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Abstrat. We survey some reent results on �nding and ounting per-fet mathings in regular bipartite graphs, with appliations to bipar-tite edge-olouring and the dimer onstant. Main results are improvedomplexity bounds for �nding a perfet mathing in a regular bipartitegraph and for edge-olouring bipartite graphs, the solution of a problemof Erd}os and R�enyi onerning lower bounds for the number of perfetmathings, and an improved lower bound for the 3-dimensional dimeronstant.
1 Finding a perfet mathing in a regular bipartite graphThe fastest known algorithms for �nding a perfet mathing in a general bipartitegraph have running time of order about O(pnm) (Hoproft and Karp [12℄, Federand Motwani [8℄) or O(n2:376) (Ibarra and Moran [13℄). For regular bipartitegraphs, however, faster algorithms are known: Cole and Hoproft [4℄ gave anO(m logn) algorithm, while Cole [3℄ gave an O(22O(k)n) algorithm, where k isthe degree of the verties. So the latter algorithm is linear-time for any �xed k.We now desribe an easy O(k2n) (= O(km)) algorithm ([17℄). Here is the ideafor k = 3.Let G be a 3-regular bipartite graph. Find a iruit C in G, by �nding apath Q = v0; e1; v1; : : :, till we arrive at a vertex vk where we have been before(that is, vk = vi for some i < k). Next delete from G every seond edge of C.The remaining edges of C form the middle edges of paths of length 3 in theremaining graph G0. Replae eah suh path P by an edge eP onneting theends of P . The resulting graph G00 is 3-regular and bipartite. Find reursively aperfet mathing M in G00. Replae any edge eP that ours in M by the twoend edges of P . For eah of the other paths P , add its middle edge to M . Thisgives a perfet mathing in G0, hene in G, as required.To obtain a linear-time algorithm, one should use in the reursion the tailv0; e1; v1; : : : ; vi of the path Q to �nd the next iruit in G00. Then the time spenton running through the tail when �nding the suessive iruits will not be lost,and any reursive step takes amortized time jV Cj. Sine in any reursive step,the size of the graph redues also by jV Cj, the algorithm is linear-time.This gives the theorem of Cole [3℄:Theorem 1. A perfet mathing in a 3-regular bipartite graph an be found inlinear time.



We next desribe the extension to k-regular bipartite graphs. This uses aweighting of the edges.Let G = (V;E) be a k-regular bipartite graph. Initially, set w(e) := 1 foreah edge e. Next, iteratively, �nd a iruit C in G, split the edge set EC of Cinto two mathings M and N , in suh a way thatXe2M w(e) � Xe2N w(e); (1)
reset w(e) := w(e) + 1 if e 2M and w(e) := w(e)� 1 if e 2 N , delete the edgese with w(e) = 0, and iterate.Again we �nd C by following a path, and we keep its tail (if nontrivial) forthe next iteration. Note that the resetting maintains the propertyXe3v w(e) = k for eah vertex v: (2)
So as long as there exist edges e with w(e) < k, we an �nd a iruit. Hene, theiterations stop if w(e) = k for eah edge e. In that ase, the edges form a perfetmathing, and we are done.The key to estimating the running time is onsideringXe2Ew(e)2: (3)
This sum is bounded by 12k2jV j. Moreover, in any iteration, this sum inreasesby Xe2M((w(e) + 1)2 � w(e)2) +Xe2N((w(e)� 1)2 � w(e)2)= Xe2M(2w(e) + 1) +Xe2N(�2w(e) + 1) � jM j+ jN j = jECj (4)
(by (1)). Sine the amortized time of any iteration is proportional to jECj, thisgives an O(k2n) = O(km) running time bound ([17℄):Theorem 2. A perfet mathing in a k-regular bipartite graph an be found inO(km) time.
2 Edge-olouringThe latter result implies an O(km) algorithm for �nding an optimum edge-olouring of a bipartite graph G, where k denotes the maximum degree. (Anoptimum edge-olouring olours the edges with k olours suh that eah olourforms a mathing.)First observe that one trivially obtains an O(k2m) algorithm. Indeed, we anassume that the bipartite graph G is k-regular (as we an extend G to a k-regular



