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Railway rolling stock is one of the most significant cost components for operators of passenger trains. The
efficient circulation of rolling stock is therefore one of the main objectives pursued in practice. This paper

focuses on the determination of appropriate numbers of train units of different types together with their efficient
circulation on a single line. To utilize the train units on this line in an efficient way, they are coupled to or
uncoupled from the trains in certain stations according to the passengers’ seat demand in peak and off-peak hours.
Because coupling and uncoupling train units must respect specific rules related to the shunting possibilities in
the stations, it is important to take into account the order of the train units in the trains. This aspect strongly
increases the complexity of the rolling stock circulation problem. This paper presents a solution approach based
on an integer multicommodity flow model with several additional constraints related to the shunting processes
at the stations. The approach is applied to a real-life case study based on the timetable of NS Reizigers, the
main Dutch operator of passenger trains.
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1. Introduction
The efficient circulation of railway rolling stock is an
important consideration for operators of passenger
trains, because the rolling stock is one of their most
significant cost components. The involved costs are
mainly due to acquisition, power supply, and main-
tenance of the rolling stock. Because these costs are
usually substantial, it must be decided carefully how
much rolling stock is necessary per scheduled train
to provide quality service to passengers: an efficient
circulation of rolling stock requires per trip a match
between the provided rolling stock capacity and the
passengers’ demand for transportation.
To achieve this objective, the compositions of the

trains may have to be changed during the operations
by coupling or uncoupling rolling stock to or from the
trains. For example, rolling stock may be uncoupled
from the trains after the morning peak hours, and
it may be coupled again before the afternoon peak
hours. In these shunting processes, which are usually
carried out in the short time interval between the
arrival of a train at a station and its subsequent depar-
ture, several practical rules related to the feasibility

of the transitions of the train compositions should
be considered. For example, train units can only be
uncoupled from the rear end of a leaving train.
This paper focuses on the determination of appro-

priate numbers of train units of different types together
with their efficient circulation on a single line of
NS Reizigers, the main Dutch operator of passenger
trains. Thereby the positions of the train units in the
trains are taken into account because these determine
the feasibility of the transitions from one train com-
position into another.
This paper is organized as follows. A detailed prob-

lem description is given in §2. Section 3 gives an
overview of earlier research in the area of rolling stock
circulation. Section 4 describes two models for solv-
ing our rolling stock circulation problem. This sec-
tion also describes the computational complexity of
two variants of the problem. Section 5 presents our
solution approach based on a combination of an inte-
ger multicommodity flow model and finding paths
in so-called transition graphs. The results of our com-
putational experiments are presented in §6. Finally,
conclusions are drawn in §7.
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2. Problem Description
2.1. Rolling Stock: Train Units
NS Reizigers has a large variety of rolling stock
available for its passenger transportation process. The
major part of the rolling stock consists of train units.
Each train unit consists of a certain number of car-
riages that cannot be split from each other during the
daily operations. A main difference between a train
unit and a single carriage is that each train unit has its
own engines. As a consequence, a train unit can move
individually in both directions without a locomotive.
This is in contrast with a single carriage, which needs
a locomotive for any movement. Figure 1 shows an
example of a single-deck train unit consisting of three
carriages.
Single-deck train units can be subdivided into train

units with three or four carriages. In this paper, we
focus on the circulation of such single-deck train
units. Each train unit has fixed capacities of first-
and second-class seats. These capacities are more or
less linear in the number of carriages per train unit.
Single-deck train units with three or four carriages
may be combined with each other into one longer
train. The latter implies that for each type, not only
the number of train units in each train is to be
determined, but also their order in the train. This is
explained later in this section.
An ordered sequence of train units in a train is

called a composition. For example, if “3” and “4”
denote single-deck train units with three and four car-
riages, respectively, then “344” and “434” indicate dif-
ferent compositions. The notation here is such that
both compositions have a train unit of type “4” in
front (in other words, the trains move from left to
right).
Coupling train units onto a train or uncoupling

train units from a train has to be carried out in the
short period (typically just a few minutes) between a
train’s arrival at a station, and its subsequent depar-
ture from that station. To minimize the time required
for the involved shunting movements, train units are
usually coupled onto the front end of an incoming
train, and uncoupled from the rear end of a leav-
ing train. Only if the difference between the depar-
ture time and the arrival time of a train is sufficiently
large, more complicated shunting movements may be
carried out.
From a capacity point of view, the earlier men-

tioned compositions “344” and “434” are identical.

Figure 1 A Single-Deck Train Unit with Three Carriages

However, these compositions have different transition
possibilities: the train unit of type “3” can be uncou-
pled easily from the composition “344,” whereas the
latter is not the case for the composition “434.” In case
of the composition “344,” the train unit of type “3”
can be uncoupled from the train, and the remaining
part of the train (with composition “44”) can proceed
without being disturbed by the uncoupled train unit.
Recall that trains are assumed to move from left to
right. In case of the composition “434,” uncoupling
the train unit of type “3” would require several shunt-
ing operations, which usually requires too much time.
In this case, uncoupling the rear train unit of type “4”
would also be easy, but if one really wants to uncou-
ple the train unit of type “3,” then uncoupling the
train unit of type “4” may conflict with the train’s
forecasted passenger demand later on.
Because train units can be subdivided into differ-

ent types significantly complicates both the planning
process and the daily operations. However, the gain
is that, per train, a better match between the expected
number of passengers (demand) and the provided
number of seats (supply) can be realized. For exam-
ple, train units with a length of 4 carriages can com-
pose only trains with 4, 8, or 12 carriages. However, a
combination of train units with 3 and 4 carriages may
give rise to trains with 3, 4, 6, 7, 8, 9, 10, 11, and 12 car-
riages. Note that each train should not be longer than
the shortest platform of the stations along the train’s
route, and certainly not longer than 12 carriages.

