
Performance improvements for iterative electron tomography reconstruction
using graphics processing units (GPUs)

W.J. Palenstijna, K.J. Batenburga,b, J. Sijbersa

aIBBT-Vision Lab, University of Antwerp
Universiteitsplein 1, B-2610, Wilrijk, Belgium

bCentrum Wiskunde en Informatica
Science Park 123, NL-1098XG, Amsterdam, The Netherlands

Abstract

Iterative reconstruction algorithms are becoming increasingly important in electron tomography of biological
samples. These algorithms, however, impose major computational demands. Parallelization must be em-
ployed to maintain acceptable running times. Graphics Processing Units (GPUs) have been demonstrated
to be highly cost-effective for carrying out these computations with a high degree of parallelism. In a recent
paper by Xu et al. [1], a GPU implementation strategy was presented that obtains a speedup of an order of
magnitude over a previously proposed GPU-based electron tomography implementation. In this technical
note, we demonstrate that by making alternative design decisions in the GPU implementation, an additional
speedup can be obtained, again of an order of magnitude. By carefully considering memory access locality
when dividing the workload among blocks of threads, the GPU’s cache is used more efficiently, making more
effective use of the available memory bandwidth.

Keywords: Electron Tomography, Reconstruction, GPU

Recently, iterative algebraic methods, such as
ART and SIRT, have gained popularity in the elec-
tron tomography community due to their flexibility
with respect to the geometric parameters of the tilt
series, and their ability to handle noisy projection
data. The use of algebraic reconstruction methods
imposes major computational demands. Depending
on the number of iterations, reconstructing a large
3D volume with a sequential implementation can
easily take days on a normal PC. This obstacle can
be largely overcome by parallelizing the computa-
tions, in particular the projection and backprojec-
tion steps. Graphics Processing Units (GPUs) have
recently emerged as powerful parallel processors for
general-purpose computations. Their architecture
allows operations to be performed on a large num-
ber of data elements simultaneously.

Several algorithmic strategies have already been
proposed for implementing algebraic methods for
electron tomography on the GPU. In [2], it was
demonstrated by Castaño-Diez et al. that at that
time, a GPU implementation of the SIRT algorithm
could achieve similar performance to a CPU im-

plementation running on a medium sized cluster.
Xu et al. recently proposed a different implemen-
tation strategy [1] that leads to a speedup of an
order of magnitude compared to the results from
[2]. They attribute this speedup to improvements in
three categories: minimizing synchronization over-
head, encouraging latency hiding, and exploiting
RGBA channel parallelism. The first two design
goals are interdependent and cannot be optimized
separately. In this technical note, we argue that by
exploiting data locality more effectively, the run-
time of the projection and back projection opera-
tions can be substantially reduced, even though the
required number of thread synchronization steps
will increase. We demonstrate that a significant
speedup can be gained in this manner.

Exploiting data locality

The Graphics Processing Unit (GPU) is well
suited for carrying out the computations involved
in electron tomography with a high degree of par-
allelism. A general outline of the processing and

Preprint submitted to Elsevier July 31, 2011



2

memory-related capabilities of the GPU in the con-
text of tomography is given in [1]. Here, we briefly
discuss the features that are particularly relevant
to our proposed implementation. Our implementa-
tion is based on the NVIDIA CUDA platform [3].
The GPU consists of a number of multiprocessors,
each of which executes one, or a few, thread blocks.
Threads on a multiprocessor share a texture cache.
As the bandwidth available for reading data from
the large global memory is limited, and tomogra-
phy algorithms are highly memory-read intensive,
it is imperative to exploit the possibilities for mem-
ory sharing and caching, even if this is at the cost
of limited extra synchronization or extra memory
writes.

To reduce the running time of iterative recon-
struction algorithms, the projection and backpro-
jection operations must both be accelerated. From
this point on, we mainly focus on the projection
operation. The general optimization strategy we
propose also applies to backprojection.

