Preface

Pioneered by the work of Jack Edmonds, polyhedral combinatorics has proved to be a most powerful, coherent, and unifying tool throughout combinatorial optimization. Not only it has led to efficient (that is, polynomial-time) algorithms, but also, conversely, efficient algorithms often imply polyhedral characterizations and related min-max relations. It makes the two sides closely intertwined.

We aim at offering both an introduction to and an in-depth survey of polyhedral combinatorics and efficient algorithms. Within the span of polyhedral methods, we try to present a broad picture of polynomial-time solvable combinatorial optimization problems — more precisely, of those problems that have been proved to be polynomial-time solvable. Next to that, we go into a few prominent NP-complete problems where polyhedral methods were successful in obtaining good bounds and approximations, like the stable set and the traveling salesman problem. Nevertheless, while we obviously hope that the question “NP=P?” will be settled soon one way or the other, we realize that in the astonishing event that NP=P will be proved, this book will be highly incomplete.

By definition, being in P means being solvable by a ‘deterministic sequential polynomial-time’ algorithm, and in our discussions of algorithms and complexity we restrict ourselves mainly to this characteristic. As a consequence, we do not cover (but yet occasionally touch or outline) the important work on approximative, randomized, and parallel algorithms and complexity, areas that are recently in exciting motion. We also neglect applications, modelling, and computational methods for NP-complete problems. Advanced data structures are treated only moderately. Other underexposed areas include semidefinite programming and graph decomposition. ‘This all just to keep size under control.’
Although most problems that come up in practice are NP-complete or worse, recognizing those problems that are polynomial-time solvable can be very helpful: polynomial-time (and polyhedral) methods may be used in preprocessing, in obtaining approximative solutions, or as a subroutine, for instance to calculate bounds in a branch-and-bound method. A good understanding of what is in the polynomial-time tool box is essential also for the NP-hard problem solver.

* * *

This book is divided into eight main parts, each discussing an area where polyhedral methods apply:

I. Paths and Flows
II. Bipartite Matching and Covering
III. Nonbipartite Matching and Covering
IV. Matroids and Submodular Functions
V. Trees, Branchings, and Connectors
VI. Cliques, Stable Sets, and Colouring
VII. Multiflows and Disjoint Paths
VIII. Hypergraphs

Each part starts with an elementary exposition of the basic results in the area, and gradually evolves to the more elevated regions. Subsections in smaller print go into more specialized topics. We also offer several references for further exploration of the area.

Although we give elementary introductions to the various areas, this book might be less satisfactory as an introduction to combinatorial optimization. Some mathematical maturity is required, and the general level is that of graduate students and researchers. Yet, parts of the book may serve for undergraduate teaching.

The book does not offer exercises, but, to stimulate research, we collect open problems, questions, and conjectures that are mentioned throughout this book, in a separate section entitled `Survey of Problems, Questions, and Conjectures’. It is not meant as a complete list of all open problems that may live in the field, but only of those mentioned in the text.

We assume elementary knowledge of and familiarity with graph theory, with polyhedra and linear and integer programming, and with algorithms and complexity. To support the reader, we survey the knowledge assumed in the introductory chapters, where we also give additional background references. These chapters are meant mainly just for consultation, and might be less attractive to read from front to back. Some less standard notation and terminology are given on the inside back cover of this book.

For background on polyhedra and linear and integer programming, we also refer to our earlier book *Theory of Linear and Integer Programming* (Wiley, Chichester, 1986). This might seem a biased recommendation, but
this 1986 book was partly written as a preliminary to the present book, and it covers anyway the author’s knowledge on polyhedra and linear and integer programming.

Incidentally, the reader of this book will encounter a number of concepts and techniques that regularly crop up: total unimodularity, total dual integrality, duality, blocking and antiblocking polyhedra, matroids, submodularity, hypergraphs, uncrossing. It makes that the meaning of ‘elementary’ is not unambiguous. Especially for the basic results, several methods apply, and it is not in all cases obvious which method and level of generality should be chosen to give a proof. In several cases we therefore will give several proofs of one and the same theorem, just to open the perspective.

While I have pursued great carefulness and precision in composing this book, I am quite sure that much room for corrections and additions has remained. To inform the reader about them, I have opened a website at the address

www.cwi.nl/~lex/co

Any corrections (including typos) and other comments and suggestions from the side of the reader are most welcome at

lex@cwi.nl

I plan to provide those who have contributed most to this, with a complimentary copy of a potential revised edition.

In preparing this book I have profited greatly from the support and help of many friends and colleagues, to whom I would like to express my gratitude.

I am particularly much obliged to Sasha Karzanov in Moscow, who has helped me enormously by tracking down ancient publications in the (former) Lenin Library in Moscow and by giving explanations and interpretations of old and recent Russian papers. I also thank Sasha’s sister Irina for translating Tolstoi’s 1930 article for me.

I am very thankful to András Frank, Bert Gerards, Dion Gijswijt, Willem Jan van Hoeve, Sasha Karzanov, Judith Keijsper, Monique Laurent, Misha Lomonosov, Frédéric Maffay, Gabor Maroti, Coelho de Pina, Bruce Shepherd, and Bianca Spille, for carefully reading preliminary parts of this book, for giving corrections and suggestions improving the text and the layout, and for helping me with useful background information. I am also happy to thank Noga Alon, Csaba Berki, Vasek Chvátal, Michele Conforti, Bill Cook, Gérard Cornuéjols, Bill Cunningham, Guoli Ding, Jack Edmonds, Fritz Eisenbrand, Satoru Fujishige, Alan Hoffman, Tibor Jordán, Gil Kalai, Alfred Lehman, Jan Karel Lenstra, Laci Lovász, Bill Pulleyblank, Herman te Riele, Alexander Rosa, András Sebő, Paul Seymour, Bruno Simeone, Jan Smals, Adri
Steenbeek, Laci Szegő, Éva Tardos, Bjarne Toft, and David Williamson, for giving useful insights and suggestions, for providing me with precious and rare papers and translations, for advice on interpreting vintage articles, and for help in checking details.

Sincere thanks are due as well to Truus W. Koopmans for sharing with me her ‘memories and stories’ and sections from her late husband’s war diary, and to Herb Scarf for his kind mediation in this. I am indebted to Steve Brady (RAND) and Dick Cottle for their successful efforts in obtaining classic RAND Reports for me, and to Richard Bancroft and Gustave Shubert of RAND Corporation for their help in downgrading the secret Harris-Ross report.

The assistance of my institute, CWI in Amsterdam, has been indispensable in writing this book. My special thanks go to Karin van Gemert of the CWI Library for her indefatigable efforts in obtaining rare publications from every corner of the world, always in sympathizing understanding for my often extravagant requests. I also appreciate the assistance of other members of CWI’s staff: Miente Bakker, Susanne van Dam, Lieke van den Eersten, Thea de Hoog, Jacqueline de Klerk, Wouter Mettrop, Ay Ong, Rick Ooteman, Hans Stoffel, and Jos van der Werf.

In the technical realization of this book, I thankfully enjoyed the first-rate workmanship of the staff of Springer Verlag in Heidelberg. I thank in particular Frank Holzwarth, Leonie Kunz, Ute McCrory, and Martin Peters for their skilful and enthusiastic commitment in finalizing this out-size project.

As it has turned out, it was only by gravely neglecting my family that I was able to complete this project. I am extremely grateful to Monique, Nella, and Juliette for their perpetual understanding and devoted support. Now comes the time for the pleasant fulfilment of all promises I made for ‘when my book will be finished’.

Amsterdam

September 2002

Alexander Schrijver
Table of Contents

1 **Introduction** .. 1
 1.1 Introduction ... 1
 1.2 Matchings ... 2
 1.3 But what about nonbipartite graphs? 4
 1.4 Hamiltonian circuits and the traveling salesman problem 5
 1.5 Historical and further notes 6
 1.5a Historical sketch on polyhedral combinatorics 6
 1.5b Further notes .. 8

2 **General preliminaries** .. 9
 2.1 Sets .. 9
 2.2 Orders .. 11
 2.3 Numbers .. 11
 2.4 Vectors, matrices, and functions 11
 2.5 Maxima, minima, and infinity 14
 2.6 Fekete's lemma .. 14

3 **Preliminaries on graphs** 16
 3.1 Undirected graphs ... 16
 3.2 Directed graphs .. 28
 3.3 Hypergraphs ... 36
 3.3a Background references on graph theory 37

4 **Preliminaries on algorithms and complexity** 38
 4.1 Introduction ... 38
 4.2 The random access machine 39
 4.3 Polynomial-time solvability 39
 4.4 P ... 40
 4.5 NP ... 40
 4.6 co-NP and good characterizations 42
 4.7 Optimization problems .. 42
 4.8 NP-complete problems ... 43
 4.9 The satisfiability problem 44
 4.10 NP-completeness of the satisfiability problem 44
 4.11 NP-completeness of some other problems 46
Preliminaries on polyhedra and linear and integer programming

