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Abstract. We give a proof of Guenin’s theorem characterizing weakly bipartite graphs by not
having an odd-K5 minor. The proof curtails the technical and case-checking parts of Guenin’s
original proof.

1. Introduction

A signed graph is a pair (G,Σ), where G = (V,E) is an undirected graph and Σ ⊆ E.
Call a set of edges, or path, or circuit odd (even, respectively) if it contains an odd (even,
respectively) number of edges in Σ. An odd circuit cover is a set of edges intersecting all
odd circuits.

Following Grötschel and Pulleyblank [1], a signed graph (G,Σ) is called weakly bipartite

if each vertex of the polyhedron (in R
E) determined by:

(i) x(e) ≥ 0 for each edge e,
(ii)

∑
e∈C x(e) ≥ 1 for each odd circuit C.

(1)

is integer, that is, the incidence vector of an odd circuit cover. Weakly bipartite graphs are
of importance since a maximum-capacity cut in such graphs can be found in polynomial
time (as one can optimize over (1) in polynomial-time, with the ellipsoid method).

For any U ⊆ V , the signed graphs (G,Σ) and (G,Σ4δ(U)) have the same collection
of odd circuits. (4 denotes symmetric difference; δ(U) is the edge cut determined by U .)
Hence being weakly bipartite is invariant under such an operation. We call two such signed
graphs equivalent.

It is not difficult to see that for each inclusionwise minimal odd circuit cover B, the set
B4Σ is a cut. Hence |C ∩ B| is odd for any odd circuit C and any inclusionwise minimal
odd circuit cover B.

Guenin [2,3] gave a characterization of weakly bipartite graphs in terms of forbidden
minors, thus proving a special case of a conjecture of Seymour [6]. To describe the charac-
terization, let (G = (V,E),Σ) be a signed graph, and let e ∈ E. Deleting e means deleting
e from E and Σ. Contracting e means first, if e ∈ Σ, resetting Σ := Σ4δ(v) (where v is
some end of e), and next contracting e in G. This operation is dependent on the choice of
v, but the result is unique up to equivalence. A signed graph (G′,Σ′) is called a minor of
a signed graph (G,Σ) if (G′,Σ′) arises from (G,Σ) by a series of deletions of vertices and
edges and contractions of edges. Being weakly bipartite is maintained under deletion and
contraction, and hence under taking minors.

The signed graph K̃5 := (K5, EK5) is not weakly bipartite, since x(e) := 1

3
(e ∈ EK5)

satisfies (1) but is not a convex combination of odd circuit covers (as each odd circuit cover
has size at least 4 > 10

3
). So any signed graph having K̃5 as a minor is not weakly bipartite.

Guenin [2,3] proved that also the converse holds:
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Theorem. A signed graph is weakly bipartite if and only if it has no K̃5 minor.

We give a proof of Guenin’s theorem shorter than that of Guenin. In fact, our proof follows
the framework of his proof, but saves considerably on the technical parts of the proof, by
applying a lemma proved in the following section.

2. A lemma

An odd-K4 is an undirected graph obtained from K4 by replacing edges by paths such
that each triangle of K4 becomes a circuit with an odd number of edges.

Lemma. Let G = (V,E) be a graph, let 0 be a vertex of G, and let 1, 2, and 3 be three

of its neighbours. Let S1, S2, and S3 be pairwise disjoint stable sets in G, with i ∈ Si for

i = 1, 2, 3. Suppose that for all distinct i, j, the graph induced by Si ∪ Sj contains a path

connecting i and j. Then G has an odd-K4 subgraph containing the edges 01, 02, and 03.

Proof. Consider a counterexample with |V |+ |E| minimal. So V = S1 ∪ S2 ∪ S3 ∪ {0} and
E consists of the edges 01, 02, and 03, and of the edges contained in the paths as described.
Hence for distinct i, j, there is a unique path Pi,j from i to j contained in Si ∪ Sj . Also:

for distinct i, j, Si ∪ Sj = V Pi,j .(2)

For if v ∈ (Si ∪ Sj) \ V Pi,j , we can contract the (two) edges incident with v to obtain a
smaller counterexample, a contradiction.

(2) implies |S1| = |S2| = |S3|. If |S1| = 1, we have an odd-K4 as required, so we can
assume that each |Si| ≥ 2. So each path Pi,j has length at least 3. Let 2′ be the second
vertex along P1,2, 3′ the second vertex along P2,3, and 1′ the second vertex along P3,1.
Contract the edges incident with 0. The new vertex 0′ is adjacent to 1′, 2′, and 3′. For
i = 1, 2, 3, let S′

i := Si \ {i}. So S′

i contains i′, and is a stable set in the contracted graph
G′. Moreover,

for distinct i, j, S′

i ∪ S′

j contains an i′ − j′ path.(3)

To prove this, we can assume i = 1, j = 2. By (2), 1′ is on P1,2. Since also 2′ is on P1,2,
this implies that S1 ∪ S2 contains an 1′ − 2′ path avoiding 1 and 2. Hence we have (3).

