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Abstract

Bias field reduction is a common problem in medical imaging. A bias field usually manifests itself as a smooth intensity variation across
the image. The resulting image inhomogeneity is a severe problem for posterior image processing and analysis techniques such as registration
or segmentation. In this article, we present a novel debiasing technique based on localized Lloyd–Max quantization (LMQ). The local bias is
modeled as a multiplicative field and is assumed to be slowly varying. The method is based on the assumption that the global, undegraded
histogram is characterized by a limited number of gray values. The goal is then to find the discrete intensity values such that spreading those
values according to the local bias field reproduces the global histogram as good as possible. We show that our method is capable of
efficiently reducing (even strong) bias fields in 3D volumes.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Medical image data often suffer from intensity inhomo-
geneities (bias fields). In magnetic resonance imaging
(MRI), this artifact may have several causes, such as a lack
of uniform sensitivity of the RF-emitting and -receiving
coils, static field (B0) inhomogeneities, gradient-induced
eddy currents, magnetic susceptibility of tissue, interslice
cross-talk, RF standing wave effects and attenuation of the
RF signal inside the object [1,2].

A bias field usually manifests itself as a smooth intensity
variation across the image. Automated extraction of useful
information from images demands an automated detection
and correction of the bias field. Indeed, tasks like image
quantization, segmentation [3] or tissue classification can be
severely impeded by degraded intensity homogeneities of
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images. For example, Kohn et al. [3] observed that a bias
field elongates the clusters that represent the brain and
cerebrospinal fluid such that the segmentation of the gray
and white matter is severely affected.

Various methods have been proposed in order to reduce
an image bias field, with different degrees of success. A
recent review on methods for correction of intensity
inhomogeneities has been written by Vovk et al. [4].
According to their work, current bias field reduction methods
can be subdivided as follows:

• Filtering methods: Low-pass filtering methods as-
sume that the intensity inhomogeneity corrupting the
image is a low-frequency signal component that can be
separated from the high-frequency information of the
imaged anatomical structures. However, this assump-
tion is only accurate if the imaged anatomical
structures are relatively small and hence contain no
low frequencies that might be mistakenly removed by
low-pass filtering. For most of the anatomical
structures imaged by an MR scanner this assumption
does not hold, which results in overlap of anatomy and
inhomogeneity frequency spectra, thereby limiting the
feasibility of filtering methods. Homomorphic filtering
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and homomorphic unsharp masking have been pro-
posed. Morphological filtering [5] and simple high-
pass filtering belong to this group of methods but have
not shown to be useful for MRI.

• Surface fitting methods: These methods fit a
parametric surface to a set of image features (intensity
or gradient based) that contain information on intensity
inhomogeneity. The resulting surface, which is usually
polynomial or spline based, represents the multiplica-
tive inhomogeneity field that is used to correct the
input image [6,7].

• Segmentation-based methods: It is well known that
images that need to be segmented in homogeneous
regions require preprocessing to remove the bias field
prior to segmentation. In turn, removal of the bias field
in an image becomes trivial when the image is
subdivided into classes that should be homogeneous.
Methods were proposed that exploit this duality based
on maximum likelihood, expectation maximization
[8,9] and fuzzy C-means clustering [10,11], and often
solved by means of functional minimization.

Based on the categorization of Vovk et al. [4], the method
we will present is novel to the best of our knowledge and is
likely to be situated in the category segmentation-based
methods. However, the functional that we will consider for
minimization is not entropy related [12] but a measure
simply based on the mean squared error (MSE) [11].

Segmentation and tissue classification are problems that are
related to the field of image quantization.Where segmentation
tries to classify the image domain into distinct regions that
meet some criterion (being an element in some threshold
interval, in its simplest form), tissue classification tries to label
each pixel of the image domain by one or more tissue indices.
Image quantization (Lloyd–Max, C-means quantization) [13]
on the other hand tries to find a reduced set of intensity values
that allows to represent a large number of gray values in an
optimal way, which is usually provided by MSE measures.

