
Workload-Adaptive Indexing

Erwin M. Bakker & Stefan Manegold

https://homepages.cwi.nl/~manegold/DBDM/
http://liacs.leidenuniv.nl/~bakkerem2/dbdm/

s.manegold@liacs.leidenuniv.nl
e.m.bakker@liacs.leidenuniv.nl

Databases and Data Mining 2018

http://liacs.leidenuniv.nl/~bakkerem2/dbdm/
mailto:s.manegold@liacs.leidenuniv.nl

Physical design problem

which indexes to build?
on which data parts?
and when to build them?

Database systems perform efficiently
only after proper tuning...

DBA without adaptive indexing

Physical Design

Sample
Workload

Timeline

Physical Design

Sample
Workload

Analyze
Performance

Timeline

Physical Design

Sample
Workload

Analyze
Performance

Prepare Estimated
physical design

Timeline

Physical Design

Sample
Workload

Analyze
Performance

Prepare Estimated
physical design

Timeline

Queries

Physical Design

Sample
Workload

Analyze
Performance

Prepare Estimated
physical design

Timeline

Queries

Complex and time consuming process

Physical Design

Sample
Workload

Analyze
Performance

Prepare Estimated
physical design

Timeline

Queries

Complex and time consuming process

? Dynamic Workloads

Very Large Databases?

Dynamic environments

idle time workload knowledge

Dynamic environments

idle time workload knowledge

some problem cases

Dynamic environments

idle time workload knowledge

• Not enough idle time to finish proper tuning
some problem cases

Dynamic environments

• By the time we finish tuning, the workload changes

idle time workload knowledge

• Not enough idle time to finish proper tuning
some problem cases

Dynamic environments

• By the time we finish tuning, the workload changes
• No index support during tuning

idle time workload knowledge

• Not enough idle time to finish proper tuning
some problem cases

Dynamic environments

• By the time we finish tuning, the workload changes
• No index support during tuning

• Not all data parts are equally useful

idle time workload knowledge

• Not enough idle time to finish proper tuning
some problem cases

Adaptive Indexing

Remove all tuning, physical design steps but still
get similar performance as a fully tuned system

How?
Design new auto-tuning kernels

(operators, plans, structures, etc.)

For dynamic environments:

DBA with adaptive indexing

Adaptive Indexing
no monitoring
no preparation

no human involvement

no external tools

no full indexes

Adaptive Indexing
no monitoring
no preparation

no human involvement

no external tools

Continuous on-the-fly physical reorganization

no full indexes

Adaptive Indexing
no monitoring
no preparation

no human involvement

no external tools

Continuous on-the-fly physical reorganization

no full indexes

partial, incremental, adaptive indexing

Indexing Overview
workload analysis

index building
query processing

offline indexing

Indexing Overview
workload analysis

index building
query processing

offline indexing

online indexing
workload analysis

index building
query processing

Indexing Overview
workload analysis

index building
query processing

offline indexing

online indexing

adaptive indexing

workload analysis
index building

query processing

adaptive indexing

Indexing Overview
workload analysis

index building
query processing

offline indexing

online indexing

adaptive indexing

workload analysis
index building

query processing

adaptive indexing

w
or

kl
oa

d
kn

ow
le

dg
e

idle time

adaptive

online

offline

Cracking the Database Store

Martin Kersten Stefan Manegold

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
{Martin.Kersten,Stefan.Manegold}@cwi.nl

Abstract

Query performance strongly depends on finding an exe-
cution plan that touches as few superfluous tuples as possi-
ble. The access structures deployed for this purpose, how-
ever, are non-discriminative. They assume every subset of
the domain being indexed is equally important, and their
structures cause a high maintenance overhead during up-
dates. This approach often fails in decision support or
scientific environments where index selection represents a
weak compromise amongst many plausible plans.

An alternative route, explored here, is to continuously
adapt the database organization by making reorganization
an integral part of the query evaluation process. Every
query is first analyzed for its contribution to break the
database into multiple pieces, such that both the required
subset is easily retrieved and subsequent queries may bene-
fit from the new partitioning structure.

To study the potentials for this approach, we developed
a small representative multi-query benchmark and ran ex-
periments against several open-source DBMSs. The results
obtained are indicative for a significant reduction in system
complexity with clear performance benefits.

1 Introduction

The ultimate dream for a query processor is to touch only
those tuples in the database that matter for the production
of the query answer. This ideal cannot be achieved easily,
because it requires upfront knowledge of the user’s query
intent.

In OLTP applications, all imaginable database subsets
are considered of equal importance for query processing.
The queries mostly retrieve just a few tuples without statis-
tically relevant intra-dependencies. This permits a physical

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 2005 CIDR Conference

database design centered around index accelerators for in-
dividual tables and join-indices to speed up exploration of
semantic meaningful links.

