

Physical design problem

Workload-Adaptive Indexing

Erwin M. Bakker & Stefan Manegold

https://homepages.cwi.nl/~manegold/DBDM/ http://liacs.leidenuniv.nl/~bakkerem2/dbdm/

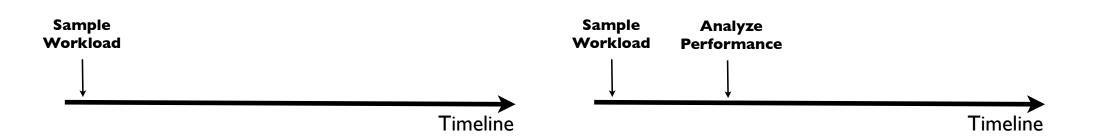
s.manegold@liacs.leidenuniv.nl e.m.bakker@liacs.leidenuniv.nl

Database systems perform efficiently only after proper tuning...

which indexes to build? on which data parts? and when to build them?

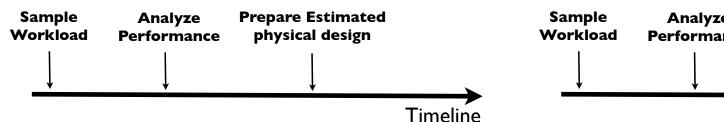
Databases and Data Mining 2018

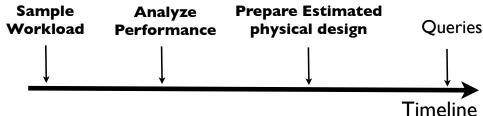
Physical Design



Physical Design

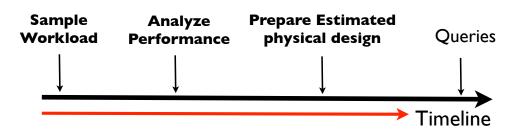
Physical Design





Physical Design

Physical Design



Sample **Analyze Prepare Estimated** Queries Workload physical design **Performance Timeline**

Complex and time consuming process

Complex and time consuming process

Dynamic environments

Dynamic environments

idle time

workload knowledge

idle time

workload knowledge

some problem cases

Dynamic environments

idle time

workload knowledge

idle time

workload knowledge

some problem cases

Not enough idle time to finish proper tuning

some problem cases

- Not enough idle time to finish proper tuning
- By the time we finish tuning, the workload changes

Dynamic environments

Dynamic environments

idle time

workload knowledge

idle time workload knowledge

some problem cases

- Not enough idle time to finish proper tuning
- By the time we finish tuning, the workload changes
- No index support during tuning

- Not enough idle time to finish proper tuning
- By the time we finish tuning, the workload changes
- No index support during tuning
- Not all data parts are equally useful

Adaptive Indexing

For dynamic environments:

Remove all tuning, physical design steps but still get similar performance as a fully tuned system

How?

Design new auto-tuning kernels (operators, plans, structures, etc.)

DBA with adaptive indexing

Adaptive Indexing

no monitoring
no preparation
no external tools
no full indexes
no human involvement

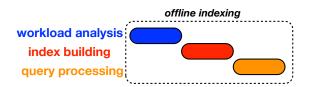
no monitoring
no preparation
no external tools
no full indexes
no human involvement

Adaptive Indexing

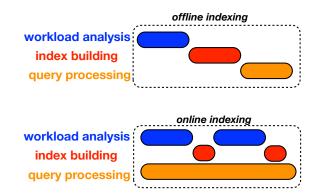
no monitoring no preparation no external tools no full indexes no human involvement

Continuous on-the-fly physical reorganization

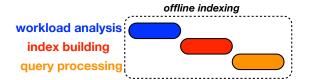
Continuous on-the-fly physical reorganization partial, incremental, adaptive indexing

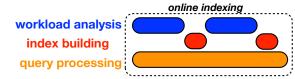


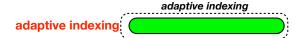
Indexing Overview



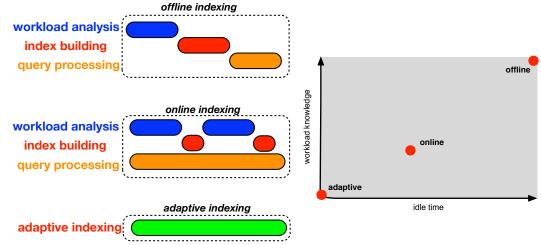
Indexing Overview







Indexing Overview



Cracking the Database Store

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract

plan that touches as few superfluous tuples as possi te access structures deployed for this purpose, how re non-discriminative. They assume every subset a main being indexed is equally important, and thei

from the new partitioning structure.

To study the potentials for this approach, we developed small representative multi-query benchmark and ran exeriments against several open-source DBMSs. The results
banined are indicative for a significant reduction in system
uplexity with clear performance benefits.

the system [ZLLL01, ACK+04]. Bety

Since the choice of access structures is a balance be ween storage and maintenance overhead, every query will nevitably touch many tuples of no interest. Although the ccess structures often permit a partial predicate evaluation

ress maintenance should be a byproduct g, not of updates. A query is interpreted for a particular database subset and as an

Database Cracking

ABSTRACT

moneta

Cracking Example

Each query is treated as an advice on how data should be stored

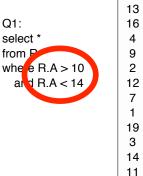
Each query is treated as an advice on how data should be stored

13 Q1: 16 select * from R 9 2 where R.A > 10 and R.A < 14 12 7 19 3 14 11 8 6

Column A

Cracking Example

Each query is treated as an advice on how data should be stored Physically reorganize based on the selection predicate