In this article, we show how a local Lloyd–Max
quantization (LMQ) approach can be effectively used to
debias medical images. No presmoothing scheme is required,
as our method works still rather well in situations with heavy
noise. We will also show that the proposed method is very
well capable of significantly reducing strong bias fields in
simulated as well as real 3D medical data sets.

The article is organized as follows: First we start with a
general description of the inspiration for our bias field
reduction approach. Next, a formulation of the image model
is presented. In Subsection 2.2 to 2.3, the well-known LMQ
procedure (without bias field) is briefly summarized and then
extended to image models that contain bias fields, after
which the algorithm schemes are introduced in sections. In
Section 3, various experiments to test the debiasing
performance of the proposed method are conducted and
discussed. Finally, in Section 4, we draw the conclusions.
2. Method

2.1. Inspiration

In this article, the model we employed for the undegraded
image (i.e., no bias field or noise) assumes that the image can
be subdivided into a fixed number of classes, where image
intensities inside each class are distinct from those of the
others. This implies that the undegraded image can be
segmented into distinct parts, each of which can be classified
with a characteristic gray level. For example, an MR image of
the brain can be modeled to consist of four classes:
background, cerebrospinal fluid, graymatter and white matter.
For such an image model, the global histogram of the
undegraded image will contain only a limited number of
peaks. However, if the undegraded image is polluted by a bias
field or noise, the global image histogramwill be smoothed out
and/or expanded, thereby making the sharp peaks indistinct.

The effect of noise and bias on the intensity distribution is
demonstrated in Figs. 1 and 2. Fig. 1(A) shows the Shepp–
Logan phantom (SLP), which consists of only a small fixed
number of pixel classes. The global histogram, shown in Fig. 1
(D), shows clear peaks for each gray value in the image. In Fig.
1(B) and (C), the undegraded image of Fig. 1(A) is polluted
with noise and a multiplicative bias field, respectively. As can
be seen from the corresponding histograms, shown in Fig. 1(E)
and (F), respectively, when noise or bias degradation is
sufficiently strong, information about the position of the
discrete intensity values of the undegraded image is lost in the
global histogram. Moreover, the broadened and/or shifted
histogram curves make it almost impossible to locate the
original sharp peaks. However, in comparison, the local
histogram better retains this information. For example, Fig. 2
(A) and (C) shows two local areas extracted from the red
square and blue square of Fig. 1(C). From their respective
histograms in Fig. 2(B) and (D), we can see that the local peaks
are much thinner and the difference in peak positions is due to
the multiplicative bias field. Therefore, the local bias field can
be obtained, if the original distinct peaks' positions are known.
However, real-life image debiasing tasks often come with no
prior knowledge about the original characteristic gray levels
except their number (as assumed in our model). This
observation inspired us to combine the local bias field
recovery with a global image quantizer, iteratively, to obtain
the global bias field, as detailed below.

2.2. Image model and LMQ

Our original undegraded (i.e., without bias field or noise)
image Xk is defined on a 3-D domain Ω={(i,j,l)|0≤i≤Imax,
0≤j≤Jmax, 0≤l≤Lmax}, with 0≤Xk≤Xmax, where k indicates
the kth voxel and Xmax is the maximum image intensity.

The multiplicative bias field Bk is defined on the same
domain Ω. With bias field, the degraded image will then be

Yk = Xk × Bk + nk ð1Þ
where nk indicates the additive noise.



A  The original SLP B  The SLP with noise C  The SLP with a bias field
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Fig. 1. The effect of noise and bias on the global intensity histogram (histograms in logarithmic scale) using the SLPas an example. From left to right, SLPwith no noise
40% noise and a linear intensity bias in both the x-direction and y-direction. The order of the histograms in the bottom is the same. The red and blue square indicate the
extracted subregions to be shown in Fig. 2.
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The undegraded image can be effectively quantized using
LMQ. Let Q≡{qi}i=1N denote the set of characteristic gray
levels after quantization and ρ(X) the discrete global
histogram of the image to be quantized. The optimal
quantization is obtained when the total MSE, given by

