j = 1, . . . , n and t = 1, . . . , d, put γtj =∑k
i=1 w

t
ij . For i = 1, . . . ,m and t = 1, . . . , d, put

βti =
∑n
j=1 w

t
ij . Furthermore, let Sd be the set of all

permutations of the numbers 1, ..., d and let σ be a
random element of Sd.

The SART algorithm starts with an initial guess
x = x(0) and iteratively computes a new estimate x(s)

(s = 1, 2, . . .) from the previous estimate x(s−1) by the
update equation

x
(s)
j = x

(s−1)
j +λ

1

γ
σ(s)
j

k∑
i=1

w
σ(s)
ij r

(s)
i

β
σ(s)
i

, j = 1, . . . , n

(3)
where r(s) = pσ(s) − W σ(s)x(s−1) and λ is a
relaxation factor. A single sweep through all projection
angles, applying a sequence of d update steps, is
referred to as a SART iteration.

III. THE DART ALGORITHM

In this section, we describe the DART algorithm.
DART utilizes a continuous iterative reconstruction
algorithm, such as ART, SART or SIRT, as a sub-
routine. Within the general description of DART, we
refer to the selected continuous method as ARM (Al-
gebraic Reconstruction Method). In the examples and
experimental results, SART will be used as the ARM.
Before giving a concise description of the operations
performed in the DART algorithm, we will first give
a brief overview of the algorithmic ideas.

A. Overview of DART

Fig. 1 shows a flow-chart of DART. A continuous
reconstruction is computed as a starting point, using
the ARM. Subsequently, a number of DART iterations
are performed.

Suppose that we want to reconstruct the binary
image from Fig. 2(a) from only 12 projections. We
assume that the two grey levels (black and white) are
known in advance. The continuous SART algorithm
is chosen as the ARM. Fig. 2(b) shows the ARM
reconstruction after 10 iterations.

From the reconstructed image in Fig. 2(b), it is
difficult to decide where the edges of the object are
exactly. Yet, the thresholded reconstruction in Fig. 2(c)
shows that if we look only at the interior of the
object that is not too close to the boundary, the pixels
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(a) Original phantom (b) ARM reconstruction (c) Thresh. recon. (d) Free pixels

(e) Free pixels after ARM (f) Total rec. after ARM (g) Smoothed Recon. (h) Final Recon.

Fig. 2. Reconstructing a phantom. The images indicate the various steps of the DART algorithm.
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Final
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Yes

Final 
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Fig. 1. Flow chart of the DART algorithm

in the thresholded image have the right grey level.
The same holds for pixels in the background region
that are far away from the object boundary. Next,
we locate the boundary region U of the object in
the thresholded image, which is defined as the set
of all pixels that are adjacent to at least one pixel
having a different grey level. The boundary is shown
in Fig. 2(d). We now move back to the original grey
level ARM reconstruction. All pixels that are not in
U are assigned their thresholded value, either black

or white. Next, several ARM iterations are performed
again, while keeping the pixels that are not in U fixed
at the assigned threshold values. That is, the only
pixels that are updated by ARM are the pixels in
U . In this way, the number of variables in the linear
equation system in Eq. (1) is vastly reduced, while the
number of equations remains the same. The result of
the boundary reconstruction after one ARM iteration
is shown in Fig. 2(e), where the gray levels have been
scaled to show the range of gray levels present in the
boundary pixels. In regions of the boundary where too
many white pixels have been fixed, the surrounding
boundary pixels have strongly negative pixel values,
to compensate. The opposite occurs at parts of the
boundary where the extent of the background has been
overestimated in the first thresholded ARM reconstruc-
tion. In this way, the values of the boundary pixels
indicate how the boundary should be adapted in a new
estimate of the object. Fig. 2(f) shows the complete
reconstruction obtained by merging the boundary with
the fixed interior and background.

In the ARM step, each of the boundary pixels is
allowed to vary independently, which may result in
large local variations of the pixel values. In experi-
ments, we observed that smoothing must be applied
to the boundary after the ARM step. Fig. 2(g) shows
the result of this smoothing operation. This completes
the DART iteration.

Subsequently, a thresholded version of the image is
computed again, and each of the steps just described is
repeated iteratively. As a consequence of the boundary
update step, the set of boundary pixels will change
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between subsequent iterations, allowing for movement
of the object boundary.

The final result of this procedure, after four itera-
tions, is shown in Fig. 2(h). It is nearly identical to the
original phantom image.

The approach of fixing all pixels that are not on
the boundary works well for the reconstruction of
single objects that contain no holes. Fig. 3 shows a
case where the algorithm fails to compute an accu-
rate reconstruction, again from 12 projections. The
phantom in Fig. 3(a) contains a small hole in the
interior of the object. Thresholding the continuous
reconstruction yields a solid object without any holes.
In each iteration of the DART algorithm, the interior
part of the object is fixed completely. All changes
in the object occur only at the boundary. Therefore,
the hole does also not occur in later iterations. The
resulting reconstruction is shown in Fig. 3(b).