2.2. Further Details of the Problem
The planning of the rolling stock circulation usually
starts after the timetable has been completed, because
the timetable is required as input for the rolling stock
circulation planning. In this paper, the timetable is
assumed to be cyclic.
A line is a direct connection between two end sta-

tions that is served with a certain frequency (e.g., once
or twice per hour). Each line is served by a fixed
number of trains. During the day, each train runs up
and down between the end stations of the line. The
number of trains on a line is determined by the line’s
circulation time including the return times at the end
stations, and the line’s frequency. This number equals
the number of trains that can be observed on a picture
of the line that is taken from above at any moment
during the day.
Rolling stock is usually dedicated to its own line to

prohibit delays of trains to spread over wider parts
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of the network. This fact justifies to study the rolling
stock circulation problem for a single line, as in the
current paper.
The timetable is given in the form of a set of trips. A

trip represents the movement of a train between two
stations in which the composition of the train can be
changed. Each trip has a start time, end time, origin
station, and destination station. For each trip, the cor-
responding train is also known. Conversely, each train
corresponds to an ordered sequence of trips carried
out by this train. In particular, for each trip, the next
trip of the corresponding train is also known a priori.
Other input consists of the forecasts of the required

seat capacities per trip. For collecting this input, the
passengers are counted by the conductors. The trans-
lation of these counts into the minimally required
first- and second-class capacities per trip is based on
a statistical procedure, which falls outside the scope
of this paper. In the operations, the number of pas-
sengers on a trip has a stochastic character, and NS
Reizigers does not use a seat reservation system, there-
fore, it is impossible to guarantee a seat for all passen-
gers, especially during peak hours. However, during
nonpeak hours, the rolling stock capacity is usually
sufficient to provide all passengers with a seat.
Fixed rolling stock costs are related to acquisi-

tion and depreciation. Variable rolling stock costs are
related to power supply and maintenance: after a cer-
tain number of kilometers, each train unit is routed to
a maintenance station for a preventive check-up and
possibly for a repair. Note that, in the Netherlands,
routing train units to a maintenance facility is car-
ried out in the operations (Maróti and Kroon 2005).
Therefore, maintenance routing can be ignored in our
rolling stock circulation planning problem.
Because of the timetable for a single line and

the corresponding passengers’ demand forecasts, the
problem is to find appropriate numbers of train units
of the different types, together with such a circulation
of these train units that (i) all forecasted passengers
can be seated, (ii) all practical constraints concern-
ing the maximum lengths of the trains and the tran-
sitions of the train compositions are respected, and
(iii) the relevant objective consisting of fixed and/or
variable costs is minimized. Note that in some trains,
the allocated capacity may be larger than the capacity
required by the demand. This is due to the demand
on subsequent trips of the train, or for relocating train
units.

2.3. Case Study: The Line 3000
The model and solution approach described later in
this paper are illustrated with a case study based on
the line 3000, one of the intercity lines of NS Reizigers.
This line provides twice per hour an intercity connec-
tion from Den Helder (Hdr) to Nijmegen (Nm) and
vice versa (see Figure 2 and www.ns.nl).

Asd

Ut Ah

Nm

Hdr

Amr

Ed

Figure 2 The Line 3000 Den Helder (Hdr)–Nijmegen (Nm)

The timetable of the line 3000 is cyclic with a
cycle length of 30 minutes. During early morning
and late evening, some exceptions occur in the cyclic
timetable. For example, in the early morning, some
trains start in Alkmaar (Amr), Amsterdam (Asd),
Utrecht (Ut), and Arnhem (Ah). Similar exceptions
exist in the late evening. In principle, the composi-
tions of the trains can be changed only in Alkmaar
and Nijmegen. In late evening, there are again some
exceptions from this rule.
The line 3000 is operated by 12 trains. This occurs

because the circulation time on the line between Den
Helder and Nijmegen and vice versa is six hours and
because two trips occur per hour in each direction.
Hence, every twelfth departure from, say, Nijmegen,
can be covered by the same train.
Figure 3 shows a time-space diagram for part of the

trips of this line. The numbers at the top and bottom
of the figure indicate the time axis. The grey diago-
nal lines indicate the trips, and the adjacent numbers
are the corresponding train numbers. For simplicity,
the compositions of the trains have been indicated for
only some of the trains. Train units of type “3” are
represented by dashed lines. Train units of type “4”
are represented by solid lines. The train unit at the
front of a train is represented by the rightmost line of
a composition.
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Figure 3 Part of Rolling Stock Circulation for the Line 3000

For example, the train on trip 3017 is operated with
composition “43,” where the train unit of type “3” is
the front unit. This train arrives in Nijmegen at 7:11,
where an additional train unit of type “3” is coupled.
Nijmegen is an end station, where the front end and
the rear end of the train are exchanged. The coupled
train unit becomes the front end of the incoming train,
which is the rear end of the outgoing train. The train
leaves at 7:20 from Nijmegen on trip 3020 with com-
position “334,” and arrives in Arnhem at 7:33.
In Arnhem, the physical composition of a train can-

not be changed, but the front and rear ends of a train
are exchanged, as is shown in Figure 3. The latter is
because each train leaves the station Arnhem from the
same side that it entered (“kopmaken” in Dutch). The
train leaves Arnhem at 7:38 with composition “433.”
The train arrives in Alkmaar at 9:19. Here, the train

unit of type “4” at the rear end of the train is uncou-
pled and remains in Alkmaar, because of the lower
expected passengers’ demand north of Alkmaar. The
remaining train continues at 9:21 to Den Helder with
composition “33.” As a consequence, the train unit
of type “4” should be uncoupled within two min-
utes, which prohibits a complex shunting process.
The remaining train arrives at 9:56 in Den Helder.
At 10:33, it returns to Nijmegen on trip 3041, again
with composition “33.” This process continues until
the end of the day.
Note that in Den Helder, there is also a departure

already at 10:03 (see Figure 3). Thus, the train that
arrived in Den Helder at 9:56 might have returned
already at that time. However, because of the robust-
ness of the circulation, all trains have a standstill
at Den Helder of at least 30 minutes. Obviously,
the price that has to be paid for this robustness is

the additional train required for the rolling stock
circulation.
Train units uncoupled from a certain train can be

coupled onto another train later on. For example, Fig-
ure 3 shows how the train unit uncoupled from the
rear end of the train on trip 3020 at 9:19 in Alkmaar
is coupled onto the front end of another train on trip
3037 at 10:12. Note that in Alkmaar, it is undesirable
to couple a train unit onto a northbound train, nor is it
desirable to uncouple a train unit from a southbound
train.

