A formalization of the Amsterdam
Hypermedia Model*

Jacco van Ossenbruggen, Lynda Hardman, Anton Eliéns

email: jrvosse@cs.vuLnl, eliens@cs.vu.nl
Vrije Universiteit, Fac. of Mathematics and Computer Sciences
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

email: Lynda.Hardman@cwi.nl
Multimedia and Human Computer Interaction, CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Al.1 Introduction

In order to be able to compare the way documents are handled in various hyper-
media systems and to be able to define interchange and interoperability standards
we need to specify the behavior of such systems and their underlying document
model in a non-ambiguous manner.

For hypertext systems, we already have such a non-ambiguous description
in the form of the Dexter hypertext reference model [8] and its formal specifi-
cation in the Z specification language [7]. The Dexter model describes atomic,
link, anchor and composition structures in hypertext documents. This provided
the hypertext community with a way of comparing the documents created by al-
ready existing hypertext systems and to design new systems which followed the
(encompassing) Dexter model more closely.

As the use of dynamic media, such as audio and video, in documents in-
creases, and as linking parts of these documents becomes more common, there
is a need to be able to compare these more complex hypermedia structures. The
Amsterdam hypermedia model (AHM) goes towards describing a hypermedia
document including temporal and spatial relationships among constituent media

*This appendix is a preliminary result of work which will be an integral part of the PhD thesis of
Jacco van Ossenbruggen, expected to appear in 1998 at the Vrije Universiteit, Amsterdam.

215

Appendix 1

elements, and also pays attention to defining the behavior of links among groups
of (dynamic) media items. While Dexter does not specify the internal structure
of the information which describes how a component is to be presented at run
time, the AHM explicitly defines that part of the presentation information which
describes the spatio-temporal layout.

The description of the AHM has, until now, relied on informal descriptions
and its (partial) implementation in the CMIFed system. For the model to be more
useful to the hypertext community it needs to be described in a precise way. A
more formal description of the AHM should identify the exact boundaries of the
model, and facilitate the comparison the AHM with other hypermedia models.

This appendix formalizes the AHM model as described in chapter 3 of this
thesis. The Object-Z specification language [3, 4, 5] is used in order to be able to
present the formal part of the AHM in an incremental and modular way. Object-Z
is an object-oriented extension of Z, the language originally used in [7] to formal-
ize the Dexter model.

The formal specification has been developed in close cooperation with the
author of this thesis. The specification process helped to abstract from the im-
plementation details of CWI's authoring and play-out environment CMIFed, and
to keep the model as generic as possible. Furthermore, the specification process
helped to find inconsistencies and design flaws in earlier versions of the model.
Parts of the model are not implemented in the CMIFed system, and a formal ap-
proach proved to be useful to check especially these parts of the model.

However, the formal specification has not been developed to prove correct-
ness of the model, nor to prove the correct behavior of systems implementing the
model. Instead, the specification gives a precise description of the model, which
facilitates a deeper understanding of the more complex concepts of the AHM,
and allows comparison with other hypermedia models.

The specification given is based upon the description of the AHM as described
in this thesis and differs significantly from the AHM as described in [9].

Al2 Background

The Amsterdam Hypermedia Model provides an abstraction of, and an extension
to, the hypermedia model implemented by the CMIFed hypermedia authoring
environment. In contrast to many of the hypertext systems which formed the
basis of the Dexter model, CMIFed is originally a multimedia system, extended
by hyperlink support at a late stage in its development. This firm background in
multimedia explains the central role of temporal relationships in the composition
mechanisms of the model, the way the behavior of hyperlinks is related to these
structures and the explicit modeling of spatio-temporal layout.

When compared to the Dexter model, the main extensions of the AHM are a
specific semantics for composite components, its notion of link context and ex-

216

AHM in Object-Z

plicitly defined spatio-temporal layout. The formal specification given in the fol-
lowing sections will focus on these three topics.

