Workload-Adaptive Indexing

Erwin M. Bakker & Stefan Manegold

https://homepages.cwi.nl/~manegold/ DBDM/
http://liacs.leidenuniv.nl/~bakkerem2/dbdm/

s.manegold@liacs.leidenuniv.nl
e.m.bakker@liacs.leidenuniv.nl

Databases and Data Mining 2018 m0ﬂ8tdb)

http://liacs.leidenuniv.nl/~bakkerem2/dbdm/
mailto:s.manegold@liacs.leidenuniv.nl

nnnnnn

Physical design problem

Database systems perform efficiently
only after proper tuning...

which indexes to build?
on which data parts?
and when to build them?

DBA without adaptive indexing >f ’

mone

nnnnnn

Physical Design

Sample
Workload

|

-_—

Timeline

mone;lb

nnnnnn

Physical Design

Sample Analyze
Workload Performance

| |

R — e —

Timeline

moneZ/D

nnnnnn

Sample
Workload

|

Physical Design

Analyze Prepare Estimated
Performance physical design

| |

e

Timeline

mone@

nnnnnn

Sample
Workload

|

Physical Design

Analyze Prepare Estimated
Performance physical design

| |

Queries

|

—_— 5

Timeline

mone@

iiiiii

Physical Design

Sample Analyze Prepare Estimated
Workload Performance physical design Queries

| | | |

—_—

Timeline

Complex and time consuming process

mone@

iiiiii

Physical Design

Sample Analyze Prepare Estimated .
Workload Performance physical design Queries

| | | |

e ————————————

Timeline

Complex and time consuming process

7 Dynamic Workloads ,
|
® Very Large Databases ® ,;5,¢0¢40

\CWL (D

IIIIII

Dynamic environments

idle time workload knowledge

mone@

\CWL (D

nnnnnn

Dynamic environments

idle time workload knowledge

some problem cases

moneZ/D

\CWL (D

nnnnnn

Dynamic environments

idle time workload knowledge

some problem cases
® Not enough idle time to finish proper tuning

mone;lb

\CWL (D

nnnnnn

Dynamic environments

idle time workload knowledge

some problem cases
® Not enough idle time to finish proper tuning

® By the time we finish tuning, the workload changes

mone;lb

\CWL (D

nnnnnn

Dynamic environments

idle time workload knowledge

some problem cases
® Not enough idle time to finish proper tuning

® By the time we finish tuning, the workload changes

® No index support during tuning

mone;lb

nnnnnn

Dynamic environments

idle time workload knowledge

some problem cases
® Not enough idle time to finish proper tuning

® By the time we finish tuning, the workload changes

® No index support during tuning

e Not all data parts are equally useful /\

mone@

Adaptive Indexing

For dynamic environments:

Remove all tuning, physical design steps but still
get similar performance as a fully tuned system

How?

(operators, plans, structures, etc.)

DBA with adaptive indexing db ,

monet

Adaptlve Indexmg

no monltormg
no preparation

no external tools

no full indexes

no human involvement

mone@

Adaptlve Indexmg

no monltormg
no preparation

no external tools

no full indexes

no human involvement

Continuous on-the-fly physical reorganization

mone@

Adaptlve Indexmg

no monltormg
no preparation

no external tools

no full indexes

no human involvement

Continuous on-the-fly physical reorganization
partial, incremental, adaptive indexing

mone@

iiiiii

workload analysis: (D
index building | C_

mone@

iiiiii

Indexing Overview

offline indexing

workload analysis - -
index building . . :

mone@

(oo

Indexing Overview

offline indexing

workload analysis: (D
index building | C_

query processingi -

workload analysis: () CHD

index building O ®
query processing; (D

mane@

iiiiii

Indexing Overview

offline indexing

i E offline

workload analysis - -
index building . . :

online

workload knowledge

‘idaptive
>

adaptive indexing idle time

mone@

Cracking the Database Store

Martin Kersten

Stefan Manegold

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
{Martin. Kersten, Stefan. Manegol d}@wi . nl

Abstract

Query performance strongly depends on finding an exe-
cution plan that touches as few superfluous tuples as possi-
ble. The access structures deployed for this purpose, how-
ever, are non-discriminative. They assume every subset of
the domain being indexed is equally important, and their
structures cause a high maintenance overhead during up-
dates. This approach often fails in decision support or
scientific environments where index selection represents a
weak compromise amongst many plausible plans.

An alternative route, explored here, is to continuously
adapt the database organization by making reorganization
an integral part of the query evaluation process. Every
query is first analyzed for its contribution to break the
database into multiple pieces, such that both the required
subset is easily retrieved and subsequent queries may bene-
fit from the new partitioning structure.

To study the potentials for this approach, we developed
a small representative multi-query benchmark and ran ex-
periments against several open-source DBMSs. The results
obtained are indicative for a significant reduction in system
complexity with clear performance benefits.

1 Introduction

The ultimate dream for a query processor is to touch only
those tuples in the database that matter for the production
of the query answer. This ideal cannot be achieved easily,
because it requires upfront knowledge of the user’s query
intent.

In OLTP applications, all imaginable database subsets
are considered of equal importance for query processing.
The queries mostly retrieve just a few tuples without statis-
tically relevant intra-dependencies. This permits a physical

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 2005 CIDR Conference

database design centered around index accelerators for in-
dividual tables and join-indices to speed up exploration of
semantic meaningful links.

In decision support applications and scientific databases,
however, it is a priori less evident what subsets are relevant
for answering the -mostly statistical- queries. Queries tend
to be ad-hoc and temporarily localized against a small por-
tion of the databases. Data warehouse techniques, such as
star- and snowflake schemas and bit-indices, are the primary
tools to improve performance [Raf03].

In both domains, the ideal solution is approximated by
a careful choice of auxiliary information to improve nav-
igation to the database subset of interest. This choice is
commonly made upfront by the database administrator and
its properties are maintained during every database update.
Alternatively, an automatic index selection tool may help in
this process through analysis of the (anticipated) work load
on the system [ZLLLO1, ACKT04]. Between successive
database reorganizations, a query is optimized against this
static navigational access structure.

Since the choice of access structures is a balance be-
tween storage and maintenance overhead, every query will
inevitably touch many tuples of no interest. Although the
access structures often permit a partial predicate evaluation,
it is only after the complete predicate evaluation that we
know which access was in vain.

In this paper we explore a different route based on the
hypothesis that access maintenance should be a byproduct
of query processing, not of updates. A query is interpreted
as both a request for a particular database subset and as an
advice to crack the database store into smaller pieces aug-
mented with an index to access them. If it is unavoidable to
touch Una-interesting tuples during query evaluation, can
we use that to prepare for a better future?

To illustrate, consider a simple query sel ect * from R
where R a <10 and a storage scheme that requires a full
table scan, i.e. touching all tuples to select those of interest.
The result produced in most systems is a stream of quali-
fying tuples. However, it can also be interpreted as a task
to fragment the table into two pieces, i.e. apply horizontal
fragmentation. This operation does not come for free, be-
cause the new table incarnation should be written back to
persistent store and its properties stored in the catalog. For
example, the original table can be replaced by a UNION TA-

Database Cracking

Stratos Idreos
CWI Amsterdam
The Netherlands

Martin L. Kersten
CWI Amsterdam
The Netherlands

Stefan Manegold
CWI Amsterdam
The Netherlands

Stratos.|ldreos@cwi.nl Martin.Kersten@cwi.nl Stefan.Manegold@cwi.nl

ABSTRACT

Database indices provide a non-discriminative navigational
infrastructure to localize tuples of interest. Their mainte-
nance cost is taken during database updates. In this pa-
per, we study the complementary approach, addressing in-
dex maintenance as part of query processing using continu-
ous physical reorganization, i.e., cracking the database into
manageable pieces. The motivation is that by automatically
organizing data the way users request it, we can achieve fast
access and the much desired self-organized behavior.

‘We present the first mature cracking architecture and re-
port on our implementation of cracking in the context of a
full fledged relational system. It led to a minor enhancement
to its relational algebra kernel, such that cracking could be
piggy-backed without incurring too much processing over-
head. Furthermore, we illustrate the ripple effect of dynamic
reorganization on the query plans derived by the SQL opti-
mizer. The experiences and results obtained are indicative of
a significant reduction in system complexity. We show that
the resulting system is able to self-organize based on incom-
ing requests with clear performance benefits. This behavior
is visible even when the user focus is randomly shifting to
different parts of the data.

1. INTRODUCTION

Nowadays, the challenge for database architecture design
is not in achieving ultra high performance but to design sys-
tems that are simple and flezible. A database system should
be able to handle huge sets of data and self-organize ac-
cording to the environment, e.g., the workload, available re-
sources, etc. A nice discussion on such issues can be found in
[6]. In addition, the trend towards distributed environments
to speed up computation calls for new architecture designs.
The same holds for multi-core CPU architectures that are
starting to dominate the market and open new possibilities
and challenges for data management. Some notable depar-
tures from the usual paths in database architecture design
include [2, 3, 9, 14].

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).

You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

In this paper, we explore a radically new approach in data-
base architecture, called database cracking. The cracking ap-
proach is based on the hypothesis that index maintenance
should be a byproduct of query processing, not of updates.
Each query is interpreted not only as a request for a partic-
ular result set, but also as an advice to crack the physical
database store into smaller pieces. Each piece is described
by a query, all of which are assembled in a cracker index to
speedup future search. The cracker index replaces the non-
discriminative indices (e.g., B-trees and hash tables) with a
discriminative index. Only database portions of past inter-
est are easily localized. The remainder is unexplored terri-
tory and remains non-indexed until a query becomes inter-
ested. Continuously reacting on query requests brings the
powerful property of self-organization. The cracker index is
built dynamically while queries are processed and adapts to
changing query workloads.

The cracking technique naturally provides a promising ba-
sis to attack the challenges described in the beginning of this
section. With cracking, the way data is physically stored
self-organizes according to query workload. Even with a
huge data set, only tuples of interest are touched, leading
to significant gains in query performance. In case the focus
shifts to a different part of the data, the cracker index auto-
matically adjusts to that. In addition, cracking the database
into pieces gives us disjoint sets of our data targeted by spe-
cific queries. This information can be nicely used as a basis
for high-speed distributed and multi-core query processing.