Column A

8

6

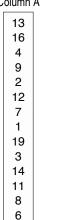
Database Cracking CIDR 2007

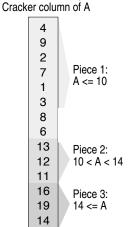
Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate Column A

Q1: select * from **F** where R.A > 10a R.A < 14

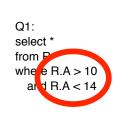


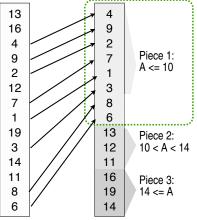


Cracking Example

Each query is treated as an advice on how data should be stored

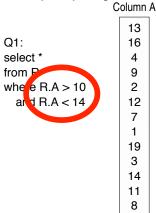
Physically reorganize based on the selection predicate Column A Cracker column of A

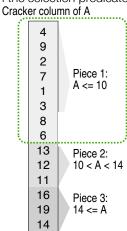




Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate



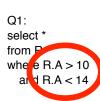


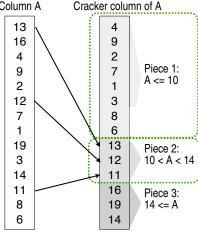
Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate

Column A Cracker column of A





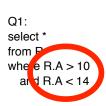
Database Cracking CIDR 2007

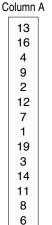
Database Cracking CIDR 2007

Cracking Example

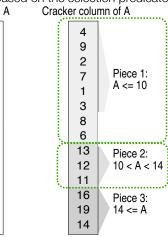
Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate





6

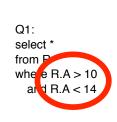


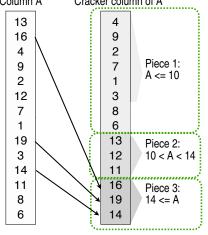
Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate

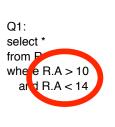
Column A Cracker column of A

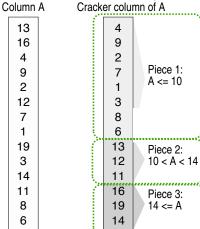




Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate

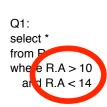


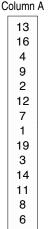


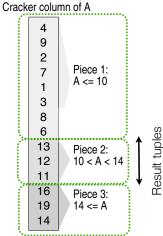
Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate





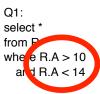


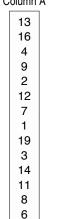
Database Cracking CIDR 2007

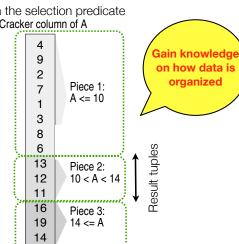
Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate Column A Cracker column of A 13

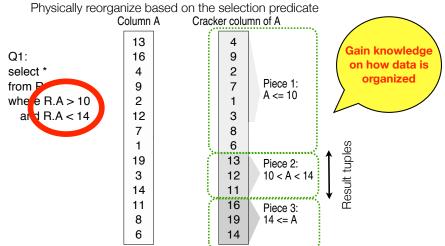






Cracking Example

Each query is treated as an advice on how data should be stored



Dynamically/on-the-fly within the select-operator

Q1:

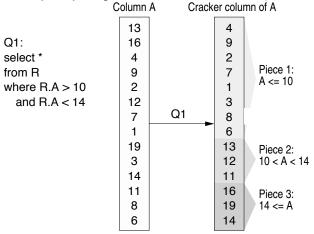
select *

from R

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate

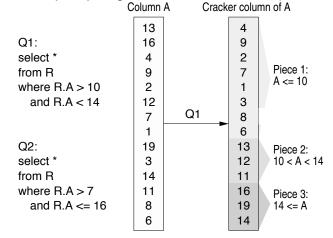


Dynamically/on-the-fly within the select-operator

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate



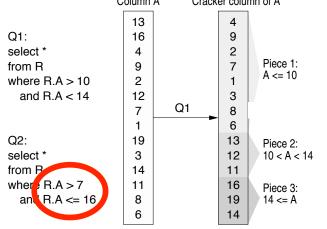
Dynamically/on-the-fly within the select-operator

Database Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate Column A Cracker column of A

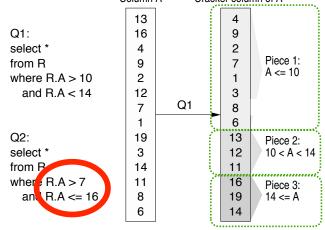


Dynamically/on-the-fly within the select-operator

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate Column A Cracker column of A



Dynamically/on-the-fly within the select-operator

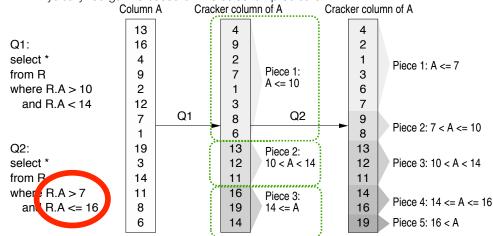
Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate Column A Cracker column of A Cracker column of A 13 Q1: 16 9 2 select * 2 Piece 1: A <= 7 Piece 1: from R 9 7 3 A <= 10where R.A > 102 6 and R.A < 14 12 3 7 Q1 Q2 8 9 Piece 2: 7 < A <= 10 6 8 13 Q2: 19 13 Piece 2: 3 select * 12 12 Piece 3: 10 < A < 14 10 < A < 14 11 from B 14 11 where R.A > 711 16 14 Piece 3: Piece 4: 14 <= A <= 16 8 16 an R.A <= 16 19 14 <= A 6 19 14 Piece 5: 16 < A