To allow for the formation of new boundaries that
are not connected to the current boundary, a subset of
the non-boundary pixels is selected in each iteration
that is not fixed, and updated along with the boundary
pixels; see Fig. 3(c). Fig. 3(d) shows the DART recon-
struction after 10 iterations, where a random subset
of 99% of all interior pixels (selected differently in
each iteration) has been fixed. Allowing non-boundary
pixels to be updated is also crucial for dealing with
noisy projection data and grey level errors, as will
be demonstrated in Sections VI-D and VI-E. If the
boundary is relatively small compared to the image
size, the noise from the projection data will be con-
centrated in the narrow boundary. Selecting a random
subset of non-boundary pixels to be updated in each
DART-iteration (up to 50%, or even more), largely
maintains the capability to reconstruct an image from
few projections, while greatly increasing the accuracy
in case of noisy data.

B. Algorithm definition

In this section we will formally define the DART
algorithm. For a fixed projection geometry, the input of
DART consists of the vector p of measured projection
data (see Eq. (1)) and the set R = {ρ1, . . . , ρ`} of
grey levels in the reconstructed image. Fig. 4 shows a
pseudo-code representation DART.

The first approximate reconstruction x0 is computed
using the ARM. After computing the start solution,
DART enters an iterative procedure. In each iteration,
the following steps are carried out:

1) Segmentation: The current reconstruction is seg-
mented to obtain an image that has only grey levels
from the set R = {ρ1, . . . , ρ`}. For the experiments in
Section VI, we used a simple global threshold scheme
for the segmentation as defined below. Alternative,
more advanced segmentation techniques may lead to

Compute a start reconstruction x(0) using ARM;

t := 0;

while (stop criterion is not met) do
begin

t := t+ 1;

Compute the segmented image s(t) = r(x(t−1));

Compute the set B(t) of boundary pixels of s(t);

Compute the set U (t) of free pixels of s(t);

Compute the set F (t) = {1, . . . , n}\U (t) of fixed pixels;

Compute the image y(t) from x(t−1) and s(t), setting
y
(t)
i := s

(t)
i if i ∈ F (t) and y

(t)
i := x

(t−1)
i otherwise;

Using y(t) as the start solution, compute the ARM reconstruction
x(t), while keeping the pixels in F (t) fixed;

Apply a smoothing operation to the pixels in U (t);

end

Fig. 4. Basic steps of the algorithm.

improved convergence or more accurate reconstruction
results in some cases.

Let x(t−1) be the current reconstruction at the start
of iteration t of the DART algorithm. A segmented
reconstruction s(t) ∈ Rn is computed from x(t−1),
where each pixel s(t)i is assigned one of the gray values
ρ1, . . . , ρ` according to a thresholding scheme using
thresholds τ1, . . . , τ`−1, where

τi =
ρi + ρi+1

2
. (4)

Define the threshold function r : R→ R as

r(v) =


ρ1 (v < τ1)
ρ2 (τ1 ≤ v < τ2)

...
ρ` (τ`−1 ≤ v)

. (5)

As a shorthand notation we also define the threshold
function of an image x ∈ Rn:

r(x) =
(
r(x1) r(x2) . . . r(xn)

)T
. (6)

2) Selection of free pixels: The set B(t) ⊂
{1, . . . , n} of boundary pixels is computed from the
segmented reconstruction s(t). We denote the neigh-
borhood of pixel i by N(i) ⊂ {1, . . . , n}. Various
connectivity definitions can be used here. We used
the 8-connected neighborhood for the experiments in
this paper. A pixel s(t)i is called a boundary pixel if
s
(t)
j = s

(t)
i for all j ∈ N(i).

The set of free pixels U (t) ⊂ {1, . . . , n} that will
be subjected to a DART update, is composed by
starting with U (t) = B(t) and augmenting U (t) with
non-boundary pixels in a randomized procedure. Let
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(a) Original phantom (b) DART reconstruction, fixing
all non-boundary pixels

(c) Free pixels (d) DART reconstruction, fixing
99% of boundary pixels

Fig. 3. Reconstructing a phantom. The images indicate the various steps of the DART algorithm.

0 < p ≤ 1 be the fix probability. Each element
of the non-boundary pixels is included in U (t) with
probability 1− p independently. Note that the random
selection process will be different in the computation
for each new DART update. This allows for changes
in image areas that are not near any of the boundary
pixels.

3) ARM with fixed pixels: Consider the system of
linear equations | |

w1 · · · wn

| |


x1...
xn

 = p, (7)

where wi denotes the ith column vector of W . We
now define the operation of fixing a variable xi at value
vi ∈ R. It transforms the system in Eq. (7) into the new
system

 | | | |
w1 · · · wi−1 wi+1 · · · wn

| | | |




x1
...

xi−1
xi+1

...
xn


(8)

= p− viwi.

The new system has the same number of equations as
the original system, whereas the number of variables
is decreased by one.

Let F (t) = {1, . . . , n}\U (t) be the set of fixed
pixels. In each iteration of the DART algorithm, all
pixels i ∈ F (t) are fixed at their values s(t)i , reducing
the number of variables from n down to n − |F (t)|.
The resulting system W̃ x̃ = p̃ is then solved using
a constant number of iterations of the ARM. If the
fixed pixels have been assigned the “correct” values
with respect to the unknown original object, solving
the remaining linear system will provide better values
for the remaining unfixed pixels, compared to solving
the original underdetermined system. When solving
underdetermined reconstruction problems, the first few

iterations of the DART algorithm will often fix a
numerous pixels at incorrect values. As demonstrated
in Section VI, the algorithm still demonstrates con-
vergence towards the unknown original object, even if
some of the fixed pixels are assigned incorrect values
in one or more iterations.