The idea of physically reorganizing the database based on
incoming queries has first been proposed in [10]. The con-
tributions of this paper are the following. We present the
first mature cracking architecture (a complete cracking soft-
ware stack) in the context of column oriented databases. We
report on our implementation of cracking on top of Mon-
etDB/SQL, a column oriented database system, showing
that cracking is easy to implement and may lead to fur-
ther system simplification. We present the cracking algo-
rithms that physically reorganize the datastore and the new
cracking operators to enable cracking in MonetDB. Using
SQL micro-benchmarks, we assess the efficiency and effec-
tiveness of the system at the operator level. Additionally, we
perform experiments that use the complete software stack,
demonstrating that cracker-aware query optimizers can suc-
cessfully generate query plans that deploy our new cracking
operators and thus exploit the benefits of database cracking.
Furthermore, we evaluate our current implementation and
discuss some promising results. We clearly demonstrate that
the resulting system can self-organize according to query

W (6'0] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice
on how data should be stored

mone@

iiiiii

Datapase Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored

Q1:

select *

from R

where R.A > 10
and R A< 14

Column A

13
16

mone;:/b

(oo

Datapase Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate
Column A

Q1:
select *

13
16

mone@

W (15,0] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A Cracker column of A
13 4
Q1: 16 9
select * 4 2
from E 9 7 Piece 1:
whe 2 1 | A<=10
aNd R.A< 14 12 3
7 8
1 6
19 13 | Piece 2:
3 12 10<A<14
14 11
11 16 | Piece 3:
8 19 14 <= A
6 14

mone;:/b

W (15,0] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A CfaC,k.‘?.f. columnofA
13 4
Q1: 16 / 9
select * 4 / 2
from E 9 / 7 Piece 1:
whefe R 2 41| Al
ang R.A <14 “4 3
7| 8
.'~ s 6
Piece 2:
10<A<14
Piece 3:
14 <= A

mone;:/b

W (15,0] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A CraC,K‘?.r..QQ'.‘!mf‘..QT.A
13 | 4
Q1: 16 19
select * 4 2
from E 9 7 Piece 1:
wheft R. > 1 | A<=10
angd R.A< 14 12 3
7 8
1 I
19 13 | Piece2:
3 12 10<A< 14
14 11
11 16 | Piece 3:
8 19 14 <= A
6 14

mone@

W (15,0] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A Cracker column of A_......
13

Q1:

select *

o E Piece 1:

e | A<=10

angl R A< 14

Plece 2: .E
10<A<14:
Piece 3
14 <= A

mone@

\CWL J (D

invent

Datapase Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate
Cracker column of A

lllllllllllllllllllllllllllllllll

Q1:
select *

Column A

13
16

Piece 1:
A<=10

IIIIIIIIIIIIIIIIIIII‘:

10<Aé14§

*>
lllllllllllllllllllll

mone@

W [ﬁ/o] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate
Column A Cracker column of A

13

Q1:
select *

Piece 1:
A<=10

IIIIIIIIIIIIIIIIIIII‘:

10<Aé14§

llllllllllllllllllllllllllllllllll

mone@

\CWL J (D

invent

Datapase Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate
Cracker column of A

lllllllllllllllllllllllllllllllll

Q1:
select *

Column A

13
16

4
9
2
7 Piece 1:
1 A<=10
3
8

L O
13 | Piece2:
12 10<A<14
11 .‘,
16 | Piece 3
19 14 <= A
14

llllllllllllllllllllllllllllllllll

mone@

\CWL J (D

invent

Datapase Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate
Cracker column of A

lllllllllllllllllllllllllllllllll

Q1:
select *

Column A

13
16

4
9
2
7 Piece 1:
1 A<=10
3
8

L O
13 | Piece2:
12 10<A<14
11 .‘,
16 | Piece 3
19 14 <= A
14

llllllllllllllllllllllllllllllllll

Result tuples

mone@

W [ﬁ/o] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A Craqk_c_a_r_ columnofA -

e 4 Gain k led

Qi: 16 |9 ain knowledge
N on how data is

select 4 2 ed

9 > | Piece 1: eligklnlrd:

5 1 A<=10

12 3

7 8

1 RN N

19 i [13| Piece2z] S

3 L 112 | 10<A<14i | =

14 : !ll:ll;l ffffffffffffffffffffffff .r:. v é

11 16 | Piece 3 0

8 19 14 <= A

6 14

llllllllllllllllllllllllllllllllll

mone@

W [ﬁ'a] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A Crac}g_e_r_ columnofA ..

13 | 4 .
Q1: 16 F g Gain knowledge
seléct . 4 5 on how data is

9 - Piece 1: organized

5 1 A<=10

12 3

7 8

| R . 8

19 £ 1 13| Piece2z | S

3 c 12 10<A<14: =

: 3

14 !ll:ll;l ffffffffffffffffffffffff .r:. v %

11 16 | Piece 3 it

8 19 14 <= A

6 14

llllllllllllllllllllllllllllllllll

Dynamically/on-the- fIy within the select-operator /\
tdb)

mone

\CWL J (D

invent

Datapase Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Q1:

select *

from R

where R.A > 10
and R A< 14

Column A

13
16

Q1

4

OO 00W-—=NMNOO

13
12
11
16
19
14

Cracker column of A

Piece 1:
A<=10

Plece 2:
10<A<14

Piece 3:
14 <= A

Dynamically/on-the-fly within the select-operator

mone;:/b

\CWL J (D

invent

Cracking Example

Datapase Cracking CIDR 2007

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate
Cracker column of A

Q1:

select *

from R

where R.A > 10
and R A< 14

Q2:

select *

from R

where R.A>7
and R.A<=16

Column A

13
16

Q1

4

OO 00W-—=NMNOO

13
12
11
16
19
14

Piece 1:
A<=10

Plece 2:
10<A<14

Piece 3:
14 <= A

Dynamically/on-the-fly within the select-operator

mone@

W [ﬁ/o] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A Cracker column of A
13 4
Q1: 16 9
select * 4 2
from R 9 7 Piece 1:
where R.A > 10 2 1 A<=10
and R.A< 14 12 3
7 Q1 8
|
1 6
Q2: 19 13 | Piece 2:
select * 3 12 10<A<14
from 14 11
whe@® R.A>7 11 16 Piece 3:
an@ . R.A<=16 8 19 14 <= A
6 14

Dynamically/on-the-fly within the select-operator /\
tdb)

mone

W (ﬁ'a] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A CraC.k.?.f. columnofA .
13 | 4
Q1: 16 19
select * 4 2
from R 9 : 7 Piece 1:
where R.A > 10 2 N A<=10
and R.A < 14 12 .| 3
7 Q1 .| 8
1 I —
Q2: 19 “ 118 | Piece2:
select * 3 112 | 10<A<14:
from 14 L 11 i
whe A RA S 7 1 1 :.,uurlag aaaaaaaa I;) .-i;ggg;-uut.
an§R.A <= 16 8 F 119 | 14<=A
6 | 14

llllllllllllllllllllllllllllllllll

Dynamically/on-the- fIy within the select-operator Fj

monet

W (15,0] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A Craqk_c_a_r_ columnofA - ~ Cracker column of A
13 | 4 4
Q1: 16 19 : 2
select * 4 2 1 .
- . Piece 1: A<=7
from R 9 |7 Piece 1: 3
where R.A > 10 2 il g | A<=T0 6
and R.A < 14 12 ;| 3 7
7 Q1 :| 8 Q2 9
| T A— T 8 | PeeeTcA<0
Q2: 19 : 13 Piece 2: " 13
select * 3 P12 | 10<A<14: 12 | Piece3:10<A< 14
from 14 11 i 11
wheg R.A>7 11 E:‘ 16 Piece 3: .‘E 14 . _
an§R.A <= 16 8 119 | 14<=A 1 | qe | Pecedld<=A<=10
6 | 14 19 |» Piece 5: 16 <A

llllllllllllllllllllllllllllllllll

Dynamically/on-the- fIy within the select-operator Fj

monet

W (15,0] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A Craqk_c_a_r_ columnofA - ~ Cracker column of A
13 | 4 4
Q1: 16 t 19 : 2
select * 4 2 1 .
- . Piece 1: A<=7
from R 9 |7 Piece 1: 3
where R.A > 10 2 il g | A<=T0 6
and R.A < 14 12 ;| 3 7
7 Q1 :| 8 Q2 9
Q2: 19 £ 1 13 | Piece2 13
select * 3 P12 | 10<A<14: 12 | Piece3:10<A< 14
from 14 11 i 11
wheg R.A>7 11 E:‘ 16 Piece 3: .‘E 14 . _
an§R.A <= 16 8 119 | 14<=A 1 | qe | Pecedld<=A<=10
6 | 14 19 |» Piece 5: 16 <A

llllllllllllllllllllllllllllllllll

Dynamically/on-the- fIy within the select-operator Fj

monet

W [ﬁ/o] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

ColumnA Cracker columnofA. Cracker UM Of A ...
13 |4 L] 4
Q1: 16 9 P 2
select * 4 2 P 1 .
. - Piece 1: A<=7
from R 9 |7 Plece 1. & : | 3
where R.A > 10 2 i g | A=10 P g
and R.A < 14 12 | 3 o —
7 Q1 : | g Q2 a 9
1 e it g | Peee27<A<10 ;
Q2: 19 £ 1 13 | Piece2 13
select * 3 L] 12 10<A<14: 12 Piece 3: 10<A< 14
from 14 t] 11 ¥ 11
wheg RA>7 11 E:‘ 16 Piece 3: .‘E 14 . _
an§R.A <= 16 8 119 | 14<=A i |16 | Flecedl4<=A<=16
6 | 14 19 |» Piece 5: 16 <A

llllllllllllllllllllllllllllllllll

Dynamically/on-the- fIy within the select-operator f—\j

monet

W (ﬁﬁ] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

ColumnA Cracker columnofA. Cracker UM Of A ...
13 |4 L] 4
Q1 16 |9 P 2
select * 4 2 P 1 .
. - Piece 1: A<=7
from R 9 |7 Plece 1. & : | 3
where R.A > 10 2 i g | A=10 P g
and R.A < 14 12 | 3 e L e ——— ;
7 Q1 : | g Q2 9 k
1 §:|u-§uu-uuu-------------e’: l"::l::::ﬁ::::HHE?EIEeHC:?EE:HZE:EéE:E_:E‘Iigi:’
Q2: 19 118 Pece : i | 18
select * 3 : | 12 | 10<A<14: : | 12 | Piece3:10<A<14 :
from 14 Lok N 0L 0 (R :
wheg RA>7 11 E:‘ 16 Piece 3: .‘E 14 : _
an§R.A <= 16 8 119 | 14<=A i |16 | Flecedl4<=A<=16
6 | 14 19 |» Piece 5: 16 <A

llllllllllllllllllllllllllllllllll

Dynamically/on-the- fIy within the select-operator Fj

monet

W (ﬁ'a] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored
Physically reorganize based on the selection predicate

Column A Cracker column of A Cracker UM Of A ...
13 L4 L] 4
Q1: 16 1 9 P)
select * 4 2 o 1 -
. - Piece 1: A<=7
from R 9 |7 Plece 1. & : | 3
where R.A > 10 2 i g | A=10 P g
and R.A < 14 12 | 3 el e ————— ;
7 Q1 : | g Q2 9 '
1 é:|-u§uu-uuu-------------e’: l"::l::::ﬁ::::====E?EIEeHC:?EE:HZE:E'EA:::E_H‘IEEH’
Q2: 19 “ | 13| Piece2: i | 13
select * 3 : | 12 | 10<A<14: : | 12 | Piece3:10<A<14 :
from 14 L1 R 0 1 :
ey 4 Iy R [NP 7 & s ‘e
an R'A <= 16 8 E 19 14 <= A ; l‘::llllll1l6lllllIIIIF:II?IC:IeII?I.II‘II?-IITI:IIﬁI:I:II‘!S’:
6 c | 14 : i | 19 Piece 5: 16 < A

L 4 *
lll

Dynamically/on-the- fIy within the select-operator Fj

monet

\CWL J (D

invent

Datapase Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate
Cracker column of A

llllllllllllllllllllllllllllllll

Q1:

select *

from R

where R.A > 10
and R A< 14

Q2:
select *
from
whe® R.A>7
an@ . R.A<=16

Column A

13
16

Q1

Cracker column of A

ll

llllllllllllllllllllllllllllllll

|4 4
19 2
F |2 1
| 7 Piece 1: 3
1 A<=10 6
.| 8 Q@2 ;]9
L0 FOPL. 000 PR O O o
i | 18| Pigce2: : i |13
12 | 10<A<14i i | 12
WL ERSERLN
R I
19 | 14<=A i % |16,
14 ol 19

Piece 1: A<=7

lllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllll

.
ORISR EEIEENEEIEEEEEEEREEEEERERER,

Piece 5: 16 < A

lll

Dynamically/on-the- fIy within the select-operator

e
.