5.1 Convexity and halfspaces .. 59
5.2 Cones ... 60
5.3 Polyhedra and polytopes ... 60
5.4 Farkas’ lemma ... 61
5.5 Linear programming .. 61
5.6 Faces, facets, and vertices .. 63
5.7 Polarity .. 65
5.8 Blocking polyhedra .. 65
5.9 Antiblocking polyhedra .. 67
5.10 Methods for linear programming 67
5.11 The ellipsoid method ... 68
5.12 Polyhedra and NP and co-NP 71
5.13 Primal-dual methods ... 72
5.14 Integer linear programming 73
5.15 Integer polyhedra ... 74
5.16 Totally unimodular matrices 75
5.17 Total dual integrality ... 76
5.18 Hilbert bases and minimal TDI systems 81
5.19 The integer rounding and decomposition properties 82
5.20 Box-total dual integrality .. 83
5.21 The integer hull and cutting planes 83
5.21a Background literature ... 84

Part I: Paths and Flows

6 Shortest paths: unit lengths .. 87
6.1 Shortest paths with unit lengths 87
6.2 Shortest paths with unit lengths algorithmically:
 breadth-first search ... 88
6.3 Depth-first search .. 89
6.4 Finding an Eulerian orientation 91
6.5 Further results and notes .. 91
6.5a All-pairs shortest paths in undirected graphs 91
6.5b Complexity survey ... 93
6.5c Ear-decomposition of strongly connected digraphs 93
6.5d Transitive closure .. 94

X Table of Contents

4.12 Strongly polynomial-time 47
4.13 Lists and pointers .. 48
4.14 Further notes .. 49
 4.14a Background literature on algorithms and complexity .. 49
 4.14b Efficiency and complexity historically 49

5 Preliminaries on polyhedra and linear and integer programming

5.1 Convexity and halfspaces .. 59
5.2 Cones ... 60
5.3 Polyhedra and polytopes ... 60
5.4 Farkas’ lemma ... 61
5.5 Linear programming .. 61
5.6 Faces, facets, and vertices .. 63
5.7 Polarity .. 65
5.8 Blocking polyhedra .. 65
5.9 Antiblocking polyhedra .. 67
5.10 Methods for linear programming 67
5.11 The ellipsoid method ... 68
5.12 Polyhedra and NP and co-NP 71
5.13 Primal-dual methods ... 72
5.14 Integer linear programming 73
5.15 Integer polyhedra ... 74
5.16 Totally unimodular matrices 75
5.17 Total dual integrality ... 76
5.18 Hilbert bases and minimal TDI systems 81
5.19 The integer rounding and decomposition properties 82
5.20 Box-total dual integrality .. 83
5.21 The integer hull and cutting planes 83
 5.21a Background literature ... 84

Part I: Paths and Flows

6 Shortest paths: unit lengths .. 87
6.1 Shortest paths with unit lengths 87
6.2 Shortest paths with unit lengths algorithmically:
 breadth-first search ... 88
6.3 Depth-first search .. 89
6.4 Finding an Eulerian orientation 91
6.5 Further results and notes .. 91
 6.5a All-pairs shortest paths in undirected graphs 91
 6.5b Complexity survey ... 93
 6.5c Ear-decomposition of strongly connected digraphs 93
 6.5d Transitive closure .. 94
Table of Contents

6.5e Further notes ... 94

7 **Shortest paths: nonnegative lengths** 96
 7.1 Shortest paths with nonnegative lengths 96
 7.2 Dijkstra’s method ... 97
 7.3 Speeding up Dijkstra’s algorithm with \(k \)-heaps 98
 7.4 Speeding up Dijkstra’s algorithm with Fibonacci heaps 99
 7.5 Further results and notes 101
 7.5a Weakly polynomial-time algorithms 101
 7.5b Complexity survey for shortest paths with nonnegative lengths ... 103
 7.5c Further notes ... 105

8 **Shortest paths: arbitrary lengths** 107
 8.1 Shortest paths with arbitrary lengths but no negative circuits ... 107
 8.2 Potentials ... 107
 8.3 The Bellman-Ford method 109
 8.4 All-pairs shortest paths 110
 8.5 Finding a minimum-mean length directed circuit 111
 8.6 Further results and notes 112
 8.6a Complexity survey for shortest path without negative-length circuits ... 112
 8.6b NP-completeness of the shortest path problem 114
 8.6c Nonpolynomiality of Ford’s method 115
 8.6d Shortest and longest paths in acyclic graphs 116
 8.6e Bottleneck shortest path 117
 8.6f Further notes ... 118
 8.6g Historical notes on shortest paths 119

9 **Disjoint paths** .. 131
 9.1 Menger’s theorem ... 131
 9.1a Other proofs of Menger’s theorem 133
 9.2 Path packing algorithmically 134
 9.3 Speeding up by blocking path packings 135
 9.4 A sometimes better bound 136
 9.5 Complexity of the vertex-disjoint case 137
 9.6 Further results and notes 138
 9.6a Complexity survey for the disjoint \(s - t \) paths problem ... 138
 9.6b Partially disjoint paths 140
 9.6c Exchange properties of disjoint paths 141
 9.6d Further notes ... 141
 9.6e Historical notes on Menger’s theorem 142
Table of Contents

10 **Maximum flow** ... 148
 10.1 Flows: concepts ... 148
 10.2 The max-flow min-cut theorem 150
 10.3 Paths and flows ... 151
 10.4 Finding a maximum flow ... 151
 10.4a Nontermination for irrational capacities 152
 10.5 A strongly polynomial bound on the number of iterations . 153
 10.6 Dinits’ $O(n^2 m)$ algorithm 154
 10.6a Karzanov’s $O(n^3)$ algorithm 155
 10.7 Goldberg’s push-relabel method 156
 10.8 Further results and notes .. 159
 10.8a A weakly polynomial bound 159
 10.8b Complexity survey for the maximum flow problem 160
 10.8c An exchange property ... 162
 10.8d Further notes ... 162
 10.8e Historical notes on maximum flow 164

11 **Circulations and transshipments** 170
 11.1 A useful fact on arc functions 170
 11.2 Circulations ... 171
 11.3 Flows with upper and lower bounds 172
 11.4 b-transshipments .. 173
 11.5 Upper and lower bounds on excess f 174
 11.6 Finding circulations and transshipments algorithmically ... 175
 11.6a Further notes ... 176

12 **Minimum-cost flows and circulations** 177
 12.1 Minimum-cost flows and circulations 177
 12.2 Minimum-cost circulations and the residual graph Df ... 178
 12.3 Strongly polynomial-time algorithm 179
 12.4 Related problems ... 182
 12.4a A dual approach .. 183
 12.4b A strongly polynomial-time algorithm using capacity-scaling ... 186
 12.5 Further results and notes ... 190
 12.5a Complexity survey for minimum-cost circulation 190
 12.5b Min-max relations for minimum-cost flows and circulations ... 191
 12.5c Dynamic flows ... 192
 12.5d Further notes ... 195

13 **Path and flow polyhedra and total unimodularity** 198
 13.1 Path polyhedra .. 198
 13.1a Vertices, adjacency, and facets 202
 13.1b The $s - t$ connector polytope 203
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2</td>
<td>Total unimodularity</td>
<td>204</td>
</tr>
<tr>
<td>13.2a</td>
<td>Consequences for flows</td>
<td>205</td>
</tr>
<tr>
<td>13.2b</td>
<td>Consequences for circulations</td>
<td>207</td>
</tr>
<tr>
<td>13.2c</td>
<td>Consequences for transshipments</td>
<td>207</td>
</tr>
<tr>
<td>13.2d</td>
<td>Unions of disjoint paths and cuts</td>
<td>210</td>
</tr>
<tr>
<td>13.3</td>
<td>Network matrices</td>
<td>213</td>
</tr>
<tr>
<td>13.4</td>
<td>Cross-free and laminar families</td>
<td>214</td>
</tr>
</tbody>
</table>

14 Partially ordered sets and path coverings | 217

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Partially ordered sets</td>
<td>217</td>
</tr>
<tr>
<td>14.2</td>
<td>Dilworth's decomposition theorem</td>
<td>218</td>
</tr>
<tr>
<td>14.3</td>
<td>Path coverings</td>
<td>219</td>
</tr>
<tr>
<td>14.4</td>
<td>The weighted case</td>
<td>220</td>
</tr>
<tr>
<td>14.5</td>
<td>The chain and antichain polytopes</td>
<td>221</td>
</tr>
<tr>
<td>14.5a</td>
<td>Path coverings algorithmically</td>
<td>222</td>
</tr>
<tr>
<td>14.6</td>
<td>Unions of directed cuts and antichains</td>
<td>224</td>
</tr>
<tr>
<td>14.6a</td>
<td>Common saturating collections of chains</td>
<td>227</td>
</tr>
<tr>
<td>14.7</td>
<td>Unions of directed paths and chains</td>
<td>227</td>
</tr>
<tr>
<td>14.7a</td>
<td>Common saturating collections of antichains</td>
<td>229</td>
</tr>
<tr>
<td>14.7b</td>
<td>Conjucacy of partitions</td>
<td>230</td>
</tr>
<tr>
<td>14.8</td>
<td>Further results and notes</td>
<td>232</td>
</tr>
<tr>
<td>14.8a</td>
<td>The Gallai-Milgram theorem</td>
<td>232</td>
</tr>
<tr>
<td>14.8b</td>
<td>Partially ordered sets and distributive lattices</td>
<td>233</td>
</tr>
<tr>
<td>14.8c</td>
<td>Maximal chains</td>
<td>235</td>
</tr>
<tr>
<td>14.8d</td>
<td>Further notes</td>
<td>236</td>
</tr>
</tbody>
</table>

