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1. Introduction

As a coherent mathematical discipline, combinatorial optimization is relatively young.
When studying the history of the field, one observes a number of independent lines of
research, separately considering problems like optimum assignment, shortest spanning tree,
transportation, and the traveling salesman problem. Only in the 1950’s, when the unifying
tool of linear and integer programming became available and the area of operations research
got intensive attention, these problems were put into one framework, and relations between
them were laid.

Indeed, linear programming forms the hinge in the history of combinatorial optimiza-
tion. Its initial conception by Kantorovich and Koopmans was motivated by combinatorial
applications, in particular in transportation and transshipment. After the formulation of
linear programming as generic problem, and the development in 1947 by Dantzig of the
simplex method as a tool, one has tried to attack about all combinatorial optimization
problems with linear programming techniques, quite often very successfully.

A cause of the diversity of roots of combinatorial optimization is that several of its
problems descend directly from practice, and instances of them were, and still are, attacked
daily. One can imagine that even in very primitive (even animal) societies, finding short
paths and searching (for instance, for food) is essential. A traveling salesman problem
crops up when you plan shopping or sightseeing, or when a doctor or mailman plans his
tour. Similarly, assigning jobs to men, transporting goods, and making connections, form
elementary problems not just considered by the mathematician.

It makes that these problems probably can be traced back far in history. In this survey
however we restrict ourselves to the mathematical study of these problems. At the other
end of the time scale, we do not pass 1960, to keep size in hand. As a consequence, later
important developments, like Edmonds’ work on matchings and matroids and Cook and
Karp’s theory of complexity (NP-completeness) fall out of the scope of this survey.

We focus on six problem areas, in this order: assignment, transportation, maximum
flow, shortest tree, shortest path, and the traveling salesman problem.

2. The assignment problem

In mathematical terms, the assignment problem is: given an n× n ‘cost’ matrix C = (ci,j),
find a permutation π of 1, . . . , n for which

1CWI and University of Amsterdam. Mailing address: CWI, Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands.
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(1)
n

∑

i=1

ci,π(i)

is as small as possible.

Monge 1784

The assignment problem is one of the first studied combinatorial optimization problems.
It was investigated by G. Monge [1784], albeit camouflaged as a continuous problem, and
often called a transportation problem.

Monge was motivated by transporting earth, which he considered as the discontinuous,
combinatorial problem of transporting molecules. There are two areas of equal acreage, one
filled with earth, the other empty. The question is to move the earth from the first area
to the second, in such a way that the total transportation distance is as small as possible.
The total transportation distance is the distance over which a molecule is moved, summed
over all molecules. Hence it is an instance of the assignment problem, obviously with an
enormous cost matrix. Monge described the problem as follows:

Lorsqu’on doit transporter des terres d’un lieu dans un autre, on a coutime de donner le nom de
Déblai au volume des terres que l’on doit transporter, & le nom de Remblai à l’espace qu’elles
doivent occuper après le transport.

Le prix du transport d’une molécule étant, toutes choses d’ailleurs égales, proportionnel à son
poids & à l’espace qu’on lui fait parcourir, & par conséquent le prix du transport total devant
être proportionnel à la somme des produits des molécules multipliées chacune par l’espace
parcouru, il s’ensuit que le déblai & le remblai étant donnés de figure & de position, il n’est
pas indifférent que telle molécule du déblai soit transportée dans tel ou tel autre endroit du
remblai, mais qu’il y a une certaine distribution à faire des molécules du premier dans le second,
d’après laquelle la somme de ces produits sera la moindre possible, & le prix du transport total
sera un minimum.2

Monge gave an interesting geometric method to solve this problem. Consider a line that
is tangent to both areas, and move the molecule m touched in the first area to the position
x touched in the second area, and repeat, till all earth has been transported. Monge’s
argument that this would be optimum is simple: if molecule m would be moved to another
position, then another molecule should be moved to position x, implying that the two routes
traversed by these molecules cross, and that therefore a shorter assignment exists:

Étant données sur un même plan deux aires égales ABCD, & abcd, terminées par des contours
quelconques, continus ou discontinus, trouver la route que doit suivre chaque molécule M

2When one must transport earth from one place to another, one usually gives the name of Déblai to the
volume of earth that one must transport, & the name of Remblai to the space that they should occupy after
the transport.

The price of the transport of one molecule being, if all the rest is equal, proportional to its weight & to the
distance that one makes it covering, & hence the price of the total transport having to be proportional to
the sum of the products of the molecules each multiplied by the distance covered, it follows that, the déblai
& the remblai being given by figure and position, it makes difference if a certain molecule of the déblai is
transported to one or to another place of the remblai, but that there is a certain distribution to make of the
molecules from the first to the second, after which the sum of these products will be as little as possible, &
the price of the total transport will be a minimum.
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de la premiere, & le point m où elle doit arriver dans la seconde, pour que tous les points
étant semblablement transportés, ils replissent exactement la seconde aire, & que la somme
des produits de chaque molécule multipliée par l’espace parcouru soit un minimum.

Si par un point M quelconque de la première aire, on mène une droite Bd, telle que le segment
BAD soit égal au segment bad, je dis que pour satisfaire à la question, il faut que toutes
les molécules du segment BAD, soient portées sur le segment bad, & que par conséquent les
molécules du segment BCD soient portées sur le segment égal bcd; car si un point K quelconque
du segment BAD, étoit porté sur un point k de bcd, il faudroit nécessairement qu’un point
égal L, pris quelque part dans BCD, fût transporté dans un certain point l de bad, ce qui
ne pourroit pas se faire sans que les routes Kk, Ll, ne se coupassent entre leurs extrémités,
& la somme des produits des molécules par les espaces parcourus ne seroit pas un minimum.
Pareillement, si par un point M ′ infiniment proche du point M , on mène la droite B′d′, telle
qu’on ait encore le segment B′A′D′, égal au segment b′a′d′, il faut pour que la question soit
satisfaite, que les molécules du segment B′A′D′ soient transportées sur b′a′d′. Donc toutes
les molécules de l’élément BB′D′D doivent être transportées sur l’élément égal bb′d′d. Ainsi
en divisant le déblai & le remblai en une infinité d’élémens par des droites qui coupent dans
l’un & dans l’autre des segmens égaux entr’eux, chaque élément du déblai doit être porté sur
l’élément correspondant du remblai.

Les droites Bd & B′d′ étant infiniment proches, il est indifférent dans quel ordre les molécules
de l’élément BB′D′D se distribuent sur l’élément bb′d′d; de quelque manière en effet que se fasse
cette distribution, la somme des produits des molécules par les espaces parcourus, est toujours
la même, mais si l’on remarque que dans la pratique il convient de débleyer premièrement les
parties qui se trouvent sur le passage des autres, & de n’occuper que les dernières les parties
du remblai qui sont dans le même cas; la molécule MM ′ ne devra se transporter que lorsque
toute la partie MM ′D′D qui la précêde, aura été transportée en mm′d′d; donc dans cette
hypothèse, si l’on fait mm′d′d = MM ′D′D, le point m sera celui sur lequel le point M sera
transporté.3

Although geometrically intuitive, the method is however not fully correct, as was noted by
Appell [1928]:

3Being given, in the same plane, two equal areas ABCD & abcd, bounded by arbitrary contours, contin-
uous or discontinuous, find the route that every molecule M of the first should follow & the point m where
it should arrive in the second, so that, all points being transported likewise, they fill precisely the second
area & so that the sum of the products of each molecule multiplied by the distance covered, is minimum.

If one draws a straight line Bd through an arbitrary point M of the first area, such that the segment
BAD is equal to the segment bad, I assert that, in order to satisfy the question, all molecules of the segment
BAD should be carried on the segment bad, & hence the molecules of the segment BCD should be carried
on the equal segment bcd; for, if an arbitrary point K of segment BAD, is carried to a point k of bcd, then
necessarily some point L somewhere in BCD is transported to a certain point l in bad, which cannot be
done without that the routes Kk, Ll cross each other between their end points, & the sum of the products
of the molecules by the distances covered would not be a minimum. Likewise, if one draws a straight line
B′d′ through a point M ′ infinitely close to point M , in such a way that one still has that segment B ′A′D′

is equal to segment b′a′d′, then in order to satisfy the question, the molecules of segment B′A′D′ should be
transported to b′a′d′. So all molecules of the element BB′D′D must be transported to the equal element
bb′d′d. Dividing the déblai & the remblai in this way into an infinity of elements by straight lines that cut
in the one & in the other segments that are equal to each other, every element of the déblai must be carried
to the corresponding element of the remblai.

The straight lines Bd & B′d′ being infinitely close, it does not matter in which order the molecules of
element BB′D′D are distributed on the element bb′d′d; indeed, in whatever manner this distribution is
being made, the sum of the products of the molecules by the distances covered is always the same; but if
one observes that in practice it is convenient first to dig off the parts that are in the way of others, & only
at last to cover similar parts of the remblai; the molecule MM ′ must be transported only when the whole
part MM ′D′D that precedes it will have been transported to mm′d′d; hence with this hypothesis, if one
has mm′d′d = MM ′D′D, point m will be the one to which point M will be transported.
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Il est bien facile de faire la figure de manière que les chemins suivis par les deux parcelles dont
parle Monge ne se croisent pas.4

(cf. Taton [1951]).

Bipartite matching: Frobenius 1912-1917, Kőnig 1915-1931

Finding a largest matching in a bipartite graph can be considered as a special case of the
assignment problem. The fundaments of matching theory in bipartite graphs were laid by
Frobenius (in terms of matrices and determinants) and Kőnig. We briefly review their work.

In his article Über Matrizen aus nicht negativen Elementen, Frobenius [1912] investigated
the decomposition of matrices, which led him to the following ‘curious determinant theorem’:

Die Elemente einer Determinante nten Grades seien n2 unabhängige Veränderliche. Man setze

einige derselben Null, doch so, daß die Determinante nicht identisch verschwindet. Dann bleibt

sie eine irreduzible Funktion, außer wenn für einen Wert m < n alle Elemente verschwinden,

die m Zeilen mit n − m Spalten gemeinsam haben.5

Frobenius gave a combinatorial and an algebraic proof.
In a reaction to this, Dénes Kőnig [1915] realized that Frobenius’ theorem can be equiv-

alently formulated in terms of bipartite graphs, by introducing a now quite standard con-
struction of associating a bipartite graph with a matrix (ai,j): for each row index i there is
a vertex vi and for each column index j there is a vertex uj , while vertices vi and uj are
adjacent if and only if ai,j 6= 0. With the help of this, Kőnig gave a proof of Frobenius’
result.

According to Gallai [1978], Kőnig was interested in graphs, particularly bipartite graphs,
because of his interest in set theory, especially cardinal numbers. In proving Schröder-
Bernstein type results on the equicardinality of sets, graph-theoretic arguments (in partic-
ular: matchings) can be illustrative. This led Kőnig to studying graphs and its applications
in other areas of mathematics.

On 7 April 1914, Kőnig had presented at the Congrès de Philosophie mathématique in
Paris (cf. Kőnig [1916,1923]) the theorem that each regular bipartite graph has a perfect
matching. As a corollary, Kőnig derived that the edge set of any regular bipartite graph
can be decomposed into perfect matchings. That is, each k-regular bipartite graph is
k-edge-colourable. Kőnig observed that these results follow from the theorem that the
edge-colouring number of a bipartite graph is equal to its maximum degree. He gave an
algorithmic proof of this.

In order to give an elementary proof of his result described above, Frobenius [1917]
proves the following ‘Hilfssatz’, which now is a fundamental theorem in graph theory:

II. Wenn in einer Determinante nten Grades alle Elemente verschwinden, welche p (≤ n)
Zeilen mit n − p + 1 Spalten gemeinsam haben, so verschwinden alle Glieder der entwickelten

Determinante.

4It is very easy to make the figure in such a way that the routes followed by the two particles of which
Monge speaks, do not cross each other.

5Let the elements of a determinant of degree n be n2 independent variables. One sets some of them equal

to zero, but such that the determinant does not vanish identically. Then it remains an irreducible function,

except when for some value m < n all elements vanish that have m rows in common with n − m columns.
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Wenn alle Glieder einer Determinante nten Grades verschwinden, so verschwinden alle El-

emente, welche p Zeilen mit n − p + 1 Spalten gemeinsam haben für p = 1 oder 2, · · · oder

n.6

That is, if A = (ai,j) is an n × n matrix, and for each permutation π of {1, . . . , n} one has
∏n

i=1 ai,j = 0, then for some p there exist p rows and n− p + 1 columns of A such that their
intersection is all-zero.

In other words, a bipartite graph G = (V,E) with colour classes V1 and V2 satisfying
|V1| = |V2| = n has a perfect matching, if and only if one cannot select p vertices in V1 and
n − p + 1 vertices in V2 such that no edge is connecting two of these vertices.

Frobenius gave a short combinatorial proof (albeit in terms of determinants), and he
stated that Kőnig’s results follow easily from it. Frobenius also offered his opinion on
Kőnig’s proof method of his 1912 theorem:

Die Theorie der Graphen, mittels deren Hr. Kőnig den obigen Satz abgeleitet hat, ist nach
meiner Ansicht ein wenig geeignetes Hilfsmittel für die Entwicklung der Determinantentheorie.
In diesem Falle führt sie zu einem ganz speziellen Satze von geringem Werte. Was von seinem
Inhalt Wert hat, ist in dem Satze II ausgesprochen.7

While Frobenius’ result characterizes which bipartite graphs have a perfect matching, a
more general theorem characterizing the maximum size of a matching in a bipartite graph
was found by Kőnig [1931]:

Páros körüljárású graphban az éleket kimeŕıtő szögpontok minimális száma megegyezik a
páronként közös végpontot nem tartalmazó élek maximális számával.8

In other words, the maximum size of a matching in a bipartite graph is equal to the minimum
number of vertices needed to cover all edges.

This result can be derived from that of Frobenius [1917], and also from the theorem of
Menger [1927] — but, as Kőnig detected, Menger’s proof contains an essential hole in the
induction basis — see Section 4. This induction basis is precisely the theorem proved by
Kőnig.

Egerváry 1931

After the presentation by Kőnig of his theorem at the Budapest Mathematical and Physical
Society on 26 March 1931, E. Egerváry [1931] found a weighted version of Kőnig’s theorem.
It characterizes the maximum weight of a matching in a bipartite graph, and thus applies
to the assignment problem:

6II. If in a determinant of the nth degree all elements vanish that p(≤ n) rows have in common with

n − p + 1 columns, then all members of the expanded determinant vanish.

If all members of a determinant of degree n vanish, then all elements vanish that p rows have in common

with n − p + 1 columns for p = 1 or 2, · · · or n.
7The theory of graphs, by which Mr Kőnig has derived the theorem above, is to my opinion of little

appropriate help for the development of determinant theory. In this case it leads to a very special theorem
of little value. What from its contents has value, is enunciated in Theorem II.