Piece 4: 14 <= A <= 16~5v

Result tuples

/\

mone@

\CWL J (D

invent

Cracking Example

Physically reorganize based on the selection predicate
Cracker column of A

llllllllllllllllllllllllllllllll

Q1:

select *

from R

where R.A > 10
and R A< 14

Q2:
select *
from
whe® R.A>7
an@ . R.A<=16

Column A

13
16

Q1

The more we

Cracker column of A

ll

llllllllllllllllllllllllllllllll

lll

Dynamically/on-the- fIy within the select-operator

crack, the more
we learn

| 4 4

19 2

3 ioe 1. :13 Piece 1: A <= 7

1 A<=10 6

| 3 A }

:> 3 Q2 ‘» 9 '0‘: A

AN Bl ez <A1 g

: | 18| Piece2z i [19 Q.
12 | 10<A<14: i | 12 | Piece3:10<A<14 | |Z

DL R O L ?

o | 2% e) e et |
14 2 19 Piece 5: 16 < A

/\

mone@

W [ﬁ,a] Datalbase Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored

set-up
™ :
(100K random selections 1000 L
random selectivity
random value ranges 100 L
iIn a 10 million integer column ™ -
. / D S
= 10 F:
() [»
=
@ 1}
o
o
(/)] | | |
© :
o 0.1
001 | FuII In
B '.... .' .
0.001 L——l

1 10 100 1000 10000 100000
Query sequence (x1000) . '

monetdb

W [15'0] Datalbase Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored

set-up
"100K random selections
random selectivity
random value ranges
In a 10 million integer column
. J
Py
£
9
2
8 1
o 01
almost no L
o oot [i Full In
initialization overhead R
0.001 L1

1 10 100 1000 10000 100000
Query sequence (x1000) , '

monetdb

W [15'0] Datalbase Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored

set-up
(100K random selections | 1000 B
random selectivity
random value ranges 100 L
In a 10 million integer column m -
. J D -
=< 10k
() n
E '
a
N
o 0.1
almost no .
TR oot [& Full In
initialization overhead [e
0001 Lt v v v v i
continuous improvement t 10 100 1000 10000 100000/\.
Query sequence (x1000)

monetdb

W [1"0] Datalbase Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored

set-up
(100K random selections | 1000 B
random selectivity
random value ranges 100 L
In a 10 million integer column m -
. J D -
=< 10k
() n
£ [
8 1l
a
g R
o 01
almost no :
e el s . 0.01 t
initialization overhead :
o.oo1------'---'-- =
continuous improvement t~ 10100 1000 10000 1000("’,\.
Query sequence (x1000)

monetdb

\CWL J (D

invent

Datapase Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored

set-up

"10K random selections
selectivity 10%
random value ranges

In a 30 million integer column
M

J

Cumulative average response time (secs)

200 T
100 =*, Full Index -

0.01 |

0.004 E Crack -
0.001 It it i |
1 10 100 1000

10000
Query sequence ’/)

monetdb 4

W (ﬁﬁ] Database Cracking CIDR 2007
Cracking Example

Each query is treated as an advice on how data should be stored

set-up 200 —rrrrrm——r e
"10K random selections 100 I, Full Index E
selectivity 10% - _
random value ranges

In a 30 million integer column
e ./

0.01
0.004

Cumulative average response time (secs)

10K queries later, 0.001 P PV

1000 10000
Full IndeXx still has not Query sequence l/)

amortized the initialization costs monetdb

Problems

ngh Variance

1000 Convex Hull S 100000
Individual Points —— -
3 g
m -_— .
£ = 10000
E L
£ 100 ¢ T
3 8 1000}
2 =
i 5
: I 100 ¢
o 10 L T
IS
%E; [
° § 10}
o
o
3
1 8 1

1 10 100 1000
Query Sequence

Low Convergence Speed

\//\\/\WV W\ran '

Indmdual Points ——

Bezier Smoothed

10

100

Query Sequence

‘o

2 Low Robustness
= 20

Q

12}

c

g 15

[

Q

o

> 10

@

S

- O

@

E I

E 0

3 Random Sequential Skewed
Q

<

N

[Felix Schuhknecht, Alekh Jindal, Jens Dittrich: The Uncracked Pieces in Database Cracking, PVLDB Vol. 7, No. 2, Best Paper Award’

Stochastic Database Cracking: Towards Robust Adaptive
Indexing in Main-Memory Column-Stores’

Felix Halim* Stratos Idreost

*National University of Singapore
{halim, ryap}@comp.nus.edu.sg

ABSTRACT

Modern business applications and scientific databases call for in-
herently dynamic data storage environments. Such environments
are characterized by two challenging features: (a) they have lit-
tle idle system time to devote on physical design; and (b) there
is little, if any, a priori workload knowledge, while the query and
data workload keeps changing dynamically. In such environments,
traditional approaches to index building and maintenance cannot
apply. Database cracking has been proposed as a solution that al-
lows on-the-fly physical data reorganization, as a collateral effect of
query processing. Cracking aims to continuously and automatically
adapt indexes to the workload at hand, without human intervention.
Indexes are built incrementally, adaptively, and on demand. Never-
theless, as we show, existing adaptive indexing methods fail to de-
liver workload-robustness; they perform much better with random
workloads than with others. This frailty derives from the inelastic-
ity with which these approaches interpret each query as a hint on
how data should be stored. Current cracking schemes blindly reor-
ganize the data within each query’s range, even if that results into
successive expensive operations with minimal indexing benefit.

In this paper, we introduce stochastic cracking, a significantly
more resilient approach to adaptive indexing. Stochastic cracking
also uses each query as a hint on how to reorganize data, but not
blindly so; it gains resilience and avoids performance bottlenecks
by deliberately applying certain arbitrary choices in its decision-
making. Thereby, we bring adaptive indexing forward to a ma-
ture formulation that confers the workload-robustness previous ap-
proaches lacked. Our extensive experimental study verifies that
stochastic cracking maintains the desired properties of original da-
tabase cracking while at the same time it performs well with diverse
realistic workloads.

1. INTRODUCTION

Database research has set out to reexamine established assump-
tions in order to meet the new challenges posed by big data, sci-
entific databases, highly dynamic, distributed, and multi-core CPU

*Work supported by Singapore’s MOE AcRF grant T1 251RES0807.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.

Proceedings of the VLDB Endowment, Vol. 5, No. 6

Copyright 2012 VLDB Endowment 2150-8097/12/02... $ 10.00.

Panagiotis Karras®

tCWI, Amsterdam
idreos@cwi.nl

502

Roland H. C. Yap*

“Rutgers University
karras@business.rutgers.edu

environments. One of the major challenges is to create simple-to-
use and flexible database systems that have the ability self-organize
according to the environment [7].

Physical Design. Good performance in database systems largely
relies on proper tuning and physical design. Typically, all tuning
choices happen up front, assuming sufficient workload knowledge
and idle time. Workload knowledge is necessary in order to deter-
mine the appropriate tuning actions, while idle time is required in
order to perform those actions. Modern database systems rely on
auto-tuning tools to carry out these steps, e.g., [6, 8, 13, 1, 28].

Dynamic Environments. However, in dynamic environments,
workload knowledge and idle time are scarce resources. For ex-
ample, in scientific databases new data arrives on a daily or even
hourly basis, while query patterns follow an exploratory path as the
scientists try to interpret the data and understand the patterns ob-
served; there is no time and knowledge to analyze and prepare a
different physical design every hour or even every day.

Traditional indexing presents three fundamental weaknesses in
such cases: (a) the workload may have changed by the time we
finish tuning; (b) there may be no time to finish tuning properly;
and (c) there is no indexing support during tuning.

Database Cracking. Recently, a new approach to the physi-
cal design problem was proposed, namely database cracking [14].
Cracking introduces the notion of continuous, incremental, partial
and on demand adaptive indexing. Thereby, indexes are incremen-
tally built and refined during query processing. Cracking was pro-
posed in the context of modern column-stores and has been hith-
erto applied for boosting the performance of the select operator
[16], maintenance under updates [17], and arbitrary multi-attribute
queries [18]. In addition, more recently these ideas have been ex-
tended to exploit a partition/merge -like logic [19, 11, 12].

Workload Robustness. Nevertheless, existing cracking schemes
have not deeply questioned the particular way in which they in-
terpret queries as a hint on how to organize the data store. They
have adopted a simple interpretation, in which a select operator is
taken to describe a range of the data that a discriminative cracker
index should provide easy access to for future queries; the remain-
der of the data remains non-indexed until a query expresses inter-
est therein. This simplicity confers advantages such as instant and
lightweight adaptation; still, as we show, it also creates a problem.

Existing cracking schemes faithfully and obediently follow the
hints provided by the queries in a workload, without examining
whether these hints make good sense from a broader view. This ap-
proach fares quite well with random workloads, or workloads that
expose consistent interest in certain regions of the data. However,
in other realistic workloads, this approach can falter. For example,
consider a workload where successive queries ask for consecutive
items, as if they sequentially scan the value domain; we call this

nnnnnn

Stochastic cracking

PVLDB2012, Stochastic Database Cracking: Towards Robust

Adaptive Indexing in Main Memory Column Stores
Felix Halim, Stratos Idreos, Panagiotis Karras and Roland Y. Chuan

moneZ/D

W) Stochastic Cracking, PYLDB 12

nnnnnn

Workload Robustness

Observation:
Queries define adaptive indexing actions
The kind of queries and the order of queries matter!