Composition structures In contrast to the pure abstract composition facilities
of the Dexter model, the AHM defines two specific composition mechanisms:
temporal and atemporal composition.

Temporal composition allows the grouping of media items by placing them
on the same time axis. This type of composition is common in multimedia sys-
tems. Examples include parallel and sequential compositions. By using temporal
composition exclusively, the resulting hypermedia document represents a strictly
linear multimedia presentation. Hyperlinks can only be used to jump back and
forward within the same document, or to start the presentation of another docu-
ment. Temporal composition does not allow the author to create a hyperlink to
parts of the presentation which are optional, and which would not be played if
the user never selected the corresponding link.

To allow the inclusion of optional material, the AHM introduces the notion
of atemporal composition. Atemporal composition allows grouping of elements
which represent alternatives which are accessible by means of hyperlinking. Me-
dia objects grouped within an atemporal composite can be part of the main linear
stream of the presentation if their initial activation state is PLAY or PAUSE. This
state can also have the value INACTIVE. Objects that are initially paused or
inactive require explicit user interaction to be played.

For example, imagine a hypermedia presentation which includes two text en-
tries of a glossary. There are two reasons for not including the entries within
a temporal composite, but to use an atemporal composite, combined with an
INACTIVE initial activation state. Typically, the entries should only be presented
after an explicit request from the user, so both entries are only accessible by link
traversal. If they were included in the document by temporal composition only,
they would always be presented. Another reason for not using a temporal com-
posite is the absence of obvious temporal relations. While there is a clear struc-
tural relation between the two entry components and the glossary component,
there is neither a temporal relation between the glossary and the entry compo-
nents nor a mutual temporal relation between the two entry components. Note
that the entries may be displayed in a pop-up window, and in this case there is no
spatial relationship between the components. The current version of AHM, how-
ever, does not discriminate between spatial and aspatial composition. Temporal
and atemporal composition within the AHM will be defined in section A1.6.

Link context In a hypermedia document an end-user can navigate through in-
formation by following links defined within the document structure. In an envi-
ronment with dynamic media, it becomes more important to define the scope of
the document affected by the link. To be able to define the scope of a hyperlink

217

Appendix 1

Video Sound Text

Parallel composite

Choice composite

Link

< VI L

Anchor

Figure 1: The link between the text atoms may affect the sound and video atoms.

in a declarative way, the AHM introduces the notion of link context [10]. Link
contexts make explicit which part of the document stops playing when a link is
followed from an anchor and how much of the destination is presented.

For instance, in figure 1, the effect on the sound and video presentation of
traversing a hyperlink between two text atoms depends on the link contexts. If
the source context is the third text item, and the destination is the first one, the
sound and video presentation will continue with no interruption. However, if
the source and destination context are defined to be the parallel composite, the
presentation of both the sound and video node will be restarted on link traversal.
The notion of link context is formalized in section A1.5.

Layout specification The Dexter model provides an adequate way to model
structural relationships among the components of a hypermedia document by
means of the composite component.

In the Dexter model, all spatial and temporal relationships among compo-
nents are assumed to be hidden in the presentation specification, arising from the
set PresentSpec. The presentation specification is the main interface between the
storage and the runtime layer. While the internal structure of the PresentSpec is
considered to be beyond the scope of the model, Dexter makes heavy use of this
concept. Each component in the storage layer has a PresentSpec to store presen-
tation information local to the component. Additionally, each link-end specifier
uses a PresentSpec, for instance to store information on how the target should be
displayed in the case a link is followed. Note that the link as a whole — being
a component itself — also has a PresentSpec. To make the situation even more
complex, the runtime layer may add an extra presentation specification in order
to be able to reflect runtime knowledge in the specification of a component.