In decision support applications and scientific databases,
however, it is a priori less evident what subsets are relevant
for answering the -mostly statistical- queries. Queries tend
to be ad-hoc and temporarily localized against a small por-
tion of the databases. Data warehouse techniques, such as
star- and snowflake schemas and bit-indices, are the primary
tools to improve performance [Raf03].

In both domains, the ideal solution is approximated by
a careful choice of auxiliary information to improve nav-
igation to the database subset of interest. This choice is
commonly made upfront by the database administrator and
its properties are maintained during every database update.
Alternatively, an automatic index selection tool may help in
this process through analysis of the (anticipated) work load
on the system [ZLLL01, ACK+04]. Between successive
database reorganizations, a query is optimized against this
static navigational access structure.

Since the choice of access structures is a balance be-
tween storage and maintenance overhead, every query will
inevitably touch many tuples of no interest. Although the
access structures often permit a partial predicate evaluation,
it is only after the complete predicate evaluation that we
know which access was in vain.

In this paper we explore a different route based on the
hypothesis that access maintenance should be a byproduct
of query processing, not of updates. A query is interpreted
as both a request for a particular database subset and as an
advice to crack the database store into smaller pieces aug-
mented with an index to access them. If it is unavoidable to
touch Una-interesting tuples during query evaluation, can
we use that to prepare for a better future?

To illustrate, consider a simple query select * from R
where R.a <10 and a storage scheme that requires a full
table scan, i.e. touching all tuples to select those of interest.
The result produced in most systems is a stream of quali-
fying tuples. However, it can also be interpreted as a task
to fragment the table into two pieces, i.e. apply horizontal
fragmentation. This operation does not come for free, be-
cause the new table incarnation should be written back to
persistent store and its properties stored in the catalog. For
example, the original table can be replaced by a UNION TA-

Database Cracking

Stratos Idreos
CWI Amsterdam
The Netherlands

Stratos.Idreos@cwi.nl

Martin L. Kersten
CWI Amsterdam
The Netherlands

Martin.Kersten@cwi.nl

Stefan Manegold
CWI Amsterdam
The Netherlands

Stefan.Manegold@cwi.nl

ABSTRACT
Database indices provide a non-discriminative navigational
infrastructure to localize tuples of interest. Their mainte-
nance cost is taken during database updates. In this pa-
per, we study the complementary approach, addressing in-
dex maintenance as part of query processing using continu-
ous physical reorganization, i.e., cracking the database into
manageable pieces. The motivation is that by automatically
organizing data the way users request it, we can achieve fast
access and the much desired self-organized behavior.

We present the first mature cracking architecture and re-
port on our implementation of cracking in the context of a
full fledged relational system. It led to a minor enhancement
to its relational algebra kernel, such that cracking could be
piggy-backed without incurring too much processing over-
head. Furthermore, we illustrate the ripple effect of dynamic
reorganization on the query plans derived by the SQL opti-
mizer. The experiences and results obtained are indicative of
a significant reduction in system complexity. We show that
the resulting system is able to self-organize based on incom-
ing requests with clear performance benefits. This behavior
is visible even when the user focus is randomly shifting to
different parts of the data.

1. INTRODUCTION
Nowadays, the challenge for database architecture design

is not in achieving ultra high performance but to design sys-
tems that are simple and flexible. A database system should
be able to handle huge sets of data and self-organize ac-
cording to the environment, e.g., the workload, available re-
sources, etc. A nice discussion on such issues can be found in
[6]. In addition, the trend towards distributed environments
to speed up computation calls for new architecture designs.
The same holds for multi-core cpu architectures that are
starting to dominate the market and open new possibilities
and challenges for data management. Some notable depar-
tures from the usual paths in database architecture design
include [2, 3, 9, 14].

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

In this paper, we explore a radically new approach in data-
base architecture, called database cracking. The cracking ap-
proach is based on the hypothesis that index maintenance
should be a byproduct of query processing, not of updates.
Each query is interpreted not only as a request for a partic-
ular result set, but also as an advice to crack the physical
database store into smaller pieces. Each piece is described
by a query, all of which are assembled in a cracker index to
speedup future search. The cracker index replaces the non-
discriminative indices (e.g., B-trees and hash tables) with a
discriminative index. Only database portions of past inter-
est are easily localized. The remainder is unexplored terri-
tory and remains non-indexed until a query becomes inter-
ested. Continuously reacting on query requests brings the
powerful property of self-organization. The cracker index is
built dynamically while queries are processed and adapts to
changing query workloads.

The cracking technique naturally provides a promising ba-
sis to attack the challenges described in the beginning of this
section. With cracking, the way data is physically stored
self-organizes according to query workload. Even with a
huge data set, only tuples of interest are touched, leading
to significant gains in query performance. In case the focus
shifts to a different part of the data, the cracker index auto-
matically adjusts to that. In addition, cracking the database
into pieces gives us disjoint sets of our data targeted by spe-
cific queries. This information can be nicely used as a basis
for high-speed distributed and multi-core query processing.