r2 =
XN
i=1

Xti
X = ti − 1

q Xð Þ X −qið Þ2; ð2Þ

is minimal with respect to quantized levels {qi}. T≡{ti−1}i=1N

is the set of threshold values associated with each level, with
qi∈(ti−1,ti). Minimization of σ2 with respect to the parameter
sets Q and T (by differentiating σ2 with respect to ti and qi)
leads to the following set of conditions:

ti =
1
2

qi + 1 + qið Þ; with i = 0; N ;N − 1 ð3Þ

qi = Z−1
i

Xti
X = ti − 1

q Xð ÞX ; with i = 1; N ;N ð4Þ

where

Zi =
Xti

X = ti − 1

q Xð Þ; with i = 1; N ;N ð5Þ
,

With Eqs. (3) to (5), it is then possible to iteratively calculate
σ2 until convergence is reached, thereby obtaining the
optimal Q and T.

2.3. Bias field estimation with LMQ

In the previous section, we have used the Lloyd–Max
method to quantize the undegraded image with a number of
characteristic gray levels, which, however, will be distorted
by the presence of bias field in the degraded image.
Nevertheless, the bias field estimation can still benefit
from the LMQ, albeit in a modified form. Recall from
Subsection 2.1 that the bias field recovery is more effective
in a local region than on the global image. Therefore, we first
divide the global image into P subdivisions:

Dp jDpoX; 1VpVP
� � ð6Þ

The subdivisions {Dp} have to satisfy

[P
p=1

Dp = X

From Eq. (1), for each subdivision Dp, we have

XkiYk = Bk j kaDp
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for red square area
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Fig. 2. The effect of noise and bias on the local intensity histogram
(histograms in logarithmic scale) using the SLP as an example. Top figure is
from the red square subregion in Fig. 1 and the bottom from the blue square
Histograms follow the same order.
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.

Similar to Eq. (2), we have

r2 =
X
Dp

r2Dp
=

X
Dp

X
kaDp

XN
i=1

Xti
Yk = ti = 1

qk Ykð Þ Yk
Bk

−qi
� �2

: ð7Þ

After differentiation of σ2 with respect to B, Q and T,
we have

Bk =

PN
i=1

Pti
Yk = ti − 1

qk Ykð Þ Ykð Þ2

PN
i=1

qi
Pti

Yk = ti − 1

qk Ykð ÞYk
; with kaDp ð8Þ

qi =

P
Dp

P
kaDp

1
Bk

Pti
Yk = ti − 1

qk Ykð ÞYk
P
Dp

P
kaDp

Pti
Yk = ti − 1

qk Ykð Þ
; with i = 1; :::;N ð9Þ

ti =
1
2

qi +1 +qið Þ
P
Dp

P
kaDp

qk tið ÞP
Dp

P
kaDp

qk tið Þ 1
Bk

; with i = 0; :::;N − 1 ð10Þ
It is obvious that bias field is only fixed up to a global
factor, so we impose the additional constraint for a
normalized bias field, namely:

X
Dp

X
kaDp

qk tið Þ =
X
Dp

X
kaDp

qk tið Þ 1

Bk
ð11Þ

So, after inserting the relation in Eq. (11), Eq. (10)
reduces to Eq. (3).

Similar to a classic Lloyd–Max problem, Eqs. (8)–(10)
have to be solved in an iterative manner. Afterwards, the
local bias fields will have to be pieced together to obtain
the final global bias field, the details for which will be
given below.
2.4. From the local bias field to the global one

Obtaining optimal solutions from Eqs. (7) to (10) relies
not only on an optimal iterative minimizing scheme, but also
on the setup of the subdivisions {Dp}. The first issue is the
definition of “local,” or in other words, how do we suppose
the bias field behaves in a small scale? Typically, the bias
field is assumed to be smoothly varying and therefore can be
approximated by a piecewise constant field. While the
“piece” (subdivisions) should be small enough to reflect the
locality of the bias field, we should also ensure that its
dimensions allow for enough (statistical) information to
support any valid analysis. Presently, the piecewise constant
field will be further smoothed and interpolated into a
pixelated field that better approximates the true bias field.
The second issue is the overlapping between subdivisions.
The theorizing in the previous section says nothing about the
method to generate the subdivisions, and Eqs. (7) to (10) do
not impose any overlapping constraint (local information
sharing) across individual subdivisions. However, since the
bias field is only fixed up to a factor, a set of minimizers for
the local optimization (local bias fields) put together does not
necessarily represent the global minimizer (global bias field),
and especially not if the local optimizations are done
separately. Therefore, finding ways to channel information
between subdivisions becomes mandatory. We can impose
subdivisions to be physically overlapping with each other
(physical overlap scheme, POS); alternatively, we can
provide certain information-sharing mechanism for nonover-
lapping subdivisions (virtual overlap scheme, VOS). The rest
of this section will introduce both mechanisms and the
associated minimization process.
2.4.1. Physical overlapping scheme
In the POS, the subdivisions are generated such that