15 Connectivity and Gomory-Hu trees | 237

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Vertex-, edge-, and arc-connectivity</td>
<td>237</td>
</tr>
<tr>
<td>15.2</td>
<td>Vertex-connectivity algorithmically</td>
<td>239</td>
</tr>
<tr>
<td>15.2a</td>
<td>Complexity survey for vertex-connectivity</td>
<td>241</td>
</tr>
<tr>
<td>15.2b</td>
<td>Finding the 2-connected components</td>
<td>242</td>
</tr>
<tr>
<td>15.3</td>
<td>Arc- and edge-connectivity algorithmically</td>
<td>244</td>
</tr>
<tr>
<td>15.3a</td>
<td>Complexity survey for arc- and edge-connectivity</td>
<td>246</td>
</tr>
<tr>
<td>15.3b</td>
<td>Finding the 2-edge-connected components</td>
<td>247</td>
</tr>
<tr>
<td>15.4</td>
<td>Gomory-Hu trees</td>
<td>248</td>
</tr>
<tr>
<td>15.4a</td>
<td>Minimum-requirement spanning tree</td>
<td>252</td>
</tr>
<tr>
<td>15.5</td>
<td>Further results and notes</td>
<td>252</td>
</tr>
<tr>
<td>15.5a</td>
<td>Ear-decomposition of undirected graphs</td>
<td>252</td>
</tr>
<tr>
<td>15.5b</td>
<td>Further notes</td>
<td>253</td>
</tr>
</tbody>
</table>

Part II: Bipartite Matching and Covering
16 Cardinality bipartite matching and vertex cover 259
16.1 M-augmenting paths ... 259
16.2 Frobenius’ and König’s theorems 260
 16.2a Frobenius’ proof of his theorem 262
 16.2b Linear-algebraic proof of Frobenius’ theorem 262
 16.2c Rizzi’s proof of König’s matching theorem 263
16.3 Maximum-size bipartite matching algorithm 263
16.4 An $O(n^{1/2}m)$ algorithm ... 264
16.5 Finding a minimum-size vertex cover 265
16.6 Matchings covering given vertices 265
16.7 Further results and notes .. 267
 16.7a Complexity survey for cardinality bipartite matching 267
 16.7b Finding perfect matchings in regular bipartite graphs 267
 16.7c The equivalence of Menger’s theorem and König’s theorem 275
 16.7d Equivalent formulations in terms of matrices 276
 16.7e Equivalent formulations in terms of partitions 276
 16.7f On the complexity of bipartite matching and vertex cover 277
 16.7g Further notes .. 277
 16.7h Historical notes on bipartite matching 278

17 Weighted bipartite matching and the assignment problem 285
17.1 Weighted bipartite matching .. 285
17.2 The Hungarian method .. 286
17.3 Perfect matching and assignment problems 288
17.4 Finding a minimum-size w-vertex cover 289
17.5 Further results and notes .. 290
 17.5a Complexity survey for maximum-weight bipartite matching 290
 17.5b Further notes .. 290
 17.5c Historical notes on weighted bipartite matching and optimum assignment .. 292

18 Linear programming methods and the bipartite matching polytope 301
18.1 The matching and the perfect matching polytope 301
18.2 Totally unimodular matrices from bipartite graphs 303
18.3 Consequences of total unimodularity 304
18.4 The vertex cover polytope .. 305
18.5 Further results and notes .. 305
18.5a Derivation of König’s matching theorem from the matching polytope .. 305
18.5b Dual, primal-dual, primal? ... 305
18.5c Adjacency and diameter of the matching polytope 307
18.5d The perfect matching space of a bipartite graph 308
18.5e The up and down hull of the perfect matching polytope 309
18.5f Matchings of given size ... 311
18.5g Stable matchings .. 311
18.5h Further notes .. 314

19 Bipartite edge cover and stable set 315
19.1 Matchings, edge covers, and Gallai’s theorem 315
19.2 The König-Rado edge cover theorem 317
19.3 Finding a minimum-weight edge cover 317
19.4 Bipartite edge covers and total unimodularity 318
19.5 The edge cover and stable set polytope 318
 19.5a Some historical notes on bipartite edge covers 319

20 Bipartite edge-colouring .. 321
20.1 Edge-colourings of bipartite graphs 321
 20.1a Edge-colouring regular bipartite graphs 322
20.2 The capacitated case ... 322
20.3 Edge-colouring polyhedrally ... 323
20.4 Packing edge covers .. 324
20.5 Balanced colours .. 325
20.6 Packing perfect matchings ... 326
 20.6a Polyhedral interpretation .. 327
 20.6b Extensions ... 328
20.7 Covering by perfect matchings 329
 20.7a Polyhedral interpretation .. 330
20.8 The perfect matching lattice of a bipartite graph 331
20.9 Further results and notes ... 333
 20.9a Some further edge-colouring algorithms 333
 20.9b Complexity survey for bipartite edge-colouring 334
 20.9c List-edge-colouring .. 335
 20.9d Further notes .. 336

21 Bipartite b-matchings and transportation 337
21.1 b-matchings and w-vertex covers 337
21.2 The b-matching polytope and the w-vertex cover polyhedron .. 338
21.3 Simple b-matchings and b-factors 339
21.4 Capacitated b-matchings ... 341
21.5 Bipartite b-matching and w-vertex cover algorithmically 342
Table of Contents

Chapter 21: Transportation

- 21.6 Transportation CONTENTS 343
 - 21.6a Reduction of transshipment to transportation 345
 - 21.6b The transportation polytope 346
- 21.7 b-edge covers and w-stable sets 347
- 21.8 The b-edge cover and the w-stable set polyhedron 348
- 21.9 Simple b-edge covers 349
- 21.10 Capacitated b-edge covers 350
- 21.11 Relations between b-matchings and b-edge covers 351
- 21.12 Upper and lower bounds 353
- 21.13 Further results and notes CONTENTS 355
 - 21.13a Complexity survey on weighted bipartite b-matching and transportation 355
 - 21.13b The matchable set polytope 359
 - 21.13c Existence of matrices 359
 - 21.13d Further notes 361
 - 21.13e Historical notes on the transportation and transshipment problems 362

Chapter 22: Transversals

- 22 Transversals CONTENTS 379
 - 22.1 Transversals 379
 - 22.2a Alternative proofs of Hall’s marriage theorem 380
 - 22.2 Partial transversals 381
 - 22.3 Weighted transversals 383
 - 22.4 Minc-max relations for weighted transversals 383
 - 22.5 The transversal polytope 384
 - 22.6 Packing and covering of transversals 386
 - 22.7 Further results and notes CONTENTS 388
 - 22.7a The capacitated case 388
 - 22.7b A theorem of Rado 390
 - 22.7c Further notes 390
 - 22.7d Historical notes on transversals 391

Chapter 23: Common Transversals

- 23 Common transversals CONTENTS 394
 - 23.1 Common transversals 394
 - 23.2 Weighted common transversals 396
 - 23.3 Weighted common partial transversals 398
 - 23.4 The common partial transversal polytope 400
 - 23.5 The common transversal polytope 402
 - 23.6 Packing and covering of common transversals 403
 - 23.7 Further results and notes CONTENTS 408
 - 23.7a Capacitated common transversals 408
 - 23.7b Exchange properties 408
 - 23.7c Common transversals of three families 409
 - 23.7d Further notes 410
Part III: Nonbipartite Matching and Covering

24 Cardinality nonbipartite matching .. 413
24.1 Tutte’s 1-factor theorem and the Tutte-Berge formula 413
 24.1a Tutte’s proof of his 1-factor theorem 415
 24.1b Petersen’s theorem 415
24.2 Cardinality matching algorithm 415
 24.2a An $O(n^3)$ algorithm 418
24.3 Matchings covering given vertices 421
24.4 Further results and notes 422
 24.4a Complexity survey for cardinality nonbipartite
 matching .. 422
 24.4b The Edmonds-Gallai decomposition of a graph 423
 24.4c Strengthening of Tutte’s 1-factor theorem 425
 24.4d Ear-decomposition of factor-critical graphs 425
 24.4e Ear-decomposition of matching-covered graphs 426
 24.4f Barriers in matching-covered graphs 427
 24.4g Two-processor scheduling 428
 24.4h The Tutte matrix and an algebraic matching
 algorithm .. 429
 24.4i Further notes ... 430
 24.4j Historical notes on nonbipartite matching 431