218

AHM in Object-Z

Yet, even this large number of presentation specifications proves to be insuf-
ficient in some cases [9]. More importantly, however, we think that the ability to
express temporal and spatial relationships between components is too important
to be omitted from a hypermedia reference model. As the use of dynamic me-
dia will increase, comparing the techniques used to express these relationships
becomes an essential part of comparing different hypermedia systems. Addition-
ally, it is useful to have commonly accepted abstraction mechanisms and termi-
nology addressing exactly these topics. For example, one of the main objectives
for developing the HyTime standard was the need within the SGML-community
for standardized methods of (spatio-temporal) alignment. As such, we see com-
mon abstractions for spatio-temporal alignment as a requirement for interopera-
ble hypermedia systems.

Al1.3 Preliminaries

Before we start with the specification of the Amsterdam Hypermedia Model, we
define the Dexter concepts we reuse in the AHM!. Additionally, we need to intro-
duce some basic classes which reflect some (relatively small) differences between
the AHM and the original Z specification of the Dexter model.

Presentation Specifications We explicitly discriminate between the informa-
tion describing temporal and spatial relationships from other presentation infor-
mation (modeled by PresentSpec as in Dexter). Following Dexter, we consider
the inner structure of a PresentSpec beyond the scope of our model. In the follow-
ing sections, spatio-temporal presentation information is modeled by subclassing
AhmPresentSpec. All objects which need such a layout specification, need to store
other presentation information as well. As a consequence, we include a plain
Dexter presentSpec in our AhmPresentSpec to be able to store style information.

[PresentSpec]

AhmPresentSpec

style : PresentSpec

Anchoring The AHM extends the Dexter anchor by adding a style specification
and semantic attributes. In Dexter, anchor style can be modeled in the link-end
Specifier, but by locating the style information in the anchor, multiple link-ends

1We could have used the object-oriented facilities of Object-Z to reuse these parts of the Dexter
specification. To make this appendix a self-contained document, we explicitly copied the required
definitions of the Dexter specification into the AHM specification.

219

Appendix 1

can share the same anchor style for the same anchor, while link-ends may still
override the style specification provided by the anchor. Adding semantic at-
tributes to anchors allows knowledge-oriented applications to store meta data
associated with the anchors, and make anchors subject to querying and other in-
formation retrieval processing. We leave the Dexter notions of AnchorValue and
Attribute/ Value pairs unchanged.

[Attribute, Value]

[AnchorValue]

AhmAnchor

anchorStyle : PresentSpec
attributes : Attribute - Value
anchorValue : AnchorValue

Components We introduce the AhmComponent as a base class for the AHM
atom, link and composite components described in section Al1.6. All three compo-
nent classes differ from their Dexter counterparts in having anchors of the Anchor
type described above.

AhmComponent

attributes : Attribute + Value
anchors : seq AhmAnchor

Specifications Dexter uses the ComponentSpec to indirectly specify a compo-
nent. The AHM also applies the advantages of this indirect addressing mecha-
nism to media items, anchors and channels. In this way, one can refer to these
objects by means of a database query as is already possible for components in the
Dexter model. The specifications arise from the following sets:

[ComponentSpec, MedialtemSpec, AnchorSpec, ChannelSpec]

Resolver functions are needed to map the specifications to the specified objects.
The channel resolver will be introduced in section Al1.4.1. We follow the Dexter
convention of representing the raw media data by the given set Atomic.

[Atomic]

220

AHM in Object-Z

mediaResolver : MedialtemSpec + Atomic
compResolver : ComponentSpec + | AhmComponent
anchorResolver : AnchorSpec + | AhmAnchor

Note that the resolvers no longer return identifiers (such as Dexter’s Uid and
Anchorld). We consider the use of explicit identifiers and accessor functions su-
perfluous since we can use the implicit object identifiers of the Object-Z language.

Al4 Spatio-Temporal Layout

Spatial layout is modeled differently from temporal layout in the AHM. Spatial
layout definitions are defined by Channels. Components can share the same spa-
tial layout by using the same Channel. Temporal layout definitions are modeled
by synchronization arcs (SyncArcs). As noted before, temporal relations also play
an important role in document composition.