Goal:
Maintain adaptive behavior regardless of query input

moneZlD

W ("/B‘ Stochastic Cracking, PVLDB 12
Query patterns

column with 100 unique integers

Good pattern Bad pattern

mone@

nnnnnn

Stochastic Cracking, PVLDB 12

Query patterns

column with 100 unique integers

Good pattern

ql,v>60 N

Bad pattern

mon

N

etdb)

nnnnnn

Stochastic Cracking, PVLDB 12

Query patterns

column with 100 unique integers

Good pattern

q2,v<20 ~N/2

ql,v>60 N

Bad pattern

mon

retdb)

nnnnnn

Stochastic Cracking, PVLDB 12

Query patterns

column with 100 unique integers

Good pattern

q2,v<20 ~N/2
ql,v>60 N
q3,v>90 ~N/2

Bad pattern

mon

tetdb)

nnnnnn

Good pattern

q2,v<20 ~N/2
ql,v>60 N
q3,v>90 ~N/2

N

Stochastic Cracking, PVLDB 12

Query patterns

column with 100 unique integers

Bad pattern

ql, v<I

mon

tetdb)

nnnnnn

Good pattern

q2,v<20 ~N/2
ql,v>60 N
q3,v>90 ~N/2

N
N-1

Stochastic Cracking, PVLDB 12

Query patterns

column with 100 unique integers

Bad pattern

ql, v<I
q2, v<2

mone;lb

nnnnnn

Stochastic Cracking, PVLDB 12

Query patterns

column with 100 unique integers

Good pattern

q2,v<20 ~N/2
ql,v>60 N
q3,v>90 ~N/2

N
N-1
N-2

Bad pattern
ql, v<I

q2, v<2

q3, v<3

moneZ/D

W (ﬁﬁl Stochastic Cracking, PVLDB 12
Query patterns

column size 100M
selectivity 10 tuples

2
1 O | | | | |
a) Random Workload |

-6] | ! 1 I
10 ke
110 10° 10° 10

Query sequence

mone;/D

W [ﬁ,”]' Stochastic Cracking, PVLDB 12
Query patterns

column size 100M
selectivity 10 tuples

2
1 O | | | | |
a) Random Workload |

10'6 l = —

110 10° 10° 10
Query sequence

mone@

\CWL (D

invent

column size 100M
selectivity 10 tuples

Query patterns

I I I I
a) Random Workload |

10 10° 10° 10°*

Query sequence

b) Sequential Workload_z

Scan & -

Sort B

1

10 10° 10° 10°*
Query sequence

Stochastic Cracking, PVLDB 12

mone@

W ("ﬁ]‘ Stochastic Cracking, PVLDB 12
Query patterns

column size 100M
selectivity 10 tuples

2
107 m | | | T | | | 5
a) Random Workload | - b) Sequential Workload -

10° | 1F 3

. i Sort O i

10'6] DD];[&%H] L Dﬁ@m 1

1 10 10° 10° 10* 1 10 102 103 104
Query sequence Query sequence

mone

f d des t V. “
performance degrades to scan @

\CWL (D

invent

column size 100M
selectivity 10 tuples

I I I I I
a) Random Workload |

10° 10° 10*

1 10
Query sequence

performance degrades to scan

b) Sequential Workload_z

Scan & -

Sort B

1

10 10° 10° 10°*
Query sequence

Stochastic Cracking, PVLDB 12

—
o
oo

—l
o
~

—l
()
(&)

of tuples_ktouched
o
(0)]

—
o
AN

—l
o
w

Query patterns

tuples touched by
cracking code

| | | |
o Sequential

@ C'(OXOI(EX§I°)I'I(E31t:(OIOIOIOIOIOIOIOIOIOXOXOIOIOXOXOXOXOXOXOIOIOXOXOXOXOXOXOIOIOXOXOIOZ3

s o
® .\ o
® ..

o
”0‘.

e Random

10 10° 10° 10°
Query sequence

mone;/D

W (bﬁ]' Stochastic Cracking, PVLDB 12
Query patterns

column size 100M
selectivity 10 tuples

tuples touched by
cracking code

102 p | | | F | | | 5 | | | | |
10 a) Random Workload | - b) Sequential Workload - . o Sequential
- - 10 XXX XXX
Scan 2 4 =
1 o
<
&)
-
)
%)
9
S5
=1 -
o 0 o™
oy @
- 1 10t .
3 Sort O E
-6 L 1 ,Dﬁ@ﬂ] 1 3 L L | | |
10 S) o e s 10 2 .3 1nd
1 10 10° 10° 10" 1 10 10° 10° 10° 110 10 10° 10
Query segquence Query sequence Query segquence

mone

f d des t V4 \‘
performance degrades to scan @

\CWL (D

invent

column size 100M
selectivity 10 tuples

I I I I I
a) Random Workload |

10° 10° 10*

1 10
Query sequence

performance degrades to scan

b) Sequential Workload_z

Scan & -

Sort B

1

10 10° 10° 10°*
Query sequence

Stochastic Cracking, PVLDB 12

—
o
oo

—l
o
~

—l
()
(&)

of tuples_ktouched
o
(0)]

—
o
AN

—l
o
w

Query patterns

tuples touched by
cracking code

| | | |
o Sequential

@ C'(OXOI(EX§I°)I'I(E31t:(OIOIOIOIOIOIOIOIOIOXOXOIOIOXOXOXOXOXOXOIOIOXOXOXOXOXOXOIOIOXOXOIOZ3

s o
® .\ o
® ..

o
”0‘.

e Random

10 10° 10° 10°
Query sequence

mone;/D

W (bﬁ]' Stochastic Cracking, PVLDB 12
Query patterns

column size 100M
selectivity 10 tuples

tuples touched by
cracking code

2
107 m | | | T | | | 5
10 ., @ Random Workload o b) Sequential Workload_; 1
Scan 2 4 =
1 O4A7
<10 ®
O
: L
»10° F % -
@ Q..
@
S . e Random ®“d
~10% - %
o %
¢ @
- 1 T10* ol
3 Sort [E
10'6] = E i l DDD];:_E%H] 1 103] i]] |]
110 10° 10° 10" 1 10 10® 10° 10° 110 10° 10° 10°
Query segquence Query sequence Query segquence

mone

f d des t Vi \
performance degrades to scan @

\CWL (D

invent

column size 100M
selectivity 10 tuples

I I I I I
a) Random Workload |

10° 10° 10*

1 10
Query sequence

performance degrades to scan

b) Sequential Workload_z

Scan & -

Sort B

1

10 10° 10° 10°*
Query sequence

Stochastic Cracking, PVLDB 12

—
o
oo

—l
o
~

—l
()
(&)

of tuples_ktouched
o
(0)]

—
o
AN

—l
o
w

Query patterns

tuples touched by
cracking code

| | | |
o Sequential

@ C'(OXOI(EX§I°)I'I(E31t:(OIOIOIOIOIOIOIOIOIOXOXOIOIOXOXOXOXOXOXOIOIOXOXOXOXOXOXOIOIOXOXOIOZ3

s o
® .\ o
® ..

o
”0‘.

e Random

10 10° 10° 10°
Query sequence

mone;/D

W) Stochastic Cracking, PYLDB 12

nnnnnn

Stochastic Cracking

Problem:
Blind adaptation to queries

Solution:
Query driven and data driven adaptation

moneZ/D

W) Stochastic Cracking, PYLDB 12

nnnnnn

Stochastic Cracking

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Crackin asss e

mone@

W) Stochastic Cracking, PYLDB 12

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Cracking eass e

0 low hlgh c2 ci Kk
DDC CEED GEED GEED GEEEEEEEEEED E—

Data Driven, Center (DDCQC):

|. Recursively crack a piece in exactly half until in L2 cache.
2.Then crack for the query bounds.

mone@

W) Stochastic Cracking, PYLDB 12

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Cracking eass e

0 low high ¢2 K
DDC eon» caose aae

Data Driven, Center (DDCQC):

|. Recursively crack a piece in exactly half until in L2 cache.
2.Then crack for the query bounds.

moneZlD

W) Stochastic Cracking, PYLDB 12

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Cracking eass e

0 low high ci K
DDC oS s .

Data Driven, Center (DDCQC):

|. Recursively crack a piece in exactly half until in L2 cache.
2.Then crack for the query bounds.

moneZlD

W) Stochastic Cracking, PYLDB 12

invent

Stochastic Cracking

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Cracking eass e

(2 Kk
DDC _(:1_

Data Driven, Center (DDCQC):

|. Recursively crack a piece in exactly half until in L2 cache.
2.Then crack for the query bounds.

mone@

W) Stochastic Cracking, PYLDB 12

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Cracking eass e

0 low hlgh c2 ci Kk
DDC CEED GEED GEED GEEEEEEEEEED E—

Data Driven, Center (DDCQC):

|. Recursively crack a piece in exactly half until in L2 cache.
2.Then crack for the query bounds.

mone@

W) Stochastic Cracking, PYLDB 12

nnnnnn

Stochastic Cracking

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Crackin asss e

0 low high ¢2 c1 Kk
DDC CEED GEED GEED GEEEEEEEEEED E—

mone@

W) Stochastic Cracking, PYLDB 12

invent

Stochastic Cracking

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Cracking eass e

0 low hlgh c2 ci Kk
DDC CEED GEED GEED GEEEEEEEEEED E—

O low high r2 r1 K

DDR CGEED GEED GEEEEEEEEED GRS G

Data Driven, Random (DDR):
|. Recursively crack a piece randomly until in L2 cache.

2. Then crack for the query bounds. /\

mone@

W) Stochastic Cracking, PYLDB 12

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Cracking eass e

0 low high c2 o1 k

DDC o oo ess esssssssssssss—

0 low high 2

DDR D D GEEEEEEEEEED

Data Driven, Random (DDR):
|. Recursively crack a piece randomly until in L2 cache.

2. Then crack for the query bounds. /\

mone?c-/D

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Cracking eass e

0 low hlgh c2 ci Kk
DDC CGEED GEED GEED GEEEEEEEEEED E—

0 low high

DDR G e

r1 Kk

Data Driven, Random (DDR):
|. Recursively crack a piece randomly until in L2 cache.
2. Then crack for the query bounds.

moneZlD

Stochastic Cracking, PVLDB 12

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]

0 K
Initial Array
0 low high Kk
Cracking eass e
0 low hlgh c2 ci Kk
DDC s B g T —————..

r2 ri Kk

oow_hign
DDR

Data Driven, Random (DDR):
|. Recursively crack a piece randomly until in L2 cache.
2. Then crack for the query bounds.

moneZlD

Stochastic Cracking, PVLDB 12

W) Stochastic Cracking, PYLDB 12

invent

Stochastic Cracking

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Cracking eass e

0 low hlgh c2 ci Kk
DDC CEED GEED GEED GEEEEEEEEEED E—

O low high r2 r1 K

DDR CGEED GEED GEEEEEEEEED GRS G

Data Driven, Random (DDR):
|. Recursively crack a piece randomly until in L2 cache.