As G′ is smaller than G, G′ has an odd-K4 subgraph containing 0′1′, 0′2′, and 0′3′. By
decontracting, this gives an odd-K4 subgraph in G as required.

3. Lehman’s theorem

Let (G,Σ) be a minimally non-weakly bipartite signed graph (minimal under taking
minors). We show that (G,Σ) contains a K̃5 minor, which is Guenin’s theorem. As in [2],
the basis of the proof is a powerful result of Lehman [4] (cf. Padberg [5], Seymour [7]).

Let n := |E|, let r be the minimum size of an odd circuit, and let s be the minimum size
of an odd circuit cover. Let M (N , respectively) be the matrix whose rows are the incidence
vectors of the minimum-size odd circuits (minimum-size odd circuit covers, respectively).
Now Lehman proved that both M and N have precisely n rows, that rs > n, and that the
rows of M can be reordered so that

MNT = J + (rs − n)I = NT M.(4)
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This implies that we can index the minimum-size odd circuits as C1, . . . , Cn and the
minimum-size odd circuit covers as B1, . . . , Bn in such a way that for all i, j = 1, . . . , n:

|Ci ∩ Bj | = 1 if i 6= j, and |Ci ∩ Bj | = q if i = j,(5)

where q := rs − n + 1. Since q = |C1 ∩ B1| is odd and ≥ 2 (as rs > n), we have q ≥ 3.
The fact that NT M = J + (rs − n)I is equivalent to:

(i) for each e ∈ E there are precisely q indices i with e ∈ Ci ∩ Bi,
(ii) for all distinct e, f ∈ E there is precisely one index i with e ∈ Bi and f ∈ Ci.

(6)

An important observation (of Guenin [2]) is that for all distinct i, j = 1, . . . , n:

the only odd circuits contained in Ci ∪ Cj are Ci and Cj ; the only odd circuit
covers contained in Bi ∪ Bj are Bi and Bj .

(7)

For let C be an odd circuit contained in Ci ∪Cj . Then Ci4Cj4C contains an odd circuit,
C ′ say. This implies that C ∪ C ′ ⊆ Ci ∪ Cj and C ∩ C ′ ⊆ Ci ∩ Cj (for if e ∈ C ∩ C ′ then
e 6∈ Ci4Cj). Hence |C|+ |C ′| ≤ |Ci|+ |Cj|. So also C and C ′ are minimum-size odd circuits
and C ∪ C ′ = Ci ∪ Cj . As |Ci ∩ Bi| ≥ 3 we have |C ∩ Bi| ≥ 2 or |C ′ ∩ Bi| ≥ 2. Therefore
C or C ′ is equal to Ci, and the other equal to Cj. The proof for odd circuit covers is the
same.

4. Construction of a K̃5 minor

Fix an edge e ∈ E, with ends v1 and v2, say. By (6)(i) we can assume that e is contained
in Ci ∩ Bi for i = 1, . . . , q. Then, by (6):

any two sets among C1 \ {e}, . . . , Cq \ {e}, B1 \ {e}, . . . , Bq \ {e} are disjoint,
except that |(Ci \ {e}) ∩ (Bi \ {e})| = q − 1 for i = 1, . . . , q.

(8)

To see this, choose distinct i, j = 1, . . . , q. Then Ci ∩Bj = {e}, as |Ci ∩Bj | = 1. Moreover,
Ci ∩ Cj = {e}, for suppose f ∈ Ci ∩ Cj with e 6= f . Then f ∈ Ci ∩ Cj and e ∈ Bi ∩ Bj ,
contradicting (6)(ii). One similarly shows that Bi ∩ Bj = {e}. This proves (8).

As in Guenin [2] one has:

for distinct i, j = 1, . . . , q, Ci and Cj have no vertex 6= v1, v2 in common.(9)

Otherwise (Ci∪Cj)\{e} contains a path P from v1 to v2 different from Ci\{e} and Cj \{e}.
By (7), (Ci ∪Cj) \ {e} contains no odd circuit. Hence P and C \ {e} have the same parity,
and so P ∪ {e} is an odd circuit in Ci ∪ Cj , contradicting (7). This proves (9).