bipartite graph, in linear time). Then iteratively �nd a perfet mathing in Gand delete it from G. The suessive perfet mathings form the olours. Thisan be done by applying k times the O(km) algorithm, yielding O(k2m).However, with a method of Gabow [10℄, one may speed up this. If k is odd,�nd a perfet mathing in G and delete it from G. If k is even, �nd an Eulerianorientation of G (that is, an orientation suh that the indegree in eah vertexis equal to its outdegree). This an be done in linear time. Next split the edgeset E of G into the set E1 of edges oriented from one olour lass of G to theother, and the set E2 of edges oriented in the opposite diretion. Then (V;E1)and (V;E2) are 12k-regular bipartite graphs, in whih we an �nd optimum edge-olourings reursively. Combining them gives an optimum edge-olouring of G.The running time isO(km+ 2( 12k 12m) + 4( 14k 14m) + � � �) = O(km): (5)Hene:Theorem 3. An optimum edge-olouring of a bipartite graph an be found inO(km) time, where k is the maximum degree.
3 Speed-up of Cole, Ost, and ShirraThe above O(km) algorithm for perfet mathing in k-regular bipartite graphsraises the question if there is a linear-time algorithm, independent of k. This wasresolved positively by Cole, Ost, and Shirra [5℄, by a re�nement of the methodabove, utilizing the data-struture of `self-adjusting binary trees'. We outlinetheir method.A �rst improvement is not to replae w(e) by w(e) � 1 for the edges in C,but by w(e)� �, where � is the minimum weight of the edges in N . So at leastone edge in N gets weight 0.A seond improvement is to store the paths (`hains') left in the iruit C(after removing the edges of weight 0), so that these hains an be used to speedup later iruit searhes. This requires that if in a later iruit searh we hitany suh hain, then relatively fast we should be able to identify the ends of thehain. (If we have to follow the hain vertex by vertex till its end, no gain inrunning time is obtained.) This an be done by supplying these hains with thedata struture of self-adjusting binary trees (f. Tarjan [19℄). To get the requiredrunning time, it turns out that these hains should have length at most k2 | inthe ase that they are longer, split them into hains of length about k2.A third improvement is a preproessing that redues the number of edges ofthe graph from 12kn to at most n log2 k. This is obtained as follows. Start withsetting w(e) := 1 for eah edge e. Next, suessively, for i = 0; 1; : : : ; blog2 k, dothe following. Consider the set Ei of edges of weight 2i. Iteratively (as above)�nd a iruit C in Ei, split EC arbitrarily into mathings M and N , and resetw(e) := w(e) + 2i = 2i+1 if e 2 M and w(e) := w(e) � 2i = 0 if e 2 N . (So ineah iteration, the set Ei hanges.) In linear time we arrive at the situation that



Ei ontains no iruits, implying jEij � n�1. Then we go over to the ase i+1.So we end up with at most (about) n log2 k edges, together with a weighting wsatisfying (2).For eah i, the preproessing takes time linear in the size of the initial Ei,whih is at most 2�im. Hene the preproessing takes O(m) time in total. Itturns out that, using the �rst two improvements, the rest of the algorithm takesO(n log3 k) only, whih is faster than O(m).This gives the theorem of Cole, Ost, and Shirra [5℄:Theorem 4. A perfet mathing in a regular bipartite graph an be found inlinear time.With the method desribed in Setion 2, it has as onsequene:Corollary 1. An optimum edge-olouring of a bipartite graph an be found inO(m log k) time, where k is the maximum degree.
4 From �nding to ounting perfet mathingsWe now go over to the problem of ounting perfet mathings, or rather giving alower bound for their number. We �rst relate the algorithm desribed in Setion1, for �nding a perfet mathing in a 3-regular bipartite graph, to a lower boundof Voorhoeve [21℄ on the number of suh perfet mathings.To this end, we modify the algorithm slightly. We may note that when fol-lowing the path Q in �nding the iruit, we an start immediately from thebeginning with removing edges. We don't have to wait till we have a iruit.This an be made more preise as follows.Call a bipartite graph almost 3-regular if all verties have degree 3, exept fortwo verties of degree 2 (automatially belonging to di�erent olour lasses). Soan almost 3-regular bipartite graph arises by deleting one edge from a 3-regularbipartite graph. Hene a linear-time algorithm for �nding a perfet mathingin an almost 3-regular bipartite graph yields the same for 3-regular bipartitegraphs. We desribe suh an algorithm.Let G be an almost 3-regular bipartite graph, and let u be any of the twoverties of degree 2. To �nd a perfet mathing, we an assume that u is notinident with the other vertex of degree 2, and that it has two distint neighbours,x and y say. (Otherwise, there is an easy redution.)Let u; s; t be the neighbours of x. Delete edge xs. Then edge ux beomes themiddle edge of a path P = (y; u; x; t). Replae it by a new edge eP onnetingy and t. Find reursively a perfet mathing M in the new graph G0. If eP is inM , replae it by yu and xt. If eP is not in M , add ux to M . We end up with aperfet mathing in G.As eah iteration takes onstant time, and as it redues the number of vertiesby 2, this gives a linear-time algorithm. This might be easier to implement thanthe algorithm desribed earlier, sine only loal operations are performed.