2. Then crack for the query bounds. /\

mone@

W) Stochastic Cracking, PYLDB 12

invent

Stochastic Cracking

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

Initial Array

0 low high K
Crackin asss e

0 low high ¢2 c1 Kk
DDC CEED GEED GEED GEEEEEEEEEED E—

O low high r2 r1 K

DDR CGEED GEED GEEEEEEEEED GRS G

mone@

W) Stochastic Cracking, PYLDB 12

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Crackin asss e

0 low high ¢2 c1 Kk
DDC CEED GEED GEED GEEEEEEEEEED E—

O low high r2 r1 K

DDR CGEED GEED GEEEEEEEEED GRS G

0 low high o1 K
DD1C o e ecesssssssssssssE——. G

mone@

W) Stochastic Cracking, PYLDB 12

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Crackin asss e

0 low high ¢2 c1 Kk
DDC CEED GEED GEED GEEEEEEEEEED E—

O low high r2 r1 K

DDR CGEED GEED GEEEEEEEEED D G

0 low high K
DDIC s e

moneZlD

W (bla] Stochastic Cracking, PYLDB 12

nnnnn

Stochastic Cracking

Initial array contains values in [0-k], Query asks for range [low-high]

0 k
Initial Array
0 low high K
Crackin asss e

0 low high ¢2 c1 K

DDC CEED GEED GEED GEEEEEEEEEED E—

0 Iow high k

Kk

DD1C —

mone@

W) Stochastic Cracking, PYLDB 12

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array K

0 low high K
Crackin asss e

0 low high ¢2 c1 Kk
DDC CEED GEED GEED GEEEEEEEEEED E—

O low high r2 r1 K

DDR CGEED GEED GEEEEEEEEED GRS G

0 low high o1 K
DD1C o e ecesssssssssssssE——. G

mone@

\Cogd O
Stochastic Cracking

Initial array contains values in [0-k], Query asks for range [low-high]

0 K
Initial Array
0 low high Kk
Crackin asss e
0 low high ¢2 c1 Kk
DDC CGEED GEED G G G
O low high r2 r1 K
DDR CGEED GEED GEEEEEEEEED GEEEEEEEEEEEEEEEEEEEED G
0 low high c1 Kk
DD1C o e ecesssssssssssssE——. G
O low high r1 k
DDIR o o esssssss—————eSSSSSSSSS——— CGEEEEEEEEEESSS—————

mone@

Stochastic Cracking, PVLDB 12

\Cogd O
Stochastic Cracking

Initial array contains values in [0-k], Query asks for range [low-high]

0 K
Initial Array
0 low high Kk
Crackin asss e
0 low high ¢2 c1 Kk
DDC CEED GEED GEED GEEEEEEEEEED E—
O low high r2 r1 K
DDR CGEED GEED GEEEEEEEEED GEEEEEEEEEEEEEEEEEEEED G
0 low high c1 Kk
DD1C o e ecsssssssssssssSS—— G
O low high Kk
DDIR s e

mone@

Stochastic Cracking, PVLDB 12

W) Stochastic Cracking, PYLDB 12

nnnnn

Initial array contains values in [0-k], Query asks for range [low-high]

0 k
Initial Array
0 low high Kk
Crackin asss e
0 low high ¢2 c1 Kk
DDC CGEED GEED G G G
O low high r2 r1 K
DDR CGEED GEED GEEEEEEEEED GEEEEEEEEEEEEEEEEEEEED G
0 low high o1 K
DDIC e .

ri Kk

0
DD1R

moneZlD

\Cogd O
Stochastic Cracking

Initial array contains values in [0-k], Query asks for range [low-high]

0 K
Initial Array
0 low high Kk
Crackin asss e
0 low high ¢2 c1 Kk
DDC CGEED GEED G G G
O low high r2 r1 K
DDR CGEED GEED GEEEEEEEEED GEEEEEEEEEEEEEEEEEEEED G
0 low high c1 Kk
DD1C o e ecesssssssssssssE——. G
O low high r1 k
DDIR o o esssssss—————eSSSSSSSSS——— CGEEEEEEEEEESSS—————

mone@

Stochastic Cracking, PVLDB 12

78 % UI]IVEI‘MtElt

g
T
O
O
>
Q
0"
=
O
)
R
Q
O
A
-
(@]

—
o
o

L LLLL B gy P o 1o)
a) Sort @U E D) Sort @f(*

______ O Crack ; ~©--Crack _.
I ,@ |l L /@]
10 F @ =+ F @ E
f R o

[) {1 F @
DA DDA B DD DR [LD DA ‘ BDDDA L

l/

Cumulative Response time (secs)

N vvgvvvvyevd | o7 jol NNV
~~ —4A-DDC 1 7 —4&-DDIC
O ---57--- DDR 1 ¢ --v -DDIR
0.1 @ T T BT T T I
1 10 100 1000 1 10 100 100(
Query sequence Query sequence

mone@

nnnnnn

Hybrids

PVLDB11, Cracking what’s marged. Merging what’s cracked.
Adaptive Indexing in Main-Memory Column-Stores
Stratos ldreos, Stefan Manegold, Harumi Kuno and Goetz Graefe

mone@

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

mone@

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

- mone@

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

- mone@

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

[sort]

- moneZlD

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

[sort][sort]

- moneZlD

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

(‘sort) sort) 'sort |

- moneZlD

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

/M
T
O
7p
—
)
=
O
7p
—
)
e
P
O
/p
—
)
=
O
7p
— —

mone@

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

binary
search

[sortj[sort][sortj[sort]

moneZlD

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

[sortj[sort][sortj[sort]

Incremental sort via external merge sort steps

select(A,50,100)

binary
search

binary
search

mone@

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

binary
search

binary
search

binary
search

[sortj[sort][sortj[sort]

mone@

—yorids PVLDB 2017

‘Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

binary
search

binary
search

binary
search

binary
search

[sortj[sort][sortj[sort]

mone@

—yorids PVLDB 2017

‘Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A, 50 I OO)

binary
search

binary / ;
binary

search L
monetdb)

[sortj[sort][sortj[sort]

—yorids PVLDB 2017

‘Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A, 50 I OO)

binary
search

binary :“E ------ 50
search g
binary 100

search

binary
search

[sortj[sort][sortj[sort]

N mone@

—yorids PVLDB 2017

‘Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A, 50 I OO)

binary
search

binar)/ 'c:.‘l..""'.‘: 50
search _,1_9, g

O:} :
binary ®:C 000
search 5

binary
search

[sortj[sort][sortj[sort]

N mone@

—yorids PVLDB 2017

‘Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A, 50 I OO)

binary
search

binar)/ 'c:.‘l..""'.‘: 50
search _,1_9, g

O:} :
binary ®:C 000
search 5

binary
search

Initial Final ,,,o,,‘e’,db) '

[sortj[sort][sortj[sort]

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50, IOO) select(A,55,70)

))
T
o
7
___/
C .
'g t: IS 50
7 9
___/ -
— 8
- 100
o
N
___/
—
T
o
7
- U

Initial Final ,,,o,,‘e’,db) |

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50, IOO) seIect(A 55,70)

lllllllllll

[sortj[sort](sortj[sort]
__Sorted
S &
S &
w o
0 3
5
0O =
R <

Initial Final ,,,o,,‘e’,db) |

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50, IOO) seIect(A 55,70) select(A,150,170)

llllll
ot Yo
n

[sortj[sort][sortj[sort]
__Sorted
S &
S &

Initial Final ,,,o,,‘e’,db) |

—yorids PVLDB 2017

Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50, IOO) seIect(A 55,70) seIect(A 150,170)

lllllllll
L 4 *
[]

[sortj[sort][sortj[sort]
..Sorted
s s
L
s s

Initial Final monetdb)

—yorids PVLDB 2017

‘Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50, IOO) seIect(A 55,70) seIect(A 150,170)

SR :
£ | binary L A ;
O . ; ' . .
» | search : . : : : ,
—]]]
) . o o F _
E . -cs.g‘i) g) E g .
® | search Q: 5 E : g
— HEDE) P
£ | binary %LH00 2H000 eil00
® | search A L A
_
) .
€ | binary
o
» | search

—_

Initial Final monetdb,

—yorids PVLDB 2017

‘Adaptive Merging

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50, IOO) seIect(A 55,70) seIect(A 150,170)

(N A A .
£ | binary L A ;
O . ; ' . .
» | search : . : : : ,
— : : : : : '
) L. o b RPPEIITS)
§ | binary gie=i50 @50 i 3350
® | search Q: 5 E : g
— HEDE 1@ P
£ | binary %LH00 2H000 eil00
® | search A L A
)] ! 5 E ! nnranns,
= binary L L ;:8‘5|50
) (@] search - L A==2170

)

Initial Final monetdb,

W) Hybrids PVLDB 2011

invent

Performance Analysis

~ -]
(10K random selections :
selectivity 10% -
random value ranges 10 -
In a 30 million integer column i
\ J o — Scan
O
G(h) 1 - AT .
) .
o0 BN
o
Cl>) 01 n '*.,"‘-t‘ =
<
| C|_>) i ‘#."";,‘:'0.. S O r.t -
= 0.01 | éM k-
= L e rack .
= 0.004
D)
U 0.001 ! bl el ol ol

1 10 100 1000 10000 ’ \
Query sequence monert db

W) Hybrids PVLDB 2011

invent

Performance Analysis

set -up | - | _
(10K random selections h
selectivity 10%
random value ranges -
In a 30 million integer column
8 g —~ - — Scan
O
\GU%/ 1 - 1N 3 .
O .
oY0) BN
o
CI>) 01 - "‘1»‘ -
<
| C[_>) i a'."'-;,‘:’o.. S O r.t -
= 0.01 éM k-
= L e rack .
= 0.004
D)
U 0.001 U tl il s ol

1 10 100 1000 10000 ’ \
Query sequence monert db

W) Hybrids PVLDB 2011

invent

Performance Analysis

set -up

‘10K random selections
selectivity 10%
random value ranges

In a 30 million integer column
. J

0.1

0.01

o

o

o

~
I

umulative Average (secs)

1 10 1 OO 1000 10000 ’
Query sequence monetdb

C
O
o
S
—h

W) Hybrids PVLDB 2011

invent

Performance Analysis

set -up

(10K random selections
selectivity 10%

random value ranges

In a 30 million integer column

N JJ /(})\ :A\\
@) oo N
A 1F .
AM: high init overhead ¢
but fast convergence S 01 L
X
(D) _
2
B 0.01
) -
2 0.004
D)
SN N e E———

1 10 1 00 1 OOO 1 OOOO ’
Query sequence monetdb

W) Hybrids PVLDB 2011

invent

Performance Analysis

set-up
1OK random selections
selectivity 10%

random value ranges
In a 30 million integer column

- J o ~
s :
Q 1 F

AM: high init overhead ¢

but fast convergence g 01 L
¢

. Y

Crack: low init overhead £ (o1 |

but slow convergence 2 0.004
D)
U 0.001 Ll

1 10 1 OO 1 OOO 1 OOOO ’
Query sequence monel’db

Questions

 Adaptive merging in column-stores?
 Adaptive merging Vs Cracking?

 Can we learn from both AM and Cracking?