8In an even circuit graph, the minimal number of vertices that exhaust the edges agrees with the maximal
number of edges that pairwise do not contain any common end point.
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Ha az ‖aij‖ n-edrendű matrix elemei adott nem negat́ıv egész számok, úgy a

λi + µj ≥ aij , (i, j = 1, 2, ...n),
(λi, µj nem negat́ıv egész számok)

feltételek mellett

min .

n
∑

k=1

(λk + µk) = max .(a1ν1
+ a2ν2

+ · · · + anνn).

hol ν1, ν2, ...νn az 1, 2, ...n számok összes permutációit befutják.9

The proof method of Egerváry is essentially algorithmic. Assume that the ai,j are integer.
Let λ∗

i , µ∗
j attain the minimum. If there is a permutation ν of {1, . . . , n} such that λ∗

i +µ∗
νi

=
ai,νi

for all i, then this permutation attains the maximum, and we have the required equality.
If no such permutation exists, by Frobenius’ theorem there are subsets I, J of {1, . . . , n}
such that

(2) λ∗
i + µ∗

j > ai,j for all i ∈ I, j ∈ J

and such that |I| + |J | = n + 1. Resetting λ∗
i := λ∗

i − 1 if i ∈ I and µ∗
j := µ∗

j + 1 if
j 6∈ J , would give again feasible values for the λi and µj , however with their total sum
being decreased. This is a contradiction.

Egerváry’s theorem and proof method formed, in the 1950’s, the impulse for Kuhn
to develop a new, fast method for the assignment problem, which he therefore baptized
the Hungarian method. But first there were some other developments on the assignment
problem.

Easterfield 1946

The first algorithm for the assignment problem might have been published by Easterfield
[1946], who described his motivation as follows:

In the course of a piece of organisational research into the problems of demobilisation in the
R.A.F., it seemed that it might be possible to arrange the posting of men from disbanded units
into other units in such a way that they would not need to be posted again before they were
demobilised; and that a study of the numbers of men in the various release groups in each unit
might enable this process to be carried out with a minimum number of postings. Unfortunately
the unexpected ending of the Japanese war prevented the implications of this approach from
being worked out in time for effective use. The algorithm of this paper arose directly in the
course of the investigation.

9If the elements of the matrix ‖aij‖ of order n are given nonnegative integers, then under the assumption

λi + µj ≥ aij , (i, j = 1, 2, ...n),
(λi, µj nonnegative integers)

we have

min .

n
∑

k=1

(λk + µk) = max .(a1ν1
+ a2ν2

+ · · · + anνn).

where ν1, ν2, ...νn run over all possible permutations of the numbers 1, 2, ...n.
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Easterfield seems to have worked without knowledge of the existing literature. He formu-
lated and proved a theorem equivalent to Kőnig’s theorem and he described a primal-dual
type method for the assignment problem from which Egerváry’s result given above can be
derived. Easterfield’s algorithm has running time O(2nn2). This is better than scanning all
permutations, which takes time Ω(n!).

Robinson 1949

Cycle reduction is an important tool in combinatorial optimization. In a RAND Report
dated 5 December 1949, Robinson [1949] reports that an ‘unsuccessful attempt’ to solve
the traveling salesman problem, led her to the following cycle reduction method for the
optimum assignment problem.

Let matrix (ai,j) be given, and consider any permutation π. Define for all i, j a ‘length’
li,j by: li,j := aj,π(i) − ai,π(i) if j 6= π(i) and li,π(i) = ∞. If there exists a negative-length
directed circuit, there is a straightforward way to improve π. If there is no such circuit,
then π is an optimal permutation. This clearly is a finite method, and Robinson remarked:

I believe it would be feasible to apply it to as many as 50 points provided suitable calculating
equipment is available.

The simplex method

A breakthrough in solving the assignment problem came when Dantzig [1951a] showed
that the assignment problem can be formulated as a linear programming problem that
automatically has an integer optimum solution. The reason is a theorem of Birkhoff [1946]
stating that the convex hull of the permutation matrices is equal to the set of doubly
stochastic matrices — nonnegative matrices in which each row and column sum is equal
to 1. Therefore, minimizing a linear functional over the set of doubly stochastic matrices
(which is a linear programming problem) gives a permutation matrix, being the optimum
assignment. So the assignment problem can be solved with the simplex method.

Votaw [1952] reported that solving a 10 × 10 assignment problem with the simplex
method on the SEAC took 20 minutes. On the other hand, in his reminiscences, Kuhn
[1991] mentioned the following:

The story begins in the summer of 1953 when the National Bureau of Standards and other US
government agencies had gathered an outstanding group of combinatorialists and algebraists at
the Institute for Numerical Analysis (INA) located on the campus of the University of California
at Los Angeles. Since space was tight, I shared an office with Ted Motzkin, whose pioneering
work on linear inequalities and related systems predates linear programming by more than ten
years. A rather unique feature of the INA was the presence of the Standards Western Automatic
Computer (SWAC), the entire memory of which consisted of 256 Williamson cathode ray tubes.
The SWAC was faster but smaller than its sibling machine, the Standards Eastern Automatic
Computer (SEAC), which boasted a liquid mercury memory and which had been coded to
solve linear programs.

According to Kuhn:

the 10 by 10 assignment problem is a linear program with 100 nonnegative variables and 20
equation constraints (of which only 19 are needed). In 1953, there was no machine in the world
that had been programmed to solve a linear program this large!
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If ‘the world’ includes the Eastern Coast of the U.S.A., there seems to be some discrepancy
with the remarks of Votaw [1952] mentioned above.

The complexity issue

The assignment problem has helped in gaining the insight that a finite algorithm need not
be practical, and that there is a gap between exponential time and polynomial time.

Also in other disciplines it was recognized that while the assignment problem is a finite
problem, there is a complexity issue. In an address delivered on 9 September 1949 at a
meeting of the American Psychological Association at Denver, Colorado, Thorndike [1950]
studied the problem of the ‘classification’ of personnel (being job assignment):

The past decade, and particularly the war years, have witnessed a great concern about the
classification of personnel and a vast expenditure of effort presumably directed towards this
end.

He exhibited little trust in mathematicians:

There are, as has been indicated, a finite number of permutations in the assignment of men to
jobs. When the classification problem as formulated above was presented to a mathematician,
he pointed to this fact and said that from the point of view of the mathematician there was
no problem. Since the number of permutations was finite, one had only to try them all and
choose the best. He dismissed the problem at that point. This is rather cold comfort to the
psychologist, however, when one considers that only ten men and ten jobs mean over three and
a half million permutations. Trying out all the permutations may be a mathematical solution
to the problem, it is not a practical solution.

Thorndike presented three heuristics for the assignment problem, the Method of Divine
Intuition, the Method of Daily Quotas, and the Method of Predicted Yield.

(Other heuristic and geometric methods for the assignment problem were proposed by
Lord [1952], Votaw and Orden [1952], Törnqvist [1953], and Dwyer [1954] (the ‘method of
optimal regions’).)

Von Neumann considered the complexity of the assignment problem. In a talk in the
Princeton University Game Seminar on October 26, 1951, he showed that the assignment
problem can be reduced to finding an optimum column strategy in a certain zero-sum two-
person game, and that it can be found by a method given by Brown and von Neumann
[1950]. We give first the mathematical background.

A zero-sum two-person game is given by a matrix A, the ‘pay-off matrix’. The interpre-
tation as a game is that a ‘row player’ chooses a row index i and a ‘column player’ chooses
simultaneously a column index j. After that, the column player pays the row player Ai,j .
The game is played repeatedly, and the question is what is the best strategy.

Let A have order m×n. A row strategy is a vector x ∈ R
m
+ satisfying 1Tx = 1. Similarly,

a column strategy is a vector y ∈ R
n
+ satisfying 1Ty = 1. Then

(3) max
x

min
j

(xTA)j = min
y

max
i

(Ay)i,

where x ranges over row strategies, y over column strategies, i over row indices, and j over
column indices. Equality (3) follows from LP duality.
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It can be derived that the best strategy for the row player is to choose rows with
distribution an optimum x in (3). Similarly, the best strategy for the column player is to
choose columns with distribution an optimum y in (3). The average pay-off then is the
value of (3).

The method of Brown [1951] to determine the optimum strategies is that each player
chooses in turn the line that is best with respect to the distribution of the lines chosen
by the opponent so far. It was proved by Robinson [1951] that this converges to optimum
strategies. The method of Brown and von Neumann [1950] is a continuous version of this,
and amounts to solving a system of linear differential equations.

Now von Neumann noted that the following reduces the assignment problem to the
problem of finding an optimum column strategy. Let C = (ci,j) be an n × n cost matrix,
as input for the assignment problem. We may assume that C is positive. Consider the
following pay-off matrix A, of order 2n × n2, with columns indexed by ordered pairs (i, j)
with i, j = 1, . . . , n. The entries of A are given by: Ai,(i,j) := 1/ci,j and An+j,(i,j) := 1/ci,j for
i, j = 1, . . . , n, and Ak,(i,j) := 0 for all i, j, k with k 6= i and k 6= n + j. Then any minimum-
cost assignment, of cost γ say, yields an optimum column strategy y by: y(i,j) := ci,j/γ
if i is assigned to j, and y(i,j) := 0 otherwise. Any optimum column strategy is a convex
combination of strategies obtained this way from optimum assignments. So an optimum
assignment can in principle be found by finding an optimum column strategy.

According to a transcript of the talk (cf. von Neumann [1951,1953]), von Neumann noted
the following on the number of steps:

It turns out that this number is a moderate power of n, i.e., considerably smaller

than the "obvious" estimate n! mentioned earlier.

However, no further argumentation is given.
In a Cowles Commission Discussion Paper of 2 April 1953, Beckmann and Koopmans

[1953] noted:

It should be added that in all the assignment problems discussed, there is, of course,

the obvious brute force method of enumerating all assignments, evaluating the maximand

at each of these, and selecting the assignment giving the highest value. This is

too costly in most cases of practical importance, and by a method of solution we have

meant a procedure that reduces the computational work to manageable proportions in

a wider class of cases.

The Hungarian method: Kuhn 1955-1956, Munkres 1957

The basic combinatorial (nonsimplex) method for the assignment problem is the Hungarian
method. The method was developed by Kuhn [1955b,1956], based on the work of Egerváry
[1931], whence Kuhn introduced the name Hungarian method for it.

In an article “On the origin of the Hungarian method”’ Kuhn [1991] gave the following
reminiscences from the time starting Summer 1953:

During this period, I was reading Kőnig’s classical book on the theory of graphs and realized
that the matching problem for a bipartite graph on two sets of n vertices was exactly the same
as an n by n assignment problem with all aij = 0 or 1. More significantly, Kőnig had given a
combinatorial algorithm (based on augmenting paths) that produces optimal solutions to the
matching problem and its combinatorial (or linear programming) dual. In one of the several
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formulations given by Kőnig (p. 240, Theorem D), given an n by n matrix A = (aij) with all
aij = 0 or 1, the maximum number of 1’s that can be chosen with no two in the same line
(horizontal row or vertical column) is equal to the minimum number of lines that contain all
of the 1’s. Moreover, the algorithm seemed to be ‘good’ in a sense that will be made precise
later. The problem then was: how could the general assignment problem be reduced to the
0-1 special case?

Reading Kőnig’s book more carefully, I was struck by the following footnote (p. 238, foot-
note 2): “... Eine Verallgemeinerung dieser Sätze gab Egerváry, Matrixok kombinatorius
tulajdonságairól (Über kombinatorische Eigenschaften von Matrizen), Matematikai és Fizikai
Lapok, 38, 1931, S. 16-28 (ungarisch mit einem deutschen Auszug) ...” This indicated that
the key to the problem might be in Egerváry’s paper. When I returned to Bryn Mawr College
in the fall, I obtained a copy of the paper together with a large Hungarian dictionary and
grammar from the Haverford College library. I then spent two weeks learning Hungarian and
translated the paper [1]. As I had suspected, the paper contained a method by which a general
assignment problem could be reduced to a finite number of 0-1 assignment problems.

Using Egerváry’s reduction and Kőnig’s maximum matching algorithm, in the fall of 1953 I
solved several 12 by 12 assignment problems (with 3-digit integers as data) by hand. Each of
these examples took under two hours to solve and I was convinced that the combined algorithm
was ‘good’. This must have been one of the last times when pencil and paper could beat the
largest and fastest electronic computer in the world.

(Reference [1] is the English translation of the paper of Egerváry [1931].)
The method described by Kuhn is a sharpening of the method of Egerváry sketched

above, in two respects: (i) it gives an (augmenting path) method to find either a perfect
matching or sets I and J as required, and (ii) it improves the λi and µj not by 1, but by
the largest value possible.

Kuhn [1955b] contented himself with stating that the number of iterations is finite, but
Munkres [1957] observed that the method in fact runs in strongly polynomial time (O(n4)).

Ford and Fulkerson [1956b] reported the following computational experience with the
Hungarian method:

The largest example tried was a 20 × 20 optimal assignment problem. For this example, the
simplex method required well over an hour, the present method about thirty minutes of hand
computation.

3. The transportation problem

The transportation problem is: given an m × n ‘cost’ matrix C = (ai,j), a ‘supply vector’
b ∈ R

m
+ and a ‘demand’ vector d ∈ R

n
+, find a nonnegative m × n matrix X = (xi,j) such

that

(4) (i)

n
∑

j=1

xi,j = bi for i = 1, . . . ,m,

(ii)
m

∑

i=1

xi,j = dj for j = 1, . . . , n,

(iii)

m
∑

i=1

n
∑

j=1

ci,jxi,j is as small as possible.
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So the transportation problem is a special case of a linear programming problem.

Tolstŏı 1930

An early study of the transportation problem was made by A.N. Tolstŏı [1930]. He pub-
lished, in a book on transportation planning issued by the National Commissariat of Trans-
portation of the Soviet Union, an article called Methods of finding the minimal total kilo-
metrage in cargo-transportation planning in space, in which he formulated and studied the
transportation problem, and described a number of solution approaches, including the, now
well-known, idea that an optimum solution does not have any negative-cost cycle in its
residual graph10. He might have been the first to observe that the cycle condition is nec-
essary for optimality. Moreover, he assumed, but did not explicitly state or prove, the fact
that checking the cycle condition is also sufficient for optimality.

Tolstŏı illuminated his approach by applications to the transportation of salt, cement,
and other cargo between sources and destinations along the railway network of the Soviet
Union. In particular, a, for that time large-scale, instance of the transportation problem
was solved to optimality.

We briefly review the article. Tolstŏı first considered the transportation problem for the
case where there are only two sources. He observed that in that case one can order the
destinations by the difference between the distances to the two sources. Then one source
can provide the destinations starting from the beginning of the list, until the supply of
that source has been used up. The other source supplies the remaining demands. Tolstŏı
observed that the list is independent of the supplies and demands, and hence it

is applicable for the whole life-time of factories, or sources of production. Using this table,
one can immediately compose an optimal transportation plan every year, given quantities of
output produced by these two factories and demands of the destinations.