4) Smoothing operation: Reducing the number of
variables by fixing a subset of pixels can cause heavy
fluctuations in the values of the pixels that are not
fixed: the ARM will attempt to match noise in the
projection data, as well as errors that result from pixels
that are fixed at incorrect values, by adjusting just the
values of the free pixels. As a means of regularization,
a Gaussian smoothing filter of radius 1 is applied to
the boundary pixels after applying the ARM.

5) Termination criterion: As DART is a heuristic
algorithm, we cannot provide a formal statement of the
conditions under which the algorithm will converge.
Our experimental results demonstrate that for a variety
of relevant images the algorithm converges rapidly to
an accurate reconstruction of the original object that
was used to obtain the projections; see Section VI-E.

As a termination criterion, either the total projection
error E : Rn → R, defined as

E(x) = ||Wx− p||2 (9)

can be used, or a fixed number of DART iterations can
be performed.

IV. IMPLEMENTATION

We have implemented the DART algorithm in C++.
Instead of keeping the projection matrix W in memory
as a sparse matrix, all entries are computed when they
are needed by the algorithm. In the literature, both
ray-driven and pixel-driven (or voxel-driven, in the
3D case) schemes have been proposed for comput-
ing the projections of an image [20], [21]. In ray-
driven schemes, the projection lines that pass through
the image are visited sequentially. For each line, all
pixels lying on that line are visited, adding their
respective projection to the total projection for that
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line. In a pixel-driven scheme, the pixels are visited
one by one while collecting the total projections for
all lines simultaneously. For the DART algorithm, a
pixel-driven implementation is superior. Using a pixel-
driven implementation, the projection of a subset of
the pixels can be computed very fast by just iterating
over all pixels in this subset. This operation has to be
performed very often in the DART algorithm, when
solving the continuous reconstruction problem while a
large number of pixels is kept fixed.

In a pixel-driven implementation, the projection
qi ∈ Rm of each pixel i is computed as

qi = viwi, (10)

where vi ∈ R denotes the value of pixel i and
wi ∈ Rm denotes the ith column vector of the
projection matrix W . The vector wi typically contains
only a constant number of nonzero entries for each
projection direction. Therefore, the total contribution
of pixel i to the projection data for all angles can be
computed in O(d) time. Since we use a pixel-driven
implementation, the projections of any set of u pixels
in all d directions can be computed in O(ud) time. If
the size of F is large compared to the total number
of pixels n, this will result in a vast reduction of the
running time of the ARM iterations.

V. EXPERIMENTS

In this section, we describe a series of experiments,
for both simulation data and experimental µCT data,
that were carried out to evaluate the reconstruction
performance of DART and to compare its performance
with commonly used reconstruction methods.

A. Phantom images

The simulation experiments were based on ten
phantom images, shown in Fig. 5. Phantoms 1-8 are
pixel-based phantoms, represented on a pixel grid. The
first six phantoms are binary with varying complexity,
whereas phantoms 7 and 8 contain three or more
grey levels. The last two phantoms, 9 and 10, are
geometric phantoms that are defined as a superposition
of geometric objects and cannot be represented exactly
on a pixel grid.

Phantom 1 represents a very simple, convex shaped
object.

Phantom 2 represents an object with a more com-
plex boundary. Also, the object is not convex
and the boundary is fairly complex.

Phantom 3 represents a cross-section of a cylinder
head in a combustion engine. It contains
many holes and, as will become apparent
from the results, it is more difficult to re-
construct accurately.

Phantom 4 represents a cross-section of an electron
microscopy sample containing homogeneous
nanoparticles, taken from [6].

Phantom 5 was constructed from a micro-CT image
of a rat bone, acquired with a SkyScan 1072
cone-beam micro-CT scanner.

Phantom 6 represents a foam with a very high
complexity. It is far more complex than the
other phantoms. Hence, it is expected that the
number of required projections to accurately
reconstruct this phantom will be much larger
compared to the other phantoms.

Phantom 7 represents an object with the same
boundary complexity as in Phantom 2 but in
which the interior is represented with three
grey values.

Phantom 8 is the well-known Shepp-Logan phan-
tom (6 grey levels), which is commonly used
to benchmark reconstruction algorithms for
continuous tomography. It is clear that this
phantom will not provide a fair comparison
between algorithms for continuous and dis-
crete tomography, but we include the results
for the sake of completeness.

Phantom 9 is a binary geometric phantom that con-
sists of a set of ellipses and rectangles of
varying sizes, rotated along varying angles.
Projections have been computed based on the
(non-discretized) geometric shapes of these
components (see, e.g., Chapter 3 of [18]).
The parameters describing an ellipse are the
radius a along the longest axis (where the
width and height of the image are both 1),
the radius b along the shortest axis, the angle
θ between the longest axis and the horizon-
tal axis (in degrees, counterclockwise) and
(cx, cy), denoting its center of mass. The
ellipse parameters are provided in Table I.
Similarly, the parameters of the rectangles
are the width w and height h, the angle θ
between the longest axis and the horizontal
axis (counterclockwise), and the center of
mass (cx, cy). The rectangle parameters are
provided in Table II.

Phantom 10 is a geometric phantom (4 grey levels)
that consists of a superposition of randomly
placed ellipses of varying sizes, rotated along
varying angles. Projections have been com-
puted based on the (non-discretized) geomet-
ric shapes of these components. The param-
eters describing the ellipses are provided in
Table III.