each subdivision Dp always has physical overlappings with
its neighbors.
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Fig. 3. An example of the physical overlapping subdivisions in POS
Subdivision I (dash line) has 50% overlapping with Subdivisions II and III
as decomposed in (B) and (C) respectively. Sx and Sy indicate the size of
subdivisions in the x and y directions, while Ox and Oy represent the degrees
of overlappings in each direction.
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Fig. 4. The pseudo-code for POS.
For example, a typical setup can be like that shown in
Fig. 3, with

DI = x; y; zð Þ jmVxVm + Sx; jVyVj + Sy; lVzV + Sz
� �

DII = x; y; zð Þ jm+OxVxVm+Sx +Ox; jVyVj+ Sy; lVzV+ Sz
� �

DIII = x; y; zð Þ jmVxVm+Sx; j+OyVyVj+ Sy +Oy; lVzV+ Sz
� �

where Sx, Sy and Sz are the subdivision dimensions, and Ox,
Oy and Oz control the degree of overlappings. In practice, we
can just set Oi = 1

2 Si (i=x,y,z), so that each subdivision will
have 50% overlapping with each of its neighbors.

In POS, the local bias field Bk is taken to be constant
inside each subdivision Dp, whose bias field value will be
denoted as Bp. We use a simulated annealing technique to
solve the minimization problem. Roughly put, the MSE σp

2

for Dp is calculated according to Eq. (7), with an initial
estimate of the bias field {Bp}, and then the overall MSEP

p r
2
p is iteratively minimized with a randomly varied bias

field {Bp}, until the preset convergence thresholds are
reached. T and Q are also updated in each iteration accord-
ingly. The pseudo-code for this process is shown in Fig. 4.

After the local bias fields Bp are obtained, the global bias
field Bk can be approximated using a bi-linear interpolation.
It is obvious that the dimension of subdivisions directly
influences how accurately the interpolated B ̃k reflects the
true bias field Bk. For example, subdivisions of half the
overall image's dimension will be unlikely to represent the
local variation of the global bias field of, e.g., about 1/10th of
the image scale. However, it is equally unwise to use
subdivisions down to very small dimensions, e.g., about a
few voxels in each dimension. The reason is rooted in the
fact that the whole LMQ framework is a statistical method,
which relies on a sufficient number of samples to carry out
any meaningful statistical analysis. Therefore, for robustness
and stability, the subdivision dimension in POS is set to be at
least one-eighth of the image dimension.

2.4.2. Virtual overlapping scheme
In VOS, subdivisions are generated without physical

overlappings with each other. However, as mentioned
earlier, certain information channeling between subdivisions
must be provided. In VOS, we utilize a multi-resolution
approach to facilitate an optimum search, as is shown in
Fig. 5. Firstly, a subdivision Dp is further divided into M
smaller sub-blocks, with local bias field Bk assumed to be
constant only in those sub-blocks (instead of constant in the
whole subdivision in POS), denoted as Bp

m, and then a virtual
subdivision is formed from adjacent sub-blocks of neighbor
subdivisions. Afterwards, optimizations of MSE with respect
to {Bp

m} are carried out first on all physical subdivisions and
then on the virtual one. The optimized result from the virtual
subdivision is used to update the results for all physical
subdivisions so that the separate optimizations in local
regions can properly represent the global bias field. For
example, as shown in Fig. 5, suppose, after optimization, that
the optimal local bias field inside Subdivision 1 is