Al1.4.1 Spatial relationships

In the AHM, spatial relationships between components are defined by the use of
channels, which are abstract output devices for playing the contents of compo-
nents. When the document is played, channels are mapped onto physical output
devices, so they can be effectively used for resource allocation purposes. Chan-
nels may additionally define other (default) presentation attributes for all associ-
ated components. For example, an author is able to change the font of all captions
in the document, by changing the font of the “caption-channel”, instead of chang-
ing the presentation specification of all individual caption components.

In the model, spatial constraints are supported by the Channel attribute of the
components. Channels are defined by a presentation specification and a resource
allocation information field.

[ResourceSpec]

Channel

parent : ChannelSpec

style : PresentSpec
resourceSpec : ResourceSpec
attribute : Attribute + Value

| channelResolver : ChannelSpec + Channel

221

Appendix 1

A1.4.2 Temporal relationships

Temporal relationships among the components in the AHM are represented by
synchronization arcs. Temporal constraints indicate a preferred delay and allow-
able deviations. The constraints can be ADVISORY, meaning that realization of
the constraint at runtime is desirable, but not strictly necessary, or HARD, mean-
ing that violating the constraint would be an error. The initial values default to
an (advisory) delay of zero.

SyncType ::= HARD | ADVISORY

— TemporalConstraint

preferredTime : R
minimimBeforeTime : R
mazimumAfter Time : R
type : SyncType

__INIT
preferredTime = minimimBeforeTime = mazximumAfterTime = 0
type = ADVISORY

A synchronization arc is defined by references to the anchors of the arc’s source
and destination, followed by the temporal constraint between these components.
Synchronization arcs are used to denote temporal constraints among descendants
of a composite document, and are considered to be part of the composite’s pre-
sentation specification (see also section A1.6.3). Constraints may be defined be-
tween the two intervals associated with the anchors. Note that any of the thirteen
possible temporal relations defined by Allen [2] can be described by at most two
synchronization arcs (see also chapter 3 of this thesis). Additionally, constraints
may be defined on specific points in the document as well. For instance, a syn-
chronization arc may be used to synchronize a video frame with an audio sample.
In that case the anchors resolve to an individual frame or sample.

Note that we explicitly do not overload the Dexter link for specifying tempo-
ral constraints because hyperlinks are considered primarily to describe semantic
relationships (although they can be used for navigation purposes). In contrast,
synchronization arcs cannot be used for describing semantic relationships, nor
for navigation, but are used for describing temporal presentation information.
Both links and synchronization arcs, however, use the same media-independent
anchoring mechanism to address their end points.

222

AHM in Object-Z

__SyncArc

source : (ComponentSpec X AnchorSpec)
destination : (ComponentSpec x AnchorSpec)
constraint : TemporalConstraint

compResolver(first(source)) # compResolver (first(destination))

__INIT
constraint.INIT

Al1l.5 Link Context

The declarative aspects of the concept of link context can be easily formalized by
deriving a new class from the Dexter Specifier. We need a flag which indicates
whether the source context needs to be continued, paused or deactivated:

SourceActivation ::= CONTINUE | PAUSE | DEACTIVATE
The destination context can be activated in a playing or a paused state:
DestinationActivation ::= PLAY | PAUSE
We reuse the Dexter specification for modeling Direction:
Direction := FROM | TO | BIDIRECT | NONE

The presentation specifier for the link end specifier contains both flags, and in-
herits from the AhmPresentSpec:

__ SpecifierPresentSpec
AhmPresentSpec

srcActivation : SourceActivation
dstActivation : DestinationActivation

__INIT
srcActivation = CONTINUE
dstActivation = PLAY

For each link end (i.e. specifier), the context component of the link is specified by
an attribute of type ComponentSpec. The context component is typically a com-
posite containing the link end component. For example, if the source of a link is

223

Appendix 1

an anchor in a subtitle component, the associated context is likely to be the com-
posite containing the subtitle along with the video and sound track component.