The size of phantoms 1-8 is 512×512 pixels, an
image size that is also common in practical CT
applications. This is also the image size used for
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(a) Phantom 1 (b) Phantom 2 (c) Phantom 3 (d) Phantom 4 (e) Phantom 5

(f) Phantom 6 (g) Phantom 7 (h) Phantom 8 (i) Phantom 9 (j) Phantom 10

Fig. 5. Phantom images that were used for the simulation experiments.

a b θ cx cy value
0.4587 0.4587 0 0.5000 0.5000 1
0.4062 0.4062 0 0.5000 0.5000 -1
0.0628 0.0324 45 0.5337 0.3362 1
0.1145 0.0317 110 0.7575 0.3813 1
0.0313 0.0313 0 0.3477 0.500 1
0.0313 0.0313 0 0.4226 0.500 1
0.0313 0.0313 0 0.5000 0.500 1

TABLE I
PHANTOM 9: PARAMETERS OF THE ELLIPSES

h w θ cx cy value
0.0625 0.0312 60 0.3147 0.2969 1
0.0782 0.0156 130 0.6740 0.5146 1
0.1250 0.0469 90 0.5253 0.7500 1
0.0625 0.0313 40 0.6728 0.7241 1
0.0625 0.0313 140 0.3264 0.6836 1

TABLE II
PHANTOM 9: PARAMETERS OF THE RECTANGLES

a b θ cx cy value
0.191406 0.136719 124.318 0.378906 0.644531 1
0.117188 0.082031 164.964 0.808594 0.250000 1
0.148438 0.097656 84.9946 0.175781 0.296875 1
0.148438 0.089844 65.9028 0.382812 0.824219 1
0.187500 0.085937 55.6183 0.714844 0.648438 1
0.125000 0.121094 49.0257 0.628906 0.187500 1
0.175781 0.128906 161.814 0.523438 0.652344 1
0.136719 0.121094 3.97535 0.332031 0.429688 1
0.156250 0.132812 142.252 0.484375 0.203125 1
0.117188 0.097656 64.5288 0.253906 0.328125 1

TABLE III
PHANTOM 10: PARAMETERS OF THE ELLIPSES

the reconstructions. For all phantoms, including the
geometric phantoms 9 en 10, the projection for each
angle consists of 512 detector values, where the length
of the detector is equal to the width (and height)
of the image. For phantoms 1-8, this implies that
the spacing between consecutive detectors is equal
to the pixel size of the phantom. In all simulation
experiments reported in this paper, a parallel beam

geometry was used. However, the approach can be
extended in a straightforward manner to any other
acquisition geometry by using a different projection
matrix.

B. Quantitative evaluation of reconstruction algo-
rithms

Various simulation experiments were run in which
the reconstruction accuracy of DART was compared
to other well known reconstruction methods. In par-
ticular, a comparison was performed between the fol-
lowing four algorithms:

FBP A standard implementation of FBP was
used that performs linear interpolation in the
projection domain and uses a Ram-Lak filter.

SART A variant of the SART algorithm as de-
scribed in Section II-B, performing 200 iter-
ations. This number is large enough to ensure
that convergence has been nearly reached.
For noiseless projection data, performing so
many iterations does not result in degraded
reconstruction quality, as is common for high
noise levels. We observed that the reconstruc-
tion result improves if a positivity constraint
is incorporated, setting negative pixel values
to zero after each update step. We report on
the results obtained by this variant of SART,
as it yields better results than without the
constraint in all testcases.

TVMin Chambolle’s algorithm for Total Variation
Minimization (TVMin) was used, as de-
scribed in [11]. The output of this algorithm
depends on several parameters, for which ap-
propriate settings were determined manually.
We used λ = 0.02 (regularization parameter),
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τ = 0.25 (descent step) and 20 subiterations.
We refer to the original article for details
about the method and its parameters.

DART The DART algorithm, using the SART
algorithm as described in Section II-B as
the ARM. The main loop was repeated 200
times, typically more than enough to obtain
convergence. In each iteration, 3 iterations
of SART were performed, updating only the
pixels in U . For the experiments in Sections
VI-A and VI-B, the fix probability was kept
constant at p = 0.85.

These experiments were based on perfect projection
data that was not perturbed by noise or other errors.
In particular, the reconstruction accuracy of DART in
comparison to alternative approaches was studied

1) as a function of the number of projections,
with the projection angles regularly distributed
between 0 and 180 degrees.

2) as a function of the angular range of the projec-
tions.

In a second series of experiments, the robustness of
DART was studied with respect to the assumptions
made about the projection data and the object to
be reconstructed. Real-world projection data always
contains a certain amount of experimental noise. Also,
DART assumes the grey levels in the phantoms to be
known a priori. In practical applications, these grey
levels are often only known approximately. Experi-
ments have been performed to assess the

1) robustness of DART with respect to noise in the
projection data.

2) robustness of DART with respect to errors in the
input grey levels.

In all experiments, the total number K of pixels from
the reconstructed image that differ from the original
phantom image was used as a performance metric.
We refer to this number as the pixel error of a
reconstruction.

To compare the results of algorithms that yield
greylevel images with the results of DART, the recon-
structed images were segmented using the well known
Otsu segmentation [23], yielding the required discrete
set of grey levels.