This method is in fat inspired by the method of Voorhoeve [21℄ to provethat any 3-regular bipartite graph has at least( 43 )n (6)perfet mathings, where, for onveniene, n denotes half of the number of ver-ties. To prove this bound, it suÆes to show that eah almost 3-regular bipartitegraph has at least ( 43 )n perfet mathings. Again, hoose a vertex u of degree 2,and we may assume that it has two distint neighbours of degree 3. (Otherwise,there is an easy indution.) Let e1; : : : ; e4 be the edges inident with a neighbourof u but not with u. For i = 1; : : : ; 4, let Gi be the graph obtained from G bydeleting edge ei. Denote the number of perfet mathings in any graph H by�(H). Then, by indution, �(Gi) � ( 43 )n�1 (7)for i = 1; : : : ; 4, sine replaing the path of length 3 through u by a new edge,gives an almost 3-regular bipartite graph Hi with 2(n � 1) verties and with�(Hi) = �(Gi). Moreover,�(G1) + � � �+ �(G4) = 3�(G); (8)sine eah perfet mathingM in G is maintained in preisely three of the Gi (asM ontains preisely one of e1; : : : ; e4). Combining (7) and (8) gives �(G) � ( 43 )n,as required.Inidentally, this may look like an exat indutive alulation of �(G), butstrit inequality is obtained in the redution if u has no two distint neighboursof degree 3.So we have proved the theorem of Voorhoeve [21℄:Theorem 5. Any 3-regular bipartite graph on 2n verties has at least ( 43 )n per-fet mathings.With this, Voorhoeve answered a question posed by Erd}os and R�enyi [6℄whether there exists an exponential lower bound on the number of perfet math-ings in 3-regular bipartite graphs. (The best bound proved before is only linearin n.)Erd}os and R�enyi formulated their question in terms of permanents, whihrelates to the Van der Waerden onjeture (whih was not yet proved whenVoorhoeve gave his bound). The permanent of an n� n matrix A = (ai;j) isperA :=X� nYi=1 ai;�(i); (9)
where the sum ranges over all permutations � of f1; : : : ; ng. So if A is nonnegativeand integer, and we make the bipartite graph G with olour lasses fu1; : : : ; ungand fv1; : : : ; vng and with ai;j edges onneting ui and vj (for i; j = 1; : : : ; n),then perA is equal to the number of perfet mathings in G.



Call a matrix k-regular if it is nonnegative and integer and if eah row sumand eah olumn sum is equal to k. Then Erd}os and R�enyi asked for an expo-nential lower bound for the permanents of 3-regular matries.The Van der Waerden onjeture (van der Waerden [22℄) asserts that thepermanents of any n� n doubly stohasti matrix is at leastn!nn : (10)(A matrix is doubly stohasti if it is nonnegative and eah row sum and eaholumn sum is equal to 1.) The value (10) is attained if all entries of the matrixare equal to 1n . Van der Waerden's onjeture remained open for more thanhalf a entury, despite onsiderable researh e�orts, and was �nally proved byFalikman [7℄.For eah k-regular matrix A, the matrix 1kA is doubly stohasti and satis�esper 1kA = k�nperA. So Van der Waerden's onjeture implies that the permanentof any k-regular matrix is at leastknn!nn � (ke )n: (11)(This onsequene in fat an be seen to be equivalent to Van der Waerden'sonjeture.) Hene also Falikman's theorem implies an exponential lower boundon the number of perfet mathings in 3-regular bipartite graphs. The lowerbound (ke )n was proved by Bang [1℄ and Friedland [9℄, thus also providing asolution of Erd}os and R�enyi's question.It an be proved that the ground number 43 in Voorhoeve's bound is bestpossible ([18℄). To this end, let �3 be the largest real suh that eah 3-regularbipartite graph on 2n verties has at least �n3 perfet mathings. So �3 � 43 .To prove the reverse inequality, �x n, and onsider the olletion G of 3-regular bipartite graphs with olour lasses fu1; : : : ; ung and fv1; : : : ; vng andwith (labeled) edges e1; : : : ; e3n. ThenjGj = � (3n)!3!n �2 : (12)Indeed, it is equal to the square of the number of ordered partitions of f1; : : : ; 3nginto n lasses of size 3.We an also preisely ount for how many graphs G in G, a given subset Mof f1; : : : ; 3ng of size n forms a perfet mathing in G:�n! (2n)!2n �2 : (13)Sine M an be hosen in �3nn � ways, this implies that the number of pairs G;Mwith G 2 G and M is a perfet mathing in G is equal to�3nn ��n! (2n)!2n �2 : (14)



