A PROOF OF STRASSEN’S SEMIRING THEOREM

Notes for our seminar — Lex Schrijver

Fix a commutative semiring \((S,+,\cdot)\); so \((S,+)\) is an additive commutative semigroup with null 0 and \((S,\cdot)\) is a multiplicative commutative semigroup with unit 1, satisfying \(0a = 0\) and \(a(b+c) = ab + ac\) for all \(a, b, c \in S\). As usual, for any \(n \in \mathbb{N}\), the \(n\)-fold sum of 1 is denoted by \(n\).

Call a preorder \(\leq\) on \(S\) good if for all \(a, b, c \in S\):

1. \(n \leq n + 1\) and \(n + 1 \leq n\) for all \(n \in \mathbb{N}\);
2. if \(a \leq b\), then \(a + c \leq b + c\) and \(ac \leq bc\);
3. if \(b \neq 0\), then \(a \leq nb\) for some \(n \in \mathbb{N}\).

Note that (i) says that \(\leq\) induces the natural total order on \(\mathbb{N}\). Note also that \(0 \leq c\) for all \(c \in S\) (by (ii), as \(0 \leq 1\)).

For any good preorder \(\leq\), Volker Strassen [6] defines the asymptotic order \(\preceq\) associated with \(\leq\) by, for \(a, b \in S\):

\[
\forall r : \mathbb{N} \rightarrow \mathbb{N} \forall n \in \mathbb{N}: a^n \leq r(n)b^n \text{ and } \inf_{n \geq 1} r(n)^{1/n} = 1.
\]

Clearly, \(a \leq b\) implies \(a \preceq b\) (as then we can take \(r(1) = 1\)). Since for \(r\) in [2] one has \(a^{n+m} \leq r(n)r(m)b^{n+m}\) for all \(n, m\), we can assume that \(r(n+m) \leq r(n)r(m)\). Hence, by Fekete’s lemma [4], we can assume that \(\lim_{n \to \infty} r(n)^{1/n} = 1\).

Strassen [6] proved, using the Kadison-Dubois theorem ([5], [2,3], cf. [1]).

Strassen’s semiring theorem. Let \(\preceq\) be a good preorder. Then for all \(a, b \in S\): \(a \preceq b\) if and only if \(\varphi(a) \leq \varphi(b)\) for each monotone homomorphism \(\varphi : S \rightarrow \mathbb{R}_+\).

We give five propositions, from which Strassen’s theorem will be derived.

Proposition 1. \(\preceq\) is a good preorder.

Proof. Trivially, \(\leq\) is a preorder containing \(\leq\). So (1)(iii) for \(\preceq\) is direct. To prove that \(\preceq\) is good, we prove (1)(i) and (ii) for \(\preceq\).

Let \(a, b \in S\) with \(a \preceq b\). So there exists \(r : \mathbb{N} \rightarrow \mathbb{N}\) satisfying \(\lim_{n \to \infty} r(n)^{1/n} = 1\) and \(a^n \leq r(n)b^n\) for all \(n \in \mathbb{N}\). We can assume that \(r\) is nondecreasing. Then for any \(c \in S\):

\[
(a + c)^n = \sum_{k=0}^{n} \binom{n}{k} a^k c^{n-k} \leq \sum_{k=0}^{n} \binom{n}{k} r(k) b^k c^{n-k} \leq \sum_{k=0}^{n} \binom{n}{k} r(n) b^k c^{n-k} = r(n)(b + c)^n.
\]

So \(a + c \preceq b + c\). Moreover,

1. If \(c_1, c_2, \ldots \in \mathbb{R}_+\) with \(\inf_n c_n = 0\) for all \(n, m \in \mathbb{N}\), then \(\lim_{n \to \infty} c_n^{1/n} = \inf_{n \geq 1} c_n^{1/n}\).

2. A function \(\varphi : S \rightarrow \mathbb{R}_+\) is a monotone homomorphism if for all \(a, b \in S\): \(\varphi(a + b) = \varphi(a) + \varphi(b)\), \(\varphi(ab) = \varphi(a)\varphi(b)\), \(\varphi(1) = 1\), and, if \(a \leq b\), then \(\varphi(a) \leq \varphi(b)\).