C. Experiments for experimental µCT data

A diamond was scanned at 70 kVp in a Scanco µCT
40 X-ray scanner with a circular cone beam geometry.
Projections were acquired at 266 angles between 0 and
187 degrees, using a 1024×56 (transaxial×axial) pixel
detector. A series of circular cone beam scans was
performed at equally spaced axial positions, to cover
the length of the diamond. After the scan, the data
was rebinned to the parallel beam geometry, yielding

a 1024× 256 sized sinogram per slice with projection
angles distributed equally between 0 and 180 degrees.
Although the complete diamond spanned 1221 slices
in the axial direction, the diamond extends beyond
the field of view of the CCD (so-called truncation)
from slice 300 and onwards. To allow for reliable
reconstruction, only the first 260 slices were used
for reconstruction. For this dataset, the reconstruction
quality of DART was compared to that of SART
for a small number of 15 projections, in which the
SART reconstruction based on all 250 projections was
used as a reference. A similar comparison between
DART and SART was carried out in a limited-angle
experiment, based on a subset of 51 projections, with
angles distributed equally along an interval of 108
degrees.

VI. RESULTS AND DISCUSSION

In this section, we present the results of a series of
experiments, comparing the reconstructions computed
by DART with alternative approaches, and investigat-
ing the dependency of the results on the fix probability.
We also present reconstruction results of a 3D volume,
based on experimental µCT data of a raw diamond.

A. Varying the number of projections

We first consider the reconstruction accuracy of
DART as a function of the number of projections,
where it is assumed that the projection angles are
regularly distributed between 0 and 180 degrees.

Fig. 6 shows the pixel error as a function of the
number of projections for phantoms 1-8, for the FBP,
SART, TVMin and DART algorithms. The results
show that DART consistently yields more accurate
reconstructions than FBP and SART. The pixel error
for DART is only rarely larger than for TVMin, and in
many cases it is much lower (e.g., Phantom 3 with 10
projections, Phantom 7 with 8 projections, Phantom 8
with 40 projections).

As an illustration of the results, Fig. 7 shows DART
reconstructions of Phantoms 3, 5, and 7 for various
projection numbers. Although the reconstruction grad-
ually improves as the number of projections is in-
creased, there appears to be a certain minimum number
of projections for each phantom that is required to
obtain an almost perfect reconstruction. For Phantom
3, 5, and 7, the number of projections for which the
DART reconstruction is nearly perfect, was 10, 20, and
8, respectively. These DART reconstructions are shown
in the last column of Fig. 7. As a comparison, the
corresponding FBP, SART, and TVMin reconstructions
are shown in column 1, 2, and 3 of Fig. 8, respectively.
This figure also demonstrates an important feature of
DART, and discrete tomography algorithms in general:
the resulting reconstruction is already a segmented
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image that does not require additional segmentation
steps.

B. Limited angle problems

In the previous series of experiments, we consid-
ered reconstruction problems that can also be solved
accurately by continuous reconstruction methods such
as FBP and SART, as long as sufficiently many pro-
jections are available. This is not the case for limited
angle problems, which occur frequently in electron
tomography and industrial tomography, and also in
some medical applications.

In this section, we present reconstruction results of
DART from a limited angular range of projections.
Fig. 9 shows the pixel error for phantoms 1-8 as a
function of the angular range, for the FBP, SART,
TVMin and DART algorithms. Here, 180 degrees
constitutes a full angular range and projections are
sampled at 1 degree intervals. Therefore, the number of
projections increases linearly with the angular range.

The results show that, with a few exceptions, DART
consistently yields more accurate reconstructions than
the three alternative methods. As an illustration of the
resulting reconstructions, Fig. 10 shows results for the
four methods applied to Phantom 1, 3, and 5, using
varying angular ranges. The strong prior knowledge
imposed by DART appears to be very powerful for
dealing with limited angle problems, as was already
demonstrated in several practical electron tomography
problems [6].

C. Geometrical objects

The simulation experiments described above were
performed with the pixelized phantoms 1-8. In prac-
tical situations, the objects scanned are of course
not pixellized. In order to test the impact of the
discretization of the phantom objects on a regular grid
on the performance of DART, additional simulations
experiments with continuous phantoms were set up. To
this end, continuous phantom studies were performed
with FBP, SART, TVmin and DART based on Phantom
9 and 10 for a varying number of projections as well
as for a limited angular range of projections.

Fig. 11 shows the continuous pixel error K ′ as a
function of the number of projections used in the
reconstruction of the geometric phantoms 9 and 10.
This pixel error is computed analytically from the
intersection of the continuous phantom image with
the rasterized and segmented reconstruction, and corre-
sponds to the total area where the reconstruction and
phantom are different (taking the area of a pixel as
1). Fig. 12 shows the continuous pixel error K ′ as a
function of the number of the angular range for FBP,

SART, TVMin, and DART, based on an angular step
of 1 degree between the projections. Both experiments
show that DART performs well compared to FBP,
SART and TVMin in terms of the continous pixel error
K ′.