The idea of physically reorganizing the database based on
incoming queries has first been proposed in [10]. The con-
tributions of this paper are the following. We present the
first mature cracking architecture (a complete cracking soft-
ware stack) in the context of column oriented databases. We
report on our implementation of cracking on top of Mon-
etDB/SQL, a column oriented database system, showing
that cracking is easy to implement and may lead to fur-
ther system simplification. We present the cracking algo-
rithms that physically reorganize the datastore and the new
cracking operators to enable cracking in MonetDB. Using
SQL micro-benchmarks, we assess the efficiency and effec-
tiveness of the system at the operator level. Additionally, we
perform experiments that use the complete software stack,
demonstrating that cracker-aware query optimizers can suc-
cessfully generate query plans that deploy our new cracking
operators and thus exploit the benefits of database cracking.
Furthermore, we evaluate our current implementation and
discuss some promising results. We clearly demonstrate that
the resulting system can self-organize according to query

Cracking Example
Database Cracking CIDR 2007

Each query is treated as an advice
on how data should be stored

Cracking Example
Database Cracking CIDR 2007

Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Cracking Example
Database Cracking CIDR 2007

Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Re
su

lt
tu

pl
es

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2Gain knowledge

on how data is
organized

Physically reorganize based on the selection predicate

Re
su

lt
tu

pl
es

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2Gain knowledge

on how data is
organized

Dynamically/on-the-fly within the select-operator

Physically reorganize based on the selection predicate

Re
su

lt
tu

pl
es

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Physically reorganize based on the selection predicate

Re
su

lt
tu

pl
es

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

The more we
crack, the more

we learn

Physically reorganize based on the selection predicate

Re
su

lt
tu

pl
es

Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example
Each query is treated as an advice on how data should be stored

100K random selections
random selectivity
random value ranges
in a 10 million integer column

Database Cracking CIDR 2007

set-up
Scan

Full Index

Crack

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

R
e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence (x1000)

Cracking Example
Each query is treated as an advice on how data should be stored

100K random selections
random selectivity
random value ranges
in a 10 million integer column

almost no
initialization overhead

Database Cracking CIDR 2007

set-up
Scan

Full Index

Crack

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

R
e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence (x1000)

Cracking Example
Each query is treated as an advice on how data should be stored

100K random selections
random selectivity
random value ranges
in a 10 million integer column

almost no
initialization overhead

continuous improvement

Database Cracking CIDR 2007

set-up
Scan

Full Index

Crack

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

R
e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence (x1000)

Cracking Example
Each query is treated as an advice on how data should be stored

100K random selections
random selectivity
random value ranges
in a 10 million integer column

almost no
initialization overhead

continuous improvement

Database Cracking CIDR 2007

set-up
Scan

Full Index

Crack

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

R
e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence (x1000)

Cracking Example
Each query is treated as an advice on how data should be stored

10K random selections
selectivity 10%
random value ranges
in a 30 million integer column

Database Cracking CIDR 2007

set-up

 0.004

 200

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

C
u
m

u
la

tiv
e
 a

ve
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence

Scan

Full Index

Crack

Cracking Example
Each query is treated as an advice on how data should be stored

10K random selections
selectivity 10%
random value ranges
in a 30 million integer column

10K queries later,
Full Index still has not

amortized the initialization costs

Database Cracking CIDR 2007

set-up

 0.004

 200

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

C
u
m

u
la

tiv
e
 a

ve
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

se
cs

)

Query sequence

Scan

Full Index

Crack

Problems

Stochastic Database Cracking: Towards Robust Adaptive

Indexing in Main-Memory Column-Stores

⇤

Felix Halim? Stratos Idreos† Panagiotis Karras⌃ Roland H. C. Yap?

?National University of Singapore
{halim, ryap}@comp.nus.edu.sg

†CWI, Amsterdam
idreos@cwi.nl

⌃Rutgers University
karras@business.rutgers.edu

ABSTRACT
Modern business applications and scientific databases call for in-
herently dynamic data storage environments. Such environments
are characterized by two challenging features: (a) they have lit-
tle idle system time to devote on physical design; and (b) there
is little, if any, a priori workload knowledge, while the query and
data workload keeps changing dynamically. In such environments,
traditional approaches to index building and maintenance cannot
apply. Database cracking has been proposed as a solution that al-
lows on-the-fly physical data reorganization, as a collateral effect of
query processing. Cracking aims to continuously and automatically
adapt indexes to the workload at hand, without human intervention.
Indexes are built incrementally, adaptively, and on demand. Never-
theless, as we show, existing adaptive indexing methods fail to de-
liver workload-robustness; they perform much better with random
workloads than with others. This frailty derives from the inelastic-
ity with which these approaches interpret each query as a hint on
how data should be stored. Current cracking schemes blindly reor-
ganize the data within each query’s range, even if that results into
successive expensive operations with minimal indexing benefit.