3. Define \(r'(n) := \max_{k \leq n} r(k)\). Then \(a^n \leq r(n)b^n \leq r'(n)b^n\) for each \(n\). To show \(\lim_{n \to \infty} r'(n)^{1/n} = 1\), choose a real \(\gamma > 1\). Choose \(N\) with \(r(k)^{1/k} < \gamma\) for all \(k \geq N\). Choose \(K \geq N\) with \(r(k)^{1/k} < \gamma\) for all \(k < N\). (This is possible, since there are only finitely many \(k < N\).) Then \(r'(n)^{1/n} < \gamma\) for all \(n \geq K\). Indeed, \(r'(n) = r(k)\) for some \(k \leq n\). If \(k < N\), then \(r'(n)^{1/n} = r(k)^{1/n} \leq r(k)^{1/k} < \gamma\) (since \(n \geq K\) and \(k < N\)). If \(k \geq N\), then \(r'(n)^{1/n} = r(k)^{1/n} \leq r(k)^{1/k} < \gamma\) (since \(n \geq k\) and \(k \geq N\)).
\[(ac)^n = a^n c^n \leq r(n)b^n c^n = r(n)(bc)^n.\]

So \(ac \leq bc\). This proves (1)(ii) for \(\preceq\).

To check (1)(i), let \(a\) and \(b\) belong in particular to \(\mathbb{N}\) and \(a = b + 1\). Then, by taking \(n\)-th roots, \(a^n \leq r(n)b^n\) gives \(b + 1 = a \leq \inf_{n \geq 1} r(n)^{1/n}b = b\), contradicting (1)(i) for \(\leq\). So (1)(i) holds for \(\preceq\).

Call a preorder \(\leq\) **closed** if \(\leq\) is good and \(\preceq\) is equal to \(\leq\).

Proposition 2. \(\preceq\) is closed.

Proof. Let \(a, b \in S\) with \(a \preceq b\). So there exists \(r : \mathbb{N} \to \mathbb{N}\) satisfying \(\inf_{n \geq 1} r(n)^{1/n} = 1\) and \(a^n \preceq r(n)b^n\) for all \(n\). We must show that \(a \preceq b\).

It is enough to prove that, for any real \(\gamma > 1\), there exist \(k, t \in \mathbb{N}\) with \(k \geq 1\), \(t^{1/k} < \gamma\), and \(a^k \leq tb^k\). To that end, choose \(n \geq 1\) with \(r(n)^{1/n} < \sqrt{k}\). As \(a^n \preceq r(n)b^n\), by definition of \(\preceq\) there exists \(s : \mathbb{N} \to \mathbb{N}\) with \(\inf_{m \geq 1} s(m)^{1/m} = 1\) and \((a^n)m \leq s(m)(r(n)b^n)m\) for all \(m\). Choose \(m \geq 1\) with \(s(m)^{1/m} < \sqrt{k}\). Then for \(k := nm\) and \(t := s(m)r(n)^m\) one has \(a^k = a^{nm} \leq s(m)r(n)^mb^{nm} = tb^{nm} = tb^k\) and \(t^{1/k} = t^{1/nm} = s(m)^{1/nm}r(n)^{1/n} < \gamma\), as required.

Proposition 3. Let \(\leq\) be closed. Then for all \(a, b, c \in S\):

\[(5) \quad (i) \text{ if } a + c \leq b + c, \text{ then } a \leq b;\]
\[(ii) \text{ if } ac \leq bc \text{ and } c \neq 0, \text{ then } a \leq b;\]
\[(iii) \text{ if } na \leq nb + 1 \text{ for all } n \in \mathbb{N}, \text{ then } a \leq b.\]

Proof. I. First we prove (5)(ii). Assume \(ac \leq bc\) and \(c \neq 0\). Induction gives \(a^n c \leq b^n c\) for each \(n \in \mathbb{N}\), since \(a^0c = b^0c\) and \(a^{n+1}c = a^nac \leq a^nbc \leq b^nbc = b^{n+1}c\).

