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Physical design problem

Database systems perform efficiently
only after proper tuning...

which indexes to build?
on which data parts?
and when to build them?

DBA without adaptive indexing >f ’
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Dynamic environments

idle time workload knowledge

some problem cases
® Not enough idle time to finish proper tuning

® By the time we finish tuning, the workload changes

® No index support during tuning

e Not all data parts are equally useful /\
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Adaptive Indexing

For dynamic environments:

Remove all tuning, physical design steps but still
get similar performance as a fully tuned system

How?

(operators, plans, structures, etc.)

DBA with adaptive indexing db ,
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Adaptlve Indexmg

no monltormg
no preparation

no external tools

no full indexes

no human involvement
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Adaptlve Indexmg

no monltormg
no preparation

no external tools

no full indexes

no human involvement

Continuous on-the-fly physical reorganization
partial, incremental, adaptive indexing
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Abstract

Query performance strongly depends on finding an exe-
cution plan that touches as few superfluous tuples as possi-
ble. The access structures deployed for this purpose, how-
ever, are non-discriminative. They assume every subset of
the domain being indexed is equally important, and their
structures cause a high maintenance overhead during up-
dates. This approach often fails in decision support or
scientific environments where index selection represents a
weak compromise amongst many plausible plans.

An alternative route, explored here, is to continuously
adapt the database organization by making reorganization
an integral part of the query evaluation process. Every
query is first analyzed for its contribution to break the
database into multiple pieces, such that both the required
subset is easily retrieved and subsequent queries may bene-
fit from the new partitioning structure.

To study the potentials for this approach, we developed
a small representative multi-query benchmark and ran ex-
periments against several open-source DBMSs. The results
obtained are indicative for a significant reduction in system
complexity with clear performance benefits.

1 Introduction

The ultimate dream for a query processor is to touch only
those tuples in the database that matter for the production
of the query answer. This ideal cannot be achieved easily,
because it requires upfront knowledge of the user’s query
intent.

In OLTP applications, all imaginable database subsets
are considered of equal importance for query processing.
The queries mostly retrieve just a few tuples without statis-
tically relevant intra-dependencies. This permits a physical
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database design centered around index accelerators for in-
dividual tables and join-indices to speed up exploration of
semantic meaningful links.

In decision support applications and scientific databases,
however, it is a priori less evident what subsets are relevant
for answering the -mostly statistical- queries. Queries tend
to be ad-hoc and temporarily localized against a small por-
tion of the databases. Data warehouse techniques, such as
star- and snowflake schemas and bit-indices, are the primary
tools to improve performance [Raf03].

In both domains, the ideal solution is approximated by
a careful choice of auxiliary information to improve nav-
igation to the database subset of interest. This choice is
commonly made upfront by the database administrator and
its properties are maintained during every database update.
Alternatively, an automatic index selection tool may help in
this process through analysis of the (anticipated) work load
on the system [ZLLLO1, ACKT04]. Between successive
database reorganizations, a query is optimized against this
static navigational access structure.

Since the choice of access structures is a balance be-
tween storage and maintenance overhead, every query will
inevitably touch many tuples of no interest. Although the
access structures often permit a partial predicate evaluation,
it is only after the complete predicate evaluation that we
know which access was in vain.

In this paper we explore a different route based on the
hypothesis that access maintenance should be a byproduct
of query processing, not of updates. A query is interpreted
as both a request for a particular database subset and as an
advice to crack the database store into smaller pieces aug-
mented with an index to access them. If it is unavoidable to
touch Una-interesting tuples during query evaluation, can
we use that to prepare for a better future?

To illustrate, consider a simple query sel ect * from R
where R a <10 and a storage scheme that requires a full
table scan, i.e. touching all tuples to select those of interest.
The result produced in most systems is a stream of quali-
fying tuples. However, it can also be interpreted as a task
to fragment the table into two pieces, i.e. apply horizontal
fragmentation. This operation does not come for free, be-
cause the new table incarnation should be written back to
persistent store and its properties stored in the catalog. For
example, the original table can be replaced by a UNION TA-
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ABSTRACT

Database indices provide a non-discriminative navigational
infrastructure to localize tuples of interest. Their mainte-
nance cost is taken during database updates. In this pa-
per, we study the complementary approach, addressing in-
dex maintenance as part of query processing using continu-
ous physical reorganization, i.e., cracking the database into
manageable pieces. The motivation is that by automatically
organizing data the way users request it, we can achieve fast
access and the much desired self-organized behavior.