In this paper, we introduce stochastic cracking, a significantly
more resilient approach to adaptive indexing. Stochastic cracking
also uses each query as a hint on how to reorganize data, but not
blindly so; it gains resilience and avoids performance bottlenecks
by deliberately applying certain arbitrary choices in its decision-
making. Thereby, we bring adaptive indexing forward to a ma-
ture formulation that confers the workload-robustness previous ap-
proaches lacked. Our extensive experimental study verifies that
stochastic cracking maintains the desired properties of original da-
tabase cracking while at the same time it performs well with diverse
realistic workloads.

1. INTRODUCTION
Database research has set out to reexamine established assump-

tions in order to meet the new challenges posed by big data, sci-
entific databases, highly dynamic, distributed, and multi-core CPU

⇤Work supported by Singapore’s MOE AcRF grant T1 251RES0807.

environments. One of the major challenges is to create simple-to-
use and flexible database systems that have the ability self-organize
according to the environment [7].

Physical Design. Good performance in database systems largely
relies on proper tuning and physical design. Typically, all tuning
choices happen up front, assuming sufficient workload knowledge
and idle time. Workload knowledge is necessary in order to deter-
mine the appropriate tuning actions, while idle time is required in
order to perform those actions. Modern database systems rely on
auto-tuning tools to carry out these steps, e.g., [6, 8, 13, 1, 28].

Dynamic Environments. However, in dynamic environments,
workload knowledge and idle time are scarce resources. For ex-
ample, in scientific databases new data arrives on a daily or even
hourly basis, while query patterns follow an exploratory path as the
scientists try to interpret the data and understand the patterns ob-
served; there is no time and knowledge to analyze and prepare a
different physical design every hour or even every day.

Traditional indexing presents three fundamental weaknesses in
such cases: (a) the workload may have changed by the time we
finish tuning; (b) there may be no time to finish tuning properly;
and (c) there is no indexing support during tuning.

Database Cracking. Recently, a new approach to the physi-
cal design problem was proposed, namely database cracking [14].
Cracking introduces the notion of continuous, incremental, partial
and on demand adaptive indexing. Thereby, indexes are incremen-
tally built and refined during query processing. Cracking was pro-
posed in the context of modern column-stores and has been hith-
erto applied for boosting the performance of the select operator
[16], maintenance under updates [17], and arbitrary multi-attribute
queries [18]. In addition, more recently these ideas have been ex-
tended to exploit a partition/merge -like logic [19, 11, 12].

Workload Robustness. Nevertheless, existing cracking schemes
have not deeply questioned the particular way in which they in-
terpret queries as a hint on how to organize the data store. They
have adopted a simple interpretation, in which a select operator is
taken to describe a range of the data that a discriminative cracker
index should provide easy access to for future queries; the remain-
der of the data remains non-indexed until a query expresses inter-
est therein. This simplicity confers advantages such as instant and
lightweight adaptation; still, as we show, it also creates a problem.

Existing cracking schemes faithfully and obediently follow the
hints provided by the queries in a workload, without examining
whether these hints make good sense from a broader view. This ap-
proach fares quite well with random workloads, or workloads that
expose consistent interest in certain regions of the data. However,
in other realistic workloads, this approach can falter. For example,
consider a workload where successive queries ask for consecutive
items, as if they sequentially scan the value domain; we call this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 6
Copyright 2012 VLDB Endowment 2150-8097/12/02... $ 10.00.

502

Stochastic cracking

PVLDB2012, Stochastic Database Cracking: Towards Robust
Adaptive Indexing in Main Memory Column Stores
Felix Halim, Stratos Idreos, Panagiotis Karras and Roland Y. Chuan

Workload Robustness

Observation:
Queries define adaptive indexing actions
The kind of queries and the order of queries matter!