[6/) mone@

IIIIII

Questions

Adaptive merging and Cracking are extremes

What is there in between?

mone@

‘iii-) Hyorids PVLDB 2071
B Crack-Crack

vary initialization and incremental steps taken

mone;/D

‘iii-) Hyorids PVLDB 2071
B Crack-Crack

vary initialization and incremental steps taken

_) mone@

‘iﬁ-) Hyorids PVLDB 2071
B Crack-Crack

vary initialization and incremental steps taken

select(A,50,100)

- mone@

‘iii-) Hyorids PVLDB 2071
B Crack-Crack

vary initialization and incremental steps taken

select(A,50,100)

e N e
v’
O
®
L -
\\©
__

mone@

‘iii-) Hyorids PVLDB 2071
B Crack-Crack

vary initialization and incremental steps taken

select(A,50,100)

))
=X
o
©
—
L O
=X
o
©
L
(&

—

mone@

‘iii-) Hyorids PVLDB 2071
B Crack-Crack

vary initialization and incremental steps taken

select(A,50,100)

—
(¢)
3
©
| -
O
(x)
3
©
-
2
(x)
T
©
o
O,

___/

mone@

‘iﬁ-) Hyorids PVLDB 2071
B Crack-Crack

vary initialization and incremental steps taken

select(A,50,100)

[crack] [crackj [crack] [crackj

mone;lb

‘iﬁ-) Hyorids PVLDB 2071
B Crack-Crack

vary initialization and incremental steps taken

select(A,50,100
) (x) S
(&) : I
o]
O \ i
(X]
§ \ 250
5| S0
(X) ;o
© L
_J & . P
monetdb)

‘iﬁ-) Hyorids PVLDB 2071
B Crack-Crack

vary initialization and incremental steps taken

select(A,50,100

1
IIIIIIII
[]

[crack] [crackj [crack] [crackj
S &

o MOIQD

‘iﬁ-) Hyorids PVLDB 2071
B Crack-Crack

vary initialization and incremental steps taken

select(A,50,100

llllllll
]

not sorted
o
o

—
()
T
©
| -
\\°
()
T
©
-
2
()
T
©
o
)
(%)
%)
©
-

O

o MOIQD

ﬁﬁ-) Hyorids PVLDB 2011
-+ Grack-Crack

vary initialization and incremental steps taken

select(A,50,100) select(A,55,70)

(x) L
(&) : :
® : :
: ;
\°_ D
(X r- B
0 £)50
5 Han}
(X) 8
(& 8',. :’.'IOO
m ‘: llllll ‘.
pad : :
) :
R4 : .
(&) : :
(1] : I
o : ;
) O R ’ \
monetdb

‘iﬁ-) Hyorids PVLDB 2071
-+ Grack-Crack

vary initialization and incremental steps taken

select(A,50,100) select(A,55,70)

-

£ :50 350

O: i - | :

H : E : crack
e ' . =

8:'.:i.':l 00 ".:.......'"'I 00

[crack] [crackj [crack] [crackj

o o MOIQD

ﬁﬁ-) Hyorids PVLDB 2011
B Crack-Crack

vary initialization and incremental steps taken

select(A,50,100) select(A,55,70) select(A,150,170)

a () : : ;

(&) : ; :

(1] : ; :

- : ; :
e, D .
(X) B i e,
= 2 ek
e) " : : ¥

L4 . . .

O Q2100 i}—100

m yeRLERL .! :------:

b ' : : !
° :

x . ! . '

(&) ! : : ;

© : I : ;

e : : : ;

%) S S r =

monetdb

ﬁﬁ-) Hyorids PVLDB 2011
-+ Grack-Crack

vary initialization and incremental steps taken

-- -
- S N
]

select(A,50,100) select(A,55,70) select(A,150,170)

.
A\
1

not sorted
o Ul
S o
2----(-;-:
S o
o U
S o

[crack] [crackj [crack] [crackj

_____ _____ _____ /\
monetdb,

—yorids PVLDEB 2011

Crack-Crack

vary initialization and incremental steps taken

select(A,50,100) select(A,55,70) select(A,150,170)

crack

crack

crack

crack

[crack] [crackj [crack] [crackj

..... . e RLLEEN
1

I , 1
" 1

not sorted
o Ul
S o
2----(-;-:
S o
o U
S o

] L 170 N
monetdb)

W) Hybrids PVLDB 2011

nnnnnn

Adaptive Indexing

< g high — overhead - low -+
O - -z @
<) 8 |
| £ Sort| HSS | HSR | HSC || o
S| & O
2| 2 Radix| HRS | HRR | HRC || &
o | 2 5
° | £ Crack | HCS | HCR | HCC 'S
5 Sort | Radix | Crack ;'

final partitions 2

B

fast — convergence — slow //‘j >

monetdb

iiiiii

low — overhead — high

—yorids PVLDEB 2011

Adaptive Indexing

initial partitions

high — overhead - low

SOrt Radix

fast — convergence — slow

HSS | HSR | HSC
HRS | HRR | HRC
HCS | HCR | HCC

rack

final partitions

slow — convergence — fast

mon

tetdb)

iiii

low — overhead — high

—yorids PVLDEB 2011

Adaptive Indexing

high — overhead — low

L -
A O
£ Sor HSR | HSC
(4v)
= Radix | HRS | HRR | HRC
€ Crack | HCS | HCR | HCC
Sort | Radix | Crack

final partitions

B

fast — convergence — slow //j >

—€

slow — convergence — fast

monetdb

W) Hybrids PVLDB 2011

nnnnnn

Adaptive Indexing

high — overhead — low

i - N 4(7)
SO e — s
<) .0 |
L 1E Sort| HSS | HSR | HSC || o
© fye] -
£ | = Radix | HRS | HRR | HRC || &
o | .8 S
> e S
2 | £ Crack | HCS | HCR Y§
3 Radix | Crack ;'

final partitions 2

B

fast — convergence — slow //j >

monetdb

W) Hybrids PVLDB 2011

iiii

low — overhead — high

Adaptive Indexing

high — overhead — low

& - [z
| S |
= Sort] HSS | HSR | HSC || o
g S
= Radix | HRS | HRR | HRC || ©
e O
_ >
£ Crack HCR | HCC Y§
Sort | Radix | Crack ;'

final partitions 2

B

fast — convergence — slow //j >

monetdb

("ﬁ] Ad aPtl\/e I n d eX| N g . Hhorids PVLDB 2011

100 F e 8)

T
X

0.1 F + Scan

| < Cracking
001 £ * Adaptive Merging
0 [0 Full Index

0.001

Response time (secs)

0.0001

1e-05

100

10

o
-

| ¢ Crack Crack
001 L © Crack Radix
' -+ Crack Sort

o
o
o
—_—
||!

Response time (secs)

0.0001 ¢

+ + t4++ Tt
N L

R R =H =4 Al
i Iy Bl o= il S .

+ ++ + + _E*-H# R
feO5F T oty T

)
O
&
Py 0.1
E
o) 0.01
(2]
[
S
o 0.001
@
o
0.0001
1e-05
100
10
—_ 1
O
&
; 0.1
E
o) 0.01
(2]
C
o
o 0.001
o)
oC
0.0001
1e-05

¥ ¥
T -+--lr_+_ Ftﬁ;k#ﬁ%t&ﬁﬁ%% iy ,m_ Skt

,,, T e A i i s ih it
V. : . ’ : ‘ _

Scan

Cracking
Adaptive Merging
Full Index

[¢ Crack Craqk

| © Crack Radix

- + Crack Sort

T T T T o 2 AR =
B + + i
i + + + 4 n + | + o+ + e+ T]
e + R R + -- +++ + ————— _l:l-l__lj't'_'_ -H']'%M%w_ -------- :-::';:?WLN“HJ , + TN + D —

I L L L L L L L L I L L L L L L L L I L L L L L L L L I

—yorias PVLDEB 2011

[

invent

100

10

— 1
A
&

Py 0.1
E

o) 0.01
(2]
[
S

o 0.001
@
o

0.0001

1e-05

100

10

—_ 1
O
A

; 0.1
E

o) 0.01
(2]
C
o

o 0.001
o)
oC

0.0001

1e-05

—yorias PVLDEB 2011

. o a)

Scan

Cracking
Adaptive Merging
Full Index

L1 X X +

Adaptlve Indexing

Hybrid:
+ Crack Crack
o Crack Radix
+ Crack Sort

(@ Adaptive Indexing

100

10

0.1

0.01

0.001

Response time (secs)

0.0001

1e-05

100

10

o
-

0.01

o
o
S
—h

Response time (secs)

0.0001

1e-05

—yorias PVLDEB 2011

=+ Scan 0 a0 X X% o PR EANNREVE= et
| < Cracking :

| * Adaptive Merging x oo

[Full Index

| ¢ Crack Crack
[© Crack Radix
-+ Crack Sort

D Adaptlve Indexing "~

| — 1
P00 =)
->K -
L]
O -
X
— 1
A
&
; 01 F +
= | x Cracking
= | x Adaptive Merging
§ 0.01 [O Full Index
8_ B
o 0.001
(O] 5
m -
0.0001
1e-0
100 F QA I
10 —$ """""""""" o -
'(,s_c_am_______Q_____
1 b
3 [
&
Py 0.T°F ybrid:
= [e 8rack Crack
- " O Crack Radix
§ 0.01 F | Grack Sort
o
D 0.001 oo
(]
o
0.0001
1e-05

D Adaptlve Indexing "~

| — 1
P00 =)
->K -
T y
X
— 1
3
3
Py 0.1 F +
= | < Cracking
= | % Adaptive Merging
§ 0.01 & FullIndex
8_ 5
o 0.001
) 5
m =
0.0001
1e-0
100 F QA I
10 ‘é """""""""" s S e B
scan) % M . -o-9-—- 9------- T]
1 +.S O -
&) I o * 5 ©®’ g + n i
:(.Di 0 id © o* “” . 'QQQQ ©’$ ® J
. = riQ:. T e SV 8L L (OGO T e
GE) * C)r/ack Crack , ‘]
5 o0o0i L © GrackRadix 95 SRS AR MRS 22, n
@ ' [+ Crack Sort R D ¢]
s _ o
@ 0.001 o g
O L
m =
0.0007 e QR o
- —+ +
leO5 T iy A
]

W (ﬁﬁl Hyorids PVLDEB 2017
Adaptive Indexing

Initialization Vs convergence tradeoff

Full Index

<
&)

=

O

25

5

O <

> O

% % 5 o Adaptive Merging . Bad Hybrid

Iz =

= GEJ 2 Database

= O Crackin Scan
;v c8omns 3
O

none 1 never
How many queries before the index fully supports ,

a random query? monetdb,

W (I‘ﬁ], Hyorids PVLDEB 2017
Adaptive Indexing

Initialization Vs convergence tradeoff

-

5 Full Index

S 10

25

oS

O

> 3

O - - Bad Hybrid
S g, 5 a Adaptive Merging °
o=

= O

s €

1%

O

@

How many queries before the index fully supports

a random query? monetdb,

W ("I”]' Hyorids PVLDEB 2017
Adaptive Indexing

Initialization Vs convergence tradeoff

Full Index

<
&)

f=

O

25

TG

O

>3

% % 5 o Adaptive Merging . Bad Hybrid

» £

- GEJ 2 Database

= O Crackin Scan
;v c8omns 3
O

none 1 never
How many queries before the index fully supports ,

a random query? monetdb,

W ("I”]' Hyorids PVLDEB 2017
Adaptive Indexing

Initialization Vs convergence tradeoff

Full Index

<
&)

Bad Hybrid

memory scan effort

Database

racking Scan
e

Cost of first query relative to in-

none never
How many queries before the index fully supports ,

a random query? monetdb,

Stochastic Database Cracking: Towards Robust Adaptive
Indexing in Main-Memory Column-Stores’

Felix Halim-

ABSTRACT

Adacistnerey applivaions st cloniti: fambaecs oot kol

hereatly dynamic data stocags

e charucrerized by v ehnlwx\ﬂsfﬂmnm m they have lit-
devole on physical design; end (b) there

itle, if any, a priori workload knowledge, while the guery tnd

dlata workloac keeps changing dynamically. In aick esvimnments,

to index huilding and maintenance cannat

el pivposti-si s iakesion tee ok

e sdle system bme to

AR e
&)

Stratos Idreos!
“National University of
{halim, ryap}@comp nus.edu_sg

Panagolis Karras®

Singapore “CWI, Amsterdam
nl

enviranments. One of the major challes ges is to create simple-to-

use and fex h ¥ that

HRoland H. C. Yap*

“Rutgers University
ruigers edu

Destim. Good

choices happen up front, ass
sl v, Wl S
mine the apy

rﬂbazcmchne has
phy!

auery processing, Cracking
adapt

Siver workinad-robesiness: ey

aanice the dute witkin cach query's rasge, cven §
saccensive expersive opersticna with minimal indexing beseht

5 thin g, mefmkocn snchao
o = indeing Stochaic cacking
iy i bt e o B e i
s resilience and awoids performance etlenecie

® appreach to

Eshase craccing while al the same time 2 performs well with diverse

realistic warkloads.