‘We present the first mature cracking architecture and re-
port on our implementation of cracking in the context of a
full fledged relational system. It led to a minor enhancement
to its relational algebra kernel, such that cracking could be
piggy-backed without incurring too much processing over-
head. Furthermore, we illustrate the ripple effect of dynamic
reorganization on the query plans derived by the SQL opti-
mizer. The experiences and results obtained are indicative of
a significant reduction in system complexity. We show that
the resulting system is able to self-organize based on incom-
ing requests with clear performance benefits. This behavior
is visible even when the user focus is randomly shifting to
different parts of the data.

1. INTRODUCTION

Nowadays, the challenge for database architecture design
is not in achieving ultra high performance but to design sys-
tems that are simple and flezible. A database system should
be able to handle huge sets of data and self-organize ac-
cording to the environment, e.g., the workload, available re-
sources, etc. A nice discussion on such issues can be found in
[6]. In addition, the trend towards distributed environments
to speed up computation calls for new architecture designs.
The same holds for multi-core CPU architectures that are
starting to dominate the market and open new possibilities
and challenges for data management. Some notable depar-
tures from the usual paths in database architecture design
include [2, 3, 9, 14].

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).

You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

In this paper, we explore a radically new approach in data-
base architecture, called database cracking. The cracking ap-
proach is based on the hypothesis that index maintenance
should be a byproduct of query processing, not of updates.
Each query is interpreted not only as a request for a partic-
ular result set, but also as an advice to crack the physical
database store into smaller pieces. Each piece is described
by a query, all of which are assembled in a cracker index to
speedup future search. The cracker index replaces the non-
discriminative indices (e.g., B-trees and hash tables) with a
discriminative index. Only database portions of past inter-
est are easily localized. The remainder is unexplored terri-
tory and remains non-indexed until a query becomes inter-
ested. Continuously reacting on query requests brings the
powerful property of self-organization. The cracker index is
built dynamically while queries are processed and adapts to
changing query workloads.

The cracking technique naturally provides a promising ba-
sis to attack the challenges described in the beginning of this
section. With cracking, the way data is physically stored
self-organizes according to query workload. Even with a
huge data set, only tuples of interest are touched, leading
to significant gains in query performance. In case the focus
shifts to a different part of the data, the cracker index auto-
matically adjusts to that. In addition, cracking the database
into pieces gives us disjoint sets of our data targeted by spe-
cific queries. This information can be nicely used as a basis
for high-speed distributed and multi-core query processing.

The idea of physically reorganizing the database based on
incoming queries has first been proposed in [10]. The con-
tributions of this paper are the following. We present the
first mature cracking architecture (a complete cracking soft-
ware stack) in the context of column oriented databases. We
report on our implementation of cracking on top of Mon-
etDB/SQL, a column oriented database system, showing
that cracking is easy to implement and may lead to fur-
ther system simplification. We present the cracking algo-
rithms that physically reorganize the datastore and the new
cracking operators to enable cracking in MonetDB. Using
SQL micro-benchmarks, we assess the efficiency and effec-
tiveness of the system at the operator level. Additionally, we
perform experiments that use the complete software stack,
demonstrating that cracker-aware query optimizers can suc-
cessfully generate query plans that deploy our new cracking
operators and thus exploit the benefits of database cracking.
Furthermore, we evaluate our current implementation and
discuss some promising results. We clearly demonstrate that
the resulting system can self-organize according to query
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Stochastic Database Cracking: Towards Robust Adaptive
Indexing in Main-Memory Column-Stores’
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ABSTRACT

Modern business applications and scientific databases call for in-
herently dynamic data storage environments. Such environments
are characterized by two challenging features: (a) they have lit-
tle idle system time to devote on physical design; and (b) there
is little, if any, a priori workload knowledge, while the query and
data workload keeps changing dynamically. In such environments,
traditional approaches to index building and maintenance cannot
apply. Database cracking has been proposed as a solution that al-
lows on-the-fly physical data reorganization, as a collateral effect of
query processing. Cracking aims to continuously and automatically
adapt indexes to the workload at hand, without human intervention.
Indexes are built incrementally, adaptively, and on demand. Never-
theless, as we show, existing adaptive indexing methods fail to de-
liver workload-robustness; they perform much better with random
workloads than with others. This frailty derives from the inelastic-
ity with which these approaches interpret each query as a hint on
how data should be stored. Current cracking schemes blindly reor-
ganize the data within each query’s range, even if that results into
successive expensive operations with minimal indexing benefit.