Goal:
Maintain adaptive behavior regardless of query input

Stochastic Cracking, PVLDB 12

Query patterns

Good pattern Bad pattern

column with 100 unique integers

Stochastic Cracking, PVLDB 12

Query patterns

Good pattern Bad pattern

q1, v>60

column with 100 unique integers

N

Stochastic Cracking, PVLDB 12

Query patterns

Good pattern Bad pattern

q1, v>60

q2, v<20

column with 100 unique integers

N

~N/2

Stochastic Cracking, PVLDB 12

Query patterns

Good pattern Bad pattern

q1, v>60

q2, v<20

q3, v>90

column with 100 unique integers

N

~N/2

~N/2

Stochastic Cracking, PVLDB 12

Query patterns

Good pattern Bad pattern

q1, v>60

q2, v<20

q3, v>90

q1, v<1

column with 100 unique integers

N

~N/2

~N/2

N

Stochastic Cracking, PVLDB 12

Query patterns

Good pattern Bad pattern

q1, v>60

q2, v<20

q3, v>90

q2, v<2

q1, v<1

column with 100 unique integers

N

~N/2

~N/2

N

N-1

Stochastic Cracking, PVLDB 12

Query patterns

Good pattern Bad pattern

q1, v>60

q2, v<20

q3, v>90

q2, v<2

q1, v<1

q3, v<3

column with 100 unique integers

N

~N/2

~N/2

N

N-1

N-2

Stochastic Cracking, PVLDB 12

Query patterns
column size 100M

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

1 10 102 103 104

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

Query sequence

a) Random Workload

Scan

Crack

Sort

selectivity 10 tuples

Stochastic Cracking, PVLDB 12

Query patterns
column size 100M

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

1 10 102 103 104

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

Query sequence

a) Random Workload

Scan

Crack

Sort

selectivity 10 tuples

Stochastic Cracking, PVLDB 12

Query patterns
column size 100M

1 10 102 103 104

Query sequence

b) Sequential Workload

Scan
Crack

Sort

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

1 10 102 103 104

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

Query sequence

a) Random Workload

Scan

Crack

Sort

selectivity 10 tuples

Stochastic Cracking, PVLDB 12

Query patterns
column size 100M

1 10 102 103 104

Query sequence

b) Sequential Workload

Scan
Crack

Sort

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

1 10 102 103 104

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

Query sequence

a) Random Workload

Scan

Crack

Sort

selectivity 10 tuples

performance degrades to scan

Stochastic Cracking, PVLDB 12

Query patterns
column size 100M

103

104

105

106

107

108

1 10 102 103 104

#
 o

f
tu

p
le

s
to

u
ch

e
d

Query sequence

e) Tuples touched
 by cracking

Sequential

Random

1 10 102 103 104

Query sequence

b) Sequential Workload

Scan
Crack

Sort

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

1 10 102 103 104

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

Query sequence

a) Random Workload

Scan

Crack

Sort

selectivity 10 tuples

performance degrades to scan

tuples touched by
cracking code

Stochastic Cracking, PVLDB 12

Query patterns
column size 100M

103

104

105

106

107

108

1 10 102 103 104

#
 o

f
tu

p
le

s
to

u
ch

e
d

Query sequence

e) Tuples touched
 by cracking

Sequential

Random

1 10 102 103 104

Query sequence

b) Sequential Workload

Scan
Crack

Sort

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

1 10 102 103 104

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

Query sequence

a) Random Workload

Scan

Crack

Sort

selectivity 10 tuples

performance degrades to scan

tuples touched by
cracking code

Stochastic Cracking, PVLDB 12

Query patterns
column size 100M

103

104

105

106

107

108

1 10 102 103 104

#
 o

f
tu

p
le

s
to

u
ch

e
d

Query sequence

e) Tuples touched
 by cracking

Sequential

Random

1 10 102 103 104

Query sequence

b) Sequential Workload

Scan
Crack

Sort

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

1 10 102 103 104

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

Query sequence

a) Random Workload

Scan

Crack

Sort

selectivity 10 tuples

performance degrades to scan

tuples touched by
cracking code

Stochastic Cracking, PVLDB 12

Query patterns
column size 100M

103

104

105

106

107

108

1 10 102 103 104

#
 o

f
tu

p
le

s
to

u
ch

e
d

Query sequence

e) Tuples touched
 by cracking

Sequential

Random

1 10 102 103 104

Query sequence

b) Sequential Workload

Scan
Crack

Sort

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

1 10 102 103 104

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

Query sequence

a) Random Workload

Scan

Crack

Sort

selectivity 10 tuples

performance degrades to scan

tuples touched by
cracking code

Stochastic Cracking, PVLDB 12

Query patterns
column size 100M

103

104

105

106

107

108

1 10 102 103 104

#
 o

f
tu

p
le

s
to

u
ch

e
d

Query sequence

e) Tuples touched
 by cracking

Sequential

Random

1 10 102 103 104

Query sequence

b) Sequential Workload

Scan
Crack

Sort

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

1 10 102 103 104

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

Query sequence

a) Random Workload

Scan

Crack

Sort

selectivity 10 tuples

performance degrades to scan

tuples touched by
cracking code

Stochastic Cracking, PVLDB 12

Stochastic Cracking
Stochastic Cracking, PVLDB 12

Problem:
Blind adaptation to queries

Solution:
Query driven and data driven adaptation

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Data Driven, Center (DDC):
1. Recursively crack a piece in exactly half until in L2 cache.
2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Data Driven, Center (DDC):
1. Recursively crack a piece in exactly half until in L2 cache.
2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Data Driven, Center (DDC):
1. Recursively crack a piece in exactly half until in L2 cache.
2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Data Driven, Center (DDC):
1. Recursively crack a piece in exactly half until in L2 cache.
2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Data Driven, Center (DDC):
1. Recursively crack a piece in exactly half until in L2 cache.
2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Data Driven, Random (DDR):
1. Recursively crack a piece randomly until in L2 cache.
2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Data Driven, Random (DDR):
1. Recursively crack a piece randomly until in L2 cache.
2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Data Driven, Random (DDR):
1. Recursively crack a piece randomly until in L2 cache.
2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Data Driven, Random (DDR):
1. Recursively crack a piece randomly until in L2 cache.
2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Data Driven, Random (DDR):
1. Recursively crack a piece randomly until in L2 cache.
2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Stochastic Cracking, PVLDB 12