Next, Tolstŏı studied the transportation problem in the case when all sources and des-
tinations are along one circular railway line (cf. Figure 1), in which case the optimum
solution is readily obtained by considering the difference of two sums of costs. He called
this phenomenon circle dependency.

Finally, Tolstŏı combined the two ideas into a heuristic to solve a concrete transportation
problem coming from cargo transportation along the Soviet railway network. The problem
has 10 sources and 68 destinations, and 155 links between sources and destinations (all
other distances are taken to be infinite).

Tolstŏı’s heuristic also makes use of insight into the geography of the Soviet Union. He
goes along all sources (starting with the most remote sources), where, for each source X,
he lists those destinations for which X is the closest source or the second closest source.
Based on the difference of the distances to the closest and second closest sources, he assigns
cargo from X to the destinations, until the supply of X has been used up. (This obviously
is equivalent to considering cycles of length 4.) In case Tolstŏı foresees a negative-cost cycle
in the residual graph, he deviates from this rule to avoid such a cycle. No backtracking
occurs.

10The residual graph has arcs from each source to each destination, and moreover an arc from a destination
to a source if the transport on that connection is positive; the cost of the ‘backward’ arc is the negative of
the cost of the ‘forward’ arc.
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Figure 1

Figure from Tolstŏı [1930] to illustrate a negative cycle.

After 10 steps, when the transports from all 10 factories have been set, Tolstŏı ‘verifies’
the solution by considering a number of cycles in the network, and he concludes that his
solution is optimum:

Thus, by use of successive applications of the method of differences, followed by a verification
of the results by the circle dependency, we managed to compose the transportation plan which
results in the minimum total kilometrage.

The objective value of Tolstŏı’s solution is 395,052 kiloton-kilometers. Solving the problem
with modern linear programming tools (CPLEX) shows that Tolstŏı’s solution indeed is
optimum. But it is unclear how sure Tolstŏı could have been about his claim that his
solution is optimum. Geographical insight probably has helped him in growing convinced
of the optimality of his solution. On the other hand, it can be checked that there exist
feasible solutions that have none of the negative-cost cycles considered by Tolstŏı in their
residual graph, but that are yet not optimum.

Later, Tolstŏı [1939] described similar results in an article entitled Methods of remov-
ing irrational transportations in planning in the September 1939 issue of Sotsialisticheskĭı
Transport. The methods were also explained in the book Planning Goods Transportation
by Parĭıskaya, Tolstŏı, and Mots [1947].

According to Kantorovich [1987], there were some attempts to introduce Tolstŏı’s work
by the appropriate department of the People’s Commissariat of Transport.

Kantorovich 1939

Apparently unaware (by that time) of the work of Tolstŏı, L.V. Kantorovich studied a
general class of problems, that includes the transportation problem. The transportation
problem formed the big motivation for studying linear programming. In his memoirs,
Kantorovich [1987] wrote how questions from practice motivated him to formulate these
problems:
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Once some engineers from the veneer trust laboratory came to me for consultation with a
quite skilful presentation of their problems. Different productivity is obtained for veneer-
cutting machines for different types of materials; linked to this the output of production of
this group of machines depended, it would seem, on the chance factor of which group of raw
materials to which machine was assigned. How could this fact be used rationally?

This question interested me, but nevertheless appeared to be quite particular and elementary,
so I did not begin to study it by giving up everything else. I put this question for discussion at
a meeting of the mathematics department, where there were such great specialists as Gyunter,
Smirnov himself, Kuz’min, and Tartakovskii. Everyone listened but no one proposed a solu-
tion; they had already turned to someone earlier in individual order, apparently to Kuz’min.
However, this question nevertheless kept me in suspense. This was the year of my marriage,
so I was also distracted by this. In the summer or after the vacation concrete, to some ex-
tent similar, economic, engineering, and managerial situations started to come into my head,
that also required the solving of a maximization problem in the presence of a series of linear
constraints.

In the simplest case of one or two variables such problems are easily solved—by going through
all the possible extreme points and choosing the best. But, let us say in the veneer trust
problem for five machines and eight types of materials such a search would already have
required solving about a billion systems of linear equations and it was evident that this was
not a realistic method. I constructed particular devices and was probably the first to report
on this problem in 1938 at the October scientific session of the Herzen Institute, where in the
main a number of problems were posed with some ideas for their solution.

The universality of this class of problems, in conjunction with their difficulty, made me study
them seriously and bring in my mathematical knowledge, in particular, some ideas from func-
tional analysis.

What became clear was both the solubility of these problems and the fact that they were
widespread, so representatives of industry were invited to a discussion of my report at the
university.

This meeting took place on 13 May 1939 at the Mathematical Section of the Institute of
Mathematics and Mechanics of the Leningrad State University. A second meeting, which
was devoted specifically to problems connected with construction, was held on 26 May 1939
at the Leningrad Institute for Engineers of Industrial Construction. These meetings pro-
vided the basis of the monograph Mathematical Methods in the Organization and Planning
of Production (Kantorovich [1939]).

According to the Foreword by A.R. Marchenko to this monograph, Kantorovich’s work
was highly praised by mathematicians, and, in addition, at the special meeting industrial
workers unanimously evinced great interest in the work.

In the monograph, the relevance of the work for the Soviet system was stressed:

I want to emphasize again that the greater part of the problems of which I shall speak, relating
to the organization and planning of production, are connected specifically with the Soviet
system of economy and in the majority of cases do not arise in the economy of a capitalist
society. There the choice of output is determined not by the plan but by the interests and
profits of individual capitalists. The owner of the enterprise chooses for production those
goods which at a given moment have the highest price, can most easily be sold, and therefore
give the largest profit. The raw material used is not that of which there are huge supplies
in the country, but that which the entrepreneur can buy most cheaply. The question of the
maximum utilization of equipment is not raised; in any case, the majority of enterprises work
at half capacity.

In the USSR the situation is different. Everything is subordinated not to the interests and
advantage of the individual enterprise, but to the task of fulfilling the state plan. The basic
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task of an enterprise is the fulfillment and overfulfillment of its plan, which is a part of the
general state plan. Moreover, this not only means fulfillment of the plan in aggregate terms
(i.e. total value of output, total tonnage, and so on), but the certain fulfillment of the plan for
all kinds of output; that is, the fulfillment of the assortment plan (the fulfillment of the plan
for each kind of output, the completeness of individual items of output, and so on).

One of the problems studied was a rudimentary form of a transportation problem:

(5) given: an m × n matrix (ci,j);
find: an m × n matrix (xi,j) such that:

(i) xi,j ≥ 0 for all i, j;

(ii)
m

∑

i=1

xi,j = 1 for each j = 1, . . . , n;

(iii)
n

∑

j=1

ci,jxi,j is independent of i and is maximized.

Another problem studied by Kantorovich was ‘Problem C’ which can be stated as follows:

(6) maximize λ

subject to

m
∑

i=1

xi,j = 1 (j = 1, . . . , n)

m
∑

i=1

n
∑

j=1

ci,j,kxi,j = λ (k = 1, . . . , t)

xi,j ≥ 0 (i = 1, . . . ,m; j = 1, . . . , n).

The interpretation is: let there be n machines, which can do m jobs. Let there be one final
product consisting of t parts. When machine i does job j, ci,j,k units of part k are produced
(k = 1, . . . , t). Now xi,j is the fraction of time machine i does job j. The number λ is the
amount of the final product produced. ‘Problem C’ was later shown (by H.E. Scarf, upon a
suggestion by Kantorovich — see Koopmans [1959]) to be equivalent to the general linear
programming problem.

Kantorovich outlined a new method to maximize a linear function under given linear
inequality constraints. The method consists of determining dual variables (‘resolving multi-
pliers’) and finding the corresponding primal solution. If the primal solution is not feasible,
the dual solution is modified following prescribed rules. Kantorovich indicated the role of
the dual variables in sensitivity analysis, and he showed that a feasible solution for Problem
C can be shown to be optimal by specifying optimal dual variables.

The method resembles the simplex method, and a footnote in Kantorovich [1987] by his
son V.L. Kantorovich suggests that Kantorovich had found the simplex method in 1938:

In L.V. Kantorovich’s archives a manuscript from 1938 is preserved on “Some mathematical
problems of the economics of industry, agriculture, and transport” that in content, apparently,
corresponds to this report and where, in essence, the simplex method for the machine problem
is described.

Kantorovich gave a wealth of practical applications of his methods, which he based mainly
in the Soviet plan economy:
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Here are included, for instance, such questions as the distribution of work among individual
machines of the enterprise or among mechanisms, the correct distribution of orders among
enterprises, the correct distribution of different kinds of raw materials, fuel, and other factors.
Both are clearly mentioned in the resolutions of the 18th Party Congress.

He gave the following applications to transportation problems:

Let us first examine the following question. A number of freights (oil, grain, machines and so on)
can be transported from one point to another by various methods; by railroads, by steamship;
there can be mixed methods, in part by railroad, in part by automobile transportation, and
so on. Moreover, depending on the kind of freight, the method of loading, the suitability of
the transportation, and the efficiency of the different kinds of transportation is different. For
example, it is particularly advantageous to carry oil by water transportation if oil tankers are
available, and so on. The solution of the problem of the distribution of a given freight flow
over kinds of transportation, in order to complete the haulage plan in the shortest time, or
within a given period with the least expenditure of fuel, is possible by our methods and leads
to Problems A or C.

Let us mention still another problem of different character which, although it does not lead
directly to questions A, B, and C, can still be solved by our methods. That is the choice of
transportation routes.

B

A C
E

D

Let there be several points A, B, C, D, E (Fig. 1) which are connected to one another by
a railroad network. It is possible to make the shipments from B to D by the shortest route
BED, but it is also possible to use other routes as well: namely, BCD, BAD. Let there
also be given a schedule of freight shipments; that is, it is necessary to ship from A to B a
certain number of carloads, from D to C a certain number, and so on. The problem consists
of the following. There is given a maximum capacity for each route under the given conditions
(it can of course change under new methods of operation in transportation). It is necessary
to distribute the freight flows among the different routes in such a way as to complete the
necessary shipments with a minimum expenditure of fuel, under the condition of minimizing
the empty runs of freight cars and taking account of the maximum capacity of the routes. As
was already shown, this problem can also be solved by our methods.

As to the reception of his work, Kantorovich [1987] wrote in his memoirs:

The university immediately published my pamphlet, and it was sent to fifty People’s Commis-
sariats. It was distributed only in the Soviet Union, since in the days just before the start of
the World War it came out in an edition of one thousand copies in all.

The number of responses was not very large. There was quite an interesting reference from
the People’s Commissariat of Transportation in which some optimization problems directed at
decreasing the mileage of wagons was considered, and a good review of the pamphlet appeared
in the journal “The Timber Industry.”

At the beginning of 1940 I published a purely mathematical version of this work in Doklady
Akad. Nauk [76], expressed in terms of functional analysis and algebra. However, I did not
even put in it a reference to my published pamphlet—taking into account the circumstances I
did not want my practical work to be used outside the country.
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In the spring of 1939 I gave some more reports—at the Polytechnic Institute and the House of
Scientists, but several times met with the objection that the work used mathematical methods,
and in the West the mathematical school in economics was an anti-Marxist school and mathe-
matics in economics was a means for apologists of capitalism. This forced me when writing a
pamphlet to avoid the term “economic” as much as possible and talk about the organization
and planning of production; the role and meaning of the Lagrange multipliers had to be given
somewhere in the outskirts of the second appendix and in the semi Aesopian language.

(Here reference [76] is Kantorovich [1940].)
Kantorovich mentions that the new area opened by his work played a definite role in

forming the Leningrad Branch of the Mathematical Institute (LOMI), where he worked with
M.K. Gavurin on this area. The problem they studied occurred to them by itself, but they
soon found out that railway workers were already studying the problem of planning haulage
on railways, applied to questions of driving empty cars and transport of heavy cargoes.

Kantorovich and Gavurin developed a method (the method of ‘potentials’), which they
wrote down in a paper “Application of mathematical methods in questions of analysis of
freight traffic”. This paper was presented in January 1941 to the mathematics section of
the Leningrad House of Scientists, but according to Kantorovich [1987] there were political
problems in publishing it:

The publication of this paper met with many difficulties. It had already been submitted to
the journal “Railway Transport” in 1940, but because of the dread of mathematics already
mentioned it was not printed then either in this or in any other journal, despite the support
of Academicians A.N. Kolmogorov and V.N. Obraztsov, a well-known transport specialist and
first-rank railway General.

(The paper was finally published as Kantorovich and Gavurin [1949].) Kantorovich [1987]
said that he fortunately made an abstract version of the problem, which was published as
Kantorovich [1942]. In this, he considered the following generalization of the transportation
problem.

Let R be a compact metric space, with two measures µ and µ′. Let B be the collection
of measurable sets in R. A translocation (of masses) is a function Ψ : B × B → R+ such
that for each X ∈ B the functions Ψ(X, .) and Ψ(.,X) are measures and such that

(7) Ψ(X,R) = µ(X) and Ψ(R,X) = µ′(X)

for each X ∈ B.
Let a continuous function r : R × R → R+ be given. The value r(x, y) represents the

work necessary to transfer a unit mass from x to y. The work of a translocation Ψ is defined
by:

(8)

∫

R

∫

R

r(x, y)Ψ(dµ, dµ′).

Kantorovich argued that, if there exists a translocation, then there exists a minimal translo-
cation, that is, a translocation Ψ minimizing (8).

He called a translocation Ψ potential if there exists a function p : R → R such that for
all x, y ∈ R:
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(9) (i) |p(x) − p(y)| ≤ r(x, y);
(ii) p(y) − p(x) = r(x, y) if Ψ(Ux, Uy) > 0 for any neighbourhoods Ux and Uy of x

and y.

Kantorovich showed that a translocation Ψ is minimal if and only if it is potential. This
framework applies to the transportation problem (when m = n), by taking for R the space
{1, . . . , n}, with the discrete topology. Kantorovich seems to assume that r satisfies the
triangle inequality.

Kantorovich remarked that his method in fact is algorithmic:

The theorem just demonstrated makes it easy for one to prove that a given mass translocation
is or is not minimal. He has only to try and construct the potential in the way outlined above.
If this construction turns out to be impossible, i.e. the given translocation is not minimal, he
at least will find himself in the possession of the method how to lower the translocation work
and eventually come to the minimal translocation.

Kantorovich gave the transportation problem as application:

Problem 1. Location of consumption stations with respect to production stations. Stations
A1, A2, · · · , Am, attached to a network of railways deliver goods to an extent of a1, a2, · · · , am

carriages per day respectively. These goods are consumed at stations B1, B2, · · · , Bn of the
same network at a rate of b1, b2, · · · , bn carriages per day respectively (

∑

ai =
∑

bk). Given the
costs ri,k involved in moving one carriage from station Ai to station Bk, assign the consumption
stations such places with respect to the production stations as would reduce the total transport
expenses to a minimum.