By (1)(iii), there exist \(r, k \in \mathbb{N}\) with \(1 \leq cr \leq k\). Then \(a^n \leq a^n cr \leq b^n cr \leq kb^n\) for each \(n \in \mathbb{N}\). As \(\inf_{n \geq 1} k^{1/n} = 1\), we know \(a \preceq b\), hence, as \(\preceq\) is equal to \(\leq\), \(a \leq b\).

II. Next we prove (5)(iii). Assume \(na \leq 1 + nb\) for each \(n \in \mathbb{N}\). If \(b = 0\), then \(a = 0\) by (1)(iii), hence \(a \preceq b\). So we can assume \(b \neq 0\). Let \(r \in \mathbb{N}\) satisfy \(1 \leq rb\). So for all \(n \in \mathbb{N}\) we have \(na \leq nb + 1 \leq (n + r)b\). Consider any \(k \in \mathbb{N}\), and choose \(n\) large enough such that \((n + r)^k \leq 2nk\). Then \(n^k a^k \leq (n + r)^k b^k \leq 2nk b^k\). Hence by (5)(ii), \(a^k \leq 2b^k\). As this holds for each \(k \in \mathbb{N}\) and as \(\inf_{k \geq 1} 2^{1/k} = 1\), we know \(a \preceq b\). Hence, as \(\preceq\) is equal to \(\leq\), \(a \leq b\).

III. Finally, we prove (5)(i). Assume \(a + c \leq b + c\). Induction gives \(na + c \leq nb + c\) for each \(n \in \mathbb{N}\), since \(0a + c = 0b + c\) and \((n + 1)a + c = na + a + c \leq na + b + c \leq nb + b + c = (n + 1)b + c\).

Choose \(k \in \mathbb{N}\) with \(c \leq k\). Then \(na \leq na + c \leq nb + c \leq nb + k\) for each \(n \in \mathbb{N}\). Replacing \(n\) by \(nk\), we get \(nka \leq nk(b + k)\), for each \(n \in \mathbb{N}\). So by (5)(ii), \(na \leq nb + 1\) for each \(n \in \mathbb{N}\). Hence by (5)(iii), \(a \leq b\).

Proposition 4. Let \(\leq\) be closed and \(a \not\leq b\). Then there exists a good preorder \(\preceq\) containing \(\leq\) and satisfying \(b \preceq a\).

Proof. Define \(\leq\) by, for \(x, y \in S\),

\[(6) \quad x \leq y \iff \exists c \in S: x + ac \leq y + bc.\]
Then \leq contains \preceq, since if $x \preceq y$, then $x + a0 \leq y + b0$, so $x \leq y$. Also, $b \preceq a$, since $b + a1 = a + b1$. As \leq contains \preceq, the relation \leq is reflexive and satisfies (4)(iii).

To see that \leq is transitive, let $x \leq y$ and $y \leq z$. Then $x + ac \leq y + bc$ and $y + ad \leq z + bd$ for some $c, d \in S$. Therefore, $x + a(c + d) \leq y + ba + ad \leq z + b(c + d)$. So $x \leq z$.

To see (4)(ii) for \preceq, let $x \preceq y$ and $z \in S$. Then $x + ac \leq y + bc$ for some $c \in S$, hence $x + z + ac \leq y + z + bc$ and $xz + acz \leq yz + bc$. So $x + z \preceq y + z$ and $xz \preceq yz$.

Finally, to check (4)(i) for \preceq, suppose that $n + 1 \leq n$ for some $n \in \mathbb{N}$. Hence $n + 1 + ac \leq n + bc$ for some $c \in S$, implying (by (5)(i)) $1 + ac \leq bc$. So $c \neq 0$ (otherwise $1 \leq 0$ would follow) and $ac \leq bc$, implying (by (5)(ii)) $a \leq b$. This contradicts $a \not\preceq b$. □

Proposition 5. If \leq is good, there exists a monotone homomorphism $\varphi : S \rightarrow \mathbb{R}_+$.

Proof. Let \leq be good. By Zorn’s lemma, we can assume that \leq is an inclusionwise maximal good preorder. This implies that \preceq is not larger than \leq. So \leq is closed.