3. Related Literature
In the literature, several rolling stock circulation prob-
lems have been described, which shows the serious-
ness of these problems. Most of the literature focuses
on the circulation of locomotive hauled carriages and
not on the circulation of train units. However, the fol-
lowing three papers deal with the circulation of train
units for passenger transportation.
Schrijver (1993) considers the problem of minimiz-

ing the number of train units of different types for
an hourly train line in the Netherlands, given that
the passengers’ seat demand must be satisfied. The
only restriction on the transition between two compo-
sitions on two consecutive trips is that the required
train units must be available at the right time and sta-
tion. (Un)coupling restrictions related to the feasibility
of the shunting movements are ignored.
Ben-Khedher et al. (1998) study the problem of allo-

cating train units to the French high-speed trains.
Their rolling stock allocation system is based on
a capacity adjustment model linked to the seat
reservation system. This system aims at maximizing
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the expected profit. Because these train units are iden-
tical, shunting restrictions are less important in this
paper.
Abbink et al. (2004) present a model to allocate

different rolling stock families and types to differ-
ent train lines. They present an integer programming
model, that minimizes the seat shortages during the
morning peak hours by allocating rolling stock fam-
ilies and types with different capacities to all the
trains running simultaneously at 8:00 a.m., the busi-
est moment of the day. Their approach is applied to
several scenarios of NS Reizigers that differ in the
numbers of rolling stock families and types that can
be allocated to a line.
Papers dealing with the efficient circulation of loco-

motive hauled carriages, possibly in combination with
the required locomotives, are the following. Brucker,
Hurink, and Rolfes (2003) study the problem of find-
ing a circulation of railway carriages through a rail
network, given a timetable. Because the required train
compositions have been specified a priori, this paper
focuses on finding appropriate repositioning trips of
carriages from one station to another. Their solution
approach is based on local search techniques such as
simulated annealing.
Van Montfort (1997) also focuses on the efficient cir-

culation of railway carriages. He studies the assign-
ment of carriages to trains, given a cyclic timetable
and a core standard structure for train composi-
tions on a combination of lines in the Netherlands.
Van Montfort uses an integer programming model
improved by the application of several types of valid
inequalities.
Cordeau, Soumis, and Desrosiers (2000) present a

Benders decomposition approach for the locomotive
and car assignment problem. Their approach is based
on the concept of a train consists, i.e., a group of com-
patible units of rolling stock (locomotive(s), first- and
second-class carriages) that travel along some part of
a rail network. Computational experiments show that
optimal solutions can be found in short computation
times by applying column-generation techniques. In
a subsequent paper, Cordeau, Soumis, and Desrosiers
(2001) extend their model with various practical con-
straints, for example, dealing with maintenance of the
rolling stock.
Lingaya et al. (2002) study the problem of assign-

ing carriages to trains at VIA Rail in Canada. They
present a complex model to adapt a master plan
to additional information concerning the expected
numbers of passengers. They allow for coupling and
uncoupling of carriages at various locations in the
network and explicitly consider the order of the
carriages in the trains. Several other real-life con-
straints, such as maintenance requirements, are con-
sidered as well. The solution approach is based on

a Dantzig-Wolfe reformulation solved by column-
generation techniques. Next, a branch-and-bound
procedure is applied heuristically to obtain good inte-
ger solutions.
The problem described in this paper is different

from the problems in the above-mentioned papers.
First, this paper deals with train units instead of
locomotive-hauled carriages. Shunting restrictions for
train units are different from those for locomotive-
hauled carriages: Due to their shorter shunting time,
train units are far more flexible than locomotive-
hauled carriages. Second, the current paper deals with
train units of different types, which implies that the
detailed orders of the train units in the trains are rel-
evant. Further details of our problem and solution
approach can be found in Groot (1996).
Historically, there was not much cooperation and

coordination between different railway operators.
Therefore, most operators have their own types of
rolling stock with their own peculiarities. Also, the
rules used in setting up a rolling stock circulation dif-
fer from operator to operator. As a result, there is a
low probability that research in this area carried out
for one operator is directly applicable for another one.
Obviously, there is a need for a generic approach in
solving rolling stock circulation problems. However,
to get there, a number of specific cases first have to
be studied and described.

4. Model Formulation
This section describes the models developed for solv-
ing the rolling stock circulation problem. In §4.1,
we give some definitions and notations. In §4.2, we
describe a model that neglects the compositions of
the trains. Thereafter, in §4.3, we present a model
that takes into account the compositions of the trains.
In §4.4, we describe the computational complexity of
two variants of the rolling stock circulation problem.

4.1. Definitions and Notation
We assume to have a single line connecting two end
stations with a given frequency. The timetable on this
line is cyclic. The fixed number of trains operated on
this line depends on the line’s circulation time and fre-
quency. All trains are assumed to be operated by train
units of different possible types. The latter implies
that the problem is a complex variant of an inte-
ger multicommodity flow problem. In particular, the
problem could be called an ordered integer multicom-
modity flow problem, because the order of the train
units in the trains is as important as their number.
In this paper, we use the following notation. First,

we have a set T of trips, a set S of stations, and a set
J of types of train units. Each trip t ∈ T is represented
by an origin station Ot , a destination station Dt , a
start time St , and an end time Et . For each train � , the
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set T� denotes the ordered set of trips that is oper-
ated by train � . In particular, for each trip t, the next
trip n
t� carried out by the same train also is known.
The parameter Lt represents the length of trip t. Fur-
thermore, the parameter dc� t 
c = 1�2� denotes the
expected number of passengers in class c on trip t.
The set T a

t is the subset of trips t′ arriving in station
Ot before the departure of trip t from Ot . That is, T a

t =
�t′ ∈ T �Dt′ =Ot� Et′ < St�. Similarly, T d

t is the subset of
trips t′ departing from station Ot before the departure
of trip t. Thus, T d

t = �t′ ∈ T � Ot′ = Ot� St′ < St�. The
length of the shortest platform along trip t is denoted
by Pt . The length and number of carriages of each
train unit of type j are denoted by lj and Nj , respec-
tively. Finally, Cj�c represents the capacity in class c

c = 1�2� of each train unit of type j , and Fj and Vj

denote the fixed and variable costs of each train unit
of type j , respectively.