25 The matching polytope .. 438
25.1 The perfect matching polytope 438
25.2 The matching polytope .. 439
25.3 Total dual integrality: the Cunningham-Marsh formula .. 440
 25.3a Direct proof of the Cunningham-Marsh formula 442
25.4 On the total dual integrality of the perfect matching
 constraints .. 443
25.5 Further results and notes 444
 25.5a Adjacency and diameter of the matching polytope .. 444
 25.5b Facets of the matching polytope 446
 25.5c Polynomial-time solvability with the ellipsoid
 method .. 448
 25.5d The matchable set polytope 450
 25.5e Further notes ... 452

26 Weighted nonbipartite matching algorithmically 453
26.1 Introduction and preliminaries 453
26.2 Weighted matching algorithm 454
 26.2a An $O(n^3)$ algorithm 456
26.3 Further results and notes 458
Table of Contents

26.3a Complexity survey for weighted nonbipartite matching ... 458
26.3b Derivation of the matching polytope characterization from the algorithm 459
26.3c Further notes ... 459

27 Nonbipartite edge cover .. 461
27.1 Minimum-size edge cover 461
27.2 The edge cover polytope and total dual integrality .. 462
27.3 Further notes on edge covers 464
27.3a Further notes .. 464
27.3b Historical notes on edge covers 464

28 Edge-colouring ... 465
28.1 Vizing’s theorem for simple graphs ... 465
28.2 Vizing’s theorem for general graphs .. 467
28.3 NP-completeness of edge-colouring .. 469
28.4 Nowhere-zero flows and edge-colouring .. 470
28.5 Fractional edge-colouring ... 474
28.6 Conjectures ... 475
28.7 Edge-colouring polyhedrally .. 477
28.8 Packing edge covers .. 478
28.9 Further results and notes .. 480
28.9a Shannon’s theorem ... 480
28.9b Further notes .. 481
28.9c Historical notes on edge-colouring 482

29 T-joins, undirected shortest paths, and the Chinese postman 485
29.1 T-joins ... 485
29.2 The shortest path problem for undirected graphs .. 487
29.3 The Chinese postman problem ... 487
29.4 T-joins and T-cuts .. 488
29.5 The up hull of the T-join polytope ... 490
29.6 The T-join polytope .. 491
29.7 Sums of circuits ... 493
29.8 Integer sums of circuits ... 494
29.9 The T-cut polytope .. 498
29.10 Finding a minimum-capacity T-cut ... 499
29.11 Further results and notes .. 500
29.11a Minimum-mean length circuit ... 500
29.11b Packing T-cuts ... 501
29.11c Packing T-joins ... 507
29.11d Maximum joins ... 511
29.11e Odd paths ... 515
29.11f Further notes ... 517
29.11g On the history of the Chinese postman problem 519

30 2-matchings, 2-covers, and 2-factors 521
30.1 2-matchings and 2-vertex covers 521
30.2 Fractional matchings and vertex covers 522
30.3 The fractional matching polytope 523
30.4 The 2-matching polytope 523
30.5 The weighted 2-matching problem 524
 30.5a Maximum-size 2-matchings and maximum-size matchings ... 525
30.6 Simple 2-matchings and 2-factors 527
30.7 The simple 2-matching polytope and the 2-factor polytope 529
30.8 Total dual integrality 532
30.9 2-edge covers and 2-stable sets 532
30.10 Fractional edge covers and stable sets 533
30.11 The fractional edge cover polyhedron 534
30.12 The 2-edge cover polyhedron 534
30.13 Total dual integrality of the 2-edge cover constraints 535
30.14 Simple 2-edge covers 536
30.15 Graphs with \(\nu(G) = \tau(G) \) and \(\alpha(G) = \rho(G) \) 537
30.16 Excluding triangles 540
 30.16a Excluding higher polygons 545
30.16b Packing edges and factor-critical subgraphs 545
 30.16c 2-factors without short circuits 546

31 \(b \)-matchings .. 547
31.1 \(b \)-matchings .. 547
31.2 The \(b \)-matching polytope 548
31.3 Total dual integrality 551
31.4 The weighted \(b \)-matching problem 555
31.5 If \(b \) is even ... 558
31.6 If \(b \) is constant 559
31.7 Further results and notes 560
 31.7a Complexity survey for the \(b \)-matching problem 560
 31.7b Facets and minimal systems for the \(b \)-matching polytope ... 560
 31.7c Regularizable graphs 561
 31.7d Further notes 562

32 Capacitated \(b \)-matchings 563
32.1 Capacitated \(b \)-matchings 563
32.2 The capacitated \(b \)-matching polytope 565
32.3 Total dual integrality 567
32.4 The weighted capacitated \(b \)-matching problem 568
XX Table of Contents

32.4a Further notes ... 568

33 Simple b-matchings and b-factors 570
33.1 Simple b-matchings and b-factors 570
33.2 The simple b-matching polytope and the b-factor polytope . 571
33.3 Total dual integrality 571
33.4 The weighted simple b-matching and b-factor problem 572
33.5 If b is constant .. 573
33.6 Further results and notes 574
 33.6a Complexity results 574
 33.6b Degree-sequences 574
 33.6c Further notes 575

34 b-edge covers ... 576
34.1 b-edge covers ... 576
34.2 The b-edge cover polyhedron 577
34.3 Total dual integrality 577
34.4 The weighted b-edge cover problem 578
34.5 If b is even ... 579
34.6 If b is constant 579
34.7 Capacitated b-edge covers 580
34.8 Simple b-edge covers 582
 34.8a Simple b-edge covers and b-matchings 583
 34.8b Capacitated b-edge covers and b-matchings 584

35 Upper and lower bounds 585
35.1 Upper and lower bounds 585
35.2 Convex hull ... 587
35.3 Total dual integrality 590
35.4 Further results and notes 592
 35.4a Further results on subgraphs with prescribed degrees 592
 35.4b Odd walks ... 594

36 Bidirected graphs .. 595
36.1 Bidirected graphs 595
36.2 Convex hull ... 598
36.3 Total dual integrality 599
36.4 Including parity conditions 601
36.5 Convex hull ... 605
 36.5a Convex hull of vertex-disjoint circuits 606
36.6 Total dual integrality 606
36.7 Further results and notes 608
 36.7a The Chvátal rank 608
 36.7b Further notes 609
37 The dimension of the perfect matching polytope

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.1</td>
<td>The dimension of the perfect matching polytope</td>
<td>610</td>
</tr>
<tr>
<td>37.2</td>
<td>The perfect matching space</td>
<td>612</td>
</tr>
<tr>
<td>37.3</td>
<td>The brick decomposition</td>
<td>613</td>
</tr>
<tr>
<td>37.4</td>
<td>The brick decomposition of a bipartite graph</td>
<td>614</td>
</tr>
<tr>
<td>37.5</td>
<td>Braces</td>
<td>615</td>
</tr>
<tr>
<td>37.6</td>
<td>Bricks</td>
<td>615</td>
</tr>
<tr>
<td>37.7</td>
<td>Matching-covered graphs without nontrivial tight cuts</td>
<td>618</td>
</tr>
</tbody>
</table>

38 The perfect matching lattice

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.1</td>
<td>The perfect matching lattice</td>
<td>620</td>
</tr>
<tr>
<td>38.2</td>
<td>The perfect matching lattice of the Petersen graph</td>
<td>621</td>
</tr>
<tr>
<td>38.3</td>
<td>A further fact on the Petersen graph</td>
<td>622</td>
</tr>
<tr>
<td>38.4</td>
<td>Various useful observations</td>
<td>623</td>
</tr>
<tr>
<td>38.5</td>
<td>Simple barriers</td>
<td>625</td>
</tr>
<tr>
<td>38.6</td>
<td>The perfect matching lattice of a brick</td>
<td>631</td>
</tr>
<tr>
<td>38.7</td>
<td>Synthesis and further consequences of the previous results</td>
<td>644</td>
</tr>
<tr>
<td>38.8</td>
<td>What further might (not) be true</td>
<td>645</td>
</tr>
<tr>
<td>38.9</td>
<td>Further results and notes</td>
<td>648</td>
</tr>
<tr>
<td>38.9a</td>
<td>The perfect 2-matching space and lattice</td>
<td>648</td>
</tr>
<tr>
<td>38.9b</td>
<td>Further notes</td>
<td>648</td>
</tr>
</tbody>
</table>