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate



Dynamically/on-the-fly within the select-operator

monet

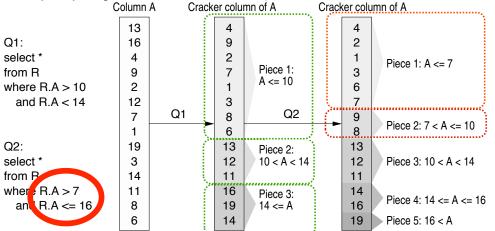
Database Cracking CIDR 2007

Cracking Example

Dynamically/on-the-fly within the select-operator

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate Column A Cracker column of A



Dynamically/on-the-fly within the select-operator

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate Column A Cracker column of A Cracker column of A 13 16 9 2 Q1: select * 1 Piece 1: A <= 7 Piece 1: 3 from R A <= 10 where R.A > 10 2 6 12 3 and R.A < 14 Q1 Q2 7 8 9 Piece 2: 7 < A <= 10 8 1 Q2: 19 13 13 Piece 2: select 3 3 12 10 < A < 14 12 Piece 3: 10 < A < 14 14 from B 11 11 wher R.A > 7 11 16 14 Piece 3: Piece 4: 14 <= A <= 16 an R.A <= 16 8 19 16 14 <= A 14 19 Piece 5: 16 < A

Dynamically/on-the-fly within the select-operator

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate Column A Cracker column of A Cracker column of A 13 Q1: 16 9 2 select * 2 Piece 1: A <= 7 Piece 1: from R 9 7 3 A <= 10where R.A > 102 6 and R.A < 14 12 3 Q1 Q2 8 9 Piece 2: 7 < A <= 10 6 Q2: 13 19 13 Piece 2: select * 3 12 10 < A < 14 12 Piece 3: 10 < A < 14 from B 14 11 11 where R.A > 711 16 Piece 3: Piece 4: 14 <= A <= 16 8 an R.A <= 16 19 16 14 <= A 6 14 19 Piece 5: 16 < A

Dynamically/on-the-fly within the select-operator

Cracking Example

Each query is treated as an advice on how data should be stored

Physically reorganize based on the selection predicate Column A Cracker column of A Cracker column of A 13 Q1: 16 9 2 select * 2 1 Piece 1: A <= 7 Piece 1: from R 3 A <= 10where R.A > 10 2 6 and R.A < 14 12 3 Q1 Q2 8 9 Piece 2: 7 < A <= 10 6 8 13 Q2: 19 13 Piece 2: select * 3 12 12 10 < A < 14 Piece 3: 10 < A < 14 11 from B 14 11 wher R.A > 7 11 16 Piece 3: an R.A <= 16 8 19 16 14 <= A 14 19 Piece 5: 16 < A

Dynamically/on-the-fly within the select-operator

The more we crack, the more we learn

monet

monetab

Each guery is treated as an advice on how data shou

Cracking Example

Physically reorganize based on the selection predicate Column A Cracker column of A Cracker column of A 13 9 2 Q1: 16 2 select * Piece 1: A <= 7 Piece 1: 7 from R 9 3 A <= 10where R.A > 10 2 6 12 3 and R.A < 14 Q1 Q2 7 8 9 Piece 2: 7 < A <= 10 6 13 Q2: 19 13 Piece 2: 3 12 12 select i 10 < A < 14 Piece 3: 10 < A < 14 14 11 from B 11 where R.A > 711 16 Piece 3: Piece 4: 14 <= A <= 16 an R.A <= 16 8 19 14 <= A 6 19 Piece 5: 16 < A

Dynamically/on-the-fly within the select-operator

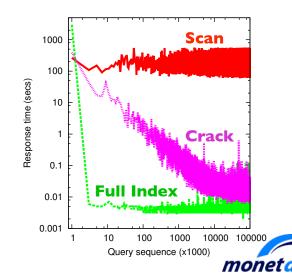
Database Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored

set-up

100K random selections random selectivity random value ranges in a 10 million integer column



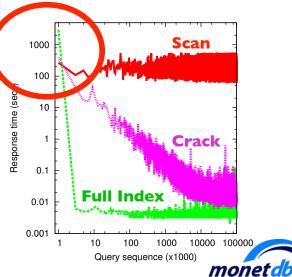
Each query is treated as an advice on how data should be stored

Cracking Example

Each query is treated as an advice on how data should be stored

set-up

100K random selections random selectivity random value ranges in a 10 million integer column

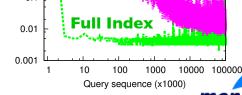


set-up

100K random selections random selectivity random value ranges in a 10 million integer column

Scan 1000 100 Response time (secs) 0.1 0.01 0.001 100 1000 10000 100000 Query sequence (x1000) monetal

almost no initialization overhead



initialization overhead

almost no

continuous improvement

Database Cracking CIDR 2007

Cracking Example

Each query is treated as an advice on how data should be stored

Cracking Example

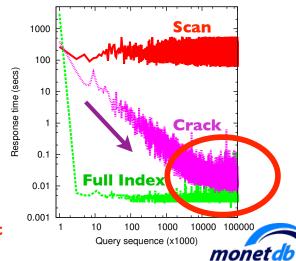
Each query is treated as an advice on how data should be stored

set-up

100K random selections random selectivity random value ranges in a 10 million integer column