1. INTRODUCTION
Database resesrch has st out

e dannhases, b

“Work sipprrted by Singapoe’s M

Fermission 0 make
perscoal o classeoom use is gra

e i i U (il i
eepubliak, 10 pest
permis s fer, Aclest

e veastis Th 18 irmnatieny
At T e 2012 basbal

esinign o the VIDi Endowra
Ot 50 A VLIS Eadowenen

skt cootimmaly unddnlcmdumlty
1 fhe werkload at hard, sitsout Ruman interventio
Indeses are built incrementally, adaptively. ad on derrand. Nev
theless, as we show, existing adaptive ndexing methods fail to de-
perform much hetter with random
Wworkioads then with others. This fexilty Gerives from the inelasiic-
Sty with: whick these approaches inicrprer cach query as a binton

2 reexamine established assump-
tions in ander to meet Ihe mew muHuu:e: posed by big data. sci-
e hiy tributed, and mult

wople, in scientific datbases new

[

different ph

Ed

3 such cases: (a) the worcloud

e crackng, 3ty LU S e

cal design problem was proposed, nemel;
Cracking infroduces the nalio af

choices in its decision-

have nest desphy cue

terpret queries as a hint on how © enganize the data store. They

have sdonted a simple intemretaton. in which a select operaior s
taken 1o descrive a range of the cata that a discriminarive cr

¢ P index should provide easy sccess to for future

der of the duta remains non-indered unil & guery exprzsses e

el
Physical performance in catabase systems largely
relis on proper fining ind physical devign, Typicaly, all e

Jedht 3 apcestary i e
turing actions, while idl: lime is muuu:ﬂ in
arder to perforn those sctions. Modere
HUI-BINIAE 10515 1 GUTY Ut these Sieps, €2 (6,5, 13, 1 ZM
mamic Environments. Howewer, in yzamic cavironments,
wockboad knowiledge and il tine are scance
data arvives e a deily or even
houely besis, while query patterns faliow an exploratary paih e the
i the

saved; e & ot i il ks el i povpecers

Traditiona indexing presens three fncarmental weaknesszs in
ave charged by the fme we
finish turing; (b) there may be no et ﬁmn tuning properly:

Tcemly, o neis opmeoch tn the phys-

and oo demand adptve indexing. Thenzby, indeass are incremen-

[16), saintenance under updates [17], and arbiteacy suiti-attesbule
queries [18). [addition, rmors recestly these idens have boen o3~
terded to expleit o purtition/merge -lke logic (19, 11, 12].
Werldond Bubustness, Neverthelass, existing crasking sehames
ci the passicular wey in

Stratos Id
CWI Amsterdam
The Netherlands

tos. Idreos@ecwi.nl

systems rely on

the patern: ob-

enizotion, i

ly database crocking [14).

ich they in-

queries: the remain-

Merging What’s Cracked, Cracking What’s Merged:
Adaptive Indexing in Main-Memory Column-Stores

Stratos Idreos®
Wi, Amsterdam
{stratos.idrens, slefan manegold }@ewi.nl

ABSTRACT

Adaptive inde !

s chamscterized hy the partisl creation and re.
fincment of the index 1s sie effects of query exccuion. Dynimis
or shifting workloads may benefit from prefiminary index sruc-
tures and specific key queried
— withost incurring the cost of full index construction. The costs
and beneiits of adsptive mndexing lechmigues should therefore be
compered in tems of iilizadon costs, e ovetesd lmposed
upon: queries, aed e e at which the indes convenses o a stax
that is Fully-refieed for a particular workdosd somponert.

Stefan Manegold'

Harumi Kuno- Goetz Graefe*
Labe, Palo Alta
{harumi kuno, goetz graefe} @hp.com

Baszd on -
ing. which are two techriques for adiptive indexing, we seck a
hybric technigue that has a low iritialization cost and aka coz-
verges rapidly. We find the srengibs snd weaknesses of datzbase
cracking and adapive mergmg complmentary. One has 4 rels-
favely hign inigalizaticn cost bus Converges rapicly. The Siner has
& low initalicaton cost bat cosverzes relatively slowly. We ane-
Iyee the sources of their repective streagtas snd explors the spuce
of hybrid techniques. We have designed and implemented a fam-
ily of hybrid algorithms in the context of a D-ﬂmrm-\lzt: datshase
system. Qurcxp:rm:nu campurs hex behasior against datchase
crack zdaphv: crging, as well as agiinst both pie-o
ﬁlll md.::x Jookup and scan of unordered dutl We show that the
Bybrids sigificanily mprove over past while at least
1. o ekl o weay oo 1 e Ml prefeeansmce™ 1
terass o bolk overhcad per guery and conergence 1o a find state.

1. INTRODUCTION
Contemporary index selection toals rely on menitoring
requests and their execution pluns, HCCASINAIY MVKINE creation

2L o e the Trst e, Ta ey sthizwine, 1
st ik, csjubes prioe spocti

Proceediagsof the VLDE Eniovres, Vol i, Ko.
s B 210 ST 106... S L0,

£
- Full Index
is
5%
i
Is Adatn Viaging 398 Hrbrie
ES
iz, Daiabsse
27 L rideal Hybrid otz IS
& Al 5 3

ane—% do b0

e sy sries bafars the inge Ry supaoin
rardom query?

Figure 1: Adaptive Indexing Research Space.
Joad h rerteres with query cxestion. Lt bl ot esal, rafic
i

mal indenes on lables co ulmmeauuly even if some rows
are n pr-biper g

Ou goal is 0 cmablo Screaneusal, efficient adspaivs indeing,
ie., index creation on s side effecss of query eee

adaps indes structures to 4 dyeamic workload. These ars (1) the
zation cost incarred by the firstquery and (2) the number of
querics that st 52 before 2 rendom query bencfits from
I i i W iy et W o i
ticularly om the first query becausc it capturcs the wort-case o
ard bemetits of SEAPVE INCERINE; IF A POrtioR of Cta 1S never
greried aguin, then abave ane beyond @e cost of a
st ia wasted ciforl
Rezert work has proposed two distinet approsch
cracking [10, 11

Columns that v not queried are eot indexed, an
e ot queried

A ok pliatzed O Jo incytsacetal

e merging, we have implemented both agprosches i & modern
rd the seengths and

ih borders of s space. Wo recognias the oppCrTnty o an ieal
hyborid whaptive idesing echique, marked wh fig-
e, that ineurs o low inkialzaton cost yet dwnmvﬂg\n quictly

provide a non-diseriminative navigationsl

ary approach, addressing in-
query processing

cracking the datal
e retivaiton f that by autemarically

on the query plans dertved by the SQL apt-
Somees and rosuhs obtainod aro mdistive of
fuction in system complexity. We show that
stem is Rble to seliorganize based on incam-
clenr performazsce besefits. This behavior
when the user focas is randomly shifting to

Database Cra

Martin L. Kerst
oW Amsterdan
The Netherlands

Martin.Kersten@c

Self-organizing Tuple Reconstruction in Column-stores

Siratos ldreos

reos@ocwi.nl

ABSTRACT

Coluumn-ataren gainied popularity as » promising
sign alternative, Bach nstribute of & relation & phys)
Fral e e i

physical design is to have multiple presorted copies of esch
appropriately orga-

nized in multiple different ordess across the various colamas,

This requires the ability to predict the workload, Kle tin

base table such 1hat tapks are akeady

to prepare, sad nfroguent updates,

maps provide n dimct mupping ber:

< Logether In queries for tuple scoostruction. g
ized e on Sategral part of
or and rodueed data aceoss:

Manln L. Kersten
Wi Amste:

The MNetherdands

physical de-
el

querics to load oaly
the required ateributos, The sverhoad incurred s on-thefly

hin paper, we propoe a mowel design, partial side-
snagss erecking, tht mimimizs the tuple resomstmetion cos
in & seltorganizing way. Tt eehioves performance similar
to using presorted data, but without requirng the hesvy
intial presorting step itself. Instend, it bandles dyramic,
urpredictable workloads with zo idle time and freqient up-
ko Aseilisey chynaseics duie etrmsnens, called ormokor

¢ by the workload. Back map

We lmpLEmrnlzd

detailed experimenial analysis demcnsirates that it bwmg}w
nnanee beneflts for multi-attibute querks.
.2 [DATABASE

significant py
Categories and Subject Deseriptor:
MANAGEMENT]: Fhysical Design - Systems
General Terms: Algorithns, Performanee, Desiga
Keywords: Database Cracking, Self-organization

Pemission to make digital or bard copies of all ar pari of this work for

Self-

Goetz Graefe
Hewlett-Packard Laboratones
1501 Page Mill Road
Palo Alto, CA 94304

Abstract

In a relational data warehouse with many tables, the
number of possible and promising indexes exceeds human
comprehension and requires automaic index tuning. While
monitoring and reactive index tuning have been proposed,
adaptive indexing focuses on adaping the physical data”
base layout for and by actual queries.

" is one such technique. Only ifand
when 3 column is used in query peedicates, an index for the
column is created; and anly if and when a key range is que-
ried, the index is optimized for this key range. The effect is
akin to a sort that is adaptive and incremental. This sort i,
however, very inefficient, particularly when applied on
block-access devices. In contrast, traditonal ndex creation
soris ¢ata with an efficient merge sort opumized for block-
acoess devices, but it is nefer adapiive nor incremental

e prapose adaptive merging, an adaptive, incre-
memzal and efficient technique for index creation. Index
optmzation focuses on key ranges used in actual queries.
The resuliing index adapts more quickly to new daw and 10
new query pamerns than darabase cracking. Sort efficiency
is comparable 1o that of tditional B-ree creation. I
theless, the new technigue promises better
ance than database cracking, btk in manery e s G-
aceess storage.