1 : a; b; c; df g
where the last value corresponds to the bottom right sub-
block of Subdivision 1, while the optimal results for
Subdivision 5 is

5 : e; f ; g; hf g
where the first value corresponds to the upper left sub-block
of Subdivision 5, same as the bottom right block of Subdi-
vision 1, then the updated results for Subdivision 1 will be

1 :
e
d
a;
e
d
b;
e
d
c; e

n o

The results of Subdivisions 2, 3 and 4 are similarly
updated. This update method is plausible simply because of
the multiplicative nature of the bias field, which remains
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subdivisions, in a higher resolution, to continue a new round of optimizations. This iterates until the required or satisfactory resolution is reached.
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constant up to a nonzero factor. Furthermore, after this round
of optimizations, the smaller sub-blocks inside subdivisions
can be regarded as new subdivisions in a higher resolution
(provided their dimension still ensures to retain enough
statistical information for analyzing). Those new subdivi-
sions can still be further divided into smaller sub-blocks,
upon which one can perform a new round of optimizations.
The primary advantage of VOS lies in the fact that each
optimization only involves a subdivision, with M{Bp

m}
values as parameters (four in the 2D case, eight in the 3D
case), instead of having to cope with the huge amount of
parameters in POS (where a modest subdivision dimension
of one-sixth of the image scale would result in about 1700
parameters to optimize against simultaneously). In light of
this, in order to speed up the optimizations, one can use a
gradient-descent search algorithm (L-BFGS [14]): the
gradient of the MSE σp

2 for subdivision Dp with respect to
A  Phantom 1 original B  Phantom 1 biased C  Phantom 1 debiased

Fig. 6. Sample result of the proposed LMQ method applied to phantom images. (A) is the original image, (B) the biased image, (C) the debiased image.
r

r
.

its internal local bias fields {Bp
m} is computed and is used to

guide the optimization towards the minimizer. However, it
should be noted that, similar to its application elsewhere, the
gradient-descent algorithm we employed is sensitive to the
initial input and hence liable to be stuck in a local minimum.
Nevertheless, the multi-resolution approach is a good way to
help reach the global minimum. Additionally, our experi-
ments have indicated that the output of POS can be a good
initial input for VOS. Therefore, we link VOS to POS
downstream in the processing pipeline.
3. Results and discussions

In this section, we present the results from various experi-
ments where we applied our method on phantom geometric
images, simulated brain images as well as real brain images.
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Fig. 7. The effect of different N, number of {qi}, on the algorithm. It was tested on Phantom 2 (A), with ground truth N=5, on three different Rician noise levels;
black line for 0% noise, red for 5% noise and blue for 30% noise.

Table 1
The NMSE of the estimated bias fields for different phantoms and synthetic
brain image with respect to noise level

Noise Phantom 1 Phantom 2 Simulated image (SI) N3 on SI

0% 2.18E−4 12.4E−4 10.2E−4 39.8E−4
10% 3.13E−4 17.8E−4 12.7E−4 4.12E−4
30% 4.39E−4 20.5E−4 14.3E−4 45.0E−4
50% 10.8E−4 28.5E−4 16.6E−4 51.0E−4

The last column is the corresponding result from the N3 method applied to
the same simulated image as in the second to the last column.
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According to Vovk et al. [4], the nonparametric nonuni-
formity normalization (N3) method, described in Ref. [15],
has become the standard method against which other
debiasing methods are compared. Hence, during the tests for
simulated data and real data, we have compared our proposed
LMQ algorithm to the N3 method, which is available from
http://packages.bic.mni.mcgill.ca/ubuntu-intrepid/.