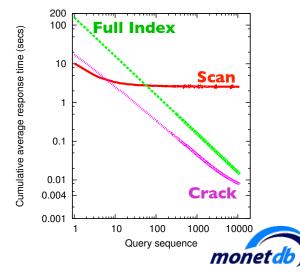
almost no initialization overhead

continuous improvement



set-up

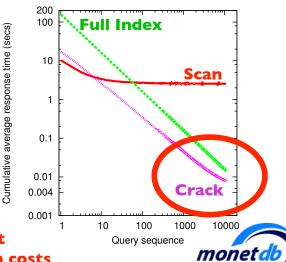
10K random selections selectivity 10% random value ranges in a 30 million integer column



Each query is treated as an advice on how data should be stored

set-up

10K random selections selectivity 10% random value ranges in a 30 million integer column



10K queries later, Full Index still has not amortized the initialization costs

Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-Memory Column-Stores'

Felix Halim	Stratos Idreos	Panagiotis Kar	ras ⁰ Roland H. C. Yap⁴
*National University of Singapore		†CWI, Amsterdam	Rutgers University

ABSTRACT

Modern beatness applications and scientific databases call for inherently dynamic data strage environments. Such environments are characterized by two challenging features: (a) they have like idle system into to devete on physical design; and (b) three is little, if any, a priori workfood knowledge, while the queey and data workfood leave, changing dynamically, in such environments, asply. Database ranking has been proposed as a solution that alrows on-the dip physical data recognization, as a collateral flexion on-the dip physical data recognization, as a collateral flexion on-the dip physical data recognization, as a collateral daylard indexes to the workfood at hand, whost human intervention, ladges use hull incrementally, adaptively, and on demand. Never hand the strain of the strain o

In this paper, we introduce stochastic cracking, a significantly ore resilient approach to adaptive indexing. Stochastic cracking so uses each query as a hint on how to reorganize data, but not indly so; it gains resilience and avoids performance bottlenecks deliberately applying certain arbitrary choices in its decisionby deliberately applying certain arbitrary choices in its decision-making. Thereby, we bring adaptive indexting forward to a ma-ture formulation that confers the workload-robustness previous ap-proaches lacked. Our extensive experimental study verifies that stochastic cracking maintains the desired properties of original database cracking while at the same time it performs well with diverse realistic workloads.

1. INTRODUCTION

Database research has set out to reexamine established assump-tions in order to meet the new challenges posed by big data, sci-entific databases, highly dynamic, distributed, and multi-core CPU

orted by Singapore's MOE AcRF grant T1 251RES0807

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are non made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to prophibit, to post on servers or for redistribute to lists, requires prior specific permission and/or a fee. Articles from this volume were invited to present their results at The Shi International Conference on Very Large Data Bases. stresums at the som maximum connectice to very single angust 27th - 31st 2012, Istanbul, Turkey.

**occedings of the VLDB Endowment, Vol. 5, No. 6

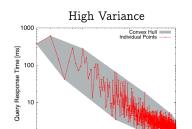
coveright 2012 VLDB Endowment 2150-8097/12/02... \$ 10.00.

ents. One of the major challenges is to create simple-to use and flexible database systems that have the ability self-organize

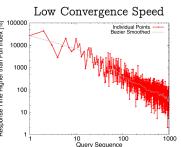
environments. One of the major challenges is to create simple to see and flexible database systems that whe shally self-organize according to the environment [7].

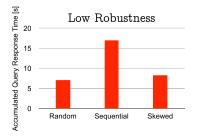
Physical Poligia, Cool perfection and in database systems largely. Physical Poligia. Cool perfection and in database systems that property and the property of the propert

ts provided by the queries in a workload, without examining ther these hints make good sense from a broader view. This ap proach fares quite well with random workloads, or workloads the expose consistent interest in certain regions of the data. However in other realistic workloads, this approach can falter. For example, consider a workload where successive queries ask for consecutive items, as if they sequentially scan the value domain: we call this



Query Sequence





[Felix Schuhknecht, Alekh Jindal, Jens Dittrich: The Uncracked Pieces in Database Cracking, PVLDB Vol. 7, No. 2, Best Paper Award

Stochastic cracking

PVLDB2012, Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main Memory Column Stores Felix Halim, Stratos Idreos, Panagiotis Karras and Roland Y. Chuan

Workload Robustness

Query patterns

column with 100 unique integers

Observation:

Queries define adaptive indexing actions
The kind of queries and the order of queries matter!

Goal:

Maintain adaptive behavior regardless of query input

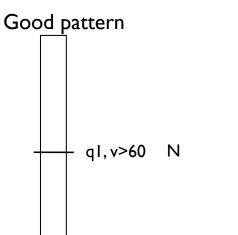
Stochastic Cracking, PVLDB 12

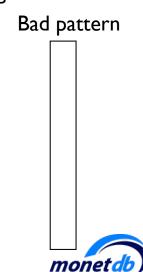
Query patterns

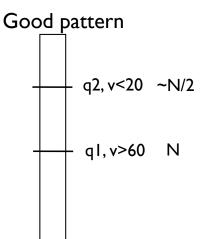
column with 100 unique integers

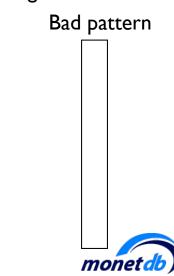
Query patterns

column with 100 unique integers





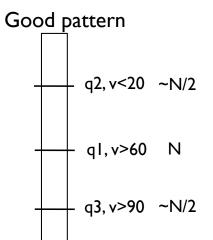


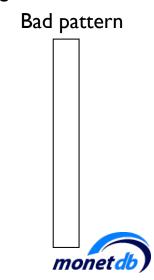


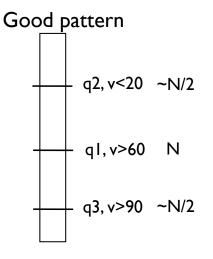
column with 100 unique integers

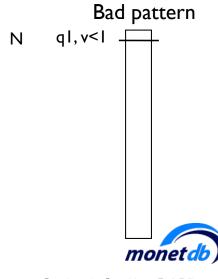
Query patterns

column with 100 unique integers









CWI

Stochastic Cracking, PVLDB 12

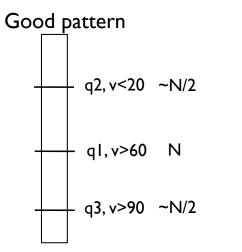
Stochastic Cracking, PVLDB 12

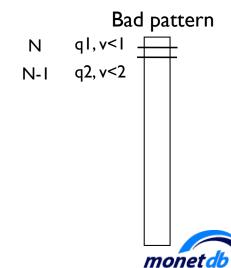
Query patterns

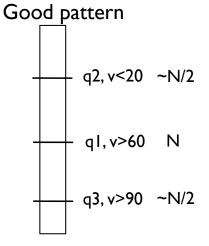
column with 100 unique integers

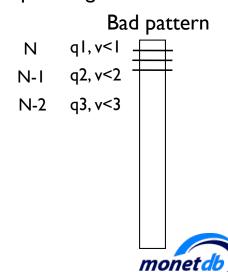
Query patterns

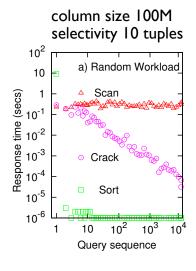
column with 100 unique integers



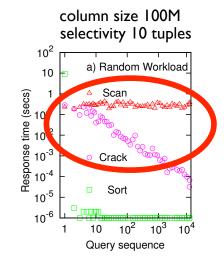






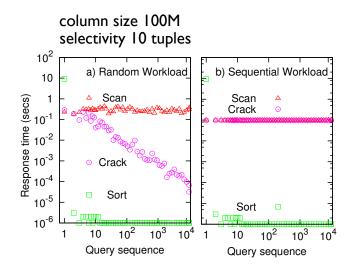


Query patterns

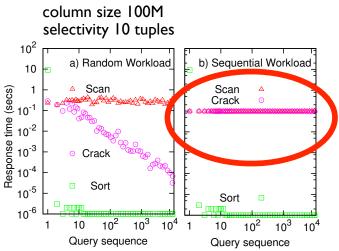


Stochastic Cracking, PVLDB 12

Query patterns



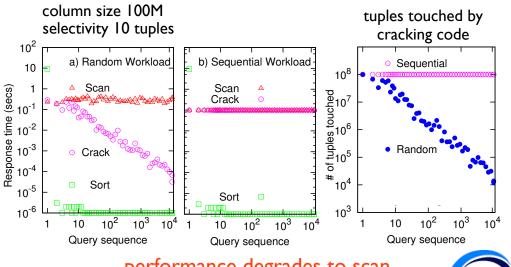
Query patterns



monetal

performance degrades to scan

Query patterns



column size 100M tuples touched by selectivity 10 tuples cracking code 10² b) Sequential Workload a) Random Workload Sequential 10 10⁸ △ Scan Scan touched Crack tuples 105 Crack ō Sort 10⁻⁵ Sort 10² 10³ 10² 10³ 10 10 10⁴ 10^{2} 10³ 10 10⁴ Query sequence Query sequence Query sequence

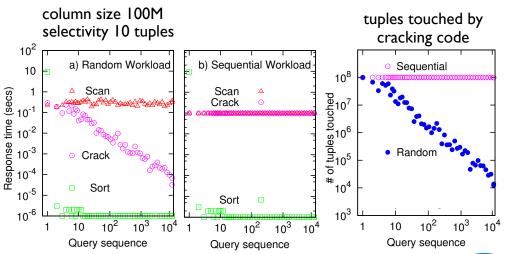
performance degrades to scan

performance degrades to scan

Stochastic Cracking, PVLDB 12

Stochastic Cracking, PVLDB 12

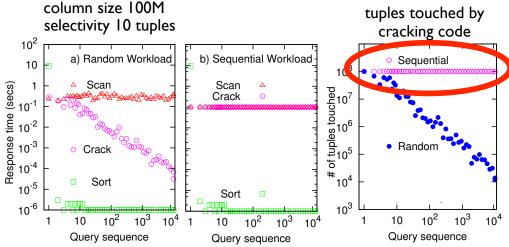
Query patterns



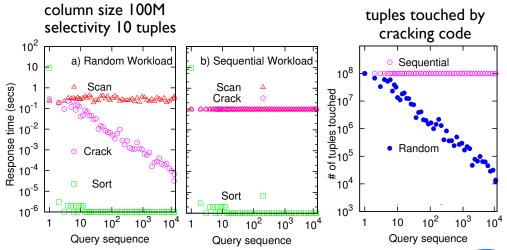
performance degrades to scan

moneta

Query patterns



performance degrades to scan



performance degrades to scan

Stochastic Cracking

Problem:

Blind adaptation to queries

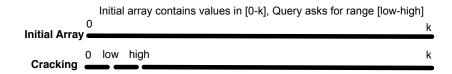
Solution:

Query driven and data driven adaptation

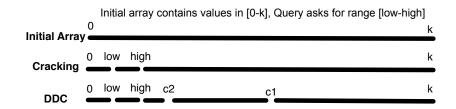
Stochastic Cracking, PVLDB 12

Stochastic Cracking, PVLDB 12

Stochastic Cracking



Stochastic Cracking

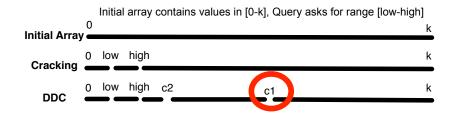


Data Driven, Center (DDC):

- 1. Recursively crack a piece in exactly half until in L2 cache.
- 2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

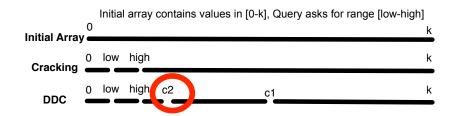
Stochastic Cracking



Data Driven, Center (DDC):

- I. Recursively crack a piece in exactly half until in L2 cache.
- 2. Then crack for the guery bounds.

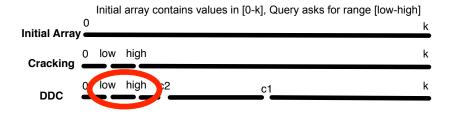
Stochastic Cracking



Data Driven, Center (DDC):

- I. Recursively crack a piece in exactly half until in L2 cache.
- 2. Then crack for the query bounds.

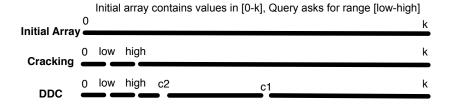
Stochastic Cracking



Data Driven, Center (DDC):

- 1. Recursively crack a piece in exactly half until in L2 cache.
- 2. Then crack for the query bounds.

Stochastic Cracking

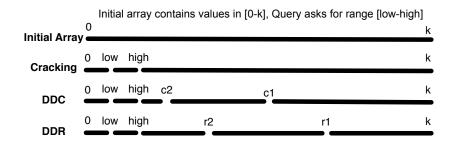


Data Driven, Center (DDC):

- I. Recursively crack a piece in exactly half until in L2 cache.
- 2. Then crack for the query bounds.



Stochastic Cracking

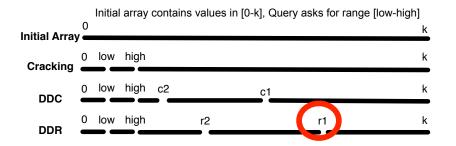


Data Driven, Random (DDR):

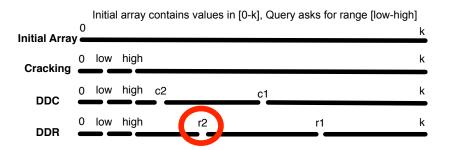
- 1. Recursively crack a piece randomly until in L2 cache.
- 2. Then crack for the query bounds.

Stochastic Cracking, PVLDB 12

Stochastic Cracking



Stochastic Cracking

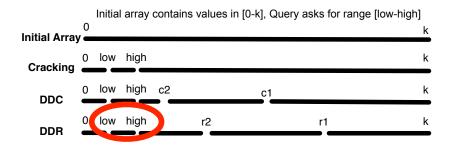


Data Driven, Random (DDR):

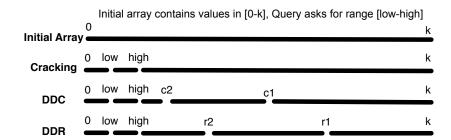
- I. Recursively crack a piece randomly until in L2 cache.
- 2. Then crack for the query bounds.

Data Driven, Random (DDR):

- I. Recursively crack a piece randomly until in L2 cache.
- 2. Then crack for the query bounds.



Stochastic Cracking



Data Driven, Random (DDR):

- I. Recursively crack a piece randomly until in L2 cache.
- 2. Then crack for the query bounds.

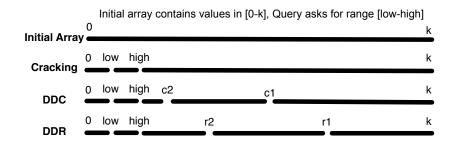
Data Driven, Random (DDR):

- I. Recursively crack a piece randomly until in L2 cache.
- 2. Then crack for the query bounds.