Kantorovich [1942] also gave a cycle reduction method for finding a minimum-cost trans-
shipment (which is a uncapacitated minimum-cost flow problem). He restricted himself to
symmetric distance functions.

Kantorovich’s work remained unnoticed for some time by Western researchers. In a note
introducing a reprint of the article of Kantorovich [1942], in Management Science in 1958,
the following reassuring remark was made:

It is to be noted, however, that the problem of determining an effective method of actually
acquiring the solution to a specific problem is not solved in this paper. In the category of
development of such methods we seem to be, currently, ahead of the Russians.

Hitchcock 1941

Independently of Kantorovich, the transportation problem was studied by Hitchcock and
Koopmans.

Hitchcock [1941] might be the first giving a precise mathematical description of the
problem. The interpretation of the problem is, in Hitchcock’s words:

When several factories supply a product to a number of cities we desire the least costly manner
of distribution. Due to freight rates and other matters the cost of a ton of product to a
particular city will vary according to which factory supplies it, and will also vary from city to
city.

Hitchcock showed that the minimum is attained at a vertex of the feasible region, and
he outlined a scheme for solving the transportation problem which has much in common
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with the simplex method for linear programming. It includes pivoting (eliminating and
introducing basic variables) and the fact that nonnegativity of certain dual variables implies
optimality. He showed that the complementary slackness condition characterizes optimality.

Hitchcock gave a method to find an initial basic solution of (4), now known as the
north-west rule: set x1,1 := min{a1, b1}; if the minimum is attained by a1, reset b1 :=
b1 − a1 and recursively find a basic solution xi,j satisfying

∑n
j=1 xi,j = ai for each i =

2, . . . ,m and
∑m

i=2 xi,j = bj for each j = 1, . . . , n; if the minimum is attained by b1, proceed
symmetrically. (The north-west rule was also described by Salvemini [1939] and Fréchet
[1951] in a statistical context, namely in order to complete correlation tables given the
marginal distributions.)

Hitchcock however seems to have overlooked the possibility of cycling of his method,
although he pointed at an example in which some dual variables are negative while yet the
primal solution is optimum.

Koopmans 1942-1948

Koopmans was appointed, in March 1942, as a statistician on the staff of the British Mer-
chant Shipping Mission, and later the Combined Shipping Adjustment Board (CSAB),
a British-American agency dealing with merchant shipping problems during the Second
World War. Influenced by his teacher J. Tinbergen (cf. Tinbergen [1934]) he was interested
in tanker freights and capacities (cf. Koopmans [1939]). Koopmans’ wrote in August 1942
in his diary that, while the Board was being organized, there was not much work for the
statisticians,

and I had a fairly good time working out exchange ratio’s between cargoes for various routes,
figuring how much could be carried monthly from one route if monthly shipments on another
route were reduced by one unit.

At the Board he studied the assignment of ships to convoys so as to accomplish prescribed
deliveries, while minimizing empty voyages. According to the memoirs of his wife (Wan-
ningen Koopmans [1995]), when Koopmans was with the Board,

he had been appalled by the way the ships were routed. There was a lot of redundancy, no
intensive planning. Often a ship returned home in ballast, when with a little effort it could
have been rerouted to pick up a load elsewhere.

In his autobiography (published posthumously), Koopmans [1992] wrote:

My direct assignment was to help fit information about losses, deliveries from new construction,
and employment of British-controlled and U.S-controlled ships into a unified statement. Even
in this humble role I learned a great deal about the difficulties of organizing a large-scale
effort under dual control—or rather in this case four-way control, military and civilian cutting
across U.S. and U.K. controls. I did my study of optimal routing and the associated shadow
costs of transportation on the various routes, expressed in ship days, in August 1942 when an
impending redrawing of the lines of administrative control left me temporarily without urgent
duties. My memorandum, cited below, was well received in a meeting of the Combined Shipping
Adjustment Board (that I did not attend) as an explanation of the “paradoxes of shipping”
which were always difficult to explain to higher authority. However, I have no knowledge of
any systematic use of my ideas in the combined U.K.-U.S. shipping problems thereafter.
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In the memorandum for the Board, Koopmans [1942] analyzed the sensitivity of the opti-
mum shipments for small changes in the demands. In this memorandum (first published
in Koopmans’ Collected Works), Koopmans did not yet give a method to find an optimum
shipment.

Further study led him to a ‘local search’ method for the transportation problem, stating
that it leads to an optimum solution. Koopmans found these results in 1943, but, due to
wartime restrictions, published them only after the war (Koopmans [1948], Koopmans and
Reiter [1949a,1949b,1951]). Wanningen Koopmans [1995] writes that

Tjalling said that it had been well received by the CSAB, but that he doubted that it was ever
applied.

As Koopmans [1948] wrote:

Let us now for the purpose of argument (since no figures of war experience are available) assume
that one particular organization is charged with carrying out a world dry-cargo transportation
program corresponding to the actual cargo flows of 1925. How would that organization solve
the problem of moving the empty ships economically from where they become available to
where they are needed? It seems appropriate to apply a procedure of trial and error whereby
one draws tentative lines on the map that link up the surplus areas with the deficit areas, trying
to lay out flows of empty ships along these lines in such a way that a minimum of shipping is
at any time tied up in empty movements.

He gave an optimum solution for the following supplies and demands:

Net receipt of dry cargo in overseas trade, 1925

Unit: Millions of metric tons per annum

Harbour Received Dispatched Net receipts

New York 23.5 32.7 −9.2
San Francisco 7.2 9.7 −2.5
St. Thomas 10.3 11.5 −1.2
Buenos Aires 7.0 9.6 −2.6
Antofagasta 1.4 4.6 −3.2
Rotterdam 126.4 130.5 − 4.1
Lisbon 37.5 17.0 20.5
Athens 28.3 14.4 13.9
Odessa 0.5 4.7 −4.2
Lagos 2.0 2.4 −0.4
Durban 2.1 4.3 −2.2
Bombay 5.0 8.9 −3.9
Singapore 3.6 6.8 −3.2
Yokohama 9.2 3.0 6.2
Sydney 2.8 6.7 −3.9

Total 266.8 266.8 0.0

So Koopmans solved a 3 × 12 transportation problem.
Koopmans stated that if no improvement on a solution can be obtained by a cyclic

rerouting of ships, then the solution is optimum. It was observed by Robinson [1950] that
this gives a finite algorithm.

Koopmans moreover claimed that there exist potentials p1, . . . , pn and q1, . . . , qm such
that ci,j ≥ pi − qj for all i, j and such that ci,j = pi − qj for each i, j for which any optimum
solution x has xi,j > 0.

Koopmans and Reiter [1951] investigated the economic implications of the model and
the method:
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For the sake of definiteness we shall speak in terms of the transportation of cargoes on ocean-
going ships. In considering only shipping we do not lose generality of application since ships
may be “translated” into trucks, aircraft, or, in first approximation, trains, and ports into the
various sorts of terminals. Such translation is possible because all the above examples involve
particular types of movable transportation equipment.

In a footnote they contemplate the application of graphs in economic theory:

The cultural lag of economic thought in the application of mathematical methods is strikingly
illustrated by the fact that linear graphs are making their entrance into transportation theory
just about a century after they were first studied in relation to electrical networks, although
organized transportation systems are much older than the study of electricity.

Linear programming and the simplex method 1949-1950

The transportation problem was pivotal in the development of the more general problem
of linear programming. The simplex method, found in 1947 by G.B. Dantzig, extends the
methods of Kantorovich, Hitchcock, and Koopmans. It was published in Dantzig [1951b].
In another paper, Dantzig [1951a] described a direct implementation of the simplex method
as applied to the transportation problem.

Votaw and Orden [1952] reported on early computational results (on the SEAC), and
claimed (without proof) that the simplex method is polynomial-time for the transportation
problem (a statement refuted by Zadeh [1973]):

As to computation time, it should be noted that for moderate size problems, say m × n up to
500, the time of computation is of the same order of magnitude as the time required to type
the initial data. The computation time on a sample computation in which m and n were both
10 was 3 minutes. The time of computation can be shown by study of the computing method
and the code to be proportional to (m + n)3.

The new ideas of applying linear programming to the transportation problem were
quickly disseminated, although in some cases applicability to practice was met by scepticism.
At a Conference on Linear Programming in May 1954 in London, Land [1954] presented a
study of applying linear programming to the problem of transporting coal for the British
Coke Industry:

The real crux of this piece of research is whether the saving in transport cost exceeds the cost
of using linear programming.

In the discussion which followed, T. Whitwell of Powers Samas Accounting Machines Ltd
remarked

that in practice one could have one’s ideas of a solution confirmed or, much more frequently,
completely upset by taking a couple of managers out to lunch.

Alternative methods for the transportation problem were designed by Gleyzal [1955]
(a primal-dual method), and by Ford and Fulkerson [1955,1956a,1956b], Munkres [1957],
and Egerváry [1958] (extensions of the Hungarian method for the assignment problem). It
was also observed that the problem is a special case of the minimum-cost flow problem, for
which several new algorithms were developed — see Section 4.
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4. Menger’s theorem and maximum flow

Menger’s theorem 1927

Menger’s theorem forms an important precursor of the max-flow min-cut theorem found in
the 1950’s by Ford and Fulkerson.

The topologist Karl Menger published his theorem in an article called Zur allgemeinen
Kurventheorie (On the general theory of curves) (Menger [1927]) in the following form:

Satz β. Ist K ein kompakter regulär eindimensionaler Raum, welcher zwischen den beiden

endlichen Mengen P und Q n-punktig zusammenhängend ist, dann enthält K n paarweise

fremde Bögen, von denen jeder einen Punkt von P und einen Punkt von Q verbindet.11

The result can be formulated in terms of graphs as: Let G = (V,E) be an undirected graph
and let P,Q ⊆ V . Then the maximum number of disjoint P − Q paths is equal to the
minimum cardinality of a set W of vertices such that each P − Q path intersects W .

Menger’s interest in this question arose from his research on what he called ‘curves’: a
curve is a connected, compact topological space X with the property that for each x ∈ X,
each neighbourhood of x contains a neighbourhood of x with totally disconnected boundary.

It was however noticed by Kőnig [1932] that Menger’s proof of ‘Satz β’ is incomplete.
Menger applied induction on |E|, where E is the edge set of the graph G. The basis of the
induction is when P and Q contain all vertices. Menger overlooked that this constitutes
a nontrivial case. It amounts to the theorem of Kőnig [1931] that in a bipartite graph
G = (V,E), the maximum size of a matching is equal to the minimum number of vertices
needed to cover all edges. (According to Kőnig [1932], Menger informed him that he was
aware of the hole in his proof.)

In his reminiscences on the origin of the ‘n-arc theorem’, Menger [1981] wrote:

In the spring of 1930, I came through Budapest and met there a galaxy of Hungarian math-
ematicians. In particular, I enjoyed making the acquaintance of Dénes Kőnig, for I greatly
admired the work on set theory of his father, the late Julius Kőnig — to this day one of the
most significant contributions to the continuum problem—and I had read with interest some
of Dénes’ papers. Kőnig told me that he was about to finish a book that would include all
that was known about graphs. I assured him that such a book would fill a great need; and I
brought up my n-Arc Theorem which, having been published as a lemma in a curve-theoretical
paper, had not yet come to his attention. Kőnig was greatly interested, but did not believe
that the theorem was correct. “This evening,” he said to me in parting, “I won’t go to sleep
before having constructed a counterexample.” When we met again the next day he greeted
me with the words, “A sleepless night!” and asked me to sketch my proof for him. He then
said that he would add to his book a final section devoted to my theorem. This he did; and it
is largely thanks to Kőnig’s valuable book that the n-Arc Theorem has become widely known
among graph theorists.

Variants of Menger’s theorem 1927-1938

In a paper presented 7 May 1927 to the American Mathematical Society, Rutt [1927,1929]
gave the following variant of Menger’s theorem, suggested by Kline. Let G = (V,E) be a

11Theorem β. If K is a compact regular one-dimensional space which is n-point connected between the two

finite sets P and Q, then K contains n disjoint curves, each of which connects a point in P and a point in

Q.
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planar graph and let s, t ∈ V . Then the maximum number of internally disjoint s− t paths
is equal to the minimum number of vertices in V \ {s, t} intersecting each s − t path.

In fact, the theorem follows quite easily from Menger’s theorem by deleting s and t and
taking for P and Q the sets of neighbours of s and t respectively. (Rutt referred to Menger
and gave an independent proof of the theorem.)

This construction was also observed by Knaster [1930] who showed that, conversely,
Menger’s theorem would follow from Rutt’s theorem for general (not necessarily planar)
graphs. A similar theorem was published by Nöbeling [1932], using Menger’s result.

A result implied by Menger’s theorem was presented by Whitney [1932] on 28 February
1931 to the American Mathematical Society: a graph is n-connected if and only if any
two vertices are connected by n internally disjoint paths. While referring to the papers of
Menger and Rutt, Whitney gave a direct proof.

Other proofs of Menger’s theorem were given by Hajós [1934] and Grünwald [1938] (= T.
Gallai) — the latter gave an algorithmic proof similar to the flow-augmenting path method
for finding a maximum flow of Ford and Fulkerson [1955].

Gallai observed, in a footnote, that the theorem also holds for directed graphs:

Die ganze Betrachtung lässt sich auch bei orientierten Graphen durchführen und liefert dann
eine Verallgemeinerung des Mengerschen Satzes.12

Maximum flow 1954

The maximum flow problem is: given a graph, with a ‘source’ vertex s and a ‘terminal’
vertex t specified, and given a capacity function c defined on its edges, find a flow from s
to t subject to c, of maximum value.

In their basic paper Maximal Flow through a Network (published first as a RAND Report
of 19 November 1954), Ford and Fulkerson [1954] mentioned that the maximum flow problem
was formulated by T.E. Harris as follows:

Consider a rail network connecting two cities by way of a number of intermediate cities, where
each link of the network has a number assigned to it representing its capacity. Assuming a
steady state condition, find a maximal flow from one given city to the other.

In their 1962 book Flows in Networks, Ford and Fulkerson [1962] give a more precise refer-
ence to the origin of the problem13:

It was posed to the authors in the spring of 1955 by T.E. Harris, who, in conjunction with Gen-
eral F.S. Ross (Ret.), had formulated a simplified model of railway traffic flow, and pinpointed
this particular problem as the central one suggested by the model [11].

Ford-Fulkerson’s reference [11] is a secret report by Harris and Ross [1955] entitled Fun-
damentals of a Method for Evaluating Rail Net Capacities, dated 24 October 195514 and
written for the US Air Force. At our request, the Pentagon downgraded it to ‘unclassified’
on 21 May 1999.

12The whole consideration lets itself carry out also for oriented graphs and then yields a generalization of
Menger’s theorem.