In addition, an experiment was performed based
on the pixelized Phantom 3, to evaluate the quality
of DART reconstructions as a function of the
number of projections, where the original phantom
was shifted over half a pixel in both directions
before computing the projection data. The shift
was performed analytically, representing each pixel
as a square of constant grey level. Note that the
shifted phantom cannot be represented exactly on the
pixel grid used for reconstruction. The reconstructed
image was shifted back, again analytically, and then
compared to Phantom 3. Fig. 13 shows the pixel error
K ′ of the DART reconstructions, as a function of the
number of projections. Note that there is no significant
difference between the shifted and the non-shifted
reconstruction for a number of projections smaller
than 10. From d = 10 and onwards, the difference
between the shifted and non-shifted reconstruction
becomes noticeable at the border area, as can be
observed from Fig. 14. Nevertheless, it is clear that
DART performs well, even for non-pixelized objects.

So far, we have compared the reconstruction quality
for FBP, SART, TVMin and DART, based on perfect,
noiseless simulations. Also, we assumed that the set
of grey levels to be used in DART is perfectly known.
In the next sections, we will turn our attention ex-
clusively to DART and investigate the robustness of
DART with respect to noise on the projection data and
with respect to errors in the assumptions on the grey
levels. The parameter p, that determines the fraction
of non-boundary pixels that is kept fixed in the ARM
iterations, plays an important role in these cases, and
it will be varied in the experiments.

D. Noisy projection data

From the phantom images, CT projections were
simulated as follows. First, the Radon transform of
the images was computed, resulting in a sinogram for
which each data point represents the line integral of
attenuation coefficients. Then, (noiseless) CT projec-
tion data were generated where a mono-energetic X-
ray beam was assumed1. The projections were then
polluted with Poisson distributed noise where the
number of counts per detector element I0 was varied

1More advanced CT simulation experiments, for example, taking
into account scatter and beam-hardening, could as well have been
performed, but would, to our view, unnecessarily complicate the
discussion of the experimental results.
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Fig. 11. The pixel error K′ as a function of the number of
projections used in the reconstruction using equally distributed
projection angles for FBP, SART, TVMin and DART.

from 5× 103 − 6× 104. Next, the noisy sinogram of
the attenuation coefficients was obtained by dividing
the CT projection data by the maximum intensity
and computing the negative logarithm. In this way,
simulated projection images were obtained for varying
signal-to-noise ratios. Finally, the simulated, noisy CT
images were reconstructed.

Fig. 15 shows the pixel error K as a function of
the number of counts for various values of the fix
probability p, for phantoms 1-8. From that figure, it can
be concluded that for low SNR (low number of counts)
the pixel error will in general be smaller if p is small,
e.g. p = 0.5. For high SNR (high number of counts),
choosing a high value of p (e.g. p = 0.99) yields more
accurate reconstructions, but still p must be less than
1 to obtain optimal results for some of the phantoms,
due to the inability to create new boundaries if p is set
to 1. The observation that for high noise levels a low
fix probability yields the best results can be explained
by the fact that during the ARM iterations, all noise
will be distributed between the free pixels. If there are
too few free pixels, the value of these pixels will be
determined mainly by the noise, resulting in inferior
reconstructions.
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Fig. 12. Limited angle experiments for the geometric objects
phantoms: pixel error K′ as a function of the projections’ angular
range for FBP, SART, TVMin, and DART.
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Fig. 13. Pixel error K′ as a function of the number of projections
for DART reconstructions of Phantom 3 and for DART reconstruc-
tions of Phantom 3 shifted by 0.5 pixels in both directions.

E. Prior knowledge on the grey levels

DART requires prior knowledge of the grey levels to
be used in the reconstruction. In practical applications,
these grey levels are often only known approximately.
Therefore, experiments have been performed to assess
the robustness of DART with respect to errors in the
grey levels used for the reconstruction.

Fig. 16(a) shows the pixel error K of the DART
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(a) DART recon (not shifted) (b) DART error (not shifted)

(c) DART recon (shifted) (d) DART error (shifted)

Fig. 14. DART reconstructions of Phantom 3 from 10 projections;
(a) reconstruction based on non-shifted phantom; (b) difference
between phantom and non-shifted reconstruction; (c) reconstruction
based on shifted phantom; (d) difference between phantom and
shifted reconstruction

reconstruction as a function of the assumed grey value
g of the object for Phantom 2. If the assumed grey
level g is over- or underestimated, the projection error
is redistributed over the set of free pixels. Clearly, the
smaller the number of free pixels is, the higher the
update contribution per pixel will be, which will result
in a large over- or undershoot of the updated pixel. If
the under- or overshoot is large enough to cross the
threshold used in the DART segmentation step, the
DART reconstruction will be affected at that position.
This can visually be observed in Fig. 17 where the
DART reconstructions are shown for g = 263, 271,
and 275 (the true grey value of the phantom image was
g0 = 255). Fig. 17(a-c) show the DART error images
for p = 0.99. These figures show that, with increasing
offset |g− g0| from the true grey level g0, the number
of incorrectly reconstructed pixels K at the border as
well as in the interior part steadily and significantly
increases.

However, if the fix probability is lowered (p =
0.5 ; p = 0.85), the dependency of K as a function
of K decreases. Note that, for p = 0.5 or p = 0.85,
less than 0.5% of the pixels is misclassified, even if
the offset of the assumed grey value from the true grey
value deviates up to 10% from the true grey value. This
is mainly because the interior pixels are not affected
as long as the smoothing and thresholding DART step
results in correctly classified pixels. The classification
of the border pixels, are less affected by the smoothing

step. Once the smoothing is insufficient to classify
even the interior pixels correctly, bumps appear in the
interior area and a sudden increase of K is noticed
(e.g. at g = 272 for p = 0.85). This classification
behavior is visualized in Fig. 17(d-f), where the DART
error images are shown for p = 0.85.