__ LinkSpecifier

presentSpec : SpecifierPresentSpec
anchor : ComponentSpec x AnchorSpec
context : ComponentSpec

direction : Direction

direction # NONE

— INIT
context = first(anchor)
presentSpec.INIT
direction = FROM

By default, the specifier is initialized to represent the most simple case, i.e. where
the context component equals the component containing the anchor.

The context’s role (whether it is a source or destination context) depends on
the direction of the associated specifier (FROM or TO respectivly). Actually, the
context can act as both source and destination context (if direction = BIDIRECT)
so in general, the contexts of a link can only be determined at run-time. Note that
Dexter’s use of NONE has been criticized [6] because of its undefined semantics.
In AHM, we disallow a NONF direction.

By making the context itself not a part of the presentation specification, we
claim that context adds structural (and indeed semantic) information to a hy-
perlink and is considered to be more than “just” presentation information. Fur-
thermore, by requiring the context of a link-end to be a (composite) component,
contexts themselves are closely related to the document structure. To promote
anchor reuse, our notion of context is defined on the link level, and not on the
anchor level, as is used in MacWeb [11].

Al.6 Components in the AHM

Keeping the above descriptions of spatio-temporal relationships in mind, we can
now formalize the various components of the AHM. We describe the AHM
atomic, link and composite component, focusing on the structure of the spatio-
temporal information within the components. Additionally, we discuss the dif-
ference between the Dexter and AHM components and their specifications.

224

AHM in Object-Z

Al1.6.1 Atoms

The AHM atomic component mirrors its Dexter counterpart, but makes its spatio-
temporal characteristics explicit. We expect all spatio-temporal arithmetic to be
carried out using real numbers (the associated unit used, e.g. seconds, millisec-
onds, pixels or centimeters, is outside the scope of the model). The duration and
layout information of the atomic component is described in its presentation spec-
ification, since it provides layout information which needs to be interpreted in
the runtime layer.

Presentation Specification of Atoms The AHM atom'’s temporal characteristics
are reflected by its duration (stated by the author or as an intrinsic property of the
media item itself). Its spatial layout is defined by the associated channel. An atom
may modify its channel’s layout definition by defining an (smaller) extent within
the extent defined by the channel. This is reflected by the extent and position
attributes. Style information is modeled by the inherited style attributed.

__ AtomPresentSpec
AhmPresentSpec

duration : R

channel : ChannelSpec
position : R x R
extent : R x R

Anchoring in Atoms The concept of anchoring for atomic components needs
to be extended to include a duration. For continuous media items, the media
dependent AnchorValue can be expected to define the duration of an anchor (for
example, by defining a range of frames for a video fragment). But for static media
such as text, we need to define the interval in which the anchor is active. Addi-
tionally, we have extended the Dexter anchor with attributes to store semantic
information (these can be used for information retrieval or knowledge represen-
tation purposes) and an anchor style presentation specification. These additions
are inherited from the AhnAnchor base class:

AtomicAnchor
AhmAnchor

startTime : R
duration : R

225

Appendix 1

The Atomic Component The AHM atomic component contains the presenta-
tion specification described above, and a list of anchors. The actual media content
is referred to by a system dependent media item reference (this can be a filename,
URL or database query) and a media dependent anchor value denoting which
part of the media item is used. In this way, the model is independent of the gran-
ularity of the server providing the media items (e.g. an author does not need to
create a new image file if only a part of that image needs to be included in the
presentation).