13There seems to be some discrepancy between the date of the RAND Report of Ford and Fulkerson (19
November 1954) and the date mentioned in the quotation (spring of 1955).

14In their book, Ford and Fulkerson incorrectly date the Harris-Ross report 24 October 1956.
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In fact, the Harris-Ross report solves a relatively large-scale maximum flow problem
coming from the railway network in the Western Soviet Union and Eastern Europe (‘satellite
countries’). Unlike what Ford and Fulkerson said, the interest of Harris and Ross was not
to find a maximum flow, but rather a minimum cut (‘interdiction’) of the Soviet railway
system. We quote:

Air power is an effective means of interdicting an enemy’s rail system, and such usage is a
logical and important mission for this Arm.

As in many military operations, however, the success of interdiction depends largely on how
complete, accurate, and timely is the commander’s information, particularly concerning the
effect of his interdiction-program efforts on the enemy’s capability to move men and supplies.
This information should be available at the time the results are being achieved.

The present paper describes the fundamentals of a method intended to help the specialist who
is engaged in estimating railway capabilities, so that he might more readily accomplish this
purpose and thus assist the commander and his staff with greater efficiency than is possible at
present.

First, much attention is given in the report to modeling a railway network: taking
each railway junction as a vertex would give a too refined network (for their purposes).
Therefore, Harris and Ross proposed to take ‘railway divisions’ (organizational units based
on geographical areas) as vertices, and to estimate the capacity of the connections between
any two adjacent railway divisions. In 1996, Ted Harris remembered (Alexander [1996]):

We were studying rail transportation in consultation with a retired army general, Frank Ross,
who had been chief of the Army’s Transportation Corps in Europe. We thought of modeling
a rail system as a network. At first it didn’t make sense, because there’s no reason why the
crossing point of two lines should be a special sort of node. But Ross realized that, in the region
we were studying, the “divisions” (little administrative districts) should be the nodes. The link
between two adjacent nodes represents the total transportation capacity between them. This
made a reasonable and manageable model for our rail system. Problems about the effect of
cutting links turned out to be linear programming, so we asked for help from George Dantzig
and other LP specialists at Rand.

The Harris-Ross report stresses that specialists remain needed to make up the model (which
is always a good strategy to get new methods accepted):

The ability to estimate with relative accuracy the capacity of single railway lines is largely an
art. Specialists in this field have no authoritative text (insofar as the authors are informed) to
guide their efforts, and very few individuals have either the experience or talent for this type
of work. The authors assume that this job will continue to be done by the specialist.

The authors next dispute the naive belief that a railway network is just a set of disjoint
through lines, and that cutting them implies cutting the network:

It is even more difficult and time-consuming to evaluate the capacity of a railway network
comprising a multitude of rail lines which have widely varying characteristics. Practices among
individuals engaged in this field vary considerably, but all consume a great deal of time. Most,
if not all, specialists attack the problem by viewing the railway network as an aggregate of
through lines.

The authors contend that the foregoing practice does not portray the full flexibility of a large
network. In particular it tends to gloss over the fact that even if every one of a set of inde-
pendent through lines is made inoperative, there may exist alternative routings which can still
move the traffic.
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This paper proposes a method that departs from present practices in that it views the network
as an aggregate of railway operating divisions. All trackage capacities within the divisions are
appraised, and these appraisals form the basis for estimating the capability of railway operating
divisions to receive trains from and concurrently pass trains to each neighboring division in
24-hour periods.

Whereas experts are needed to set up the model, to solve it is routine (when having the
‘work sheets’):

The foregoing appraisal (accomplished by the expert) is then used in the preparation of com-
paratively simple work sheets that will enable relatively inexperienced assistants to compute
the results and thus help the expert to provide specific answers to the problems, based on
many assumptions, which may be propounded to him.

For solving the problem, the authors suggested applying the ‘flooding technique’, a heuristic
described in a RAND Report of 5 August 1955 by A.W. Boldyreff [1955a]. It amounts
to pushing as much flow as possible greedily through the network. If at some vertex a
‘bottleneck’ arises (that is, more trains arrive than can be pushed further through the
network), the excess trains are returned to the origin. The technique does not guarantee
optimality, but Boldyreff speculates:

In dealing with the usual railway networks a single flooding, followed by removal of bottlenecks,
should lead to a maximal flow.

Presenting his method at an ORSA meeting in June 1955, Boldyreff [1955b] claimed sim-
plicity:

The mechanics of the solutions is formulated as a simple game which can be taught to a
ten-year-old boy in a few minutes.

The well-known flow-augmenting path algorithm of Ford and Fulkerson [1955], that
does guarantee optimality, was published in a RAND Report dated only later that year (29
December 1955). As for the simplex method (suggested for the maximum flow problem by
Ford and Fulkerson [1954]), Harris and Ross remarked:

The calculation would be cumbersome; and, even if it could be performed, sufficiently accurate
data could not be obtained to justify such detail.

The Harris-Ross report applied the flooding technique to a network model of the Soviet
and Eastern European railways. For the data it refers to several secret reports of the
Central Intelligence Agency (C.I.A.) on sections of the Soviet and Eastern European railway
networks. After the aggregation of railway divisions to vertices, the network has 44 vertices
and 105 (undirected) edges.

The application of the flooding technique to the problem is displayed step by step in
an appendix of the report, supported by several diagrams of the railway network. (Also
work sheets are provided, to allow for future changes in capacities.) It yields a flow of value
163,000 tons from sources in the Soviet Union to destinations in Eastern European ‘satellite’
countries (Poland, Czechoslovakia, Austria, Eastern Germany), together with a cut with a
capacity of, again, 163,000 tons. (This cut is indicated as ‘The bottleneck’ in Figure 2 from
the Harris-Ross report.) So the flow value and the cut capacity are equal, hence optimum.
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Figure 2

From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

The max-flow min-cut theorem

In the RAND Report of 19 November 1954, Ford and Fulkerson [1954] gave (next to defining
the maximum flow problem and suggesting the simplex method for it) the max-flow min-
cut theorem for undirected graphs, saying that the maximum flow value is equal to the
minimum capacity of a cut separating source and terminal. Their proof is not constructive,
but for planar graphs, with source and sink on the outer boundary, they give a polynomial-
time, constructive method. In a report of 26 May 1955, Robacker [1955a] showed that the
max-flow min-cut theorem can be derived also from the vertex-disjoint version of Menger’s
theorem.

As for the directed case, Ford and Fulkerson [1955] observed that the max-flow min-cut
theorem holds also for directed graphs. Dantzig and Fulkerson [1955] showed, by extending
the results of Dantzig [1951a] on integer solutions for the transportation problem to the
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maximum-flow problem, that if the capacities are integer, there is an integer maximum flow
(the ‘integrity theorem’). Hence, the arc-disjoint version of Menger’s theorem for directed
graphs follows as a consequence.

Also Kotzig gave the edge-disjoint version of Menger’s theorem, but restricted to undi-
rected graphs. In his dissertation for the degree of Academical Doctor, Kotzig [1956] defined,
for any undirected graph G and any pair u, v of vertices of G, σG(u, v) to be the minimum
size of a u − v cut. He stated:

Veta 35. Nech G je l’ubovol’ný graf obsahujúci uzly u 6= v, o ktorých plat́ı σG(u, v) = k > 0,
potom existuje systém ciest {C1, C2, . . . , Ck} taký že každa cesta spojuje uzly u, v a žiadne dve
rôzne cesty systému nemajú spoločnej hrany. Takýto systém ciest v G existuje len vtedy, keď
je σG(u, v) ≥ k.15

The proof method is to consider a minimal graph satisfying the cut condition, and next to
orient it so as to make a directed graph in which each vertex (except u and v) has indegree
equal to outdegree, while u has outdegree k and indegree 0. This then gives the paths.

Although the dissertation has several references to Kőnig’s book, which book contains
the vertex-disjoint version of Menger’s theorem, Kotzig did not link his result to that of
Menger.

An alternative proof of the max-flow min-cut theorem was given by Elias, Feinstein, and
Shannon [1956] (‘manuscript received by the PGIT, July 11,1956’), who claimed that the
result was known by workers in communication theory:

This theorem may appear almost obvious on physical grounds and appears to have been ac-
cepted without proof for some time by workers in communication theory. However, while the
fact that this flow cannot be exceeded is indeed almost trivial, the fact that it can actually be
achieved is by no means obvious. We understand that proofs of the theorem have been given
by Ford and Fulkerson and Fulkerson and Dantzig. The following proof is relatively simple,
and we believe different in principle.

The proof of Elias, Feinstein, and Shannon is based on a reduction technique similar to that
used by Menger [1927] in proving his theorem.

Minimum-cost flows

The minimum-cost flow problem was studied, in rudimentary form, by Dantzig and Fulker-
son [1954], in order to determine the minimum number of tankers to meet a fixed schedule.
Similarly, Bartlett [1957] and Bartlett and Charnes [1957] gave methods to determine the
minimum railway stock to run a given schedule.

It was noted by Orden [1955] and Prager [1957] that the minimum-cost flow problem is
equivalent to the capacitated transportation problem.

A basic combinatorial minimum-cost flow algorithm was given (in disguised form) by
Ford and Fulkerson [1957]. It consists of repeatedly finding a zero-length s − t path in
the residual graph, making lengths nonnegative by translating the cost with the help of a
potential. If no zero-length path exists, the potential is updated. The complexity of this
method was studied in a report by Fulkerson [1958].

15Theorem 35. Let G be an arbitrary graph containing vertices u 6= v for which σG(u, v) = k > 0, then
there exists a system of paths {C1, C2, ..., Ck} such that each path connects vertices u, v and no two distinct
paths have an edge in common. Such a system of paths in G exists only if σG(u, v) ≥ k.
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5. Shortest spanning tree

The problem of finding a shortest spanning tree came up in several applied areas, like in
the construction of road, energy, and communication networks and in the clustering of data
in anthropology and taxonomy.

We refer to Graham and Hell [1985] for an extensive historical survey of shortest tree
algorithms, with several quotes (with translations) from old papers. Our notes below have
profited from their investigations.

Bor̊uvka 1926

Bor̊uvka [1926a] seems to be the first to consider the shortest spanning tree problem. His
interest came from a question of the Electric Power Company of Western Moravia in Brno,
at the beginning of the 1920’s, asking for the most economical construction of an electric
power network (see Bor̊uvka [1977]).

Bor̊uvka formulated the problem as follows:

In dieser Arbeit löse ich folgendes Problem:
Es möge eine Matrix der bis auf die Bedingungen rαα = 0, rαβ = rβα positiven und von
einander verschiedenen Zahlen rαβ (α, β = 1, 2, . . . n;n ≥ 2) gegeben sein.

Aus dieser ist eine Gruppe von einander und von Null verschiedener Zahlen auszuwählen, so
dass

1◦ in ihr zu zwei willkürlich gewählten natürlichen Zahlen p1, p2 (≤ n) eine Teilgruppe von der
Gestalt

rp1c2 , rc2c3 , rc3c4 , . . . rcq−2cq−1
, rcq−1p2

existiere,

2◦ die Summe ihrer Glieder kleiner sei als die Summe der Glieder irgendeiner anderen, der
Bedingung 1◦ genügenden Gruppe von einander und von Null verschiedenen Zahlen.16

So Bor̊uvka stated that the spanning tree found is the unique shortest. He assumed that
all edge lengths are different.

As a method, Bor̊uvka proposed parallel merging: connect each component to its nearest
neighbouring component, and iterate. His description is somewhat complicated, but in a
follow-up paper, Bor̊uvka [1926b] gave an easier description of his method.

Jarńık 1929

In a reaction to Bor̊uvka’s work, Jarńık wrote on 12 February 1929 a letter to Bor̊uvka in
which he described a ‘new solution of a minimal problem discussed by Mr Bor̊uvka.’

16In this work, I solve the following problem:
A matrix may be given of positive distinct numbers rαβ (α, β = 1, 2 . . . n; n ≥ 2), besides the conditions
rαα = 0, rαβ = rβα.
From this, a group of numbers, different from each other and from zero, should be selected such that
1◦ for arbitrarily chosen natural numbers p1, p2 (≤ n) a subgroup of it exist of the form

rp1c2 , rc2c3 , rc3c4 , . . . rcq−2cq−1
, rcq−1p2

,

2◦ the sum of its members be smaller than the sum of the members of any other group of numbers different
from each other and from zero, satisfying condition 1◦.
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The ‘new solution’ amounts to tree growing: keep a tree on a subset of the vertices, and
iteratively extend it by adding a shortest edge joining the tree with a vertex outside of the
tree.

An extract of the letter was published as Jarńık [1930]. We quote from the German
summary:

a1 ist eine beliebige unter den Zahlen 1, 2, . . . , n.
a2 ist durch

ra1,a2
= min





l = 1, 2, . . . , n
l 6= a1





ra1,l

definiert.
Wenn 2 ≤ k < n und wenn [a1, a2], . . . , [a2k−3, a2k−2] bereits bestimmt sind, so wird [a2k−1, a2k]
durch

ra2k−1,a2k
= min ri,j ,

definiert, wo i alle Zahlen a1, a2, . . . , a2k−2, j aber alle übrigen von den Zahlen 1, 2, . . . , n
durchläuft.17

(For a detailed discussion and a translation of the article of Jarńık [1930] (and of Jarńık
and Kössler [1934] on the Steiner tree problem), see Korte and Nešetřil [2001].)

Parallel merging was also described by Choquet [1938] (without proof) and Florek,
 Lukaszewicz, Perkal, Steinhaus, and Zubrzycki [1951a,1951b]. Choquet gave as a motivation
the construction of road systems:

Étant donné n villes du plan, il s’agit de trouver un réseau de routes permettant d’aller d’une
quelconque de ces villes à une autre et tel que:
1◦ la longueur globale du réseau soit minimum;
2◦ exception faite des villes, on ne peut partir d’aucun point dans plus de deux directions,
afin d’assurer la sûreté de la circulation; ceci entrâıne, par exemple, que lorsque deux routes
semblent se croiser en un point qui n’est pas une ville, elles passent en fait l’une au-dessus de
l’autre et ne communiquent pas entre elles en ce point, qu’on appellera faux-croisement.18

Choquet might be the first concerned with the complexity of the method:

17a1 is an arbitrary one among the numbers 1, 2, . . . , n.
a2 is defined by

ra1,a2
= min





l = 1, 2, . . . , n
l 6= a1





ra1,l.

If 2 ≤ k < n and if [a1, a2], . . . , [a2k−3, a2k−2] are determined already, then [a2k−1, a2k] is determined by

ra2k−1,a2k
= min ri,j ,

where i runs through all numbers a1, a2, . . . , a2k−2, j however through all remaining of the numbers
1, 2, . . . , n.