3.1. Phantom geometric images

Phantom geometric images consisting of a finite number
of pixel classes (Figs. 6(A) and 7(A) have been produced in
order to verify the accuracy of our bias field estimation. For
instance, in Fig. 6, 6(A) was polluted with a bias field
lineally increasing in both the x- and y-axis, as shown in Fig.
6(B). From the debiased images, for example, Fig. 6(C), we
can see that the bias field is effectively reduced. In order to
compare the estimated bias field to the ground truth in a
quantitative manner, we measured the normalized mean
square errors (NMSE) of the estimated result from the
ground truth, which is calculated as follows:

NMSELMQ =
XNoV
i=1

a � BLMQ
i −BGT

i

� �2

NoV

where NoV is the number of voxels in the image; Bi
LMQ

and Bi
GT are the bias fields estimated with our LMQ method

and the ground truth bias field, respectively; and
a = BGT = BLMQ, with BGT and BLMQ being the mean values
of the ground truth bias field and the estimated bias field,
respectively. The NMSE results for the phantom geometric
images are shown in the phantom part of Table 1.

Additionally, we tested our algorithm against different
levels of noise presence in the image, which can be seen in
the phantom part of Table 1. The noise we applied is of a
Rician distribution, with its standard deviation increasing
from 0% to 50% of the mean intensity of the original image
[16]. It can be seen that despite the presence of mild to heavy
noise, our algorithm is still able to significantly reduce the
bias field.

Our LMQ-based method assumes no prior knowledge of
the untainted image except that it containsN classes of pixels.
Therefore, this parameter is an integral part of the algorithm
and the algorithm is sensitive to this piece of prior
information. We performed a series of tests with different N
as parameter on Phantom 2, for which the ground truthN is 5,
and the result is shown in Fig. 7. Clearly, the algorithm
performs best when the correct N is used; however, it is also
interesting to note that the NMSE curve of the estimated bias
field plateaus when N increases. This is largely due to the
quantization nature that underlies our algorithm: its ultimate
goal is to transform the histogram (debiasing) and group the
intensities (quantization) into as many peaks as indicated by
N; when N is sufficiently large, it would result in more
quantization than debiasing. For an extreme example, if we
apply the LMQ algorithm withN equal to the number of pixel
values in a biased image, the algorithm would actually
consider the biased state as the optimal result after
optimization and therefore would do no debiasing at all.
This observation emphasizes the importance of using the right
N. However, on the other hand, it should also be pointed out
that the impact of N is more immediate and stronger on the

http://packages.bic.mni.mcgill.ca/ubuntu-intrepid/


A  Image with bias field B  N3 method C  LMQ method D  Original image

E  Image with bias field F  N3 method G  LMQ method H  Original image

I  Image with bias field J  N3 method K  LMQ method L  Original image

Fig. 8. Comparison between the N3 debiasing method and the proposed LMQ method with simulated images.
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simple phantom geometric images, while for more realistic
images our algorithm can still produce rather satisfactory
results with a small deviation from the real N (see below).

3.2. Simulated image

For the test shown in Fig. 8, a pre-generated simulated
brain image [17] of size 256×256×181 was used, with 3%
noise. Three slices from this dataset are shown in Fig. 8(D),
(H) and (L). Next, the simulated brain image was polluted
with a 3D Gaussian bias field (see Fig. 8(A), (E) and (I)).
Then, this image was debiased with the N3 method and the
proposed LMQ method.

The results can be seen in, for example, Fig. 8(B) (for the
N3 method) and (C) (for the LMQ method), respectively.
From Fig. 8(B), it is clear that the N3 method reduces the
bias field. The bias field reduction from our LMQ method
(Fig. 8(C), (G) and (K)), however, is even more pronounced
in comparison. Further quantitative NMSE result for
simulated data can be seen in the simulated part of Table
1. It is clear that our method is effective in reducing bias field
for simulated images that approximate real data in terms of
complexity, despite the presence of heavy noise.
3.3. Real image

Finally, to prove our method's viability against real data,
we also tested it on real MR images. Sample axial slices from
the real data volume (256×256×256) can be seen in Fig. 9(A).
Fig. 9(A) is clearly polluted by a heavy intensity inhomoge-
neity field, especially along the vertical direction, and,
consequently, a large portion of the bottom part is obscured.
Furthermore, as can be seen from the corresponding
histogram in Fig. 9(C), the gray levels are almost evenly
spread out. Consequently, it is likely that distinct anatomical
structures will be confused during segmentation. As a result
after applying our algorithm, as shown in Fig. 9(B), image
intensity homogeneity is largely restored, and many previ-
ously unseen details are now clearly visible, making it
suitable for further intensity-based processing. Moreover,
from the comparison between the histograms of biased and
debiased image in Fig. 9(C), it is shown that, in accordance
with our objective to match the image histogram towards a
finite set of gray level classes, not only is the histogram of the
debiased image shrunken, but it is also grouped into N peaks
(four in this example, including background) towards which
the debiased gray levels converge. However, it is also