4.2. Model 1: Neglecting the Compositions
If the order of the train units in the trains is neglected,
then the rolling stock circulation problem can be rep-
resented by an integer multicommodity flow model
with several additional constraints. This model is rep-
resented by a flow graph (also called a time-space graph,
see Figure 4), whose nodes correspond to events (an
arrival or departure of a train in a station) and whose
arcs are connections between two different events.
An arc is a trip arc if the two connected nodes

belong to different stations (represented by dashed
lines in Figure 4), and it is a station arc if the two
events are consecutive events of the same station (rep-
resented by solid lines). A station arc represents a con-
nection between an arrival (or departure) in a station
and the next arrival (or departure) in the same station.
In each node of the flow graph we have to guar-

antee the flow balance. In Figure 4, for example, the
number of train units in Alkmaar (Amr) before the
arrival of the train on trip 3031 plus the number of
train units arriving in the train on trip 3031 equals the

Amr

Hdr

3031

3031

3035
3033

3037

3016
3018

3020
3022

8:03 8:33 9:03 9:338:26 8:56 9:26 9:56

Figure 4 Part of the Flow Graph for the Line 3000

number of train units leaving from Alkmaar in the
train on trip 3031 plus the number of train units in
Alkmaar after the departure of the train on trip 3031.
This relation holds separately for each train unit type.
The model is expressed in terms of the decision

variables xt� j indicating the number of train units of
type j that is allocated to trip t. Additional decision
variables are the variables y0s� j denoting the number
of train units of type j stored in station s during the
night, and ytotj denoting the total number of available
train units of type j .
Now Model 1 (neglecting the compositions) can be

stated as follows:

min F 
x�y�

subject to

ytotj =∑

s

y0s� j ∀ j ∈ J (1)

xt� j ≤ y0s� j +
∑

t′∈T a
t

xt′� j −
∑

t′∈T d
t

xt′� j

∀ j ∈ J � t ∈ T � s =Ot (2)
∑

j

ljxt� j ≤ Pt ∀ t ∈ T (3)

∑

j

Cj� cxt� j ≥ dc� t ∀ t ∈ T � c = 1�2 (4)

xn
t�� j ≤ xt� j ∀ t� Ot =Ah� Dt =Amr� j ∈ J (5)

xn
t�� j ≥ xt� j ∀ t� Ot =Hdr� Dt =Amr� j ∈ J (6)

xt� j ∈�+ ∀ t ∈ T � j ∈ J (7)

ytotj � y0s� j ∈�+ ∀ s ∈ S� j ∈ J  (8)

In this model, F 
x�y� represents one of the following
objective functions:
1. PB1: minimize the fixed costs of the train units

(min
∑

j Fjy
tot
j ).

2. PB2: minimize the variable costs of the train
units (min

∑
t Lt


∑
j Vjxt� j ��.
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3. PB3: minimize the variable costs of the train
units taking into account an upper bound on the
number of carriages (min

∑
t Lt


∑
j Vjxt� j � subject to∑

j Njy
tot
j ≤UB).

The total number of required train units of each
type equals the total number of train units y0s� j that
stay in the various stations during the night, as is rep-
resented by constraints (1). Constraints (2) describe
that the number of train units of type j that is allo-
cated to trip t should not exceed the number of train
units of this type available in station Ot just before
the start time of trip t. The latter equals the num-
ber of such train units by the start of the day plus
the number of train units that have arrived in this
station until this time instant, minus the number of
train units that have departed from there until then.
Note that it is not difficult to consider a certain min-
imum reassignment time between the uncoupling of
a train unit from a train and the subsequent coupling
of this train unit onto another train. However, such
a reassignment time has been omitted here. On each
trip t, a train should not be longer than the length of
the shortest platform Pt along the trip. The latter is
guaranteed by constraints (3). Constraints (4) are the
demand satisfaction constraints for first- and second-
class seat demands on each trip. Constraints (5) and
(6) describe that in Alkmaar, train units cannot be cou-
pled onto a northbound train nor uncoupled from a
southbound train. Finally, constraints (7) and (8) spec-
ify the integer character of the decision variables. The
domains of these decision variables can be reduced a
priori by taking into account, e.g., the maximum train
length per trip or the maximum storage capacity per
station.

4.2.1. Valid Inequalities. This section describes
how the constraints on the maximum train length (3)
and demand satisfaction (4) can be made more tight
by adding certain valid inequalities. Note that these
valid inequalities were described already by Schrijver
(1993). For example, the model may contain the fol-
lowing constraints (9) and (10) for a certain trip t:

3xt�3+ 4xt�4 ≤ 12 (9)

166xt�3+ 224xt�4 ≥ 510 (10)

These constraints represent that a train should have
a length of at most 12 carriages, and that the second-
class seat demand is to be satisfied. Here, the number
510 equals the required number of second-class seats
on trip t, and the numbers 166 and 224 represent the
second-class capacities of train units with three and
four carriages, respectively. Due to the integrality of
the variables xt�3 and xt�4, constraint (10) can be sharp-
ened as follows:

xt�3+ 2xt�4 ≥ 4 (11)

xt�3+ xt�4 ≥ 3 (12)

Unit 4

3

2

1

0
0 1 2 3 4 Unit 3

Figure 5 Reduced Feasible Region

The above example is shown in Figure 5. Here,
the grey and dark areas correspond to the continu-
ous feasible region for the train composition on trip t
obtained by considering constraints (9) and (10). The
black dots represent the feasible combinations of the
two types of train units (Units 3 and 4, respectively).
In this example, the feasible combinations are 
0�3�,

1�2�, 
2�1�, and 
4�0�. The dark area represents the
convex hull of the locally feasible region.
We certainly do not claim that valid inequalities

such as (11) and (12) give a complete description of
the convex hull of the integer feasible region of the
complete problem. Nevertheless, the improved local
description of the convex hull turned out to give an
improved performance of our solution approach in
many cases (see the computational results in §6).

4.3. Model 2: Taking into Account the
Compositions

To also take into account the compositions of the
trains, the following definitions are used. First, the set
of all feasible compositions is denoted by K. Recall
that a composition is an ordered sequence of train units
in a train. The set of compositions feasible for trip t
is denoted by Kt . This set is determined based on the
required first- and second-class capacities and on the
maximum train length for trip t. The parameter gk� j

denotes the number of train units of type j in compo-
sition k. The feasible transitions from one composition
of a train to another are described in the sets At�k for
each trip t and composition k. That is, the set At�k

contains the compositions feasible on trip n
t� if the
train has composition k on trip t.
For each train, the feasible compositions per trip

and the feasible transitions from one composition to
another are represented in a so-called transition graph
(see Figure 6). The set of nodes of the transition graph
of train � is the set