—_AhmAtom
[(Init, attributes)
AhmComponent

presentSpec : AtomPresentSpec
anchors : seq AtomicAnchor
content : MedialtemSpec x AnchorValue

Al.6.2 Links

The link is — following the Dexter model — a component with a sequence of
link-end specifiers derived from Specifier. It can be used to define links of ar-
bitrary arity. Because the AHM does not associate spatio-temporal information
with the link component itself, there is no need to specify a new presentation
specification class for link components. Other style information, for instance to
display the link in a link browser, is specified using a Dexter PresentSpec. Being a
component, links can be end points of other links, so a link needs anchors just as
the other components do. The link component inherits its attributes and anchors
from AhmComponent. Its class schema adds a style (e.g. to display the link in
a link browser), a duration (of a possible transition from source to destination),
a position (the position of the destination relative to the source anchor or mouse
click) and a list of specifiers. Note that the link contains only one duration and po-
sition attribute, which is not sufficient for links containing multiple destinations.
This problem needs to be solved in a next version of the model.

226

AHM in Object-Z

— AhmLink
[(Init, attributes, anchors)
AhmComponent

style : PresentSpec

duration : R

position : R x R

specifiers : seq LinkSpecifier

#specifiers > 2

Constraining the number of end point specifiers to be at least two might prove to
be too restrictive, especially in an open collaborative work environment [6].

A1.6.3 Composites

The AHM discriminates between two types of composition: temporal and atem-
poral. All children of a temporal composite share the same time line and need
to be synchronized using synchronization arcs. In contrast, the children of an
atemporal composite are scheduled on different time lines and cannot have any
temporal relationships.

Anchoring in Composites The AHM addresses the underspecification of an-
chors for composite components [6] by defining the anchor value to be a list of
references to anchors defined by the descendants of the composite. See figure 2.
This can be used to group anchors by building a hierarchical structure of com-
posite anchors. Semantic attributes and style information can be attached to each
anchor.

CompositeAnchor
AhmAnchor

anchorValue : seq(ComponentSpec x AnchorSpec)

Presentation Specification of Composites Because of their different temporal
properties, the two composite types need different presentation specifications.
The temporal presentation specification contains a list of synchronization arcs
defining the temporal relations among the children of the composite. By speci-
fying a duration a user can override the intrinsic duration of the composite (the
playing environment may scale or clip the children in order to achieve this):

227

Appendix 1
Composite component
Comp. Anchor
Composgite component
([

Comp. Anchor

W

Figure 2: Composite anchoring hierarchy

Temporal PresentSpec
AhmPresentSpec

duration : R
syncArcs : seq SyncArc

Since there are no temporal relationships between the children of an atemporal
composite, the atemporal presentation specification does not contain any syn-
chronization arcs. Instead, it specifies the initial activation state of each of the
children. This state can be play, pause or inactive. Inactive children can only
made active as a result of link traversal:

ActivationState ::= PLAY | PAUSE | INACTIVE

AtemporalPresentSpec
AhmPresentSpec

initialStateOfChildren : seq ActivationState

The Composite Component The AhmComposite serves as an abstract base class
for the two composites:

228

AHM in Object-Z

__ AhmComposite
[(Init, attributes)
AhmComponent

anchors : seq CompositeAnchor
children : seq ComponentSpec

A

descendants : P L AhmComponent

Y a : ran anchors e Y avalue : ran a.anchorValue o 3 d : descendants o
compResolver (first(avalue)) = d A
anchorResolver (second(avalue)) € ran d.anchors

Note that the state invariant requires that the anchors of the composite refer to ex-
isting anchors of the composite’s descendants (the formal definition of descendants
is left out for reasons of brevity) The temporal composite extends the AhmComposite
with this presentation specification:

TemporalComposite
AhmComposite

presentSpec : TemporalPresentSpec

The specification of the atemporal composite mirrors the definition of its tempo-
ral counterpart. It requires the specification of an initial state for all its children:

AtemporalComposite
AhmComposite

presentSpec : AtemporalPresentSpec
children = #presentSpec.initialState OfChildren

Al.7 Hypermedia

Finally we define the Hypermedia class. The composition structure in AHM, as in
Dexter, specifies a directed, acyclic graph. The AHM differs, however, by requir-
ing that the graph should have a unique root element. If a graph has multiple
potential root elements, these can always be combined together into a single root
element using atemporal composition.