By (12) and by de�nition of �3, (14) has as lower bound:� (3n)!3!n �2 �n3 : (15)Therefore, �3 �  �3nn ��n! (2n)!2n �2� 3!n(3n)!�2!1=n n!1�! 43 : (16)(The latter limit uses Stirling's formula.) So �3 = 43 .
5 General kErd}os and R�enyi also asked for the value, for any k, of the largest real �k suhthat eah k-regular bipartite graph G on 2n verties has at least �nk perfetmathings. So by Falikman's theorem (in fat, already by the results of Bangand Friedland), �k � ke . On the other hand, the same method as just desribedgives ([18℄) �k � (k � 1)k�1kk�2 : (17)In [18℄ it was also onjetured that equality holds:�k = (k � 1)k�1kk�2 : (18)This in fat was be proved in [16℄. Hene:Theorem 6. Eah k-regular bipartite graph with 2n verties has at least� (k � 1)k�1kk�2 �n (19)perfet mathings.In ontrast with the simpliity of Voorhoeve's method for the ase k = 3, theproof for general k is highly ompliated. It is based on a tehnique of assigningweights to the edges of the graph similar to the algorithm for �nding a perfetmathing in a k-regular bipartite graph desribed in Setion 1.Let us briey relate this bound to Falikman's bound. Both bounds are asymp-totially best possible, in di�erent asymptoti diretions. Let �(k; n) denote theminimum permanent of k-regular n�n matries. (Equivalently, of the minimumnumber of perfet mathings, taken over all k-regular bipartite graphs with 2nverties.) So �k = infn2N �(k; n)1=n: (20)



Then in one asymptoti diretion one has by (18):infn2N �(k; n)1=nk = 1k�k = �k � 1k �k�1 : (21)In another diretion, by Falikman's theorem:infk2N �(k; n)1=nk = n!1=nn : (22)Note that both in (21) and in (22), the right-hand term onverges to 1=e, if k orn tends to in�nity.6 Appliation to the 3D dimer onstantWe �nally apply the lower bound desribed in Theorem 6 to obtain a betterlower bound for the 3-dimensional dimer problem. This is one of the lassialunsolved problems in solid-state hemistry. For integers d; n, onsider the `blok'Hd;n, whih is the graph with vertex set f1; : : : ; ngd, two verties being adjaentif and only if their Eulidean distane is 1. In this ontext, an edge is alleda dimer, and a perfet mathing a dimer tiling. Let td;n denote the number ofdimer tilings of Hd;n. So td;n > 0 if and only if n is even.Hammersley [11℄ showed that�d := limn!1 1(2n)d log td;2n (23)exists. In fat limn!1 1(2n)d log td;2n = supn 1(2n)d log td;2n: (24)Otherwise, there exists a k suh thatlim infn!1 1(2n)d log td;2n < 1(2k)d log td;2k: (25)However, td;2n � (td;2k)bnk d ; (26)sine Hd;2n ontains bnk d disjoint opies of Hd;2k suh that the rest has a perfetmathing. This implies that the left-hand side in (25) is at leastlim infn!1 bnk d(2n)d log td;2k; (27)whih is equal to the right-hand side of (25) | a ontradition.So �d is de�ned. For d = 2, the value of �d was determined preisely byKasteleyn [14℄ and Temperley and Fisher [20℄:�2 = 1� 1Xi=0 (�1)i(2i+ 1)2 = 0:29156090 : : : : (28)



The proof uses the fat that H2;n is planar, and that the graph therefore has a`PfaÆan' orientation, making it possible to ount dimer tilings by alulating adeterminant.For dimensions larger than two, no suh orientation exists, and no exatformula for �d is known. Sine Hd;n is bipartite and `almost' 2d-regular, oneould try to apply the results obtained earlier. In fat one has:Theorem 7. �d � 12 log�2d:To see this, for eah i 2 f1; : : : ; dg and eah j 2 f1; 2ng, let Mi;j be a perfetmathing in the subgraph of Hd;2n spanned byfx 2 f1; : : : ; 2ngd j xi = jg: (29)(So this set represents a `fae' of Hd;2n.) Let H 0d;2n be the 2d-regular bipartitegraph obtained from Hd;2n by adding parallel edges for the edges in the Mi;j .Then H 0d;2n has more perfet mathing than Hd;2n has, but not too muh more:�(H 0d;2n) � 2d(2n)d�1�(Hd;2n): (30)This follows from the fats that we have added d(2n)d�1 parallel edges, and thatadding any suh edge at most doubles the number of perfet mathings.Sine �(H 0d;2n) � �(2n)d=22d (by de�nition of �2d), we have�(Hd;2n) � 2�d(2n)d�1�(2n)d=22d : (31)Therefore,�d � supn 1(2n)d log �2�d(2n)d�1�(2n)d=22d � = supn ( 12 log�2d � d log 22n )= 12 log �2d; (32)proving Theorem 7.Evaluation for d = 3 by using �6 = 55=64, gives the best known lower boundfor �3: �3 � 0:44007584 : : : : (33)The best known upper bound is due to Lundow [15℄: 0:457547 : : :. Computationalexperiments of Beihl and Sullivan [2℄ suggest that �3 = 0:4466� 0:0006.
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