In our implementation of the projection oper-
ation, each thread processes a single ray that is
traced through the image to compute the corre-
sponding detector value. This scheme ensures each
memory location in the output projection image
will be written to exactly once, so it cannot oc-
cur that the same output value is written to by two
or more threads simultaneously. We use the slice-
interpolated projection scheme, which yields similar
accuracy to the grid-interpolated scheme employed
in [1]; see [4]. Also, the computational efficiency
of both models is comparable. The image is ac-
cessed through the texture unit and its correspond-
ing cache memory. The performance of the shared
texture cache depends on the 2D locality of the im-
age values that must be loaded to compute the de-
tector values for all lines processed within a thread
block, as this cache is shared between all threads
of a thread block (and between thread blocks on
a multiprocessor). We use large thread blocks to
fully exploit this locality, where each multiproces-
sor processes only a few such thread blocks.

In the article [1] by Xu et al., the rays are dis-
tributed among threads internally by the rendering
driver software. By explicitly controlling the dis-
tribution of rays, or even segments of rays, among
the thread blocks, the performance of the texture
cache can be increased, thereby reducing the num-
ber of global memory reads required. We consider
four ray ordering schemes. Starting from a fully un-
ordered scheme, the efficiency of the texture cache

is gradually improved:

(a) No specified ordering of the rays within
thread blocks; see Fig. 1(a).

(b) Grouping strips of parallel rays within
thread blocks. For each projection angle, rays
corresponding to neighboring detectors follow
neighboring, parallel paths through the volume.
If their threads are part of the same thread
block, they will execute in parallel, and will ac-
cess nearby locations in the image texture; see
Fig. 1(b).

(c) Grouping strips of rays for several consecu-
tive angles within thread blocks. For sets of
consecutive projection angles, rays correspond-
ing to a fixed set of neighboring detectors will
partially overlap within the slice; see Fig. 1(c).

(d) Grouping strip segments for several angles
within thread blocks. As the angle between
two projections increases, the overlap that can
be exploited between strips is reduced. To ex-
ploit this overlap more effectively, the strips
of rays are subdivided into strip segments, as
shown in Fig. 1(d). Based on spatial locality,
sets of strip segments (spanning across several
projection angles) that have substantial over-
lap are processed within a single thread block.
The complete detector values can then be ob-
tained by accumulating the partial values from
the segments.

In our implementation, we use a voxel driven
backprojector: for each voxel in the 3D volume,
the total backprojected value is computed by accu-
mulating the corresponding sinogram values for all
angles. Each GPU thread processes a single voxel.
Similar considerations as above apply to the group-
ing of voxels within thread blocks, as grouping lo-
cal regions of voxels within a slice also results in
locality in the sinogram domain. While all three
steps above improve locality for the backprojector,
selecting appropriate segments in scheme (d) has
a rather high computational cost outweighing the
benefits. Our backprojector therefore implements
scheme (c).

Experiments and results

To investigate the impact of each of the three
ray ordering improvements on the running time of
the projection operation, we performed a series of
experiments.



3

(a) (b) (c)

Figure 2: Subset of the sinogram processed by a single thread block for the different scenarios.

+ =

(a) Arbitrary ray ordering

+ =

(b) Strip ordering; arbitrary
angles

+ =

(c) Strip ordering; consecu-
tive angles; high overlap

+ =

(d) Strip segments; in-
creased overlap

Figure 1: Different scenarios for selecting the set of rays
processed within a single thread block. The square region
represents a volume slice orthogonal to the tilt axis. The
small squares depict the subsets of these rays corresponding
to two different projection angles. The large squares show
the resulting spatial overlap.

Test case (a) is shown in Fig. 2(a). The back-
ground of this figure (and the subsequent ones)
shows a sinogram of a slice of the 3D volume, where
the horizontal axis corresponds to the coordinate
at the detector and the vertical axis corresponds to
the projection angle. The black overlay indicates
the rays that are combined within a single thread
block. In test case (a), a GPU thread block handles
16 angles, and for every angle it processes 32 rays
that are distributed at constant intervals covering
the entire detector. The angles are similarly chosen
at constant intervals, covering the complete angular
range. This results in a ray distribution in the im-
age domain that has similar data locality properties
as Fig. 1(a).