In this paper, we introduce stochastic cracking, a significantly
more resilient approach to adaptive indexing. Stochastic cracking
also uses each query as a hint on how to reorganize data, but not
blindly so; it gains resilience and avoids performance bottlenecks
by deliberately applying certain arbitrary choices in its decision-
making. Thereby, we bring adaptive indexing forward to a ma-
ture formulation that confers the workload-robustness previous ap-
proaches lacked. Our extensive experimental study verifies that
stochastic cracking maintains the desired properties of original da-
tabase cracking while at the same time it performs well with diverse
realistic workloads.

1. INTRODUCTION

Database research has set out to reexamine established assump-
tions in order to meet the new challenges posed by big data, sci-
entific databases, highly dynamic, distributed, and multi-core CPU
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environments. One of the major challenges is to create simple-to-
use and flexible database systems that have the ability self-organize
according to the environment [7].

Physical Design. Good performance in database systems largely
relies on proper tuning and physical design. Typically, all tuning
choices happen up front, assuming sufficient workload knowledge
and idle time. Workload knowledge is necessary in order to deter-
mine the appropriate tuning actions, while idle time is required in
order to perform those actions. Modern database systems rely on
auto-tuning tools to carry out these steps, e.g., [6, 8, 13, 1, 28].

Dynamic Environments. However, in dynamic environments,
workload knowledge and idle time are scarce resources. For ex-
ample, in scientific databases new data arrives on a daily or even
hourly basis, while query patterns follow an exploratory path as the
scientists try to interpret the data and understand the patterns ob-
served; there is no time and knowledge to analyze and prepare a
different physical design every hour or even every day.

Traditional indexing presents three fundamental weaknesses in
such cases: (a) the workload may have changed by the time we
finish tuning; (b) there may be no time to finish tuning properly;
and (c) there is no indexing support during tuning.

Database Cracking. Recently, a new approach to the physi-
cal design problem was proposed, namely database cracking [14].
Cracking introduces the notion of continuous, incremental, partial
and on demand adaptive indexing. Thereby, indexes are incremen-
tally built and refined during query processing. Cracking was pro-
posed in the context of modern column-stores and has been hith-
erto applied for boosting the performance of the select operator
[16], maintenance under updates [17], and arbitrary multi-attribute
queries [18]. In addition, more recently these ideas have been ex-
tended to exploit a partition/merge -like logic [19, 11, 12].

Workload Robustness. Nevertheless, existing cracking schemes
have not deeply questioned the particular way in which they in-
terpret queries as a hint on how to organize the data store. They
have adopted a simple interpretation, in which a select operator is
taken to describe a range of the data that a discriminative cracker
index should provide easy access to for future queries; the remain-
der of the data remains non-indexed until a query expresses inter-
est therein. This simplicity confers advantages such as instant and
lightweight adaptation; still, as we show, it also creates a problem.

Existing cracking schemes faithfully and obediently follow the
hints provided by the queries in a workload, without examining
whether these hints make good sense from a broader view. This ap-
proach fares quite well with random workloads, or workloads that
expose consistent interest in certain regions of the data. However,
in other realistic workloads, this approach can falter. For example,
consider a workload where successive queries ask for consecutive
items, as if they sequentially scan the value domain; we call this
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Questions

 Adaptive merging in column-stores?
 Adaptive merging Vs Cracking?

 Can we learn from both AM and Cracking?
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Questions

Adaptive merging and Cracking are extremes

What is there in between?
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Abstract

In a relational data warehouse with many tables, the
number of possible and promising indexes exceeds human
comprehension and requires automaic index tuning. While
monitoring and reactive index tuning have been proposed,
adaptive indexing focuses on adaping the physical data”
base layout for and by actual queries.

" is one such technique. Only ifand
when 3 column is used in query peedicates, an index for the
column is created; and anly if and when a key range is que-
ried, the index is optimized for this key range. The effect is
akin to a sort that is adaptive and incremental. This sort i,
however, very inefficient, particularly when applied on
block-access devices. In contrast, traditonal ndex creation
soris ¢ata with an efficient merge sort opumized for block-
acoess devices, but it is nefer adapiive nor incremental

e prapose adaptive merging, an adaptive, incre-
memzal and efficient technique for index creation. Index
optmzation focuses on key ranges used in actual queries.
The resuliing index adapts more quickly to new daw and 10
new query pamerns than darabase cracking. Sort efficiency
is comparable 1o that of tditional B-ree creation. I
theless, the new technigue promises better
ance than database cracking, btk in manery e s G-
aceess storage.