Part IV: Matroids and Submodular Functions

39 Matroids

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.1</td>
<td>Matroids</td>
<td>651</td>
</tr>
<tr>
<td>39.2</td>
<td>The dual matroid</td>
<td>652</td>
</tr>
<tr>
<td>39.3</td>
<td>Deletion, contraction, and truncation</td>
<td>653</td>
</tr>
<tr>
<td>39.4</td>
<td>Examples of matroids</td>
<td>654</td>
</tr>
<tr>
<td>39.4a</td>
<td>Relations between transversal matroids and gamboids</td>
<td>659</td>
</tr>
<tr>
<td>39.5</td>
<td>Characterizing matroids by bases</td>
<td>662</td>
</tr>
<tr>
<td>39.6</td>
<td>Characterizing matroids by circuits</td>
<td>662</td>
</tr>
<tr>
<td>39.6a</td>
<td>A characterization of Lehman</td>
<td>663</td>
</tr>
<tr>
<td>39.7</td>
<td>Characterizing matroids by rank functions</td>
<td>664</td>
</tr>
<tr>
<td>39.8</td>
<td>The span function and flats</td>
<td>666</td>
</tr>
<tr>
<td>39.8a</td>
<td>Characterizing matroids by span functions</td>
<td>666</td>
</tr>
<tr>
<td>39.8b</td>
<td>Characterizing matroids by flats</td>
<td>667</td>
</tr>
<tr>
<td>39.8c</td>
<td>Characterizing matroids in terms of lattices</td>
<td>668</td>
</tr>
<tr>
<td>39.9</td>
<td>Further exchange properties</td>
<td>669</td>
</tr>
<tr>
<td>39.9a</td>
<td>Further properties of bases</td>
<td>671</td>
</tr>
<tr>
<td>39.10</td>
<td>Further results and notes</td>
<td>671</td>
</tr>
<tr>
<td>39.10a</td>
<td>Further notes</td>
<td>671</td>
</tr>
<tr>
<td>39.10b</td>
<td>Historical notes on matroids</td>
<td>672</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>40</td>
<td>The greedy algorithm and the independent set polytope</td>
<td>688</td>
</tr>
<tr>
<td>40.1</td>
<td>The greedy algorithm</td>
<td>688</td>
</tr>
<tr>
<td>40.2</td>
<td>The independent set polytope</td>
<td>690</td>
</tr>
<tr>
<td>40.3</td>
<td>The most violated inequality</td>
<td>693</td>
</tr>
<tr>
<td>40.3a</td>
<td>Facets and adjacency on the independent set polytope</td>
<td>698</td>
</tr>
<tr>
<td>40.3b</td>
<td>Further notes</td>
<td>699</td>
</tr>
<tr>
<td>41</td>
<td>Matroid intersection</td>
<td>700</td>
</tr>
<tr>
<td>41.1</td>
<td>Matroid intersection theorem</td>
<td>700</td>
</tr>
<tr>
<td>41.1a</td>
<td>Applications of the matroid intersection theorem</td>
<td>702</td>
</tr>
<tr>
<td>41.1b</td>
<td>Woodall's proof of the matroid intersection theorem</td>
<td>704</td>
</tr>
<tr>
<td>41.2</td>
<td>Cardinality matroid intersection algorithm</td>
<td>705</td>
</tr>
<tr>
<td>41.3</td>
<td>Weighted matroid intersection algorithm</td>
<td>707</td>
</tr>
<tr>
<td>41.3a</td>
<td>Speeding up the weighted matroid intersection algorithm</td>
<td>710</td>
</tr>
<tr>
<td>41.4</td>
<td>Intersection of the independent set polytopes</td>
<td>712</td>
</tr>
<tr>
<td>41.4a</td>
<td>Facets of the common independent set polytope</td>
<td>717</td>
</tr>
<tr>
<td>41.4b</td>
<td>The up and down hull of the common base polytope</td>
<td>719</td>
</tr>
<tr>
<td>41.5</td>
<td>Further results and notes</td>
<td>720</td>
</tr>
<tr>
<td>41.5a</td>
<td>Menger's theorem for matroids</td>
<td>720</td>
</tr>
<tr>
<td>41.5b</td>
<td>Exchange properties</td>
<td>721</td>
</tr>
<tr>
<td>41.5c</td>
<td>Jump systems</td>
<td>722</td>
</tr>
<tr>
<td>41.5d</td>
<td>Further notes</td>
<td>724</td>
</tr>
<tr>
<td>42</td>
<td>Matroid union</td>
<td>725</td>
</tr>
<tr>
<td>42.1</td>
<td>Matroid union theorem</td>
<td>725</td>
</tr>
<tr>
<td>42.1a</td>
<td>Applications of the matroid union theorem</td>
<td>727</td>
</tr>
<tr>
<td>42.1b</td>
<td>Horn's proof</td>
<td>729</td>
</tr>
<tr>
<td>42.2</td>
<td>Polyhedral applications</td>
<td>730</td>
</tr>
<tr>
<td>42.3</td>
<td>Matroid union algorithm</td>
<td>731</td>
</tr>
<tr>
<td>42.4</td>
<td>The capacitated case: fractional packing and covering of bases</td>
<td>732</td>
</tr>
<tr>
<td>42.5</td>
<td>The capacitated case: integer packing and covering of bases</td>
<td>734</td>
</tr>
<tr>
<td>42.6</td>
<td>Further results and notes</td>
<td>736</td>
</tr>
<tr>
<td>42.6a</td>
<td>Induction of matroids</td>
<td>736</td>
</tr>
<tr>
<td>42.6b</td>
<td>List-colouring</td>
<td>737</td>
</tr>
<tr>
<td>42.6c</td>
<td>Strongly base orderable matroids</td>
<td>738</td>
</tr>
<tr>
<td>42.6d</td>
<td>Blocking and antiblocking polyhedra</td>
<td>741</td>
</tr>
<tr>
<td>42.6e</td>
<td>Further notes</td>
<td>743</td>
</tr>
<tr>
<td>42.6f</td>
<td>Historical notes on matroid union</td>
<td>743</td>
</tr>
</tbody>
</table>
43 Matroid matching

43.1 Infinite matroids

43.2 Matroid matchings

43.3 Circuits

43.4 A special class of matroids

43.5 A min-max formula for maximum-size matroid matching

43.6 Applications of the matroid matching theorem

43.7 A Gallai theorem for matroid matching and covering

43.8 Linear matroid matching algorithm

43.9 Matroid matching is not polynomial-time solvable in general

43.10 Further results and notes

43.10a Optimal path-matching

43.10b Further notes

44 Submodular functions and polymatroids

44.1 Submodular functions and polymatroids

44.1a Examples

44.2 Optimization over polymatroids by the greedy method

44.3 Total dual integrality

44.4 f is determined by EP_f

44.5 Supermodular functions and contrapolymatroids

44.6 Further results and notes

44.6a Submodular functions and matroids

44.6b Reducing integer polymatroids to matroids

44.6c The structure of polymatroids

44.6d Characterization of polymatroids

44.6e Operations on submodular functions and polymatroids

44.6f Duals of polymatroids

44.6g Induction of polymatroids

44.6h Lovász’s generalization of König’s matching theorem

44.6i Further notes

45 Submodular function minimization

45.1 Submodular function minimization

45.2 Orders and base vectors

45.3 A subroutine

45.4 Minimizing a submodular function

45.5 Running time of the algorithm

45.6 Minimizing a symmetric submodular function

45.7 Minimizing a submodular function over the odd sets
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 Polymatroid intersection</td>
<td>796</td>
</tr>
<tr>
<td>46.1 Box-total dual integrality of polymatroid intersection</td>
<td>796</td>
</tr>
<tr>
<td>46.2 Consequences</td>
<td>797</td>
</tr>
<tr>
<td>46.3 Contrapolymatroid intersection</td>
<td>798</td>
</tr>
<tr>
<td>46.4 Intersection a polymatroid and a contrapolymatroid</td>
<td>799</td>
</tr>
<tr>
<td>46.5 Frank's discrete sandwich theorem</td>
<td>800</td>
</tr>
<tr>
<td>46.6 Integer decomposition</td>
<td>801</td>
</tr>
<tr>
<td>46.7 Further results and notes</td>
<td>802</td>
</tr>
<tr>
<td>46.7a The up and down hull of the common base vectors of two polymatroids</td>
<td>802</td>
</tr>
<tr>
<td>46.7b Further notes</td>
<td>805</td>
</tr>
<tr>
<td>47 Polymatroid intersection algorithmically</td>
<td>806</td>
</tr>
<tr>
<td>47.1 A maximum-size common vector in two polymatroids</td>
<td>806</td>
</tr>
<tr>
<td>47.2 Maximizing a coordinate of a common base vector</td>
<td>808</td>
</tr>
<tr>
<td>47.3 Weighted polymatroid intersection in polynomial time</td>
<td>810</td>
</tr>
<tr>
<td>47.4 Weighted polymatroid intersection in strongly polynomial time</td>
<td>812</td>
</tr>
<tr>
<td>47.5 Contrapolymatroids</td>
<td>819</td>
</tr>
<tr>
<td>47.6 Intersection a polymatroid and a contrapolymatroid</td>
<td>819</td>
</tr>
<tr>
<td>47.6a Further notes</td>
<td>820</td>
</tr>
<tr>
<td>48 Dilworth truncation</td>
<td>821</td>
</tr>
<tr>
<td>48.1 If (f(\emptyset) < 0)</td>
<td>821</td>
</tr>
<tr>
<td>48.2 Dilworth truncation</td>
<td>822</td>
</tr>
<tr>
<td>48.2a Applications and interpretations</td>
<td>824</td>
</tr>
<tr>
<td>48.3 Intersection</td>
<td>826</td>
</tr>
<tr>
<td>49 Submodularity more generally</td>
<td>827</td>
</tr>
<tr>
<td>49.1 Submodular functions on a lattice family</td>
<td>827</td>
</tr>
<tr>
<td>49.2 Intersection</td>
<td>829</td>
</tr>
<tr>
<td>49.3 Complexity</td>
<td>830</td>
</tr>
<tr>
<td>49.4 Submodular functions on an intersecting family</td>
<td>833</td>
</tr>
<tr>
<td>49.5 Intersection</td>
<td>834</td>
</tr>
<tr>
<td>49.6 From an intersecting family to a lattice family</td>
<td>835</td>
</tr>
<tr>
<td>49.7 Complexity</td>
<td>836</td>
</tr>
<tr>
<td>49.8 Intersection a polymatroid and a contrapolymatroid</td>
<td>838</td>
</tr>
<tr>
<td>49.9 Submodular functions on a crossing family</td>
<td>839</td>
</tr>
<tr>
<td>49.10 Complexity</td>
<td>841</td>
</tr>
<tr>
<td>49.10a Nonemptiness of the base polyhedron</td>
<td>842</td>
</tr>
<tr>
<td>49.11 Further results and notes</td>
<td>843</td>
</tr>
<tr>
<td>49.11a Minimizing a submodular function over a subcollection of a lattice family</td>
<td>843</td>
</tr>
<tr>
<td>49.11b Generalized polymatroids</td>
<td>846</td>
</tr>
<tr>
<td>49.11c Supermodular colourings</td>
<td>850</td>
</tr>
</tbody>
</table>
Part V: Trees, Branchings, and Connectors