⋃
t∈T�

�
t� k� � k ∈ Kt�. Here, the
union is taken over all trips t that are carried out
by train � . The set of arcs of this graph is the set⋃

t∈T�

⋃
k∈Kt

At�k. Here, the union is again taken over
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Figure 6 Part of the Transition Graph for One Train of the Line 3000

all trips t that are carried out by train � and over all
feasible compositions k ∈ Kt . Furthermore, each tran-
sition graph has a source node, connected to all nodes
of the first trip of the corresponding train, and a sink
node, connected to all nodes of the last trip of this
train.
An example of (part of) a transition graph is shown

in Figure 6. To keep the figure as clear as possible,
we assume that the maximum train length is nine
carriages on all trips. The involved train starts with
a trip from Nijmegen to Alkmaar. On this first trip,
each of the seven compositions with at most nine car-
riages can be chosen. The feasible compositions on
the second trip depend on the composition chosen
on the first trip. The feasible transitions in Alkmaar
are denoted by the arcs between the compositions on
the trip from Nijmegen to Alkmaar and the trip from
Alkmaar to Alkmaar. These transitions represent that
the order of the train units in the train was reversed
in Arnhem (e.g., composition “34” changes to “43”),
and that in Alkmaar, train units can only be uncoupled
from a northbound train. Note that the second trip
runs from Alkmaar to Alkmaar because it is assumed
that in Den Helder, no train units are (un)coupled.
Therefore, the two train movements from Alkmaar to
Den Helder and vice versa have been aggregated into
a single trip from Alkmaar to Alkmaar. The feasible
transitions between the second and third trip repre-
sent that the order of the train units in the train was
changed in Den Helder and that in Alkmaar, train
units can only be coupled onto a southbound train. The
transition graph shows that in Nijmegen, train units
can be coupled or uncoupled (but not both). The rest
of the transition graph can be explained similarly.
In each transition graph, we have to find a path

from its source node to its sink node, which alto-
gether minimize the objective function F 
x�y�. The
objective functions used for Model 2 are the same as
for Model 1.
Because a transition graph exists for each train, this

seems to give a decomposition of the problem across
the trains at first sight. However, this is not the case,
because the paths through the transition graphs inter-
act with each other via the inventories of the train
units in the stations. Train units uncoupled from a
train can be coupled onto another one later on, as was
shown in Figure 3.

In the model, binary decision variables are associ-
ated with the nodes in the transition graphs. That is, a
decision variable at�k assumes the value 1 if and only
if composition k is selected for trip t. Now Model 2
(taking into account the compositions) can be repre-
sented as follows:

min F 
x�y� (13)

subject to


1�� 
2�� 
5�–
8� and
∑

k∈Kt

at�k = 1 ∀ t ∈ T (14)

at�k ≤
∑

k′∈At�k

an
t�� k′ ∀ t ∈ T � k ∈Kt (15)

xt� j =
∑

k∈Kt

gk� jat�k ∀ t ∈ T � j ∈ J (16)

at�k ∈ �0�1� ∀ t ∈ T � ∀k ∈Kt (17)

Note that constraints (3) and (4) of Model 1 do not
appear in Model 2, because these are handled now
by constraints (14). These constraints represent that
for each trip, exactly one feasible composition is to be
selected. As stated earlier, the term feasible refers to
the required first- and second-class capacities and to
the maximum train length. Constraints (14) guarantee
that the composition selected for trip t is compatible
with the composition selected for the next trip n
t�
of the same train. Next, constraints (16) link the flow
graph and the transition graphs with each other: For
each type, the number of train units on a trip follows
directly from the composition that is used on that trip.
In fact, these constraints make the flow variables xt� j

superfluous because in all occurrences of these vari-
ables, they can be removed by substituting (16). If this
substitution is applied consequently, then (16) itself
becomes superfluous as well. Constraints (17) specify
the binary character of the variables at�k.
Note that the model formulation can be tight-

ened by also including the reverse variant of con-
straints (15):

an
t�� k ≤
∑

k′∈Kt� k∈At�k′
at�k′ ∀ t ∈ T � k ∈Kn
t� (18)

These constraints guarantee that the composition
selected for the successor n
t� of trip t is compatible
with the composition selected for trip t itself.
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4.4. Computational Complexity
It is well known that integer multicommodity flow
problems and integer generalized flow problems are
NP-hard in their most general form (Ahuja, Magnanti,
and Orlin 1993). However, these results do not yet
imply that the rolling stock circulation problem is NP-
hard, because in this case, the underlying network has
a special structure, and the rolling stock circulation
problem involves additional constraints on the cou-
pling and uncoupling of train units.
Therefore, we analyze the computational complex-

ity of the rolling stock circulation problem in this
section. Theorem 1 shows that the rolling stock circu-
lation problem is NP-hard. This result is proved for
the case that the total fixed costs are to be minimized.
For other objectives, a similar result holds. The proof
of Theorem 1 applies to the rolling stock circulation
problem both if the compositions are neglected and if
these are taken into account. Furthermore, Theorem 2
shows that the rolling stock circulation problem can
be solved in polynomial time if the numbers of trains,
stations, train unit types, as well as the maximum
train length are fixed.
Theorem 1 is proved by a reduction from the prob-

lem numerical three-dimensional matching (N3DM),
which is defined as follows:

Instance: 3n different positive integers ai, bi, and ci,
and a positive integer d satisfying d/4< ai� bi� ci < d/2
and

∑n
i=1
ai + bi + ci�= nd.

Question: Do there exist permutations * and � of
the set �1�    �n� such that a*
i� + b�
i� + ci = d for
i = 1�    �n?

Theorem 1. Finding a feasible rolling stock circula-
tion with minimum total fixed costs for the train units is
NP-hard.

Proof. Let I be an instance of N3DM as described
above. Then the following instance I ′ of the rolling
stock circulation problem is constructed.
The instance I ′ contains 3n trains and 6n trips. For

i = 1�    �3n, train i carries out a trip from station A
to station B in the time interval 
i� i + 3n� and a trip
back from station B to station A in the time interval

i+ 7n� i+ 10n�.
For i = 1�    �n, the first trip of train i has a second-

class demand of d and the second trip of this train
has a second-class demand of 2d − ci. The first-class
demand of the latter trips equals 1. For all other trips
the first-class demand equals 0. The maximum train
length of the latter trips equals 3. For all other trips,
the maximum train length equals 2.
For i = 1�    �n, the first trip of train i + n has a

second-class demand of d + ai and the second trip
of this train has a second-class demand of d. For
i = 1�    �n, the first trip of train i + 2n has a second-
class demand of d + bi, and the second trip of this
train has a second-class demand of d.