Since Bi4Σ is a cut for each i = 1, 2, 3, there exist U1, U2, U3 ⊆ V such that

δ(Ui) = Bj4Bk = (Bj ∪ Bk) \ {e}(10)

for all distinct i, j, k ∈ {1, 2, 3}. As e 6∈ Bj4Bk, we can assume v1, v2 6∈ Ui. Also

Ui induces a connected subgraph of G.(11)

If not, there is a K ⊆ Ui such that δ(K) is a nonempty proper subset of δ(Ui). Then
Bj4δ(K) is an odd circuit cover contained in Bj∪Bk, distinct from Bj and Bk, contradicting
(7).
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By (10), δ(U14U24U3) = δ(U1)4δ(U2)4δ(U3) = ∅, and hence U14U24U3 = ∅ (as
G is connected and v1, v2 6∈ U14U24U3). So there exist pairwise disjoint sets V1, V2, V3 of
vertices such that Ui = Vj∪Vk for all distinct i, j, k ∈ {1, 2, 3}. Define V0 := V \(V1∪V2∪V3).

(8) and (10) imply that δ(Uj)∩ δ(Uk) = Bi \{e} for distinct i, j, k. Hence Bi \{e} is the
set of edges connecting either Vi and V0, or Vj and Vk. So any edge not in (B1∪B2∪B3)\{e}
is spanned by one of the sets V0, V1, V2, V3.

Let {i, j, k} = {1, 2, 3}. Since Ci does not contain any edge in (Bj ∪ Bk) \ {e} = δ(Ui),
the set V Ci is disjoint from Ui = Vj ∪ Vk. As |Ci ∩Bi| ≥ 3 we know that V Ci intersects Vi.

We can reset Σ to an equivalent signing

Σ := B14B24B34δ(V0).(12)

So Σ consists of e and all edges connecting distinct sets among V1, V2, V3. For each i = 1, 2, 3
and k = 1, 2, let ei,k be the first edge along the path Ci \ {e} that belongs to Bi, when
starting from vertex vk. So both ei,1 and ei,2 connect V0 and Vi.

Let (H,Σ) be the minor of (G,Σ) obtained by deleting all edges except those in C1 ∪
C2 ∪ C3 and those spanned by V1 ∪ V2 ∪ V3, and contracting all remaining edges that are
not in Σ ∪ {ei,k|i = 1, 2, 3; k = 1, 2}.

H can be described as follows. H contains the edge e, connecting the vertices v1 and v2

to which v1 and v2 are contracted (we have v1 6= v2 by (9)). For each i = 1, 2, 3, the part of
the path Ci \ {e} that is inbetween ei,1 and ei,2 belongs to one contracted vertex of H, call
it i. This vertex i is adjacent to v1 and v2 by the edges ei,1 and ei,2. For each i = 1, 2, 3, Vi

has been contracted to i and a number of other vertices, together forming the stable set Si

(say) in H. Any further edge of H connects Si and Sj for some distinct i, j ∈ {1, 2, 3}.
By (11), the subgraph of H induced by Si∪Sj is connected (for all distinct i, j = 1, 2, 3).

So by the lemma, the graph H − v2 has an odd-K4 subgraph containing the edges v11, v12,
and v13. As v2 is adjacent to v1, 1, 2, and 3, it follows that (H,Σ) has a K̃5 minor.

References

[1] M. Grötschel, W.R. Pulleyblank, Weakly bipartite graphs and the max-cut problem, Opera-

tions Research Letters 1 (1981) 23–27.

[2] B. Guenin, A characterization of weakly bipartite graphs, in: Integer Programming and Combi-

natorial Optimization (Proceedings 6th IPCO Conference, Houston, Texas, 1998; R.E. Bixby,
et al., eds.) [Lecture Notes in Computer Science 1412], Springer, Berlin, 1998, pp. 9–22.

[3] B. Guenin, A characterization of weakly bipartite graphs, Journal of Combinatorial Theory,

Series B to appear.

[4] A. Lehman, The width-length inequality and degenerate projective planes, in: Polyhedral

Combinatorics (Proceedings DIMACS Workshop, Morristown, New Jersey, 1989; W. Cook,
P.D. Seymour, eds.), American Mathematical Society, Providence, Rhode Island, 1990, pp.
101–105.

[5] M. Padberg, Lehman’s forbidden minor characterization of ideal 0-1 matrices, Discrete Math-

ematics 111 (1993) 409–420.

[6] P.D. Seymour, The matroids with the max-flow min-cut property, Journal of Combinatorial

Theory, Series B 23 (1977) 189–222.

4



[7] P.D. Seymour, On Lehman’s width-length characterization, in: Polyhedral Combinatorics

(Proceedings DIMACS Workshop, Morristown, New Jersey, 1989; W. Cook, P.D. Seymour,
eds.), American Mathematical Society, Providence, Rhode Island, 1990, pp. 107–117.

5