Stochastic Cracking

Hybrids

PVLDB11, Cracking what’s marged. Merging what’s cracked.
Adaptive Indexing in Main-Memory Column-Stores
 Stratos Idreos, Stefan Manegold, Harumi Kuno and Goetz Graefe

Adaptive Merging
Incremental sort via external merge sort steps

100

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

100

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

select(A,50,100)

100

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

select(A,50,100)

100

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

select(A,50,100)

100

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

select(A,50,100)

100

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100)

100

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100)

binary
search

100

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100)

binary
search

100

binary
search

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100)

binary
search

100

binary
search

binary
search

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100)

binary
search

100

binary
search

binary
search

binary
search

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100)

50

100

binary
search

100

binary
search

binary
search

binary
search

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100)

50

100

binary
search

100

binary
search

binary
search

binary
search

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100)

50

100

binary
search

100

binary
search

binary
search

binary
search

so
rt

ed

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100)

50

100

binary
search

100

binary
search

binary
search

binary
search

so
rt

ed

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Initial Final

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100) select(A,55,70)

50

100

100

so
rt

ed

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Initial Final

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100) select(A,55,70)

50

100

50

100

100

so
rt

ed binary
search

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Initial Final

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100) select(A,55,70)

50

100

50

100

select(A,150,170)

100

so
rt

ed

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Initial Final

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100) select(A,55,70)

50

100

50

100

select(A,150,170)

50

100

100

so
rt

ed

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Initial Final

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100) select(A,55,70)

50

100

50

100

select(A,150,170)

50

100

100

so
rt

ed
binary
search

binary
search

binary
search

binary
search

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Initial Final

Hybrids PVLDB 2011

Adaptive Merging
Incremental sort via external merge sort steps

so
rt

so
rt

so
rt

so
rt

select(A,50,100) select(A,55,70)

50

100

50

100

select(A,150,170)

50

100

150

170

100

so
rt

ed
binary
search

binary
search

binary
search

binary
search

EDBT’10, SMDB’10, Goetz Graefe and Harumi Kuno

Initial Final

Hybrids PVLDB 2011

Performance Analysis

 0.004

 200

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

Query sequence

c) All queries

(cf., Fig. 10b)

Scan Sort AM Crack

C
um

ul
at

iv
e

A
ve

ra
ge

 (
se

cs
)

10K random selections
selectivity 10%
random value ranges
in a 30 million integer column

set-up

Hybrids PVLDB 2011

Performance Analysis

 0.004

 200

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

Query sequence

c) All queries

(cf., Fig. 10b)

Scan Sort AM Crack

C
um

ul
at

iv
e

A
ve

ra
ge

 (
se

cs
)

10K random selections
selectivity 10%
random value ranges
in a 30 million integer column

set-up

Hybrids PVLDB 2011

Performance Analysis

 0.004

 200

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

Query sequence

c) All queries

(cf., Fig. 10b)

Scan Sort AM Crack

C
um

ul
at

iv
e

A
ve

ra
ge

 (
se

cs
)

10K random selections
selectivity 10%
random value ranges
in a 30 million integer column

set-up

Hybrids PVLDB 2011

Performance Analysis

 0.004

 200

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

Query sequence

c) All queries

(cf., Fig. 10b)

Scan Sort AM Crack

C
um

ul
at

iv
e

A
ve

ra
ge

 (
se

cs
)

10K random selections
selectivity 10%
random value ranges
in a 30 million integer column

set-up

AM: high init overhead
but fast convergence

Hybrids PVLDB 2011

Performance Analysis

 0.004

 200

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

Query sequence

c) All queries

(cf., Fig. 10b)

Scan Sort AM Crack

C
um

ul
at

iv
e

A
ve

ra
ge

 (
se

cs
)

10K random selections
selectivity 10%
random value ranges
in a 30 million integer column

set-up

AM: high init overhead
but fast convergence

Crack: low init overhead
but slow convergence

Hybrids PVLDB 2011

Questions

• Adaptive merging in column-stores?

• Adaptive merging Vs Cracking?

• Can we learn from both AM and Cracking?

Questions

What is there in between?