18Being given n cities of the plane, the point is to find a network of routes allowing to go from an arbitrary
of these cities to another and such that:
1◦ the global length of the network be minimum;
2◦ except for the cities, one cannot depart from any point in more than two directions, in order to assure
the certainty of the circulation; this entails, for instance, that when two routes seem to cross each other in
a point which is not a city, they pass in fact one above the other and do not communicate among them in
this point, which we shall call a false crossing.
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Le réseau cherché sera tracé après 2n opérations élémentaires au plus, en appelant opération
élémentaire la recherche du continu le plus voisin d’un continu donné.19

Florek et al. were motivated by clustering in anthropology, taxonomy, etc. They applied
the method to:

1◦ the capitals of Poland’s provinces, 2◦ two collections of excavated skulls, 3◦ 42 archeological
finds, 4◦ the liverworts of Silesian Beskid mountains with forests as their background, and
to the forests of Silesian Beskid mountains with the liverworts appearing in them as their
background.

Shortest spanning trees 1956-1959

In the years 1956-1959 a number of papers appeared that again presented methods for the
shortest spanning tree problem. Several of the results overlap, also with the earlier papers
of Bor̊uvka and Jarńık, but also a few new and more general methods were given.

Kruskal [1956] was motivated by Bor̊uvka’s first paper and by the application to the
traveling salesman problem, described as follows (where [1] is reference Bor̊uvka [1926a]):

Several years ago a typewritten translation (of obscure origin) of [1] raised some interest. This
paper is devoted to the following theorem: If a (finite) connected graph has a positive real
number attached to each edge (the length of the edge), and if these lengths are all distinct,
then among the spanning trees (German: Gerüst) of the graph there is only one, the sum of
whose edges is a minimum; that is, the shortest spanning tree of the graph is unique. (Actually
in [1] this theorem is stated and proved in terms of the “matrix of lengths” of the graph, that
is, the matrix ‖aij‖ where aij is the length of the edge connecting vertices i and j. Of course,
it is assumed that aij = aji and that aii = 0 for all i and j.)

The proof in [1] is based on a not unreasonable method of constructing a spanning subtree of
minimum length. It is in this construction that the interest largely lies, for it is a solution to
a problem (Problem 1 below) which on the surface is closely related to one version (Problem
2 below) of the well-known traveling salesman problem.

Problem 1. Give a practical method for constructing a spanning subtree of minimum length.

Problem 2. Give a practical method for constructing an unbranched spanning subtree of
minimum length.

The construction in [1] is unnecessarily elaborate. In the present paper I give several simpler
constructions which solve Problem 1, and I show how one of these constructions may be used
to prove the theorem of [1]. Probably it is true that any construction which solves Problem 1
may be used to prove this theorem.

Kruskal next described three algorithms: Construction A: choose iteratively the shortest
edge that can be added so as not to create a circuit; Construction B: fix a nonempty set U
of vertices, and choose iteratively the shortest edge leaving some component intersecting U ;
Construction A′: remove iteratively the longest edge that can be removed without making
the graph disconnected.

In his reminiscences, Kruskal [1997] wrote about Bor̊uvka’s method:

In one way, the method of construction was very elegant. In another way, however, it was un-
necessarily complicated. A goal which has always been important to me is to find simpler ways

19The network looked for will be traced after at most 2n elementary operations, calling the search for the
continuum closest to a given continuum an elementary operation.
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to describe complicated ideas, and that is all I tried to do here. I simplified the construction
down to its essence, but it seems to me that the idea of Professor Bor̊uvka’s method is still
present in my version.

Another paper on the minimum spanning tree problem was published by Prim [1957],
who was at Bell Laboratories, and who was motivated by the problem of finding a shortest
telecommunication network:

A problem of inherent interest in the planning of large-scale communication, distribution and
transportation networks also arises in connection with the current rate structure for Bell System
leased-line services.

He described the following algorithm: choose a component of the current forest, and connect
it to the nearest other component. He observed that Kruskal’s constructions A and B are
special cases of this.

Prim noticed that in fact only the order of the lengths determines if a spanning tree is
shortest:

The shortest spanning subtree of a connected labelled graph also minimizes all increasing sym-
metric functions, and maximizes all decreasing symmetric functions, of the edge “lengths.”

Prim preferred the tree growing method for computational reasons:

This computational procedure is easily programmed for an automatic computer so as to handle
quite large-scale problems. One of its advantages is its avoidance of checks for closed cycles
and connectedness. Another is that it never requires access to more than two rows of distance
data at a time — no matter how large the problem.

The implementation described by Prim has O(n2) running time.
A paper by Loberman and Weinberger [1957] gave minimizing wire connections as mo-

tivation:

In the construction of a digital computer in which high-frequency circuitry is used, it is desirable
and often necessary when making connections between terminals to minimize the total wire
length in order to reduce the capacitance and delay-line effects of long wire leads.

They described two methods: tree growing and forest merging: keep a forest, and iteratively
add a shortest edge connecting two components.

Only after they had designed their algorithms, Loberman and Weinberger discovered
that their algorithms were given earlier by Kruskal [1956]:

However, it is felt that the more detailed implementation and general proofs of the procedures
justify this paper.

They next described how to implement Kruskal’s method, in particular, how to merge
forests. And, like Prim, they observed that the minimality of a spanning tree depends only
on the order of the lengths, and not on their specific values:

After the initial sorting into a list where the branches are of monotonically increasing length,
the actual value of the length of any branch no longer appears explicitly in the subsequent
manipulations. As a result, some other parameter such as the square of the length could have
been used. More generally, the same minimum tree will persist for all variations in branch
lengths that do not disturb the original relative order.
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Dijkstra [1959] gave again the tree growing method, which he prefers (for computational
reasons) to the methods given by Kruskal and Loberman and Weinberger (overlooking the
fact that these authors also gave the tree growing method):

The solution given here is to be preferred to the solution given by J.B. Kruskal [1] and
those given by H. Loberman and A. Weinberger [2]. In their solutions all the — possibly
1
2
n(n − 1) — branches are first of all sorted according to length. Even if the length of the

branches is a computable function of the node coordinates, their methods demand that data
for all branches are stored simultaneously.

(Dijkstra’s references [1] and [2] are Kruskal [1956] and Loberman and Weinberger [1957].)
Also Dijkstra described an O(n2) implementation.

Extension to matroids: Rado 1957

Rado [1957] noticed that the methods of Bor̊uvka and Kruskal can be extended to finding
a minimum-weight basis in a matroid. He first showed that if the elements of a matroid are
linearly ordered by <, there is a unique minimal basis {b1, . . . , br} with b1 < b2 < · · · < br

such that for each i = 1, . . . , r all elements s < bi belong to span({b1, . . . , bi−1}). Rado
derived that for any independent set {a1, . . . , ak} with a1 < · · · < ak one has bi ≤ ai for
i = 1, . . . , k. According to Rado, this ‘leads to the result of’ Bor̊uvka [1926a] and Kruskal
[1956].

6. Shortest path

Compared with other combinatorial optimization problems, like shortest spanning tree,
assignment and transportation, mathematical research in the shortest path problem started
relatively late. This might be due to the fact that the problem is elementary and relatively
easy, which is also illustrated by the fact that at the moment that the problem came into
the focus of interest, several researchers independently developed similar methods.

Yet, the problem has offered some substantial difficulties. For some considerable period
heuristical, nonoptimal approaches have been investigated (cf. for instance Rosenfeld [1956],
who gave a heuristic approach for determining an optimal trucking route through a given
traffic congestion pattern).

Path finding, in particular searching in a maze, belongs to the classical graph problems,
and the classical references are Wiener [1873], Lucas [1882] (describing a method due to
C.P. Trémaux), and Tarry [1895] — see Biggs, Lloyd, and Wilson [1976]. They form the
basis for depth-first search techniques.

Path problems were also studied at the beginning of the 1950’s in the context of ‘alternate
routing’, that is, finding a second shortest route if the shortest route is blocked. This
applies to freeway usage (Trueblood [1952]), but also to telephone call routing. At that
time making long-distance calls in the U.S.A. was automatized, and alternate routes for
telephone calls over the U.S. telephone network nation-wide should be found automatically.
Quoting Jacobitti [1955]:

When a telephone customer makes a long-distance call, the major problem facing the operator
is how to get the call to its destination. In some cases, each toll operator has two main routes

31



by which the call can be started towards this destination. The first-choice route, of course, is
the most direct route. If this is busy, the second choice is made, followed by other available
choices at the operator’s discretion. When telephone operators are concerned with such a call,
they can exercise choice between alternate routes. But when operator or customer toll dialing
is considered, the choice of routes has to be left to a machine. Since the “intelligence” of
a machine is limited to previously “programmed” operations, the choice of routes has to be
decided upon, and incorporated in, an automatic alternate routing arrangement.

Matrix methods for unit-length shortest path 1946-1953

Matrix methods were developed to study relations in networks, like finding the transitive
closure of a relation; that is, identifying in a directed graph the pairs of points s, t such
that t is reachable from s. Such methods were studied because of their application to
communication nets (including neural nets) and to animal sociology (e.g. peck rights).

The matrix methods consist of representing the directed graph by a matrix, and then
taking iterative matrix products to calculate the transitive closure. This was studied by
Landahl and Runge [1946], Landahl [1947], Luce and Perry [1949], Luce [1950], Lunts [1950,
1952], and by A. Shimbel.

Shimbel’s interest in matrix methods was motivated by their applications to neural
networks. He analyzed with matrices which sites in a network can communicate to each
other, and how much time it takes. To this end, let S be the 0, 1 matrix indicating that
if Si,j = 1 then there is direct communication from i to j (including i = j). Shimbel
[1951] observed that the positive entries in St correspond to pairs between which there
exists communication in t steps. An adequate communication system is one for which the
matrix St is positive for some t. One of the other observations of Shimbel [1951] is that
in an adequate communication system, the time it takes that all sites have all information,
is equal to the minimum value of t for which St is positive. (A related phenomenon was
observed by Luce [1950].)

Shimbel [1953] mentioned that the distance from i to j is equal to the number of zeros in
the i, j position in the matrices S0, S1, S2, . . . , St. So essentially he gave an O(n4) algorithm
to find all distances in a directed graph with unit lengths.

Shortest-length paths

If a directed graph D = (V,A) and a length function l : A → R are given, one may ask for
the distances and shortest-length paths from a given vertex s.

For this, there are two well-known methods: the ‘Bellman-Ford method’ and ‘Dijkstra’s
method’. The latter one is faster but is restricted to nonnegative length functions. The
former method only requires that there is no directed circuit of negative length.

The general framework for both methods is the following scheme, described in this
general form by Ford [1956]. Keep a provisional distance function d. Initially, set d(s) := 0
and d(v) := ∞ for each v 6= s. Next, iteratively,

(10) choose an arc (u, v) with d(v) > d(u) + l(u, v) and reset d(v) := d(u) + l(u, v).

If no such arc exists, d is the distance function.
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The difference in the methods is the rule by which the arc (u, v) with d(v) > d(u)+l(u, v)
is chosen. The Bellman-Ford method consists of considering all arcs consecutively and
applying (10) where possible, and repeating this (at most |V | rounds suffice). This is the
method described by Shimbel [1955], Bellman [1958], and Moore [1959].

Dijkstra’s method prescribes to choose an arc (u, v) with d(u) smallest (then each arc is
chosen at most once, if the lengths are nonnegative). This was described by Leyzorek, Gray,
Johnson, Ladew, Meaker, Petry, and Seitz [1957] and Dijkstra [1959]. A related method,
but slightly slower than Dijkstra’s method when implemented, was given by Dantzig [1958],
and chooses an arc (u, v) with d(u) + l(u, v) smallest.

Parallel to this, a number of further results were obtained on the shortest path problem,
including a linear programming approach and ‘good characterizations’. We review the
articles in a more or less chronological order.

Shimbel 1955

The paper of Shimbel [1955] was presented in April 1954 at the Symposium on Information
Networks in New York. Extending his matrix methods for unit-length shortest paths, he
introduced the following ‘min-sum algebra’:

Arithmetic
For any arbitrary real or infinite numbers x and y

x + y ≡ min(x, y) and
xy ≡ the algebraic sum of x and y.

He transferred this arithmetic to the matrix product. Calling the distance matrix associated
with a given length matrix S the ‘dispersion’, he stated:

It follows trivially that Sk k ≥ 1 is a matrix giving the shortest paths from site to site in S
given that k−1 other sites may be traversed in the process. It also follows that for any S there
exists an integer k such that Sk = Sk+1. Clearly, the dispersion of S (let us label it D(S)) will
be the matrix Sk such that Sk = Sk+1.

This is equivalent to the Bellman-Ford method.
Although Shimbel did not mention it, one trivially can take k ≤ |V |, and hence the

method yields an O(n4) algorithm to find the distances between all pairs of points.

Shortest path as linear programming problem 1955-1957

Orden [1955] observed that the shortest path problem is a special case of a transshipment
problem (= uncapacitated minimum-cost flow problem), and hence can be solved by linear
programming. Dantzig [1957] described the following graphical procedure for the simplex
method applied to this problem. Let T be a rooted spanning tree on {1, . . . , n}, with root
1. For each i = 1, . . . , n, let ui be equal to the length of the path from 1 to i in T . Now
if uj ≤ ui + di,j for all i, j, then for each i, the 1 − i path in T is a shortest path. If
uj > ui + di,j , replace the arc of T entering j by the arc (i, j), and iterate with the new
tree.
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Trivially, this process terminates (as
∑n

j=1 uj decreases at each iteration, and as there
are only finitely many rooted trees). Dantzig illustrated his method by an example of
sending a package from Los Angeles to Boston. (Edmonds [1970] showed that this method
may take exponential time.)

In a reaction to the paper of Dantzig [1957], Minty [1957] proposed an ‘analog computer’
for the shortest path problem:

Build a string model of the travel network, where knots represent cities and string lengths
represent distances (or costs). Seize the knot ‘Los Angeles’ in your left hand and the knot
‘Boston’ in your right and pull them apart. If the model becomes entangled, have an assistant
untie and re-tie knots until the entanglement is resolved. Eventually one or more paths will
stretch tight — they then are alternative shortest routes.

Dantzig’s ‘shortest-route tree’ can be found in this model by weighting the knots and picking
up the model by the knot ‘Los Angeles’.

It is well to label the knots since after one or two uses of the model their identities are easily
confused.

A similar method was proposed by Bock and Cameron [1958].

Ford 1956

In a RAND report dated 14 August 1956, Ford [1956] described a method to find a shortest
path from P0 to PN , in a network with vertices P0, . . . , PN , where lij denotes the length of
an arc from i to j. We quote:

Assign initially x0 = 0 and xi = ∞ for i 6= 0. Scan the network for a pair Pi and Pj with
the property that xi − xj > lji. For this pair replace xi by xj + lji. Continue this process.
Eventually no such pairs can be found, and xN is now minimal and represents the minimal
distance from P0 to PN .

So this is the general scheme described above ((10)). No selection rule for the arc (u, v) in
(10) is prescribed by Ford.