Test case (b) is shown in Fig. 2(b). The distribu-
tion of angles over the thread blocks is the same as

in the previous case, while each thread block now
handles a strip of 32 consecutive rays, resulting in
a pattern similar to Fig. 1(b).

In test case (c), we group 16 consecutive angles
and 32 consecutive rays in each thread block; see
Fig. 2(c) and Fig. 1(c).

Test case (d) is significantly more complex than
the previous ones. Each ray is subdivided into 8
segments. Strip segments are formed by grouping
32 neighboring ray segments for a particular angle.
A thread block processes a group of strip segments
for 16 consecutive angles, selecting strip segments
that have large overlap. Fig. 1(d) depicts the in-
creased locality in this scheme. The thread blocks
for all segments that constitute a ray are processed
sequentially — accumulating the partial detector
values computed — thereby ensuring that multiple
threads never write to the same memory location
simultaneously.

We will now report the results of a series of exper-
iments, carried out to investigate the effect of the
different ray ordering schemes. The results for the
fastest ordering scheme will subsequently be com-
pared to the results reported in Xu et al. [1].

Two generations of NVIDIA GPUs have been
used. The GTX 280 GeForce card contains a
GT200 GPU and was launched in 2008. The same
card was used by Xu et al. The GeForce GTX 480
and Tesla C2070 cards contain a Fermi GPU, and
were launched in 2010.

For the reconstruction and timings we did not
use the long object compensation method also de-
scribed in [1]. Since it is essentially a preprocessing
step, it does not affect the timings of the iterations.

For the experiment comparing different ray or-
dering schemes, we have run the projection opera-
tion on a stack of 10 slices of size 2048×2048, using
180 projection angles at 1◦ intervals. Table 1 con-
tains the projection time per slice for the test cases
0–3 described above.

We now report running times for the SIRT and
OS-SIRT 5 algorithms; see Xu et al. [1] for details
on these algorithms. Both implementations use the



4

Test case GTX 280 GTX 480
(ms) (ms)

(a) 507.103 278.622
(b) 154.976 85.068
(c) 77.863 34.340
(d) 25.326 27.883

Table 1: Projection timings per slice for the four test cases:
(a) Non-consecutive rays and angles; (b) Strips of rays at
non-consecutive angles; (c) Strips of rays at consecutive an-
gles; (d) Strip segments with high overlap.

Slice size/angles SIRT OS-SIRT 5 SIRT OS-SIRT 5
GTX 280 GTX 280 GTX 480 GTX 480

(ms) (ms) (ms) (ms)

5122, 180 angles 3.8 9.7 3.5 7.6

5122, 360 angles 6.8 11.9 6.4 10.2

10242, 180 angles 12.4 30.0 12.9 22.4

10242, 360 angles 22.9 36.0 23.8 34.2

20482, 180 angles 45.1 110.9 48.0 73.7

20482, 360 angles 84.8 124.7 91.0 118.5

40962, 180 angles 171.5 416.9 184.1 263.5

40962, 360 angles 326.5 459.6 354.0 438.9

Table 2: Timings per slice for one iteration of SIRT and 5
iterations of OS-SIRT 5.

proposed projection and backprojection operations:
the projection employs scheme (d), while the back-
projection employs the analogue of scheme (c). We
have run the algorithms on stacks of 10 slices of dif-
ferent sizes, using 180 projection angles at interval
1◦ and also 360 projection angles at interval 0.5◦.
The running time per iteration was computed by
running the algorithm for 10 and 50 iterations and
taking 1/40th of the difference in execution time.
The results of these experiments are shown in Ta-
ble 2.

In Table 3, SIRT timing results for our proposed
implementation are compared with the results re-
ported in Table 1 and Table 2 of [1], using matching
slice dimensions.

The results in Table 1 clearly demonstrate the
benefits of increasing the locality of the memory
access scheme, with each of the optimization steps
providing a significant speedup.