Hence, for appropriate values of the fix probability
p, DART was observed to be robust with respect to the
prior knowledge on the true grey level of the object.
Similar experiments where run for objects with more
than one grey level, as in Phantom 7. In Fig. 16(b),
K is shown as a function of g1 and g2, which are
the assumed grey levels of Phantom 7 (the true values
where 127 and 255, respectively). The 3D plot also
indicates that DART is, within reasonable range, robust
against errors in the prior knowledge on the true grey
levels.
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Fig. 16. The pixel error K as a function of greylevel(s) g that
was/were used as prior info for DART.

F. Convergence

A relevant question about any iterative scheme is
its convergence behavior and computational stability,
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since it not only affects the reconstruction time but
often the quality of the reconstructed image as well.

For Phantom 2, 3, 5 and 7, the total projection error
E as well as the total pixel error K was computed
as a function of the number of iterations for fixed
probability levels of 0.50, 0.85, 0.99, and 1.00, based
on noiseless projection data. Fig. 18(a), 18(b), 18(c),
and 18(d) show the convergence rate of the total pro-
jection error E for Phantom 2, 3, 5, and 7, respectively.
The number of projections used was d = 6, 10, 50
and 10, respectively. From Fig. 18, it can be observed
that DART converges in a smooth way, although
convergence to a solution that satisfies the projection
data cannot be guaranteed. From the Fig. 18, it is clear
that the fix probability p plays an important role in the
convergence behavior of DART. For all experiments,
setting p close to (but not equal to) 1.0, resulted in the
highest convergence rate. Recall that fixing all non-
boundary pixels (i.e., p = 1.0) would prevent the
creation of holes in the object during the iterations.
Hence, tiny holes, if missed in the segmentation step of
the first iteration, such as in Phantom 2, would never be
found, resulting in a relatively large projection error for
p = 1.0 after convergence (see for example Fig. 18(a)).
On the other hand, the smaller the fix probability, the
larger the number of pixels is over which the projection
error is redistributed during the ARM operation and
the smaller the probability that a pixel is changed after
thresholding, resulting in a slow convergence.

Fig. 19(a), 19(a), 19(b), and 19(d) show the conver-
gence rate of the phantom error K (i.e., the number of
pixel errors in the reconstruction) for Phantom 2, 3, 5,
and 7, respectively. All figures show a monotonically
decreasing pixel error as a function of the number of
iterations.

The total number of iterations required for conver-
gence is significantly larger than for classical iterative
reconstruction algorithms, such as SART, where often
just two iterations are used in practice. However, the
fact that DART can reduce the number of required
projections significantly, as well as the fact that only
a subset of the pixels is updated by the ARM, will
result in faster individual iterations. As actual recon-
struction times are highly implementation dependent,
we merely give an indication of the running times: for
our experiments based on phantoms of size 512×512,
the reconstruction time on a single modern CPU
core varied between 10 s (Phantom 1, 5 projections,
p = 0.99) and 20 minutes (Phantom 6, 50 projections,
p = 0.50).

The experiments in Sections VI-A and VI-B demon-
strate that DART converges to an accurate reconstruc-
tion of the original phantom for a broad range of phan-
toms, provided that a minimal, but sufficient number
of projections are available. Yet, there is no absolute
guarantee that the reconstruction computed by DART

will accurately represent the original object, or even
that its projections correspond closely to the original
projection data. A compromise between the attractive
features of DART and favorable formal convergence
properties can be found by applying a postprocessing
step to DART. Applying an algorithm for continuous
tomography that does guarantee convergence in the
sense of minimal total projection error, such as SIRT,
while using the DART reconstruction as the initial
reconstruction, will result in a grey level reconstruction
that may not be entirely discrete, but is likely to be
close to the DART reconstruction.

G. Experimental data

Five reconstructions have been computed for the ex-
perimental µCT diamond dataset described in Section
V-C:

• SART-250. A SART reconstruction from 250
projections, using 4 iterations over all 250 angles.

• SART-15. A SART reconstruction from 15 pro-
jections, using 35 iterations over all 15 angles.
The angles were selected by approximating con-
stant angular steps between 0 and 180 degrees,
each time choosing the nearest available projec-
tion angle.

• DART-15. A DART reconstruction from the same
15 projections as the SART-15 reconstruction,
using p = 0.60 and 20 DART iterations. The
grey level for the interior of the diamond was
determined from the SART-250 reconstruction.

• SART-A. A SART reconstruction from limited-
angle projection data based on 51 projections with
angles distributed equally along an interval of 108
degrees, using 10 iterations over all 51 angles.

• DART-A. A DART reconstruction from the same
51 projections as the SART-A reconstruction,
using p = 0.60 and 20 DART iterations.

Fig. 20(a) shows a 3D surface rendering of a clipped
section from the reconstructed volume, based on the
SART-250 reconstruction. As it is not obvious to assess
reconstruction quality based on the surface rendering,
we opted for an alternative visualization, based on
three orthogonal slices through the reconstruction. For
the five reconstructions, Fig. 20(b-f) each show three
partial orthogonal slices through the reconstructed
volume in a 3D frame. The partial cross-sections are
more suitable for visual comparison with the SART-
250 reconstruction.