Ford showed that the method terminates. It was shown however by Johnson [1973a,
1973b,1977] that Ford’s liberal rule can take exponential time.

The correctness of Ford’s method also follows from a result given in the book Studies
in the Economics of Transportation by Beckmann, McGuire, and Winsten [1956]: given a
length matrix (li,j), the distance matrix is the unique matrix (di,j) satisfying

(11) di,i = 0 for all i;
di,k = minj(li,j + dj,k) for all i, k with i 6= k.

Good characterizations for shortest path 1956-1958

It was noticed by Robacker [1956] that shortest paths allow a theorem dual to Menger’s
theorem: the minimum length of an P0 − Pn path in a graph N is equal to the maximum
number of pairwise disjoint P0 − Pn cuts. In Robacker’s words:

the maximum number of mutually disjunct cuts of N is equal to the length of the shortest
chain of N from P0 to Pn.
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A related ‘good characterization’ was found by Gallai [1958]: A length function l : A → Z

on the arcs of a directed graph (V,A) does not give negative-length directed circuits, if and
only if there is a function (‘potential’) p : V → Z such that l(u, v) ≥ p(v) − p(u) for each
arc (u, v).

Case Institute of Technology 1957

The shortest path problem was also investigated by a group of researchers at the Case Insti-
tute of Technology in Cleveland, Ohio, in the project Investigation of Model Techniques, per-
formed for the Combat Development Department of the Army Electronic Proving Ground.
In their First Annual Report, Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz
[1957] presented their results.

First, they noted that Shimbel’s method can be speeded up by calculating Sk by itera-
tively raising the current matrix to the square (in the min-sum matrix algebra). This solves
the all-pairs shortest path problem in time O(n3 log n).

Next, they gave a rudimentary description of a method equivalent to Dijkstra’s method.
We quote:

(1) All the links joined to the origin, a, may be given an outward orientation. . . .

(2) Pick out the link or links radiating from a, aaα, with the smallest delay. . . . Then it is
impossible to pass from the origin to any other node in the network by any “shorter” path
than aaα. Consequently, the minimal path to the general node α is aaα.

(3) All of the other links joining α may now be directed outward. Since aaα must necessarily
be the minimal path to α, there is no advantage to be gained by directing any other links
toward α. . . .

(4) Once α has been evaluated, it is possible to evaluate immediately all other nodes in the
network whose minimal values do not exceed the value of the second-smallest link radiating
from the origin. Since the minimal values of these nodes are less than the values of the second-
smallest, third-smallest, and all other links radiating directly from the origin, only the smallest
link, aaα, can form a part of the minimal path to these nodes. Once a minimal value has been
assigned to these nodes, it is possible to orient all other links except the incoming link in an
outward direction.

(5) Suppose that all those nodes whose minimal values do not exceed the value of the second-
smallest link radiating from the origin have been evaluated. Now it is possible to evaluate the
node on which the second-smallest link terminates. At this point, it can be observed that if
conflicting directions are assigned to a link, in accordance with the rules which have been given
for direction assignment, that link may be ignored. It will not be a part of the minimal path
to either of the two nodes it joins. . . .

Following these rules, it is now possible to expand from the second-smallest link as well as the
smallest link so long as the value of the third-smallest link radiating from the origin is not
exceeded. It is possible to proceed in this way until the entire network has been solved.

(In this quotation we have deleted sentences referring to figures.)

Bellman 1958

After having published several papers on dynamic programming (which is, in some sense, a
generalization of shortest path methods), Bellman [1958] eventually focused on the shortest
path problem by itself, in a paper in the Quarterly of Applied Mathematics. He described
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the following ‘functional equation approach’ for the shortest path problem, which is the
same as that of Shimbel [1955].

There are N cities, numbered 1, . . . , N , every two of which are linked by a direct road.
A matrix T = (ti,j) is given, where ti,j is time required to travel from i to j (not necessarily
symmetric). Find a path between 1 and N which consumes minimum time.

Bellman remarked:

Since there are only a finite number of paths available, the problem reduces to choosing the
smallest from a finite set of numbers. This direct, or enumerative, approach is impossible to
execute, however, for values of N of the order of magnitude of 20.

He gave a ‘functional equation approach”

The basic method is that of successive approximations. We choose an initial sequence {f (0)
i },

and then proceed iteratively, setting

f
(k+1)
i = Min

j 6= i

(tij + f
(k)
j ], i = 1, 2, · · · , N − 1,

f
(k+1)
N = 0,

for k = 0, 1, 2 · · · ,.

As initial function f
(0)
i Bellman proposed (upon a suggestion of F. Haight) to take f

(0)
i = ti,N

for all i. Bellman noticed that, for each fixed i, starting with this choice of f
(0)
i gives that

f
(k)
i is monotonically nonincreasing in k, and stated:

It is clear from the physical interpretation of this iterative scheme that at most (N−1) iterations
are required for the sequence to converge to the solution.

Since each iteration can be done in time O(N 2), the algorithm takes time O(N 3). As for
the complexity, Bellman said:

It is easily seen that the iterative scheme discussed above is a feasible method for either hand
or machine computation for values of N of the order of magnitude of 50 or 100.

In a footnote, Bellman mentioned:

Added in proof (December 1957): After this paper was written, the author was informed by
Max Woodbury and George Dantzig that the particular iterative scheme discussed in Sec. 5
had been obtained by them from first principles.

Dantzig 1958

The paper of Dantzig [1958] gives an O(n2 log n) algorithm for the shortest path problem
with nonnegative length function. It consists of choosing in (10) an arc with d(u) + l(u, v)
as small as possible. Dantzig assumed

(a) that one can write down without effort for each node the arcs leading to other nodes in
increasing order of length and (b) that it is no effort to ignore an arc of the list if it leads to a
node that has been reached earlier.

He mentioned that, beside Bellman, Moore, Ford, and himself, also D. Gale and D.R.
Fulkerson proposed shortest path methods, ‘in informal conversations’.
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Dijkstra 1959

Dijkstra [1959] gave a concise and clean description of ‘Dijkstra’s method’, yielding an
O(n2)-time implementation. Dijkstra stated:

The solution given above is to be preferred to the solution by L.R. Ford [3] as described by
C. Berge [4], for, irrespective of the number of branches, we need not store the data for all
branches simultaneously but only those for the branches in sets I and II, and this number is
always less than n. Furthermore, the amount of work to be done seems to be considerably
less.

(Dijkstra’s references [3] and [4] are Ford [1956] and Berge [1958].)
Dijkstra’s method is easier to implement (as an O(n2) algorithm) than Dantzig’s, since

we do not need to store the information in lists: in order to find a next vertex v minimizing
d(v), we can just scan all vertices.

Moore 1959

At the International Symposium on the Theory of Switching at Harvard University in April
1957, Moore [1959] of Bell Laboratories, presented a paper “The shortest path through a
maze”:

The methods given in this paper require no foresight or ingenuity, and hence deserve to be called
algorithms. They would be especially suited for use in a machine, either a special-purpose or
a general-purpose digital computer.

The motivation of Moore was the routing of toll telephone traffic. He gave algorithms A,
B, C, and D.

First, Moore considered the case of an undirected graph G = (V,E) with no length
function, in which a path from vertex A to vertex B should be found with a minimum
number of edges. Algorithm A is: first give A label 0. Next do the following for k = 0, 1, . . .:
give label k + 1 to all unlabeled vertices that are adjacent to some vertex labeled k. Stop
as soon as vertex B is labeled.

If it were done as a program on a digital computer, the steps given as single steps above would
be done serially, with a few operations of the computer for each city of the maze; but, in the
case of complicated mazes, the algorithm would still be quite fast compared with trial-and-error
methods.

In fact, a direct implementation of the method would yield an algorithm with running time
O(m). Algorithms B and C differ from A in a more economical labeling (by fewer bits).

Moore’s algorithm D finds a shortest route for the case where each edge of the graph has
a nonnegative length. This method is a refinement of Bellman’s method described above:
(i) it extends to the case that not all pairs of vertices have a direct connection; that is, if
there is an underlying graph G = (V,E) with length function; (ii) at each iteration only
those di,j are considered for which ui has been decreased at the previous iteration.

The method has running time O(nm). Moore observed that the algorithm is suitable
for parallel implementation, yielding a decrease in running time bound to O(n∆(G)), where
∆(G) is the maximum degree of G. Moore concluded:
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The origin of the present methods provides an interesting illustration of the value of basic re-
search on puzzles and games. Although such research is often frowned upon as being frivolous,
it seems plausible that these algorithms might eventually lead to savings of very large sums
of money by permitting more efficient use of congested transportation or communication sys-
tems. The actual problems in communication and transportation are so much complicated by
timetables, safety requirements, signal-to-noise ratios, and economic requirements that in the
past those seeking to solve them have not seen the basic simplicity of the problem, and have
continued to use trial-and-error procedures which do not always give the true shortest path.
However, in the case of a simple geometric maze, the absence of these confusing factors per-
mitted algorithms A, B, and C to be obtained, and from them a large number of extensions,
elaborations, and modifications are obvious.

The problem was first solved in connection with Claude Shannon’s maze-solving machine.
When this machine was used with a maze which had more than one solution, a visitor asked
why it had not been built to always find the shortest path. Shannon and I each attempted
to find economical methods of doing this by machine. He found several methods suitable for
analog computation, and I obtained these algorithms. Months later the applicability of these
ideas to practical problems in communication and transportation systems was suggested.

Among the further applications of his method, Moore described the example of finding
the fastest connections from one station to another in a given railroad timetable. A similar
method was given by Minty [1958].

In May 1958, Hoffman and Pavley [1959] reported, at the Western Joint Computer
Conference in Los Angeles, the following computing time for finding the distances between
all pairs of vertices by Moore’s algorithm (with nonnegative lengths):

It took approximately three hours to obtain the minimum paths for a network of 265 vertices
on an IBM 704.

7. The traveling salesman problem

The traveling salesman problem (TSP) is: given n cities and their intermediate distances,
find a shortest route traversing each city exactly once. Mathematically, the traveling sales-
man problem is related to, in fact generalizes, the question for a Hamiltonian circuit in a
graph. This question goes back to Kirkman [1856] and Hamilton [1856,1858] and was also
studied by Kowalewski [1917b,1917a] — see Biggs, Lloyd, and Wilson [1976]. We restrict
our survey to the traveling salesman problem in its general form.

The mathematical roots of the traveling salesman problem are obscure. Dantzig, Fulk-
erson, and Johnson [1954] say:

It appears to have been discussed informally among mathematicians at mathematics meetings
for many years.

A 1832 manual

The traveling salesman problem has a natural interpretation, and Müller-Merbach [1983]
detected that the problem was formulated in a 1832 manual for the successful traveling
salesman, Der Handlungsreisende — wie er sein soll und was er zu thun hat, um Aufträge
zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiß zu sein — von einem
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alten Commis-Voyageur20 [1832]. (Whereas the politically correct nowadays prefer to speak
of the traveling salesperson problem, the manual presumes that the ‘Handlungsreisende’ is
male, and it warns about the risks of women in or out of business.)

The booklet contains no mathematics, and formulates the problem as follows:

Die Geschäfte führen die Handlungsreisenden bald hier, bald dort hin, und es lassen sich nicht
füglich Reisetouren angeben, die für alle vorkommende Fälle passend sind; aber es kann durch
eine zweckmäßige Wahl und Eintheilung der Tour, manchmal so viel Zeit gewonnen werden,
daß wir es nicht glauben umgehen zu dürfen, auch hierüber einige Vorschriften zu geben. Ein
Jeder möge so viel davon benutzen, als er es seinem Zwecke für dienlich hält; so viel glauben
wir aber davon versichern zu dürfen, daß es nicht wohl thunlich sein wird, die Touren durch
Deutschland in Absicht der Entfernungen und, worauf der Reisende hauptsächlich zu sehen hat,
des Hin- und Herreisens, mit mehr Oekonomie einzurichten. Die Hauptsache besteht immer
darin: so viele Orte wie möglich mitzunehmen, ohne den nämlichen Ort zweimal berühren zu
müssen.21

PSfrag replacements

Frankfurt
Hanau

Aschaffenburg

Würzburg

Schweinfurt

Bamberg
Baireuth

Culmbach

Cronach
Hof

Plauen

Greitz Zwickau

Chemnitz

Freiberg

Dresden

Meißen

Leipzig

Halle

Merseburg

Weißenfels

Zeitz

Altenburg

Gera

Naumurg

Weimar

Rudolstadt
Ilmenau

Arnstadt

Erfurt

Greußen

Sondershausen

Mühlhausen

Langensalza

Gotha

Eisenach

Salzungen

Meiningen

Mölrichstadt

Neustadt

Gersfeld

Brückenau

Fulda

Schlichtern

Gelnhausen

Figure 3

A tour along 45 German cities, as described in the 1832 traveling salesman manual, is given by
the unbroken (bold and thin) lines (1285 km). A shortest tour is given by the unbroken bold and
by the dashed lines (1248 km). We have taken geodesic distances — taking local conditions into
account, the 1832 tour might be optimum.

The manual suggests five tours through Germany (one of them partly through Switzerland).

20“The traveling salesman — how he should be and what he has to do, to obtain orders and to be sure of
a happy success in his business — by an old traveling salesman”

21Business brings the traveling salesman now here, then there, and no travel routes can be properly
indicated that are suitable for all cases occurring; but sometimes, by an appropriate choice and arrangement
of the tour, so much time can be gained, that we don’t think we may avoid giving some rules also on this.
Everybody may use that much of it, as he takes it for useful for his goal; so much of it however we think we
may assure, that it will not be well feasible to arrange the tours through Germany with more economy in
view of the distances and, which the traveler mainly has to consider, of the trip back and forth. The main
point always consists of visiting as many places as possible, without having to touch the same place twice.
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In Figure 3 we compare one of the tours with a shortest tour, found with ‘modern’ methods.
(Most other tours given in the manual do not qualify for ‘die Hauptsache’ as they contain
subtours, so that some places are visited twice.)

Menger’s Botenproblem 1930

K. Menger seems to be the first mathematician to have written about the traveling salesman
problem. The root of his interest is given in his paper Menger [1928b]. In this, he studies
the length l(C) of a simple curve C in a metric space S, which is, by definition,

(12) l(C) := sup
n−1
∑

i=1

dist(xi, xi+1),

where the supremum ranges over all choices of x1, . . . , xn on C in the order determined by C.
What Menger showed is that we may relax this to finite subsets X of C and minimize over
all possible orderings of X. To this end he defined, for any finite subset X of a metric space,
λ(X) to be the shortest length of a path through X (in graph terminology: a Hamitonian
path), and he showed that

(13) l(C) = sup
X

λ(X),

where the supremum ranges over all finite subsets X of C. It amounts to showing that for
each ε > 0 there is a finite subset X of C such that λ(X) ≥ l(C) − ε.