There are 2n + 1 different train unit types. For i =
1�    �n, train unit type i has first-class capacity 1
and second-class capacity ai. For i = 1�    �n, train
unit type i + n has first-class capacity 0 and second-
class capacity bi. The last train unit type has first-class
capacity 0 and second-class capacity d. For each train
unit type, the fixed costs are equal to the train unit’s
second-class capacity and the length of each train unit
equals 1.
Now we claim the following: There exists a feasi-

ble solution for I if and only if there exists a feasible
solution for I ′ with total fixed costs 4nd −∑n

i=1 ci.
First, suppose there exists a feasible solution for I ′

with total fixed costs 4nd −∑
i ci. Note that both in

the time interval 
3n�3n+ 1� and in the time interval

10n�10n + 1�, the total second-class demand exactly
equals the total fixed costs. Due to the fixed cost struc-
ture of the train units, it follows that in both time
intervals there is an exact match of the second-class
demand and the provided second-class capacity.
Due to the maximum train length of 2 in the time

interval 
0�6n�, each trip with second-class demand
d + ai is covered by a train consisting of a train
unit with second-class capacity d and a train unit
with second-class capacity ai. Similarly, each trip with
second-class demand d+ bi is covered by a train con-
sisting of a train unit with second-class capacity d
and a train unit with second-class capacity bi. Finally,
each trip with second-class demand d is covered by a
train consisting of a single train unit with second-class
capacity d.
In the time interval 
7n�13n�, the same train units

are assigned to the trips running in this interval. Each
of the 2n trips with second-class demand d is covered
by a single train unit with second-class capacity d,
due to the maximum train length of 2 on these trips.
The remaining train units are assigned to the trips

with second-class demand 2d − ci in such a way that
on each trip there is an exact match of capacity and
demand. Each of these trips has a first-class demand
of 1. Therefore, it is covered by at least one train unit
with first-class demand 1 (and second-class capacity
in �ai � i = 1�    �n�), and, since there are only n of
these train units, it is covered by exactly one of them.
It follows that each of these trips is covered by exactly
one train unit with second-class capacity in �ai � i =
1�    �n�, one train unit with second-class capacity
in �bi � i = 1�    �n�, and one train unit with second-
class capacity d. Hence, if *
i� and �
i� are defined
as the train unit types that are assigned to the trip
with second-class demand 2d− ci, then it follows that
a*
i� + b�
i� + d = 2d − ci for i = 1�    �n. Thus, * and �
are the requested permutations, and it follows that I
has a feasible solution.
Conversely, if I has a feasible solution, then the con-

struction can be reversed to find a feasible solution
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for I ′ with total fixed costs 4nd −∑
i ci. Since N3DM

is NP-complete (Garey and Johnson 1979), and the
reduction is polynomial, it follows that the rolling
stock circulation problem is NP-hard. �

The proof of Theorem 1 strongly uses the fact
that the number of trains and the number of train
unit types are not fixed a priori. However, if these
numbers are fixed a priori, then the problem can be
solved in polynomial time by a dynamic program-
ming approach, as is shown in Theorem 2. Note that
this result is hardly relevant from a computational
point of view, due to the huge size of the involved
dynamic programming network.

Theorem 2. If the number of trains, number of sta-
tions, number of train unit types, and maximum train
length are fixed, then a feasible rolling stock circulation
with minimum total fixed costs can be found in an amount
of time that is polynomial in the number of trips.

Proof. This theorem is proved by solving the prob-
lem as a shortest path problem in a network with
numbers of nodes and arcs polynomial in the num-
ber of trips. Here, we only give a rough sketch of the
proof. For similar proofs, see Arkin and Silverberg
(1987) or Kroon, Romeijn, and Zwaneveld et al. (1999).
Without loss of generality, all arrivals and depar-

tures occur at different time instants. An event is
defined as the arrival or departure of a train at a
station, and each node in the network represents a
feasible state of the system between two consecutive
events. These nodes represent both the compositions
of all trains running in the corresponding time inter-
val and the inventories of the train units at all stations.
Each arc in the network represents a feasible transi-
tion between two successive states of the system. If
the numbers of trains, stations, train unit types, and
the maximum train length are fixed, then it is not dif-
ficult to see that the numbers of nodes and arcs in
the network are polynomial in the number of trips.
The costs of the arcs can be defined in such a way
that a shortest path in the network corresponds with
a rolling stock circulation with minimum total fixed
costs. �

5. Solution Approach
We first tried to solve Models 1 and 2 with the
commercially available integer programming solver
CPLEX 8.0. For instances of the line 3000 (described
in §2.3), Model 1 could be solved in acceptable run-
ning times. However, for Model 2, this approach did
not lead to acceptable running times. Therefore, more
dedicated methods were needed for solving Model 2.
For single commodity flow problems, many algo-

rithms are available (Ahuja, Magnanti, and Orlin
1993), but for multicommodity flow problems, this is
not the case. Furthermore, the available algorithms

usually assume that variables may have fractional
values (Ahuja, Magnanti, and Orlin 1993; McBride
1998). Solution approaches for integer multicommod-
ity flow problems were studied by Barnhart, Hane,
and Vance (1998) based on branch-and-price tech-
niques. However, this paper does not deal with the
ordered integer multicommodity flow problem. The
solution approach that we propose in the current
paper for solving the latter problem in the context of
our rolling stock circulation problem can be summa-
rized as follows.
1. Solve Model 1. This provides a usually strong

lower-bound L for the solution of Model 2.
2. Reduce the sizes of the transition graphs by suc-

cessively applying:
—Node elimination, and
—Disconnection elimination.

3. If there exists at least one trip whose nodes have
all been eliminated, then go back to Step 2 with
relaxed elimination conditions.
4. If each trip still has at least one node, then solve

Model 2 with the additional constraint F 
x�y� ≤ L on
the reduced transition graphs. If this model has a fea-
sible solution, then STOP. Otherwise go back to Step 2
with relaxed elimination conditions.
The lower-bound L obtained in Step 1 by solving

Model 1 turns out to be quite strong usually. Indeed,
for many instances of the rolling stock circulation
problem, we observed that the optimal objective func-
tion values of Models 1 and 2 were the same, although
the solutions themselves were not.
Therefore, after Model 1 has been solved in Step 1

with optimal objective function value L, we check
Steps 2 to 4 if there exists a solution for Model 2 with
the same optimal objective function value L. The latter
is done by first reducing the numbers of nodes and
arcs of the transition graphs by the application of node
elimination and disconnection elimination. If an optimal
solution for Model 2 with objective function value L
does not exist, then Steps 2 to 4 are repeated with a
relaxed objective function constraint.