50 Shortest spanning trees .. 857
 50.1 Shortest spanning trees 857
 50.2 Implementing Prim’s method 859
 50.3 Implementing Kruskal’s method 860
 50.3a Parallel forest-merging 861
 50.3b A dual greedy algorithm 861
 50.4 The longest forest and the forest polytope 862
 50.5 The shortest connector and the connector polytope 864
 50.6 Further results and notes 866
 50.6a Complexity survey for shortest spanning tree 866
 50.6b Characterization of shortest spanning trees 867
 50.6c The maximum reliability problem 868
 50.6d Exchange properties of forests 869
 50.6e Uniqueness of shortest spanning tree 870
 50.6f Forest covers ... 871
 50.6g Further notes ... 872
 50.6h Historical notes on shortest spanning trees 873

51 Packing and covering of trees 879
 51.1 Unions of forests ... 879
 51.2 Disjoint spanning trees 879
 51.3 Covering by forests 880
 51.4 Complexity ... 881
 51.5 Further results and notes 891
 51.5a Complexity survey for tree packing and covering 891
 51.5b Further notes ... 894

52 Longest branchings and shortest arborescences 896
 52.1 Finding a shortest r-arborescence 896
 52.1a r-arborescences as common bases of two matroids .. 898
 52.2 Related problems ... 898
 52.3 A min-max relation for shortest r-arborescences 899
 52.4 The r-arborescence polytope 900
 52.4a Uncrossing cuts 902
 52.5 A min-max relation for longest branchings 903
 52.6 The branching polytope 904
 52.7 The arborescence polytope 904
 52.8 Further results and notes 905
 52.8a Complexity survey for shortest r-arborescence 905
 52.8b Concise LP-formulation for shortest r-arborescence .. 905
Table of Contents

52.8c Further notes ... 906

53 Packing and covering of branchings and arborescences 907
 53.1 Disjoint branchings 907
 53.2 Disjoint r-arborescences 908
 53.3 The capacitated case 910
 53.4 Disjoint arborescences 911
 53.5 Covering by branchings 911
 53.6 An exchange property of branchings 912
 53.7 Covering by r-arborescences 914
 53.8 Minimum-length unions of k-r-arborescences 916
 53.9 The complexity of finding disjoint arborescences 921
 53.10 Further results and notes 924
 53.10a Complexity survey for disjoint arborescences 924
 53.10b Arborescences with roots in given subsets 926
 53.10c Disclaimers ... 928
 53.10d Further notes 929

54 Biconnectors and bibranchings 931
 54.1 Shortest $R - S$ biconnectors 931
 54.2 Longest $R - S$ biforests 933
 54.3 Disjoint $R - S$ biconnectors 934
 54.4 Covering by $R - S$ biforests 937
 54.5 Minimum-size bibranchings 937
 54.6 Shortest bibranchings 938
 54.6a Longest bifurcations 940
 54.7 Disjoint bibranchings 943
 54.7a Proof using supermodular colourings 946
 54.7b Covering by bifurcations 946
 54.7c Disjoint $R - S$ biconnectors and $R - S$ bibranchings ... 947
 54.7d Covering by $R - S$ biforests and by $R - S$
 bifurcations ... 947

55 Minimum directed cut covers and packing directed cuts 949
 55.1 Minimum directed cut covers and packing directed cuts ... 949
 55.2 The Lucchesi-Younger theorem 950
 55.3 Directed cut k-covers 952
 55.4 Feedback arc sets 954
 55.5 Complexity ... 956
 55.5a Finding a dual solution 957
 55.6 Further results and notes 959
 55.6a Complexity survey for minimum-size directed cut
 cover .. 959
 55.6b Feedback arc sets in linklessly embeddable digraphs ... 959
 55.6c Feedback vertex sets 961
55.6d The bipartite case .. 962
55.6e Further notes .. 963

56 Minimum directed cuts and packing directed cut covers 965
56.1 Minimum directed cuts and packing directed cut covers ... 965
56.2 Source-sink connected digraphs 967
56.3 Other cases where Woodall's conjecture is true 970
56.3a Further notes .. 971

57 Strong connectors ... 972
57.1 Making a directed graph strongly connected 972
57.2 Shortest strong connectors 973
57.3 Polyhedrally ... 976
57.4 Disjoint strong connectors 976
57.5 Complexity .. 978
57.5a Crossing families 979

58 The traveling salesman problem 984
58.1 The traveling salesman problem 984
58.2 NP-completeness of the TSP 985
58.3 Branch-and-bound techniques 985
58.4 The symmetric traveling salesman polytope 986
58.5 The subtour elimination constraints 987
58.6 1-trees and Lagrangean relaxation 988
58.7 The 2-factor constraints 989
58.8 The clique tree inequalities 990
58.8a Christofides' heuristic for the TSP 992
58.8b Further notes on the symmetric traveling salesman problem .. 993
58.9 The asymmetric traveling salesman problem 995
58.10 Directed 1-trees 996
58.10a An integer programming formulation 996
58.10b Further notes on the asymmetric traveling salesman problem .. 997
58.11 Further notes on the traveling salesman problem 998
58.11a Further notes ... 998
58.11b Historical notes on the traveling salesman problem 1000

59 Matching forests .. 1008
59.1 Introduction ... 1008
59.2 The maximum size of a matching forest 1009
59.3 Perfect matching forests 1010
59.4 An exchange property of matching forests 1011
59.5 The matching forest polytope 1014
59.6 Further results and notes 1018
Table of Contents

59 Submodular functions on directed graphs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.6a Matching forests in partitionable mixed graphs</td>
<td>1018</td>
</tr>
<tr>
<td>59.6b Further notes</td>
<td>1020</td>
</tr>
</tbody>
</table>

60 Submodular functions on directed graphs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.1 The Edmonds-Giles theorem</td>
<td>1021</td>
</tr>
<tr>
<td>60.1a Applications</td>
<td>1023</td>
</tr>
<tr>
<td>60.1b Generalized polymatroids and the Edmonds-Giles theorem</td>
<td>1023</td>
</tr>
<tr>
<td>60.2 A variant</td>
<td>1024</td>
</tr>
<tr>
<td>60.2a Applications</td>
<td>1026</td>
</tr>
<tr>
<td>60.3 Further results and notes</td>
<td>1028</td>
</tr>
<tr>
<td>60.3a Lattice polyhedra</td>
<td>1028</td>
</tr>
<tr>
<td>60.3b Polymatroidal network flows</td>
<td>1031</td>
</tr>
<tr>
<td>60.3c A general model</td>
<td>1032</td>
</tr>
<tr>
<td>60.3d Packing cuts and Győri’s theorem</td>
<td>1033</td>
</tr>
<tr>
<td>60.3e Further notes</td>
<td>1037</td>
</tr>
</tbody>
</table>

61 Graph orientation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.1 Orientations with bounds on in- and outdegrees</td>
<td>1038</td>
</tr>
<tr>
<td>61.2 2-edge-connectivity and strongly connected orientations</td>
<td>1040</td>
</tr>
<tr>
<td>61.2a Strongly connected orientations with bounds on degrees</td>
<td>1041</td>
</tr>
<tr>
<td>61.3 Nash-Williams’ orientation theorem</td>
<td>1043</td>
</tr>
<tr>
<td>61.4 k-arc-connected orientations of $2k$-edge-connected graphs</td>
<td>1047</td>
</tr>
<tr>
<td>61.4a Complexity</td>
<td>1048</td>
</tr>
<tr>
<td>61.4b k-arc-connected orientations with bounds on degrees</td>
<td>1048</td>
</tr>
<tr>
<td>61.4c Orientations of graphs with lower bounds on indegrees of sets</td>
<td>1049</td>
</tr>
<tr>
<td>61.4d Further notes</td>
<td>1050</td>
</tr>
</tbody>
</table>