The results show that although the DART-15 and
DART-A reconstructions are not perfect, they approx-
imate the SART-250 reconstruction quite well, and
much better than the SART reconstructions for the
corresponding subsets of projections. We expect that
the accuracy of the presented DART reconstructions is
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mainly limited by beam hardening effects in the pro-
jection data, which could in principle be compensated
for to further improve reconstruction quality. beam
hardening effects,

VII. CONCLUSIONS

In this paper, we have presented the DART algo-
rithm, which can be used for tomographic reconstruc-
tion if the scanned object is known to consist of only
a few different compositions, each corresponding to
a constant grey value in the reconstruction. DART
has already been applied successfully to a range of
experimental datasets, but a full description of the
algorithmic details as provided in this paper has been
lacking thus far. As DART is a heuristic algorithm,
we have presented a thorough experimental validation
of algorithm properties, comparing the resulting re-
construction accuracy to several alternative methods,
and investigating the robustness of DART with respect
to noise and grey level errors. The results show that
DART yields more accurate reconstructions than the
alternative methods in most of the experiments. Ro-
bustness is largely determined by the fix probability,
that can be set according to the specific properties of
a reconstruction problem at hand. Lowering the fix
probability parameter results in an algorithm that is
robust with respect to noise and errors in the set of grey
levels used in the reconstruction. Various steps in the
presented algorithm, such as the segmentation step and
determination of the set of free pixels, can potentially
be improved upon, which we will investigate in future
research.
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Fig. 6. The pixel error K as a function of the number of projections used in the reconstruction.
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(a) d = 2 (b) d = 4 (c) d = 8 (d) d = 10

(e) d = 2 (f) d = 4 (g) d = 10 (h) d = 20

(i) d = 2 (j) d = 4 (k) d = 6 (l) d = 8

Fig. 7. DART reconstructions of Phantom 3 (top row), Phantom 5 (middle row), and Phantom 7 (bottom row) for various projection
numbers.
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(a) FBP, d = 10 (b) SART, d = 10 (c) TVMin, d = 10 (d) DART, d = 10

(e) FBP, d = 20 (f) SART, d = 20 (g) TVMin, d = 20 (h) DART, d = 20

(i) FBP, d = 8 (j) SART, d = 8 (k) TVMin, d = 8 (l) DART, d = 8

Fig. 8. Comparison of FBP (column 1), SART (column 2), TVMin (column 3) and DART (column 4) for Phantom 3 using 10 projections
(row 1), Phantom 5 using 20 projections (row 2), and Phantom 7 using 8 projections, respectively.

18



10 15 20 25 30 35 40
0

1

2

3

4

5

6 x 104

Angular range (deg)

K

 

 

FBP
SART
TvMin
DART

(a) Phantom 1

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

11 x 104

Angular range (deg)

K

 

 

FBP
SART
TvMin
DART

(b) Phantom 2
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(c) Phantom 3
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(f) Phantom 6
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(g) Phantom 7
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Fig. 9. Limited angle experiments: pixel error K as a function of the angular range of the projections for FBP, SART, TVMin, and DART.
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(a) FBP, α = 20◦ (b) SART, α = 20◦ (c) TVMin, α = 20◦ (d) DART, α = 20◦

(e) FBP, α = 80◦ (f) SART, α = 80◦ (g) TVMin, α = 80◦ (h) DART, α = 80◦

(i) FBP, α = 52◦ (j) SART, α = 52◦ (k) TVMin, α = 52◦ (l) DART, α = 52◦

Fig. 10. Comparison of FBP (column 1), SART (column 2), TVMin (column 3) and DART (column 4) for Phantom 1 with an angular
range of α = 20◦ (row 1), Phantom 3 with an angular range of α = 80◦ (row 2), and Phantom 5 with an angular range of α = 52◦,
respectively.
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(a) Phantom 1 (d = 10)
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(c) Phantom 3 (d = 25)
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(f) Phantom 6 (d = 100)
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(g) Phantom 7 (d = 25)
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(h) Phantom 8 (d = 50)

Fig. 15. The pixel error K as a function of the number of counts (SNR) for various values of the fix probability p.
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(a) g = 263 ; p = 0.99 (b) g = 271 ; p = 0.99 (c) g = 275 ; p = 0.99

(d) g = 263 ; p = 0.85 (e) g = 271 ; p = 0.85 (f) g = 275 ; p = 0.85

Fig. 17. Phantom 2: difference between the DART reconstruction (d = 25) and the original phantom when the grey level g is underestimated
(a,d) or overestimated (b,c,e,f). The true grey level of the phantom was 255.
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(a) Phantom 2 (d = 6)
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(d) Phantom 7 (d = 10)

Fig. 18. The convergence rate: projection error as a function of the number of iterations.
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Fig. 19. The convergence rate: phantom error as a function of the number of iterations.
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(a) SART-250: 3D model (b) SART-250: orthoslices

(c) SART-15: orthoslices (d) DART-15: orthoslices

(e) SART-A: orthoslices (f) DART-A: orthoslices

Fig. 20. Visualizations of reconstruction results for the experimental diamond µCT dataset. Each of the subfigures (b)-(f) show three
partial orthogonal slices through the reconstructed volume.
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