5.1. Node Elimination in Step 2
The node elimination process consists of solving a
series of subproblems. Each subproblem corresponds
to solving the linear programming relaxation of
Model 1, where (i) the constraint F 
x�y�≤ L has been
added, and (ii) a certain variable xt� j has been fixed
to one of its a priori feasible values V . These a pri-
ori feasible values for a variable xt� j are determined
based on the passenger demand for trip t and on the
maximum train length for trip t.
If a linear programming instance in which a vari-

able xt� j has been fixed to the value V does not have
a feasible solution, then obviously the corresponding
integer programming instance is infeasible as well.
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Therefore, all nodes and arcs in the transition graph
corresponding to trip t and each composition k ∈ Kt

with gk� j = V can be eliminated from this transition
graph. This node elimination process iterates over all
variables xt� j and over all a priori feasible values V .
For example, if a linear programming instance in

which a certain variable xt�4 has been set to the value
V = 2 turns out to be infeasible, then all nodes and
arcs corresponding to this trip and a composition with
two train units of type “4” (that is, “44,” “344,” “434,”
and “443”) are eliminated from the involved transi-
tion graph.

5.2. Disconnection Elimination in Step 2
The node elimination process may have the effect
that some nodes in a transition graph become dis-
connected, because all their neighbors have been
removed. Then, obviously, no path in this transition
graph from the source node to the sink node may pass
through these nodes. We then perform disconnection
elimination by eliminating all nodes that have become
disconnected in this way. During the disconnection
elimination, other nodes may become disconnected.
Thus, this process may be carried out until no more
disconnected nodes are eliminated.
Once the disconnection elimination process termi-

nates, another round of node elimination could be
started. This process could be carried out until no
more nodes are eliminated at all. However, each iter-
ation has a certain cost in terms of the required CPU
time. Because this cost turns out to be high, in partic-
ular in comparison with the number of additionally
eliminated nodes, Step 2 is carried out only once per
major iteration of the algorithm.

5.3. Iteration in Step 3
If, at the end of Step 2, there exists at least one trip
whose nodes have all been eliminated, then obviously
a feasible solution for Model 2 on the reduced tran-
sition graphs with objective function value L does
not exist: Too many nodes have been eliminated to
allow for a feasible solution. In this case, we go back
to Step 2, where the elimination process is relaxed.
That is, in Step 2, we set L �= L+ ,, where the actual
value of , depends on the objective function F 
x�y�.
By relaxing the elimination conditions, the number of
eliminated nodes and arcs decreases, which increases
the probability of obtaining a feasible solution for
Model 2. Note that, when going back from Step 3 to
Step 2, the search process of looking for a feasible
solution for Model 2 is completely restarted. The same
holds for going back from Step 4 to Step 2.

5.4. Iteration and Termination in Step 4
If, at the end of Step 2, there still exists at least one
node for each trip, then each reduced transition graph

still contains a path from source to sink. In that case,
the remaining transition graphs are used as input for
Model 2 with the additional restriction F 
x�y�≤ L.
If this model has an optimal solution, then this solu-

tion is an optimal solution for Model 2. Otherwise, if
a feasible solution for this model does not exist, then
we also go back to Step 2, where the relaxed elimina-
tion process is carried out after setting L �= L+ ,.
Note that, if we would not use the additional con-

straint F 
x�y�≤ L in this step, then we may find a fea-
sible solution that may not be an optimal solution for
Model 2. Indeed, many nodes of the transition graphs
have been eliminated based on the assumption that
F 
x�y�≤ L.

6. Computational Results
6.1. Experiments
This section presents the computational results
obtained by applying the algorithm described in §5 to
the case of the intercity line 3000 of NS Reizigers that
is described in §2.3. The data that were used for our
experiments correspond to a single generic workday.
For the solution of the integer programming models
and their linear programming relaxations, we used
CPLEX (version 8.0) on a RISC 6000 workstation.
In our experiments, we consider single-deck train

units for which two types are available: Train units
with three carriages and train units with four car-
riages (indicated as type “3” and type “4,” respec-
tively). On all trips, the maximum train length is
12 carriages. To evaluate the influence of the valid
inequalities of the capacity constraints instead of
the capacity constraints themselves, we experimented
with both model formulations.
We solved the instances for a complete day, but

also for just the trips that start before 10:30 am (called
the morning peak hours, or MPH). In fact, the total
required capacity of the train units on a certain line
is mainly determined by the passengers’ seat demand
during the morning peak hours. Indeed, this period
is usually the busiest period of the day, because the
peak in the morning is higher than the peak in the
afternoon, which lasts longer.

6.2. Results
In Table 1, the dimensions of the case study are
reported in terms of the numbers of columns, rows
and nonzeros in the constraint matrix. The labels
“Compl.” and “MPH” indicate the instances with all
trips in the timetable and the instances reduced to
trips leaving during the morning peak hours.
Obviously, in Model 1, the number of decision vari-

ables is less than the number of constraints, while in
Model 2, the situation is the opposite. The latter is due
to the large number of potential compositions per trip.
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Table 1 Dimensions of the Instances of the Line 3000

Compl. MPH

Model 1
Columns 1�544 494
Rows 1�755 544
Nonzeros 4�132 1�290

Model 2
Columns before elimination 10�148 2�992
Columns after elimination 9�062 2�331
Rows 6�380 1�894
Nonzeros 66�017 16�182

For Model 2, the numbers of decision variables and
constraints representing the compositions depend on
the number of nodes eliminated from the transition
graphs and, thus, also on the objective function used.
The values in Table 1 are average values observed in
our computational experiments.
Tables 2 to 4 show the results of our computa-

tional experiments. The labels “No VI” and “VI” in
the columns refer to the instances where the valid
inequalities described in §4.2 have not been included
and have been included, respectively.
The rows “Tot. nodes” and “Elim. nodes” contain

the total number of nodes in the transition graphs
and the number of nodes eliminated in the elimina-
tion phase. The difference between these two num-
bers gives the total number of nodes in the reduced
transition graphs. The row “Iterations” indicates the
number of major iterations required in the solution
process.
The row “CPU Total” indicates the total CPU time

in seconds required for the complete solution pro-
cess. This total CPU time is split up in the next rows
into the CPU time required for solving Model 1 (row
“CPU Model 1”), the time required for the elimina-
tion phase (row “CPU Elim.”), and the time required
for solving Model 2 (row “CPU Model 2”).
The row “Obj. Model 1” and “Obj. Model 2” denote

the obtained objective function values for Models 1

Table 2 Results for the Objective Function PB1

Compl, No VI Compl, VI MPH, No VI MPH, VI

Tot. nodes 8�604 8�604 2�498 2�498
Elim. nodes 515 1�950 298 1�597
Iterations 4 4 3 3