62 Network synthesis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.1 Minimal k-(edge-)connected graphs</td>
<td>1052</td>
</tr>
<tr>
<td>62.2 The network synthesis problem</td>
<td>1054</td>
</tr>
<tr>
<td>62.3 Minimum-capacity network design</td>
<td>1055</td>
</tr>
<tr>
<td>62.4 Integer realizations and r-edge-connected graphs</td>
<td>1058</td>
</tr>
</tbody>
</table>

63 Connectivity augmentation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.1 Making a directed graph k-arc-connected</td>
<td>1061</td>
</tr>
<tr>
<td>63.1a k-arc-connectors with bounds on degrees</td>
<td>1064</td>
</tr>
<tr>
<td>63.2 Making an undirected graph 2-edge-connected</td>
<td>1065</td>
</tr>
<tr>
<td>63.3 Making an undirected graph k-edge-connected</td>
<td>1066</td>
</tr>
<tr>
<td>63.3a k-edge-connectors with bounds on degrees</td>
<td>1069</td>
</tr>
<tr>
<td>63.4 r-edge-connectivity and r-edge-connectors</td>
<td>1070</td>
</tr>
<tr>
<td>63.5 Making a directed graph k-vertex-connected</td>
<td>1077</td>
</tr>
</tbody>
</table>
Table of Contents

63.6 Making an undirected graph k-vertex-connected 1080
63.6a Further notes .. 1082

Part VI: Cliques, Stable Sets, and Colouring

64 Cliques, stable sets, and colouring 1085
64.1 Terminology and notation 1085
64.2 NP-completeness ... 1086
64.3 Bounds on the colouring number 1087
 64.3a Brooks' upper bound on the colouring number 1088
 64.3b Hadwiger's conjecture 1088
64.4 The stable set, clique, and vertex cover polytope 1090
 64.4a Facets and adjacency on the stable set polytope 1090
64.5 Fractional stable sets 1092
 64.5a Further on the fractional stable set polytope 1093
64.6 Fractional vertex covers 1095
 64.6a A bound of Lorentzen 1097
64.7 The clique inequalities 1097
64.8 Fractional and weighted colouring numbers 1098
 64.8a The ratio of $\chi(G)$ and $\chi^*(G)$ 1100
 64.8b The Chvátal rank .. 1100
64.9 Further results and notes 1101
 64.9a Graphs with polynomial-time stable set algorithm 1101
 64.9b Colourings and orientations 1103
 64.9c Algebraic methods 1104
 64.9d Approximation algorithms 1105
 64.9e Further notes .. 1106

65 Perfect graphs: general theory 1108
65.1 Introduction to perfect graphs 1108
65.2 The perfect graph theorem 1110
65.3 Replication .. 1111
65.4 Perfect graphs and polyhedra 1112
 65.4a Lovász's proof of the replication lemma 1113
65.5 Decomposition of Berge graphs 1114
 65.5a 0- and 1-joins ... 1114
 65.5b The 2-join .. 1115
65.6 Pre-proof work on the strong perfect graph conjecture 1117
 65.6a Partitionable graphs 1118
 65.6b More characterizations of perfect graphs 1120
 65.6c The stable set polytope of minimally imperfect graphs .. 1120
 65.6d Graph classes .. 1122
XXX Table of Contents

65.6e The P_4-structure of a graph and a semi-strong perfect graph theorem.......................... 1124
65.6f Further notes on the strong perfect graph conjecture ... 1125
65.7 Further results and notes .. 1127
 65.7a Perz and Rolewicz’s proof of the perfect graph theorem ... 1127
 65.7b Kernel solvability ... 1128
 65.7c The amalgam .. 1132
 65.7d Diperfect graphs ... 1133
 65.7e Further notes ... 1134

66 Classes of perfect graphs .. 1137
 66.1 Bipartite graphs and their line graphs 1137
 66.2 Comparability graphs .. 1139
 66.3 Chordal graphs ... 1140
 66.3a Chordal graphs as intersection graphs of subtrees of a tree 1144
 66.4 Meyniel graphs ... 1145
 66.5 Further results and notes .. 1147
 66.5a Strongly perfect graphs ... 1147
 66.5b Perfectly orderable graphs ... 1148
 66.5c Unimodular graphs .. 1149
 66.5d Further classes of perfect graphs 1150
 66.5e Further notes ... 1151

67 Perfect graphs: polynomial-time solvability 1154
 67.1 Optimum clique and colouring in perfect graphs algorithmically 1154
 67.2 Weighted clique and colouring algorithmically 1157
 67.3 Strong polynomial-time solvability 1161
 67.4 Further results and notes .. 1161
 67.4a Further on $\vartheta(G)$.. 1161
 67.4b The Shannon capacity $\Theta(G)$ 1169
 67.4c Clique cover numbers of products of graphs 1174
 67.4d A sharper upper bound $\vartheta'(G)$ on $\alpha(G)$ 1175
 67.4e An operator strengthening convex bodies 1175
 67.4f Further notes ... 1177
 67.4g Historical notes on perfect graphs 1178

68 T-perfect graphs ... 1188
 68.1 T-perfect graphs ... 1188
 68.2 Strongly t-perfect graphs .. 1190
 68.3 Strong t-perfection of odd-K_4-free graphs 1190
 68.4 On characterizing t-perfection .. 1196
68.5 A combinatorial min-max relation 1198
68.6 Further results and notes 1202
 68.6a The w-stable set polyhedron 1202
 68.6b Bidirected graphs 1203
 68.6c Characterizing odd-K_4-free graphs by mixing stable
 sets and vertex covers 1205
 68.6d Orientations of discrepancy 1 1206
 68.6e Colourings and odd K_4-subdivisions 1208
 68.6f Homomorphisms 1209
 68.6g Further notes 1209

69 Claw-free graphs .. 1210
 69.1 Introduction ... 1210
 69.2 Maximum-size stable set in a claw-free graph 1210
 69.3 Maximum-weight stable set in a claw-free graph 1215
 69.4 Further results and notes 1218
 69.4a On the stable set polytope of a claw-free graph ... 1218
 69.4b Further notes 1219

Part VII: Multiflows and Disjoint Paths

70 Multiflows and disjoint paths 1223
 70.1 Directed multiflow problems 1223
 70.2 Undirected multiflow problems 1224
 70.3 Disjoint paths problems 1225
 70.4 Reductions ... 1225
 70.5 Complexity of the disjoint paths problem 1226
 70.6 Complexity of the fractional multiflow problem 1227
 70.7 The cut condition for directed graphs 1229
 70.8 The cut condition for undirected graphs 1230
 70.9 Relations between fractional, half-integer, and integer
 solutions .. 1232
 70.10 The Euler condition 1235
 70.11 Survey of cases where a good characterization has been
 found .. 1236
 70.12 Relation between the cut condition and fractional cut
 packing .. 1238
 70.12a Sufficiency of the cut condition sometimes implies
 an integer multiflow 1240
 70.12b The cut condition and integer multiflows in directed
 graphs ... 1243
 70.13 Further results and notes 1244
 70.13a Fixing the number of commodities in undirected
 graphs ... 1244
XXXII Table of Contents

70.13b Fixing the number of commodities in directed graphs 1245
70.13c Disjoint paths in acyclic digraphs ... 1246
70.13d A column generation technique for multiflows 1247
70.13e Approximate max-flow min-cut theorems for multiflows 1249
70.13f Further notes ... 1250
70.13g Historical notes on multicommodity flows 1251

71 Two commodities ... 1253
71.1 The Rothschild-Whinston theorem and Hu’s 2-commodity flow theorem 1253
71.1a Nash-Williams’ proof of the Rothschild-Whinston theorem 1256
71.2 Consequences ... 1257
71.3 2-commodity cut packing ... 1259
71.4 Further results and notes .. 1263
71.4a Two disjoint paths in undirected graphs .. 1263
71.4b A directed 2-commodity flow theorem ... 1264
71.4c Kleitman, Martin-Löf, Rothschild, and Whinston’s theorem 1265
71.4d Further notes ... 1267

72 Three or more commodities .. 1268
72.1 Demand graphs for which the cut condition is sufficient 1268
72.2 Three commodities .. 1273
72.2a The $K_{2,3}$-metric condition .. 1275
72.2b Six terminals ... 1277
72.3 Cut packing ... 1278