Table 2 and the corresponding Fig. 3 provide in-
sight in how our implementation scales to larger
image sizes. It can be observed that the amount of
time spent for each voxel increases slightly sublin-

Slice size Xu et al. This paper
GTX 280 GTX 280 GTX 480 C2070

(ms) (ms) (ms) (ms)

356 × 148 4.2 0.9 0.7 1.2
712 × 296 10.5 2.0 1.8 2.7
1424 × 591 28.8 5.5 5.6 7.6

512 × 512 34.8 3.8 3.5 5.1
1024 × 1024 130.3 12.4 12.9 17.3
2048 × 2048 547.0 45.1 48.0 63.6

Table 3: Timings per slice for one iteration of SIRT. The
three non-square slices are based on 61 projections and a tilt
range of 120 degrees. The square slices are based on 180
projections and a tilt range of 180 degrees.

early with the size of the reconstructed volume. For
OS-SIRT 5, processing the same number of projec-
tions as for SIRT results in a longer running time,
which can be explained by the larger average gaps
between the projection angles, reducing data local-
ity. This effect is smaller when using 360 projec-
tions than for the case of 180 projections, which
supports this explanation.

Compared to the results reported in Xu et al. [1],
our implementation of SIRT is about ten times as
fast when run on a GTX 280 graphics card; see Ta-
ble 3. This time difference is within the range of
timings observed when comparing the different ray
ordering schemes in Table 1. Other factors, such
as the particular GPU programming platform used
and low-level coding details will also play a role
in the observed timing difference, such that it is
not possible to attribute the results solely to the
ray ordering scheme. Still, our results demonstrate
clearly that exploiting data locality is a crucial fac-
tor in the total running time.

In the three tables, various remarkable differences
between the performance of the GT200 (GTX 280)
and Fermi (GTX 480 and Tesla C2070) GPUs can
be observed. Although the Fermi architecture has
a higher degree of parallelism, and is therefore com-
putationally faster, the balance between the speeds
of different components (e.g., texture cache, arith-
metic units, memory bus) has also changed sub-
stantially. As a consequence, the Fermi cards are
actually slower than the older GTX 280 for some
particular cases. This is particularly noticeable for
the SIRT algorithm.

Finally, we illustrate that our implementation of
SIRT produces proper reconstructions by means of
Fig. 4. It shows part of a reconstructed slice of a
sample of keyhole limpet hemocyanin (KLH) in vit-
rified ice. The data was recorded on an FEI Titan
Krios with 6–10 µm defocus, zero-loss filtered with
a 20 eV slit, in low-dose mode, with 71 projections
and a tilt range of 140◦.

In conclusion: We have demonstrated that the
ray segment ordering scheme has a major impact on
the running time of the projection and backprojec-
tion operations in a GPU implementation. For our
implementation, a speedup of around 10 was ob-
served compared to recent results reported by Xu
et al. using similar hardware.

Acknowledgments: The authors wish to thank
Jeff Langyell from FEI Company for recording and
providing the KLH dataset. We gratefully acknowl-
edge IBBT, Flanders for financial support.



5

Figure 3: Comparison of the time spent per voxel for the SIRT and OS-SIRT 5 algorithms, for the GTX280 and GTX480 GPU
architectures.

Figure 4: Part of a reconstructed slice from the KLH dataset

References

[1] W. Xu, F. Xu, M. Jones, B. Keszthelyi, J. Sedat, et al.,
High-performance iterative electron tomography recon-
struction with long-object compensation using graphics
processing units (GPUs), Journal of Structural Biology
171 (1) (2010) 142–153.

[2] D. Castaño-Diez, H. Mueller, A. S. Frangakis, Imple-
mentation and performance evaluation of reconstruction
algorithms on graphics processors, Journal of Structural
Biology 157 (1) (2007) 288–295.

[3] NVIDIA CUDA C Programming Guide, Version 3.2
(November 2010).

[4] F. Xu, K. Mueller, A comparative study of popular in-
terpolation and integration methods for use in computed
tomography, in: Proceedings of the IEEE 2006 Interna-
tional Symposium on Biomedical Imaging (ISBI 2006),
2006, pp. 1252–1255.