229

Appendix 1

The first state invariant follows the constraints of the Dexter hypertext formal-
ization in order to ensure accessibility of the components. It states that every com-
ponent should be accessible by the external component resolver (ran compResolver =
components). Furthermore, every component needs to be a descendant of the
unique root component (components = root.descendants).

The Dexter hypertext specification contains several consistency constraints
which can only be ensured in a “closed” hypermedia system. In particular, Dex-
ter requires all links to refer to existing components and anchors, within the sys-
tem. As a result, deleting a component involves deleting all links resolving to
the deleted component. Since these constraints can never be ensured in a open
environment (such as the WWW), they have been left out in the following speci-
fication.

___ Hypermedia

root : AhmComposite
A
components : F | AhmComponent

components = & V components = root.descendants
ran compResolver = components

__INIT
components = &

A1.8 Conclusion

The abstractions concerning the mechanisms used to describe spatio-temporal re-
lationships and the context of a hyperlink are important features of a hypermedia
reference model. The Amsterdam hypermedia model provides extensions to the
Dexter model that address these issues. Previous descriptions of the model gave
only informal descriptions of these abstractions, and so we have expressed them
here as part of a formal description of the model using the specification language
Object-Z. In the process of formalizing the model, we have obtained the refined
version of that presented in [9], as presented in this thesis, where a number of
flaws have been fixed.

In order to formalize the operational behavior of the additions to the storage
layer as presented in this appendix, the formalization of the Dexter runtime layer
needs to be extended The specification of the Dexter runtime layer, as given in
in [7] focuses on the mechanics of link traversal. A specification of the AHM
runtime layer should include the effect of context upon link traversal, and model
the temporal interdependencies between the possible state transitions within the

model.
230

AHM in Object-Z

References

[1]
(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

(11]

ACM. Proceedings of ACM Hypertext 93 (Seattle), November 1993.

James E. Allen. Maintaining Knowledge about Temporal Intervals. Commu-
nications of the ACM, 26(11):832-844, November 1983.

Roger Duke, Paul King, Gordon Rose, and Graeme Smith. The Object-Z
Specification Language: Version 1. Technical Report 91-1, Software Verifica-
tion Research Centre, Department of Computer Science, The University of
Queensland, Australia, April 1991. The most complete (and currently the
standard) reference on Object-Z. It has been reprinted by ISO JTC1 WG7 as
document number 372.

Roger Duke and Gordon Rose. Modelling Object Identity. Technical Report
92-11, Software Verification Research Centre, Department of Computer Sci-
ence, The University of Queensland, Australia, 1992.

Roger Duke, Gordon Rose, and Graeme Smith. Object-Z: a Specification
Language Advocated for the Description of Standards. Technical Report 94-
45, Software Verification Research Centre, Department of Computer Science,
The University of Queensland, Australia, December 1994.

K. Grenbeeck and R. Trigg. Design Issues for a Dexter-Based Hypermedia
System. Communications of the ACM, 37(2):40-49, February 1994.

F. Halasz and M. Schwarz. The Dexter Hypertext Reference Model. In NIST
Hypertext Standardization Workshop, pages 95-133, January 1990.

F. Halasz and M. Schwarz. The Dexter Hypertext Reference Model. Com-
munications of the ACM, 37(2):30-39, February 1994. Edited by K. Grenbaeck
and R. Trigg.

L. Hardman, D. C. A. Bulterman, and G.van Rossum. The Amsterdam Hy-
permedia Model: Adding Time and Context to the Dexter Model. Commu-
nications of the ACM, 37(2):50-62, February 1994.

L. Hardman, D.C.A. Bulterman, and G. van Rossum. Links in hypermedia:
the requirement for context. In Proceedings of ACM Hypertext 93 (Seattle) [1],
pages 183-191.

Jocelyne Nanard and Marc Nanard. Should Anchors Be Typed Too — An
Experiment with MacWeb. In Proceedings of ACM Hypertext '93 (Seattle) [1],
pages 51-62.

231