For each $a \in S$, define

(7) \[L_a := \{ \frac{k}{n} \mid k, n \in \mathbb{N}, n \geq 1, k \leq na \} \quad \text{and} \quad U_a := \{ \frac{k}{n} \mid k, n \in \mathbb{N}, n \geq 1, na \leq k \}. \]

Note that if $\frac{k}{n} = \frac{k'}{n'}$, then $k \leq na \iff k'n = kn' \leq mn'a \iff k' \leq n'a$, by (4)(ii) and (5)(ii). Similarly, $na \leq k \iff n'a \leq k'$.

Now for each $\frac{k}{n} \in L_a$ and $\frac{k'}{n'} \in U_a$ one has $\frac{k}{n} \leq \frac{k'}{n'}$, since $k \leq na$ and $n'a \leq k'$ give $kn' \leq mn'a \leq k'n$. Moreover, $L_a \cup U_a = \mathbb{Q}_+$, since for each $k, n \in \mathbb{N}$, at least one of $k \leq na$ and $na \leq k$ holds, as otherwise by Proposition 4 we can augment \leq with $na \leq k$ (because $k \not\preceq na$), contradicting the maximality of \leq. Finally, $L_a \neq \emptyset$ and $U_a \neq \emptyset$, since $0 \leq a \leq k$ for some $k \in \mathbb{N}$, by (4)(iii).

So we can define $\varphi(a) := \inf L_a$. Consider $a, b \in S$. Then $L_{a+b} \supseteq L_a + L_b$, since if $\frac{k}{n} \in L_a$ and $\frac{k'}{n'} \in L_b$, then $k \leq na$ and $k' \leq n'b$, hence $kn' + k'n \leq mn'a + mn'b = mn'(a + b)$, so that $\frac{k}{n} + \frac{k'}{n} = \frac{kn' + k'n}{nn'}$ belongs to L_{a+b}. This implies $\varphi(a + b) \geq \varphi(a) + \varphi(b)$.

One similarly proves $U_{a+b} \supseteq U_a + U_b$, hence $\varphi(a + b) \leq \varphi(a) + \varphi(b)$. So $\varphi(a + b) = \varphi(a) + \varphi(b)$. Similarly, since $L_{ab} \supseteq L_a L_b$ and $U_{ab} \supseteq U_a U_b$ we have $\varphi(ab) = \varphi(a)\varphi(b)$. Finally, if $a \leq b$, then $L_a \subseteq L_b$, hence $\varphi(a) \leq \varphi(b)$. □

Proof of Strassen’s semiring theorem. To see necessity, let $a \preceq b$ and let φ be a \preceq-monotone homomorphism. Let $r : \mathbb{N} \rightarrow \mathbb{N}$ satisfy $\inf_{a \geq 1} r(n)^{1/n} = 1$ and $a^n \leq r(n)b^n$ for all n. Then $\varphi(a)^n = \varphi(a^n) \leq \varphi(r(n)b^n) = r(n)\varphi(b)^n$ for all $n \in \mathbb{N}$. Taking n-th roots and infimum over n, we obtain $\varphi(a) \leq \varphi(b)$.

To see sufficiency of the condition in Strassen’s semiring theorem, we can assume that \leq is closed, as the condition for \preceq implies the condition for \leq. So \leq satisfies (5).

Choose $a, b \in S$ with $a \not\preceq b$. We must prove that $\varphi(a) \not\preceq \varphi(b)$ for some monotone homomorphism $\varphi : S \rightarrow \mathbb{R}_+$.

By (5)(iii), as $a \not\preceq b$, there exists $n \in \mathbb{N}$ with $na \not\preceq 1 + nb$. Then, by Proposition 4, there exists a good preorder \preceq containing \leq and satisfying $1 + nb \leq na$. Next by Proposition 5 there exists a homomorphism $\varphi : S \rightarrow \mathbb{R}_+$ that is monotone with respect to \preceq. As \leq contains \preceq, φ is also monotone with respect to \leq. Moreover, as $1 + nb \preceq na$, we have $\varphi(1 + nb) \leq \varphi(na)$, so $1 + n\varphi(b) \leq n\varphi(a)$, yielding $\varphi(b) < \varphi(a)$, as required. □
References