Menger [1929a] sharpened this to:

(14) l(C) = sup
X

κ(X),

where again the supremum ranges over all finite subsets X of C, and where κ(X) denotes
the minimum length of a spanning tree on X.

These results were reported also in Menger [1930]. In a number of other papers, Menger
[1928a,1929b,1929a] gave related results on these new characterizations of the length func-
tion.

The parameter λ(X) clearly is close to the practical application of the traveling salesman
problem. This relation was mentioned explicitly by Menger in the session of 5 February 1930
of his mathematisches Kolloquium in Vienna (organized at the desire of some students).
According to the report in Menger [1931a,1932], he first asked if a further relaxation is
possible by replacing κ(X) by the minimum length of an (in current terminology) Steiner
tree connecting X — a spanning tree on a superset of X in S. (So Menger toured along
some basic combinatorial optimization problems.) This problem was solved for Euclidean
spaces by Mimura [1933].

Next Menger posed the traveling salesman problem, as follows:

Wir bezeichnen als Botenproblem (weil diese Frage in der Praxis von jedem Postboten, übrigens
auch von vielen Reisenden zu lösen ist) die Aufgabe, für endlichviele Punkte, deren paarweise
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Abstände bekannt sind, den kürzesten die Punkte verbindenden Weg zu finden. Dieses Problem
ist natürlich stets durch endlichviele Versuche lösbar. Regeln, welche die Anzahl der Versuche
unter die Anzahl der Permutationen der gegebenen Punkte herunterdrücken würden, sind nicht
bekannt. Die Regel, man solle vom Ausgangspunkt erst zum nächstgelegenen Punkt, dann zu
dem diesem nächstgelegenen Punkt gehen usw., liefert im allgemeinen nicht den kürzesten
Weg.22

So Menger asked for a shortest Hamiltonian path through the given points. He was aware
of the complexity issue in the traveling salesman problem, and he knew that the now well-
known nearest neighbour heuristic might not give an optimum solution.

Harvard, Princeton 1930-1934

Menger spent the period September 1930-February 1931 as visiting lecturer at Harvard
University. In one of his seminar talks at Harvard, Menger presented his results on lengths
of arcs and shortest paths through finite sets of points quoted above. According to Menger
[1931b], a suggestion related to this was given by Hassler Whitney, who at that time did
his Ph.D. research in graph theory at Harvard. This paper however does not mention if the
practical interpretation was given in the seminar talk.

The year after, 1931-1932, Whitney was a National Research Council Fellow at Princeton
University, where he gave a number of seminar talks. In a seminar talk, he mentioned the
problem of finding the shortest route along the 48 States of America.

There are some uncertainties in this story. It is not sure if Whitney spoke about the
48 States problem during his 1931-1932 seminar talks (which talks he did give), or later, in
1934, as is said by Flood [1956] in his article on the traveling salesman problem:

This problem was posed, in 1934, by Hassler Whitney in a seminar talk at Princeton Univer-
sity.

That memory can be shaky might be indicated by the following two quotes. Dantzig,
Fulkerson, and Johnson [1954] remark:

Both Flood and A.W. Tucker (Princeton University) recall that they heard about the problem
first in a seminar talk by Hassler Whitney at Princeton in 1934 (although Whitney, recently
queried, does not seem to recall the problem).

However, when asked by David Shmoys, Tucker replied in a letter of 17 February 1983 (see
Hoffman and Wolfe [1985]):

I cannot confirm or deny the story that I heard of the TSP from Hassler Whitney. If I did (as
Flood says), it would have occurred in 1931-32, the first year of the old Fine Hall (now Jones
Hall). That year Whitney was a postdoctoral fellow at Fine Hall working on Graph Theory,
especially planarity and other offshoots of the 4-color problem. ... I was finishing my thesis
with Lefschetz on n-manifolds and Merrill Flood was a first year graduate student. The Fine
Hall Common Room was a very lively place — 24 hours a day.

22We denote by messenger problem (since in practice this question should be solved by each postman,
anyway also by many travelers) the task to find, for finitely many points whose pairwise distances are
known, the shortest route connecting the points. Of course, this problem is solvable by finitely many trials.
Rules which would push the number of trials below the number of permutations of the given points, are
not known. The rule that one first should go from the starting point to the closest point, then to the point
closest to this, etc., in general does not yield the shortest route.
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(Whitney finished his Ph.D. at Harvard University in 1932.)
Another uncertainty is in which form Whitney has posed the problem. That he might

have focused on finding a shortest route along the 48 states in the U.S.A., is suggested by
the reference by Flood, in an interview on 14 May 1984 with Tucker [1984], to the problem
as the “48 States Problem of Hassler Whitney”. In this respect Flood also remarked:

I don’t know who coined the peppier name ‘Traveling Salesman Problem’ for Whitney’s prob-
lem, but that name certainly has caught on, and the problem has turned out to be of very
fundamental importance.

TSP, Hamiltonian paths, and school bus routing

Flood [1956] mentioned a number of connections of the TSP with Hamiltonian games and
Hamiltonian paths in graphs, and continues:

I am indebted to A.W. Tucker for calling these connections to my attention, in 1937, when I
was struggling with the problem in connection with a schoolbus routing study in New Jersey.

In the following quote from the interview by Tucker [1984], Flood referred to school bus
routing in a different state (West Virginia), and he mentioned the involvement in the TSP
of Koopmans, who spent 1940-1941 at the Local Government Surveys Section of Princeton
University (“the Princeton Surveys”):

Koopmans first became interested in the “48 States Problem” of Hassler Whitney when he was
with me in the Princeton Surveys, as I tried to solve the problem in connection with the work
by Bob Singleton and me on school bus routing for the State of West Virginia.

1940

In 1940, some papers appeared that study the traveling salesman problem, in a different
context. They seem to be the first containing mathematical results on the problem.

In the American continuation of Menger’s mathematisches Kolloquium, Menger [1940]
returned to the question of the shortest path through a given set of points in a metric
space, followed by investigations of Milgram [1940] on the shortest Jordan curve that covers
a given, not necessarily finite, set of points in a metric space. As the set may be infinite, a
shortest curve need not exist.

Fejes [1940] investigated the problem of a shortest curve through n points in the unit
square. In consequence of this, Verblunsky [1951] showed that its length is less than 2 +√

2.8n. Later work in this direction includes Few [1955] and Beardwood, Halton, and
Hammersley [1959].

Lower bounds on the expected value of a shortest path through n random points in the
plane were studied by Mahalanobis [1940] in order to estimate the cost of a sample survey
of the acreage under jute in Bengal. This survey took place in 1938 and one of the major
costs in carrying out the survey was the transportation of men and equipment from one
survey point to the next. He estimated (without proof) the minimum length of a tour along
n random points in the plane, for Euclidean distance:

It is also easy to see in a general way how the journey time is likely to behave. Let us suppose
that n sampling units are scattered at random within any given area ; and let us assume
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that we may treat each such sample unit as a geometrical point. We may also assume that
arrangements will usually be made to move from one sample point to another in such a way as
to keep the total distance travelled as small as possible ; that is, we may assume that the path
traversed in going from one sample point to another will follow a straight line. In this case it
is easy to see that the mathematical expectation of the total length of the path travelled in
moving from one sample point to another will be (

√
n − 1/

√
n). The cost of the journey from

sample to sample will therefore be roughly proportional to (
√

n − 1/
√

n). When n is large,
that is, when we consider a sufficiently large area, we may expect that the time required for
moving from sample to sample will be roughly proportional to

√
n, where n is the total number

of samples in the given area. If we consider the journey time per sq. mile, it will be roughly
proportional to

√
y, where y is the density of number of sample units per sq. mile.

This research was continued by Jessen [1942], who estimated empirically a similar result
for l1-distance (Manhattan distance), in a statistical investigation of a sample survey for
obtaining farm facts in Iowa:

If a route connecting y points located at random in a fixed area is minimized, the total distance,
D, of that route is23

D = d

(

y − 1√
y

)

where d is a constant.

This relationship is based upon the assumption that points are connected by direct routes.
In Iowa the road system is a quite regular network of mile square mesh. There are very few
diagonal roads, therefore, routes between points resemble those taken on a checkerboard. A
test wherein several sets of different members of points were located at random on an Iowa
county road map, and the minimum distance of travel from a given point on the border of the
county through all the points and to an end point (the county border nearest the last point on
route), revealed that

D = d
√

y

works well. Here y is the number of randomized points (border points not included). This is
of great aid in setting up a cost function.

Marks [1948] gave a proof of Mahalanobis’ bound. In fact he showed that
√

1
2A(

√
n−1/

√
n)

is a lower bound, where A is the area of the region. Ghosh [1949] showed that asymptotically
this bound is close to the expected value, by giving a heuristic for finding a tour, yielding
an upper bound of 1.27

√
An. He also observed the complexity of the problem:

After locating the n random points in a map of the region, it is very difficult to find out actually

the shortest path connecting the points, unless the number n is very small, which is seldom
the case for a large-scale survey.

TSP, transportation, and assignment

As is the case for many other combinatorial optimization problems, the RAND Corporation
in Santa Monica, California, played an important role in the research on the TSP. Hoffman
and Wolfe [1985] write that

John Williams urged Flood in 1948 to popularize the TSP at the RAND Corporation, at least
partly motivated by the purpose of creating intellectual challenges for models outside the theory
of games. In fact, a prize was offered for a significant theorem bearing on the TSP. There is
no doubt that the reputation and authority of RAND, which quickly became the intellectual
center of much of operations research theory, amplified Flood’s advertizing.

23at this point, Jessen referred in a footnote to Mahalanobis [1940].
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At RAND, researchers considered the idea of transferring the successful methods for the
transportation problem to the traveling salesman problem. Flood [1956] mentioned that
this idea was brought to his attention by Koopmans in 1948. In the interview with Tucker
[1984], Flood remembered:

George Dantzig and Tjallings Koopmans met with me in 1948 in Washington, D.C., at the
meeting of the International Statistical Institute, to tell me excitedly of their work on what is
now known as the linear programming problem and with Tjallings speculating that there was
a significant connection with the Traveling Salesman Problem.

(This meeting was in fact held 6–18 September 1947.)
The issue was taken up in a RAND Report by Julia Robinson [1949], who, in an ‘unsuc-

cessful attempt’ to solve the traveling salesman problem, considered, as a relaxation, the
assignment problem, for which she found a cycle reduction method. The relation is that
the assignment problem asks for an optimum permutation, and the TSP for an optimum
cyclic permutation.

Robinson’s RAND report might be the earliest mathematical reference using the term
‘traveling salesman problem’:

The purpose of this note is to give a method for solving a problem related to the

traveling salesman problem. One formulation is to find the shortest route for a

salesman starting from Washington, visiting all the state capitals and then

returning to Washington. More generally, to find the shortest closed curve containing

n given points in the plane.

Flood wrote (in a letter of 17 May 1983 to E.L. Lawler) that Robinson’s report stimulated
several discussions on the TSP of him with his research assistant at RAND, D.R. Fulkerson,
during 1950-195224.

It was noted by Beckmann and Koopmans [1952] that the TSP can be formulated as a
quadratic assignment problem, for which however no fast methods are known.

Dantzig, Fulkerson, Johnson 1954

Fundamental progress on the traveling salesman was made in a seminal paper by the RAND
researchers Dantzig, Fulkerson, and Johnson [1954] — according to Hoffman and Wolfe
[1985] ‘one of the principal events in the history of combinatorial optimization’. The paper
introduced several new methods for solving the traveling salesman problem that are now
basic in combinatorial optimization. In particular, it shows the importance of cutting planes
for combinatorial optimization.

By a theorem of Birkhoff [1946], the convex hull of the n × n permutation matrices is
precisely the set of doubly stochastic matrices — nonnegative matrices with all row and
column sums equal to 1. In other words, the convex hull of the permutation matrices is
determined by:

(15) xi,j ≥ 0 for all i, j;
n

∑

j=1

xi,j = 1 for all i;
n

∑

i=1

xi,j = 1 for all j.

24Fulkerson started at RAND only in March 1951.
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This makes it possible to solve the assignment problem as a linear programming problem.
It is tempting to try the same approach to the traveling salesman problem. For this, one
needs a description in linear inequalities of the traveling salesman polytope — the convex
hull of the cyclic permutation matrices. To this end, one may add to (15) the following
subtour elimination constraints:

(16)
∑

i∈I,j 6∈I

xi,j ≥ 1 for each I ⊆ {1, . . . , n} with ∅ 6= I 6= {1, . . . , n}.

However, while these inequalities are enough to cut off the noncyclic permutation matrices
from the polytope of doubly stochastic matrices, they yet do not yield all facets of the
traveling salesman polytope (if n ≥ 5), as was observed by Heller [1953a]: there exist
doubly stochastic matrices, of any order n ≥ 5, that satisfy (16) but are not a convex
combination of cyclic permutation matrices.

The inequalities (16) can nevertheless be useful for the TSP, since we obtain a lower
bound for the optimum tour length if we minimize over the constraints (15) and (16). This
lower bound can be calculated with the simplex method, taking the (exponentially many)
constraints (16) as cutting planes that can be added during the process when needed. In
this way, Dantzig, Fulkerson, and Johnson were able to find the shortest tour along cities
chosen in the 48 U.S. states and Washington, D.C. Incidentally, this is close to the problem
mentioned by Julia Robinson in 1949 (and maybe also by Whitney in the 1930’s).

The Dantzig-Fulkerson-Johnson paper does not give an algorithm, but rather gives a
tour and proves its optimality with the help of the subtour elimination constraints. This
work forms the basis for most of the later work on large-scale traveling salesman problems.

Early studies of the traveling salesman polytope were made by Heller [1953a,1953b,
1955a,1956b,1955b,1956a], Kuhn [1955a], Norman [1955], and Robacker [1955b], who also
made computational studies of the probability that a random instance of the traveling
salesman problem needs the constraints (16) (cf. Kuhn [1991]). This made Flood [1956]
remark on the intrinsic complexity of the traveling salesman problem:

Very recent mathematical work on the traveling-salesman problem by I. Heller, H.W. Kuhn,
and others indicates that the problem is fundamentally complex. It seems very likely that quite
a different approach from any yet used may be required for succesful treatment of the problem.
In fact, there may well be no general method for treating the problem and impossibility results
would also be valuable.

Flood mentioned a number of other applications of the traveling salesman problem, in
particular in machine scheduling, brought to his attention in a seminar talk at Columbia
University in 1954 by George Feeney.

Other work on the traveling salesman problem in the 1950’s was done by Morton and
Land [1955] (a linear programming approach with a 3-exchange heuristic), Barachet [1957]
(a graphic solution method), Bock [1958], Croes [1958] (a heuristic), and Rossman and
Twery [1958]. In a reaction to Barachet’s paper, Dantzig, Fulkerson, and Johnson [1959]
showed that their method yields the optimality of Barachet’s (heuristically found) solution.
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[1784] G. Monge, Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie Royale
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