CPU Total 2�829�2 1�771�2 119�3 62�9
CPU Model 1 338�3 128�1 13�2 4�7
CPU Elim. 2�193�8 1�472�7 88�5 53�1
CPU Model 2 397�1 170�4 17�6 5�1

Obj. Model 1 109 109 110 110
Obj. Model 2 112 112 112 112
y tot

3 20 20 20 20
y tot

4 13 13 13 13

Table 3 Results for the Objective Function PB2

Compl, No VI Compl, VI MPH, No VI MPH, VI

Tot. nodes 8�604 8�604 2�498 2�498
Elim. nodes 416 416 144 144
Iterations 1 1 1 1

CPU Total 5�202�0 308�9 41�1 19�2
CPU Model 1 1�524�1 88�7 10�5 3�7
CPU Elim. 2�077�5 124�9 19�1 11�6
CPU Model 2 1�600�4 95�3 11�5 3�9

Obj. Model 1 1�735 1�735 617 617
Obj. Model 2 1�735 1�735 617 617
y tot

3 23 23 23 23
y tot

4 14 14 11 11

and 2. Note that the obtained objective function val-
ues for Models 1 and 2 are very close indeed. The
obtained numbers of train units of type “3” and “4”
in the solution of Model 2 are represented in the rows
“ytot3 ” and “y

tot
4 ,” respectively.

6.3. Comments
Tables 2 to 4 show that, after the elimination phase,
solving Model 2 to optimality takes roughly the same
amount of computation time as solving Model 1. The
latter is mainly due to the excellent lower bound pro-
vided by the solution of Model 1 and to the results of
the elimination phase. Indeed, we also experimented
with the solution process without this lower bound or
the results of the elimination phase, but these experi-
ments resulted in strongly increased running times.
Due to the excellent lower bound provided by the

solution of Model 1, often only one major iteration of
the solution process is required. The latter implies that
there exists an optimal solution for Model 2 with the
same objective function value as the initial optimal
solution for Model 1. Note that this does not imply
that this initial optimal solution for Model 1 is already
feasible for Model 2. Because we are also interested
in the details of the solution (the rolling stock cir-
culations themselves), this justifies the extension of
Model 1 to Model 2.

Table 4 Results for the Objective Function PB3

Compl, No VI Compl, VI MPH, No VI MPH, VI

Tot. nodes 8�604 8�604 2�498 2�498
Elim. nodes 449 2�766 298 1�597
Iterations 1 1 1 1

CPU Total 5�819�8 326�4 42�8 20�8
CPU Model 1 1�611�5 91�3 11�1 4�3
CPU Elim. 2�200�2 132�6 20�3 12�3
CPU Model 2 2�008�1 102�4 11�4 4�2

Obj. Model 1 1�769 1�769 621 621
Obj. Model 2 1�769 1�769 621 621
y tot

3 20 20 24 24
y tot

4 13 13 10 10
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Furthermore, Tables 2 to 4 show that for all objec-
tive functions, a large part of the total CPU time is
spent on the elimination phase: during the node elimi-
nation phase, the solution of each linear programming
subproblem takes little time, but the large number of
such subproblems to be solved here makes the node
elimination process time consuming. However, as was
noted above, skipping the elimination phase resulted
in increased computation times.
Obviously, the additional valid inequalities (11)

and (12) speed up the solution process of Model 1
significantly, due to the improvement of the lin-
ear programming lower bound. Note that the valid
inequalities also reduce the time required for the elim-
ination phase significantly. The latter is because the
valid inequalities are also applied when solving the
linear programming subproblems in the elimination
phase, which results in stronger lower bounds.
In all cases, the results obtained by solving the

MPH instances are rather similar to the results
obtained by solving the complete instances in terms
of the total required capacity of the train units, as
was expected. Anyway, the fixed costs of a certain
MPH instance provide a strong lower bound for the
fixed costs of the corresponding instance for a com-
plete day.

7. Conclusions and Further Research
In this paper, we studied the problem of determining
optimal numbers of train units together with their effi-
cient circulation on a single line, thereby considering
that trains can be composed of train units of different
types. The latter implies that not only the number of
train units of the different types in the trains, but also
their order in the trains is to be modeled.
We proved that the rolling stock circulation prob-

lem is NP-hard in its most general form. However, if
the numbers of trains, stations, train unit types, and
the maximum train length are fixed, then an optimal
rolling stock circulation can be found in an amount of
time polynomial in the number of trips.
We described a model and an algorithm for solving

the rolling stock circulation problem. The model uses
the concept of transition graphs. The algorithm starts
with reducing the sizes of the transition graphs as
much as possible by applying node elimination and
disconnection elimination. Then the remaining prob-
lem is solved by CPLEX.
We applied the algorithm to the Intercity line 3000

of NS Reizigers. Based on our results, it can be con-
cluded that the proposed solution approach is a suffi-
ciently powerful scheme, which succeeds to find opti-
mal solutions within an acceptable amount of time.
In our further research, we will study cases that

have a more complex structure than the one presented

in this paper. Such cases may involve several train
lines at the same time, more than one family of train
units (for example, both single-deck and double-deck
train units), more than two types of train units, or
trains splitting and combining underway. First results
on this subject can be found in Fioole et al. (2005).
In addition to the tactical problem of determining

appropriate numbers of train units to be operated
on a certain set of lines, we will also focus on the
operational problem of optimally circulating a given
number of train units along these lines. In that case,
the problem is to find a balance between the con-
flicting objectives of minimizing (i) the shortages of
seats (service), (ii) the number of train unit or carriage
kilometers (efficiency), and (iii) the number of shunt-
ing movements (robustness). The latter is relevant
because shunting movements are potential sources of
disruption of the railway process. Therefore, avoiding
these shunting movements may be beneficial for the
punctuality.
In our further research, we will also focus on alter-

native algorithmic approaches for solving the rolling
stock circulation problem. In particular, we will exper-
iment with a solution approach based on column
generation. Here the column generation mechanism
generates appropriate paths through the transition
graphs based on shortest path algorithms. This col-
umn-generation mechanism takes into account dual
cost information obtained from the master problem.
The latter handles the coordination between the paths
in the different transition graphs, mainly by taking
into account the inventories of the train units in the
different stations. First results on this subject can be
found in Peeters and Kroon (2006).
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