Adaptive merging and Cracking are extremes

Crack-Crack
vary initialization and incremental steps taken

100

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

100

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

select(A,50,100)

100

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k

select(A,50,100)

100

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

select(A,50,100)

100

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

cr
ac

k

select(A,50,100)

100

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

cr
ac

k
cr

ac
k

select(A,50,100)

100

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

cr
ac

k
cr

ac
k

select(A,50,100)

50

100

100

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

cr
ac

k
cr

ac
k

select(A,50,100)

50

100

100

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

cr
ac

k
cr

ac
k

select(A,50,100)

50

100

100

no
t s

or
te

d

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

cr
ac

k
cr

ac
k

select(A,50,100) select(A,55,70)

50

100

100

no
t s

or
te

d

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

cr
ac

k
cr

ac
k

select(A,50,100) select(A,55,70)

50

100

50

100

100

no
t s

or
te

d

crack

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

cr
ac

k
cr

ac
k

select(A,50,100) select(A,55,70)

50

100

50

100

select(A,150,170)

100

no
t s

or
te

d

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

cr
ac

k
cr

ac
k

select(A,50,100) select(A,55,70)

50

100

50

100

select(A,150,170)

50

100

100

no
t s

or
te

d

Hybrids PVLDB 2011

Crack-Crack
vary initialization and incremental steps taken

cr
ac

k
cr

ac
k

cr
ac

k
cr

ac
k

select(A,50,100) select(A,55,70)

50

100

50

100

select(A,150,170)

50

100

150

170

crack

100

crack

crack

crack

no
t s

or
te

d

Hybrids PVLDB 2011

Adaptive Indexing

Sort Radix Crack

final partitions

fast − convergence − slow

in
it

ia
l

p
a

rt
it

io
n

s
high − overhead − low

HSCHSRHSS

HRS HRR HRC

HCCHCRHCSCrack

Radix

Sort

sl
o

w
 −

 c
o

n
ve

rg
e
n

ce
 −

 f
a

st

lo
w

 −
 o

ve
rh

e
a

d
 −

 h
ig

h

Hybrids PVLDB 2011

Adaptive Indexing

Sort Radix Crack

final partitions

fast − convergence − slow

in
it

ia
l

p
a

rt
it

io
n

s
high − overhead − low

HSCHSRHSS

HRS HRR HRC

HCCHCRHCSCrack

Radix

Sort

sl
o

w
 −

 c
o

n
ve

rg
e
n

ce
 −

 f
a

st

lo
w

 −
 o

ve
rh

e
a

d
 −

 h
ig

h

Hybrids PVLDB 2011

Adaptive Indexing

Sort Radix Crack

final partitions

fast − convergence − slow

in
it

ia
l

p
a

rt
it

io
n

s
high − overhead − low

HSCHSRHSS

HRS HRR HRC

HCCHCRHCSCrack

Radix

Sort

sl
o

w
 −

 c
o

n
ve

rg
e
n

ce
 −

 f
a

st

lo
w

 −
 o

ve
rh

e
a

d
 −

 h
ig

h

Hybrids PVLDB 2011

Adaptive Indexing

Sort Radix Crack

final partitions

fast − convergence − slow

in
it

ia
l

p
a

rt
it

io
n

s
high − overhead − low

HSCHSRHSS

HRS HRR HRC

HCCHCRHCSCrack

Radix

Sort

sl
o

w
 −

 c
o

n
ve

rg
e
n

ce
 −

 f
a

st

lo
w

 −
 o

ve
rh

e
a

d
 −

 h
ig

h

Hybrids PVLDB 2011

Adaptive Indexing

Sort Radix Crack

final partitions

fast − convergence − slow

in
it

ia
l

p
a

rt
it

io
n

s
high − overhead − low

HSCHSRHSS

HRS HRR HRC

HCCHCRHCSCrack

Radix

Sort

sl
o

w
 −

 c
o

n
ve

rg
e
n

ce
 −

 f
a

st

lo
w

 −
 o

ve
rh

e
a

d
 −

 h
ig

h

Hybrids PVLDB 2011

Adaptive Indexing

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

b)

 (scan)

Hybrid:
Crack Crack
Crack Radix
Crack Sort

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100
R

e
sp

o
n
se

 t
im

e
 (

se
cs

)
a)

 (scan)

Scan
Cracking
Adaptive Merging
Full Index

1 10 100 1000Queries

Hybrids PVLDB 2011

Adaptive Indexing

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

b)

 (scan)

Hybrid:
Crack Crack
Crack Radix
Crack Sort

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100
R

e
sp

o
n
se

 t
im

e
 (

se
cs

)
a)

 (scan)

Scan
Cracking
Adaptive Merging
Full Index

1 10 100 1000Queries

Hybrids PVLDB 2011

Adaptive Indexing

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

b)

 (scan)

Hybrid:
Crack Crack
Crack Radix
Crack Sort

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100
R

e
sp

o
n
se

 t
im

e
 (

se
cs

)
a)

 (scan)

Scan
Cracking
Adaptive Merging
Full Index

1 10 100 1000Queries

Hybrids PVLDB 2011

Adaptive Indexing

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

b)

 (scan)