Categories and subject descriptors
E.2 Data storage represcotations - arrays, sorted trocs.
Keywords
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1. INTRODUCTION
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and mamemlmed views with their indexes are considered.

ssic, and very hard

D(Dhlm in physical database design. Too few or the wiong
indexes force many queries to scan large parts of the data-
base; two many indexes force high updawe costs. Unpredic
able ad-hee queries exacerbate ihe problem.

Ore approach is to focus on enabling very fast scans,
shared scans and columnar storage formats. an

5. Low-latency
Tlash memery will Tkely re.

rother approach is to tune indexes in response to the
Contemporary index selection tocls rely

s¢ tools.
o Index sup-
50 data access during the interval

this interval,

Fewasted wath respect to index creation, and eventual index
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example, recent business trans-

iah inclios = & costomializen views, 3 is ofin A
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Figure 1. A column store partitioned by datsbase cracking.
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of Database Operations

Cracking is fu\lysndmdlu: its costs arc

of fully sorting the data. With recent
lel) sorting algorithms (7],

tional costs: Cracking is, unlike Sean-
e,
emented with the underlying hardware in
{roughly) 'O bound.
csis, we make the following contributions:
an in-depth study of the coniributing performance:
the “classic” Cracking implementation.

the findings, we develop 2 mumber of optim

ed on “standard™ techniques like predication, vec-

e sty npleminied daia parallelis wsing

lelism to make use of multiple CPU cores.

sly evaluste all developed algorithms on a number
systems ranging from low-end deskiop machines
servers.

libstdos Viersion 4.8.2




E - xepul
- 9SJB0N

=
c U
> + - 011SBY201S
o O
© O
m n_rVM - Bunpoesn
= 2
)
e
% - - yoolg Boud
<

7- uBoS

< Al o

(s) awi ] Asenpd




W Progressive Indexing

Can we / how to:
* Reduce / limit 1% query cost / overhead?
* Improve guery performance predictability and robustness?

* Ensure convergence towards full index?
Yet unexplored “dimensions”:

* Other sorting algorithms than quick-sort

* Suspend/resume steps / iterations

Mark Raasveldt, Pedro Holanda, Hannes Muhleisen monetdb ,
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After 3 Queries After 4 Queries After 10 Queries
4l 5

p

SRS RSTES

0

%)
>
SOOI OO O O,

mone@



o Progressive Quick-Sort i) fte

>

Initialize
16 <9

Refine

39 §9—

—
Uninitialized

—h
N
V

O

mone@



C Progressive Merge-Sort (i)
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Progressive Bucket-Sort
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L Progressive Radix-Sort [l
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W Experimental Setup

e Software:

* stand-alone C++ program, g++ -O3
* Fedora 26

Hardware:

* Intel Core i7-2600K CPU @ 3.40 GHz, 8 cores, 8 MB L3 cache

* 16 GB main memory

e Data:

* 8-byte integers

* 1078 uniformly distributed values

Queries:

* SELECT SUM(R.A) FROM R WHERE R.ABETWEEN V1 AND V2
Experiments:

* repeat entire workload 10 times

* report median runtime per query

* Default: 1000 queries, 10% selectivity, random workload
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Chosen 6:

1°* Query ~= 2x Scan

Indexing Method 0
Bucketsort 0.009
Mergesort 0.05
Quicksort 0.22
Radixsort 0.08
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W Comparison:

Progressive Indexing
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W Skewed Workload

Query Range
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Query (#)
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Different Workloads () [as
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W # Queries until Pay-off

Indexing Method Random | Sequential | Skewed
Full Index 56 56 56
Standard Cracking 28 63 22
Stochastic Cracking 69 40 49
Progressive Stochastic 67 47 48
Coarse Granular Index 42 76 38
Bucketsort 258 261 207
Mergesort 113 114 114
Quicksort 136 128 139
Radixsort 200 200 200
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W Progressive Indexing

* Robust & predictable query performance under various
workloads

* Balance between
* Fast convergence to full index
* Small overhead for 1% query

* Various basic sorting algorithms
* Quick-sort
* Merge-sort
* Bucket-sort
* Radix-sort
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