A  Original image B  Debiased image

0 5000 10000 15000 20000 25000 30000
0

200000

400000

600000

800000

1000000

 Biased Image
 Debiased Image

C  Image histogram   

Fig. 9. Sample result of the proposed LMQ method applied to real MR images. Left image is one slice from the biased volume, the middle one is one slice from
the debiased volume image and the right one is the histograms (partial, background excluded) for both volumes (red line for biased image, black line for debiased
one using our method).
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obvious that the convergence towards the peaks is not
complete, leaving room for improvement.

We also tested the algorithm's performance on real data
with respect to N. Our debiasing algorithm was applied in
repetitions to a real data volume (196×256×128), and
during each run we set the N to different values, ranging
from 2 to 30. The sample results are shown in Fig. 10,
where the leftmost image is the biased image; the second
from the left is the debiased image with correct N (=4); the
third and the fourth are those debiased with N=2 and 30,
respectively; and the last one is debiased with the N3
method. Similarly to the previous phantom tests, when N
deviates from the correct one far enough, the debiasing
effect would get less and less prominent, while, on the
other hand, a small deviation of N (e.g., N=2) does not
result in a truly objectively inferior debiased image
(subjective quantitative comparison unavailable due to the
unavailability of the ground truth in the case of real data).
Recall from the result for the phantom geometric images
that setting N=10 will already cause the bias field
A  Original image B  Debiased image
with correct N=4

C  Debiased
with N=2

Fig. 10. A comparison of the choice of N on the debiasing effect. Leftmost colum
with the correct N=4; the third and the fourth columns the debiased images with N=
N3 method.
estimation to have a big error margin. Here for the real
data test, the impact of erroneous N would not become
manifest until it reaches as high as 25. The absence of
ground truth makes a quantitative analysis difficult.
Nevertheless, visual inspection from our tests suggests
that, in the case of not knowing the number of voxel
classes a priori, our algorithm is still capable of removing
the bias field. On the other hand, this suggests a possible
algorithmic extension that the parameter N might be
optimized along with other variables.

Lastly, we would like to mention briefly the execution
time of the algorithm. For a typical 256×256×256 MR brain
data set, the computation takes approximately 50 s on a PC
with Intel Pentium IV 3.0 GHz and 2 GB of memory.

4. Conclusion

In this article, we have proposed a general debiasing
method based on LMQ. Our method assumes the imaged
structures to consist of distinct components, which is largely
 image D  Debiased image
with N=30

E  Debiased image
using N3

n are the original biased images; the second column the debiased images
2 and N=30, respectively; and the final column the debiased results using the
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justifiable in anatomical scans. Apart from that, our method
does not assume any prior knowledge about the bias field
and is practically robust against either phantom, simulated or
real images. Both simulation image and real image results
showed that the LMQ bias reduction is significantly better
than the commonly used N3 method. The additional noise
tests as well as the real data results confirm our method's
applicability to biased images heavily tainted with noise.

For future investigations, firstly, our algorithm's
advantage lies in the fact that it does not assume the
bias field to be following a certain (parametric) model;
however, the assumption about the voxel intensity classes,
namely, N, can indeed hamper its performance if prior
knowledge about it is not available. Therefore, it would be
interesting if we can automatize the estimation of N as
part of the optimization. Secondly, the multilevel optimi-
zation is indeed efficient, yet it does not differentiate
between areas of relatively denser bias field change, a
consequence of which would lead to an oversmoothed bias
field in an area where higher precision in the bias field is
needed. This issue could be overcome by adding a locally
adaptive multi-resolution approach in the VOS step of the
bias field estimation.
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