73 T-paths .. 1282
73.1 Disjoint T-paths .. 1282
73.1a Disjoint T-paths with the matroid matching algorithm 1287
73.1b Polynomial-time findability of edge-disjoint T-paths 1288
73.1c A feasibility characterization for integer K_3-flows 1289
73.2 Fractional packing of T-paths .. 1290
73.2a Direct proof of Corollary 73.2d .. 1291
73.3 Further results and notes .. 1292
73.3a Further notes on Mader’s theorem .. 1292
73.3b A generalization of fractionally packing T-paths 1293
73.3c Lockable collections .. 1294
73.3d Mader matroids ... 1296
73.3e Minimum-cost maximum-value multiflows 1298
74 Planar graphs ... 1299
 74.1 All nets spanned by one face: the Okamur-Seymour
 theorem .. 1299
 74.1a Complexity survey 1302
 74.1b Graphs on the projective plane 1302
 74.1c If only inner vertices satisfy the Euler condition .. 1305
 74.1d Distances and cut packing 1307
 74.1e Linear algebra and distance realizability 1308
 74.1f Directed planar graphs with all terminals on the
 outer boundary .. 1310
 74.2 $G + H$ planar ... 1310
 74.2a Distances and cut packing 1311
 74.2b Deleting the Euler condition if $G + H$ is planar 1312
 74.3 Okamura’s theorem .. 1314
 74.3a Distances and cut packing 1316
 74.3b The Klein bottle 1317
 74.3c Commodities spanned by three or more faces 1319
 74.4 Further results and notes 1321
 74.4a Another theorem of Okamura 1321
 74.4b Some other planar cases where the cut condition is
 sufficient .. 1323
 74.4c Vertex-disjoint paths in planar graphs 1323
 74.4d Grid graphs ... 1326
 74.4e Further notes .. 1328

75 Cuts, odd circuits, and multflows 1329
 75.1 Weakly and strongly bipartite graphs 1329
 75.1a NP-completeness of maximum cut 1331
 75.1b Planar graphs ... 1331
 75.2 Signed graphs ... 1332
 75.3 Weakly, evenly, and strongly bipartite signed graphs 1333
 75.4 Characterizing strongly bipartite signed graphs 1334
 75.5 Characterizing weakly and evenly bipartite signed graphs . 1337
 75.6 Applications to multflows 1344
 75.7 The cut cone and the cut polytope 1345
 75.8 The maximum cut problem and semidefinite programming ... 1349
 75.9 Further results and notes 1351
 75.9a Cuts and stable sets 1351
 75.9b Further notes .. 1353
Homotopy and graphs on surfaces

76.1 Graphs, curves, and their intersections: terminology and notation

76.2 Making curves minimally crossing by Reidemeister moves

76.3 Decomposing the edges of an Eulerian graph on a surface

76.4 A corollary on lengths of closed curves

76.5 A homotopic circulation theorem

76.6 Homotopic paths in planar graphs with holes

76.7 Vertex-disjoint paths and circuits of prescribed homotopies

76.7a Vertex-disjoint circuits of prescribed homotopies

76.7b Vertex-disjoint homotopic paths in planar graphs with holes

76.7c Disjoint trees

Part VIII: Hypergraphs

77 Packing and blocking in hypergraphs: elementary notions

77.1 Elementary hypergraph terminology and notation

77.2 Deletion, restriction, and contraction

77.3 Duplication and parallelization

77.4 Clutters

77.5 Packing and blocking

77.6 The blocker

77.7 Fractional matchings and vertex covers

77.8 k-matchings and k-vertex covers

77.9 Further results and notes

77.9a Bottleneck extrema

77.9b The ratio of τ and τ^*

77.9c Further notes

78 Ideal hypergraphs

78.1 Ideal hypergraphs

78.2 Characterizations of ideal hypergraphs

78.3 Minimally nonideal hypergraphs

78.4 Properties of minimally nonideal hypergraphs: Lehman’s theorem

78.4a Application of Lehman’s theorem: Guenin’s theorem

78.4b Ideality is in co-NP

78.5 Further results and notes

78.5a Composition of clutters

78.5b Further notes
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>Mengerian hypergraphs</td>
<td>1399</td>
</tr>
<tr>
<td>79.1</td>
<td>Mengerian hypergraphs</td>
<td>1399</td>
</tr>
<tr>
<td>79.1a</td>
<td>Examples of Mengerian hypergraphs</td>
<td>1401</td>
</tr>
<tr>
<td>79.2</td>
<td>Minimally non-Mengerian hypergraphs</td>
<td>1402</td>
</tr>
<tr>
<td>79.3</td>
<td>Further results and notes</td>
<td>1403</td>
</tr>
<tr>
<td>79.3a</td>
<td>Packing hypergraphs</td>
<td>1403</td>
</tr>
<tr>
<td>79.3b</td>
<td>Restrictions instead of parallelizations</td>
<td>1404</td>
</tr>
<tr>
<td>79.3c</td>
<td>Equivalences for k-matchings and k-vertex covers</td>
<td>1404</td>
</tr>
<tr>
<td>79.3d</td>
<td>A general technique</td>
<td>1405</td>
</tr>
<tr>
<td>79.3e</td>
<td>Further notes</td>
<td>1406</td>
</tr>
<tr>
<td>80</td>
<td>Binary hypergraphs</td>
<td>1408</td>
</tr>
<tr>
<td>80.1</td>
<td>Binary hypergraphs</td>
<td>1408</td>
</tr>
<tr>
<td>80.2</td>
<td>Binary hypergraphs and binary matroids</td>
<td>1408</td>
</tr>
<tr>
<td>80.3</td>
<td>The blocker of a binary hypergraph</td>
<td>1409</td>
</tr>
<tr>
<td>80.3a</td>
<td>Further characterizations of binary clutters</td>
<td>1410</td>
</tr>
<tr>
<td>80.4</td>
<td>On characterizing binary ideal hypergraphs</td>
<td>1410</td>
</tr>
<tr>
<td>80.5</td>
<td>Seymour’s characterization of binary Mengerian hypergraphs</td>
<td>1411</td>
</tr>
<tr>
<td>80.5a</td>
<td>Applications of Seymour’s theorem</td>
<td>1415</td>
</tr>
<tr>
<td>80.6</td>
<td>Mengerian matroids</td>
<td>1417</td>
</tr>
<tr>
<td>80.6a</td>
<td>Oriented matroids</td>
<td>1417</td>
</tr>
<tr>
<td>80.7</td>
<td>Further results and notes</td>
<td>1418</td>
</tr>
<tr>
<td>80.7a</td>
<td>$\tau_2(H) = 2\tau(H)$ for binary hypergraphs H</td>
<td>1418</td>
</tr>
<tr>
<td>80.7b</td>
<td>Application: T-joins and T-cuts</td>
<td>1419</td>
</tr>
<tr>
<td>80.7c</td>
<td>Box-integrality of $k \cdot P_H$</td>
<td>1420</td>
</tr>
<tr>
<td>81</td>
<td>Matroids and multiflows</td>
<td>1421</td>
</tr>
<tr>
<td>81.1</td>
<td>Multiflows in matroids</td>
<td>1421</td>
</tr>
<tr>
<td>81.2</td>
<td>Integer k-flowing</td>
<td>1422</td>
</tr>
<tr>
<td>81.3</td>
<td>1-flowing and 1-cycling</td>
<td>1423</td>
</tr>
<tr>
<td>81.4</td>
<td>2-flowing and 2-cycling</td>
<td>1423</td>
</tr>
<tr>
<td>81.5</td>
<td>3-flowing and 3-cycling</td>
<td>1424</td>
</tr>
<tr>
<td>81.6</td>
<td>4-flowing, 4-cycling, ∞-flowing, and ∞-cycling</td>
<td>1425</td>
</tr>
<tr>
<td>81.7</td>
<td>The circuit cone and cycle polytope of a matroid</td>
<td>1426</td>
</tr>
<tr>
<td>81.8</td>
<td>The circuit space and circuit lattice of a matroid</td>
<td>1427</td>
</tr>
<tr>
<td>81.9</td>
<td>Nonnegative integer sums of circuits</td>
<td>1427</td>
</tr>
<tr>
<td>81.10</td>
<td>Nowhere-zero flows and circuit double covers in matroids</td>
<td>1428</td>
</tr>
<tr>
<td>82</td>
<td>Covering and antiblocking in hypergraphs</td>
<td>1430</td>
</tr>
<tr>
<td>82.1</td>
<td>Elementary concepts</td>
<td>1430</td>
</tr>
<tr>
<td>82.2</td>
<td>Fractional edge covers and stable sets</td>
<td>1431</td>
</tr>
<tr>
<td>82.3</td>
<td>k-edge covers and k-stable sets</td>
<td>1431</td>
</tr>
<tr>
<td>82.4</td>
<td>The antiblocker and conformality</td>
<td>1432</td>
</tr>
<tr>
<td>82.4a</td>
<td>Gilmore’s characterization of conformality</td>
<td>1433</td>
</tr>
</tbody>
</table>
XXXVI Table of Contents

82.5 Perfect hypergraphs 1433
82.6 Further notes 1436
 82.6a Some equivalences for the \(k \)-parameters 1436
 82.6b Further notes 1439

83 Balanced and unimodular hypergraphs 1441
 83.1 Balanced hypergraphs 1441
 83.2 Characterizations of balanced hypergraphs 1442
 83.2a Totally balanced matrices 1446
 83.2b Examples of balanced hypergraphs 1449
 83.2c Balanced 0, \pm 1 matrices 1449
 83.3 Unimodular hypergraphs 1450
 83.3a Further results and notes 1452

Survey of Problems, Questions, and Conjectures 1453

References .. 1463

Name index ... 1767

Subject index .. 1809

Greek graph and hypergraph functions 1884