Hybrid:
Crack Crack
Crack Radix
Crack Sort

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100
R

e
sp

o
n
se

 t
im

e
 (

se
cs

)
a)

 (scan)

Scan
Cracking
Adaptive Merging
Full Index

1 10 100 1000Queries

Hybrids PVLDB 2011

Adaptive Indexing

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

b)

 (scan)

Hybrid:
Crack Crack
Crack Radix
Crack Sort

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100
R

e
sp

o
n
se

 t
im

e
 (

se
cs

)
a)

 (scan)

Scan
Cracking
Adaptive Merging
Full Index

1 10 100 1000Queries

Hybrids PVLDB 2011

Adaptive Indexing

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

R
e

sp
o

n
se

 t
im

e
 (

se
cs

)

b)

 (scan)

Hybrid:
Crack Crack
Crack Radix
Crack Sort

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100
R

e
sp

o
n
se

 t
im

e
 (

se
cs

)
a)

 (scan)

Scan
Cracking
Adaptive Merging
Full Index

1 10 100 1000Queries

Hybrids PVLDB 2011

Adaptive Indexing

How many queries before the index fully supports
a random query?

noneC
os

t o
f f

irs
t q

ue
ry

 re
la

tiv
e

to
 in

-
m

em
or

y
sc

an
 e

ffo
rt

Full Index

1x

Adaptive Merging

Database
Cracking

10 100 1000

 2x

 5x

 10x

Ideal Hybrid

never

Scan

Bad Hybrid

CCCR
CS

Initialization Vs convergence tradeoff

Hybrids PVLDB 2011

Adaptive Indexing

How many queries before the index fully supports
a random query?

noneC
os

t o
f f

irs
t q

ue
ry

 re
la

tiv
e

to
 in

-
m

em
or

y
sc

an
 e

ffo
rt

Full Index

1x

Adaptive Merging

Database
Cracking

10 100 1000

 2x

 5x

 10x

Ideal Hybrid

never

Scan

Bad Hybrid

CCCR
CS

Initialization Vs convergence tradeoff

Hybrids PVLDB 2011

Adaptive Indexing

How many queries before the index fully supports
a random query?

noneC
os

t o
f f

irs
t q

ue
ry

 re
la

tiv
e

to
 in

-
m

em
or

y
sc

an
 e

ffo
rt

Full Index

1x

Adaptive Merging

Database
Cracking

10 100 1000

 2x

 5x

 10x

Ideal Hybrid

never

Scan

Bad Hybrid

CCCR
CS

Initialization Vs convergence tradeoff

Hybrids PVLDB 2011

Adaptive Indexing

How many queries before the index fully supports
a random query?

noneC
os

t o
f f

irs
t q

ue
ry

 re
la

tiv
e

to
 in

-
m

em
or

y
sc

an
 e

ffo
rt

Full Index

1x

Adaptive Merging

Database
Cracking

10 100 1000

 2x

 5x

 10x

Ideal Hybrid

never

Scan

Bad Hybrid

CCCR
CS

Initialization Vs convergence tradeoff

Hybrids PVLDB 2011

Progressive Indexing

Adaptive Indexing:
1st Query Costs

Progressive Indexing

Mark Raasveldt, Pedro Holanda, Hannes Mühleisen

Can we / how to:

● Reduce / limit 1st query cost / overhead?

● Improve query performance predictability and robustness?

● Ensure convergence towards full index?

Yet unexplored “dimensions”:

● Other sorting algorithms than quick-sort

● Suspend/resume steps / iterations

Progressive Indexing

Progressive Quick-Sort

Progressive Merge-Sort

Progressive Bucket-Sort

Progressive Radix-Sort

Experimental Setup

● Software:
● stand-alone C++ program, g++ -O3
● Fedora 26

● Hardware:
● Intel Core i7-2600K CPU @ 3.40 GHz, 8 cores, 8 MB L3 cache
● 16 GB main memory

● Data:
● 8-byte integers
● 10^8 uniformly distributed values

● Queries:
● SELECT SUM(R.A) FROM R WHERE R.A BETWEEN V1 AND V2

● Experiments:
● repeat entire workload 10 times
● report median runtime per query
● Default: 1000 queries, 10% selectivity, random workload

Random Workload

Varying δ:
1st Query Cost

Varying δ:
Queries until Pay-of

Varying δ:
Queries until Convergence

Varying δ:
Entire Workload Cost

Chosen δ:
1st Query ~= 2x Scan

Comparison:
1st Query

Comparison:
Entire Workload

Comparison:
Adaptive Indexing

Comparison:
Progressive Indexing

Random Workload

Sequential Workload

Skewed Workload

Different Workloads

Queries until Pay-off

Progressive Indexing

● Robust & predictable query performance under various
workloads

● Balance between
● Fast convergence to full index
● Small overhead for 1st query

● Various basic sorting algorithms
● Quick-sort
● Merge-sort
● Bucket-sort
● Radix-sort