Categories and subject descriptors
E.2 Data storage represcotations - arrays, sorted trocs.
Keywords
Dambase index, adapiive, auonomic, query execation,
1 Intreduction
In a relational data warehouse with a bundred tables
yat

and a thousand columns, b jexes are possible, n
panicular if partial indexes, indexes on computed eolur

Permission to make digital or bard copies of all or part of this
work for pemonal o classroom use is gramed without fec pro-
vidod (hst cupiss are mot made o dsmbuscd for profit or com-
mercial advantage and that copies bear this notice and the full
citation om the first pags. To copy otherwise, to nepublish. to post
un. servers o o recistribute to lists, requires prior specific permis-

sior andior a
EDBT 2010, March 22-26, 2010, Lavsarne, Switzerlasd.
Copyright 2010 ACM 975-1-005 585439/ 10/0003 ._510.00.

g, using
spproach suiiable w0 high-bandwidth h'uzh |mnw devices
such as waditonal disk drives and di
database storage such es
energ,im research into index-based query processing.

m:tual workload
en monitering datsbase requests and their execution plans,
cccasionally invoking creation or remaval of indexes en
tables and views. Such tools tend to suffer from three
wenknesses. First, the interval between manitoring and
index creation can excsed the duricn of 3 specific request
pattern; in which case there is no bens

secnnﬂ. even if that is not the case,

used, incremental, automatic of
sentation of o data collection — the more ofien a koy renge
e bt e it e upimind Pk

Stgfan Manegold
jam Amsterdam
The Netherlands

manegolc@cwi.nl

1. INTRODUCTION

e Reature of colums-stores & to provide improved
performanee aver row-stores in the case that worklond:
ausire anly a few nttributes of wids tables at a tims. Each
relasion R e physieally stored s o set of columns: one ool
ik sttt o R, This vay, oy i s loacl
only the required verbaias rom sach reeet selasie
roquiring explict (partial)
'uple recnnsnrnti.nnlntsﬁe Akl sl required.
Eath tuple recorstructios is a join between two columns
it S iy ety) et & St S8
SeRpea 1A Cbnia dheres WhRIA B SN s

querics 2, 6, 10). Whenever possible, postion-based join-

withiz g. giver that N, B ol ke of It participite in g. =
ways [2
witn caty tuple mmmslrunlcm the requirsd lnnbnna are
glued together as early ne possble, Lo, while
iz driimsiabon fe S iR deg o e query.
o band, inte tuple roronstruction cxploit the
r maximem. Dusing ouery
wercly rofors to getting tho st
fying tuples from thelr base rolumns as
, an attribute = required in the
query plan, This appraach allows the query engine to oxplois
CPU- and cacko-aptimized veetor-k
“ions throushett the Whole CUery evaltstion. -5y tupis
the fnal resnls is deliverad.
e focus on

meurs the overhead of reconstricting a column mare than
anee, in case it oceurs mare then once in & query, Purther-
mere, exploiting sequent patterns during recan-
straction is not always possible sinse many operntors (joins,
group by, order by cte.) are not fupls omder-preserving

The nfimate ascess pattern & to have multiple copies for
ench Telation £, Sick THAT ead cOPY 15 Prescrted on an other
attribute in taple roconstructions of J2 atbributo
imitined by n reotriction on an abtrbute A mn be perfocmed

i i on A This wav. the tuslo

electing, self~tuning, incrementally optimized indexes

i Kun

Harumi 0
Hewleti-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

and mamemlmed views with their indexes are considered.

ssic, and very hard

D(Dhlm in physical database design. Too few or the wiong
indexes force many queries to scan large parts of the data-
base; two many indexes force high updawe costs. Unpredic
able ad-hee queries exacerbate ihe problem.

Ore approach is to focus on enabling very fast scans,
shared scans and columnar storage formats. an

5. Low-latency
Tlash memery will Tkely re.

rother approach is to tune indexes in response to the
Contemporary index selection tocls rely

s¢ tools.
o Index sup-
50 data access during the interval

this interval,

Fewasted wath respect to index creation, and eventual index

wbiles cover 21l rows egually, even i fsome rows are teeded
oftea and some never. For
actions are queried more oiter than those years ago, ex-
treme price fluctustions arc mors intcrosting than snble

example, recent business trans-

iah inclios = & costomializen views, 3 is ofin A

fieult or impessible ta predict the key ranges to focus on.

Dusbase cracking [[KM 07, KM 03] has piencered

oceurs entirel; a side effect

v
oF qucriea aver ey ranges not 3ot Ay epeimized

Column domain and storage army

CRE] m s u

Figure 1. A column store partitioned by datsbase cracking.

For example. after the column store \Ilu:(rzrni in

Figure | has been queried with range boundary values
m, s and u, all key values below ¢ have been xsslgnell to

oor Man’s Sort!

Stratos Idreos
Harvard University
los@seas.harvard.edu

en

of Database Operations

Cracking is fu\lysndmdlu: its costs arc

of fully sorting the data. With recent
lel) sorting algorithms (7],

tional costs: Cracking is, unlike Sean-
e,
emented with the underlying hardware in
{roughly) 'O bound.
csis, we make the following contributions:
an in-depth study of the coniributing performance:
the “classic” Cracking implementation.

the findings, we develop 2 mumber of optim

ed on “standard™ techniques like predication, vec-

e sty npleminied daia parallelis wsing

lelism to make use of multiple CPU cores.

sly evaluste all developed algorithms on a number
systems ranging from low-end deskiop machines
servers.

libstdos Viersion 4.8.2

E - xepul
- 9SJB0N

=
c U
> + - 011SBY201S
o O
© O
m n_rVM - Bunpoesn
= 2
)
e
% - - yoolg Boud
<

7- uBoS

< Al o

(s) awi] Asenpd

W Progressive Indexing

Can we / how to:
* Reduce / limit 1% query cost / overhead?
* Improve guery performance predictability and robustness?

* Ensure convergence towards full index?
Yet unexplored “dimensions”:

* Other sorting algorithms than quick-sort

* Suspend/resume steps / iterations

Mark Raasveldt, Pedro Holanda, Hannes Muhleisen monetdb ,

W Progressive Indexing (&) Leiden "

After 3 Queries After 4 Queries After 10 Queries
4l 5

p

SRS RSTES

0

%)
>
SOOI OO O O,

mone@

o Progressive Quick-Sort i) fte

>

Initialize
16 <9

Refine

39 §9—

—
Uninitialized

—h
N
V

O

mone@

C Progressive Merge-Sort (i)

1 g -
16 Initialize Refine
4
9
2
12
/
1
19
3
14
11

monetdb

=

Progressive Bucket-Sort

Initialize

0010

|[—00, 10)

Il

0, o]

Merge

110, oo

£ ie Universiteit
i_“ Y5 Leiden

SO REL O REL O RO BELWRELS |
Uninitialized

mone@

L Progressive Radix-Sort [l

Next Digit I

mone@

W Experimental Setup

e Software:

* stand-alone C++ program, g++ -O3
* Fedora 26

Hardware:

* Intel Core i7-2600K CPU @ 3.40 GHz, 8 cores, 8 MB L3 cache

* 16 GB main memory

e Data:

* 8-byte integers

* 1078 uniformly distributed values

Queries:

* SELECT SUM(R.A) FROM R WHERE R.ABETWEEN V1 AND V2
Experiments:

* repeat entire workload 10 times

* report median runtime per query

* Default: 1000 queries, 10% selectivity, random workload

mone@

| CWI_

Query Range

mone@

W Va ry| N g 6' r .: ; % Universiteit

1° Query Cost

Bucket
. 9l™ Merge
N Quick
GE') -+ Radix
=
-
O
<k

0 _ I I ! ' I
0.00 0.25 0.50 0.75 1.00

\CWL_

Va ryl N g 6: X Universiteit
Queries until Pay-off

Bucket

750 - -+ Merge
o Quick
_g -+ Radix
S 500 -
prd
-
8 o50- 4
@)

0.00 0.25 0.50 0.75 1.00

Va rylng 6: Universiteit
Queries until Convergence b=

(o))

o

o
|

Query Number (#)
S 5

o
|

Varying o: (RY) Uriverici
Entire Workload Cost

Total Time (s)

Chosen 6:

1°* Query ~= 2x Scan

Indexing Method 0
Bucketsort 0.009
Mergesort 0.05
Quicksort 0.22
Radixsort 0.08

7B 2 B% Universiteit

19" ¥ Leiden

mone@

- Xapu|

s
& =
o ¥
—t
-]
(= 4]
=
v
..n
[o
—
(-
Lt

- 9sJe0N

Ol1SBYO0IS

- Buppoeln

- 4o01S Boud

- EEN

- 1oyong

1% Query

C
o
O

—
©
Q
=
o

O

B xpey
- IND

|- ueos

_ _ _
< A o

(s) sawi| Atenp

\CWL_

CO m pa rl SO n : Universiteit
Entire Workload

Bucket
— Merge
Quic
— Radix
— Stochastic
— Cracking
60 - — Prog Stoch
Coarse
— Scan
Index

O
o
|

W
o
I

Cumulative Time (s)

0 250 500 750 1000

A CWL_

CO m pa rl Sson.: ; Universiteit
Adaptive Indexing R

Coarse
— — Cracking
w Prog Stoch
B] — Stochastic
o 1.0
O
[0
E
: SEaAn W\
@ A
-] . ' A
d R :mﬂ*“. M
Index -
0 100 200 300

Query (#)

W Comparison:

Progressive Indexing

Bucket
e — Merge
o CRJuidc_
— | — Radix
5) 1.0
) *f“
S
= Scan - l
> | A
= |
=
@)
Index -
0 100 200 300

Query (#)

| CWI_

Query Range

mone@

| CWI_

Query Range

mone@

W Skewed Workload

Query Range

0 50 100 150

Query (#)
monetdb ,

Different Workloads () [as

Random Sequential Skewed
Coarse
— — Cracking
» Prog Stoch
TD’ 1.00+ — Stochastic
£
|_
2 0.10 - -
()
S
@)
001 L I I I I I I I I I I I I
0 100 200 300 0 100 200 300 0 100 200 300
Query (log(#))
Random Sequential Skewed
Bucket
g —Merge
= 1.00 - i
o ! — Radix
=
; iR
> i
GL.) O 10) YR R
S
G |
0.01 L T T T T T T T T I I T T
0 100 200 300 0 100 200 300 0 100 200 300

Query (log(#))

W # Queries until Pay-off

Indexing Method Random | Sequential | Skewed
Full Index 56 56 56
Standard Cracking 28 63 22
Stochastic Cracking 69 40 49
Progressive Stochastic 67 47 48
Coarse Granular Index 42 76 38
Bucketsort 258 261 207
Mergesort 113 114 114
Quicksort 136 128 139
Radixsort 200 200 200

mone@

W Progressive Indexing

* Robust & predictable query performance under various
workloads

* Balance between
* Fast convergence to full index
* Small overhead for 1% query

* Various basic sorting algorithms
* Quick-sort
* Merge-sort
* Bucket-sort
* Radix-sort

mone@