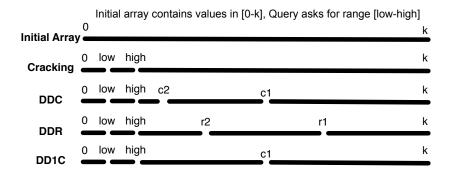
Stochastic Cracking, PVLDB 12

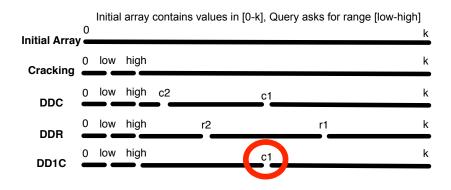
Stochastic Cracking, PVLDB 12

Stochastic Cracking

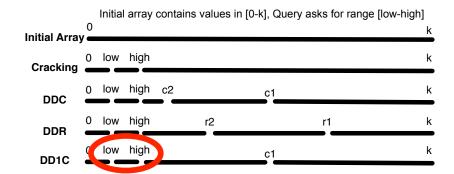


Stochastic Cracking



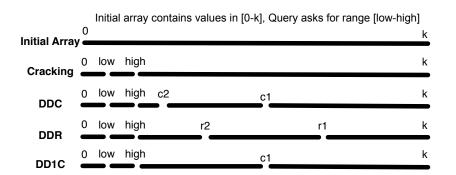


Stochastic Cracking

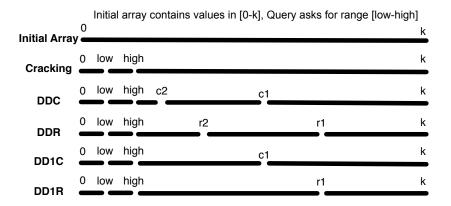


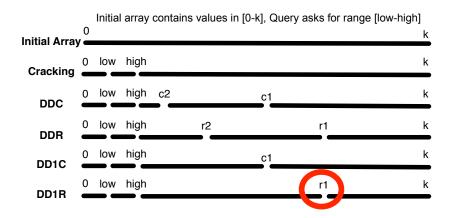
Stochastic Cracking, PVLDB 12

Stochastic Cracking

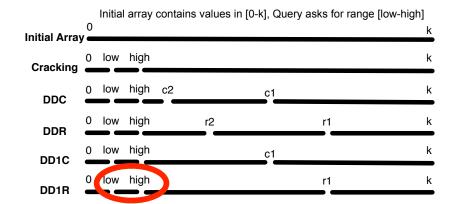


Stochastic Cracking

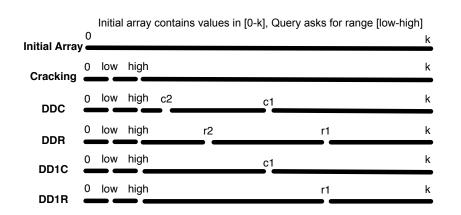


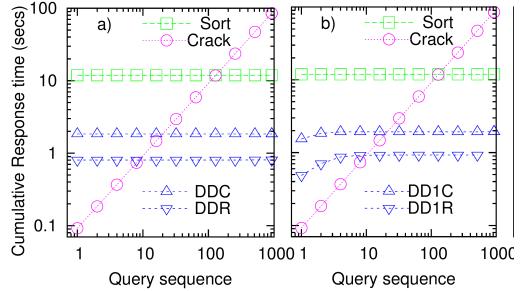


Stochastic Cracking



Stochastic Cracking





EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

Hybrids

PVLDB11, Cracking what's marged. Merging what's cracked.

<u>Adaptive Indexing in Main-Memory Column-Stores</u>

Stratos Idreos, Stefan Manegold, Harumi Kuno and Goetz Graefe

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno Incremental sort via external merge sort steps select(A,50,100)

Adaptive Merging

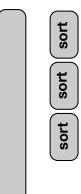
EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

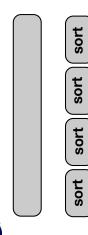
Incremental sort via external merge sort steps

select(A,50,100)

moneta

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno Incremental sort via external merge sort steps select(A,50,100)



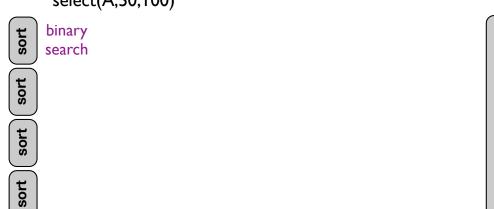


Adaptive Merging

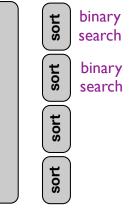
EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)



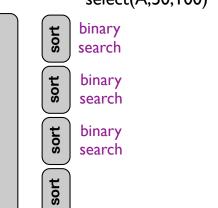
EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno Incremental sort via external merge sort steps select(A,50,100)



EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)

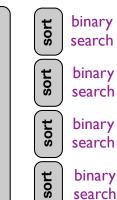


Hybrids PVLDB 2011 Adaptive Merging

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

select(A,50,100)



monet db

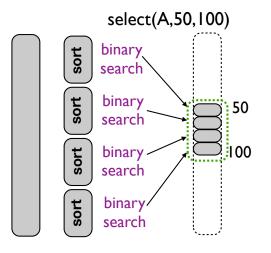
Adaptive Merging

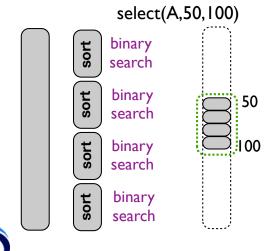
EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

Incremental sort via external merge sort steps





Adaptive Merging

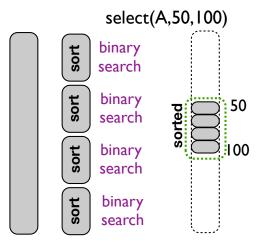
Hybrids PVLDB 2011 **Adaptive Merging**

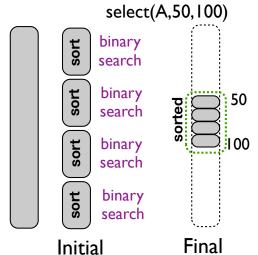
EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

Incremental sort via external merge sort steps





monetab

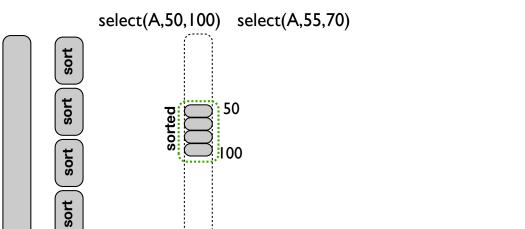
Adaptive Merging

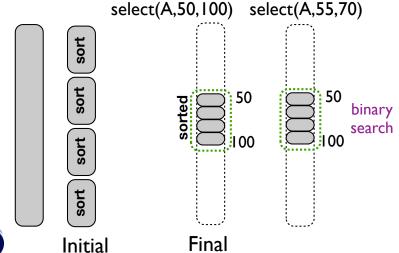
EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps

Incremental sort via external merge sort steps

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno





Initial

Adaptive Merging

Final

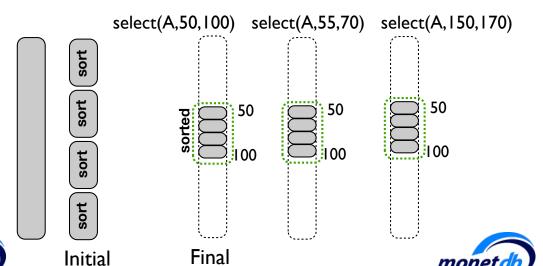
Hybrids PVLDB 2011 Adaptive Merging

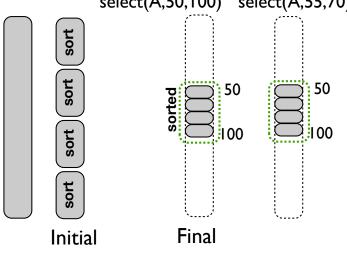
EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno Incremental sort via external merge sort steps

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno Incremental sort via external merge sort steps

select(A,50,100) select(A,55,70) select(A,150,170)

monetal

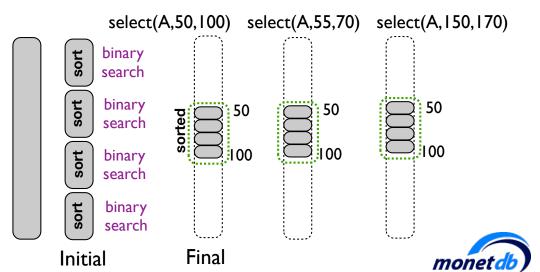




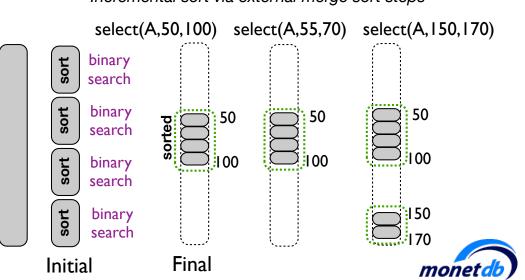
Adaptive Merging

EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno

Incremental sort via external merge sort steps



EDBT'10, SMDB'10, Goetz Graefe and Harumi Kuno Incremental sort via external merge sort steps



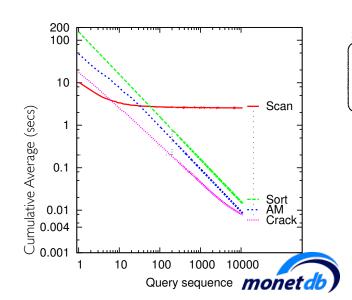
Hybrids PVLDB 2011

Performance Analysis

Performance Analysis

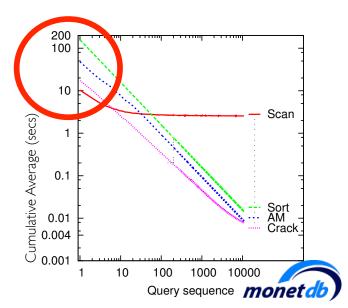
set-up

10K random selections selectivity 10% random value ranges in a 30 million integer column



set-up 10K random selections

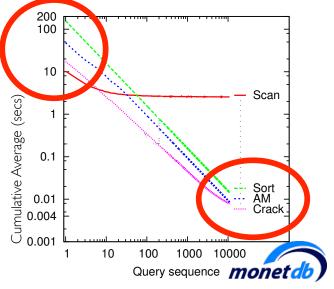
selectivity 10% random value ranges in a 30 million integer column



Performance Analysis

set-up

10K random selections selectivity 10% random value ranges in a 30 million integer column

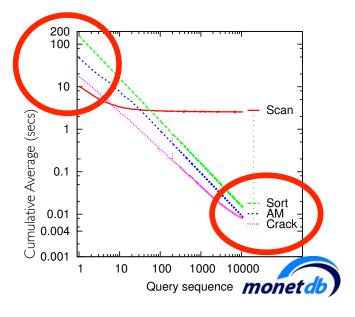


Performance Analysis

set-up

10K random selections selectivity 10% random value ranges in a 30 million integer column

AM: high init overhead but fast convergence



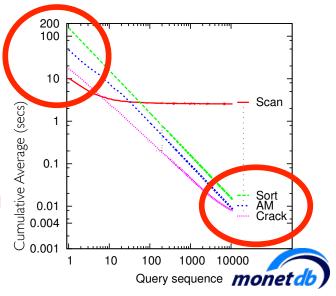
Performance Analysis

set-up

10K random selections selectivity 10% random value ranges in a 30 million integer column

AM: high init overhead but fast convergence

Crack: low init overhead but slow convergence



Questions

- Adaptive merging in column-stores?
- Adaptive merging Vs Cracking?
- Can we learn from both AM and Cracking?

vary initialization and incremental steps taken

Adaptive merging and Cracking are extremes

Questions

What is there in between?

Crack-Crack

vary initialization and incremental steps taken

Crack-Crack

vary initialization and incremental steps taken

select(A,50,100)

Hybrids PVLDB 2011

Crack-Crack

vary initialization and incremental steps taken

vary initialization and incremental steps taken

Hybrids PVLDB 2011

Hybrids PVLDB 2011

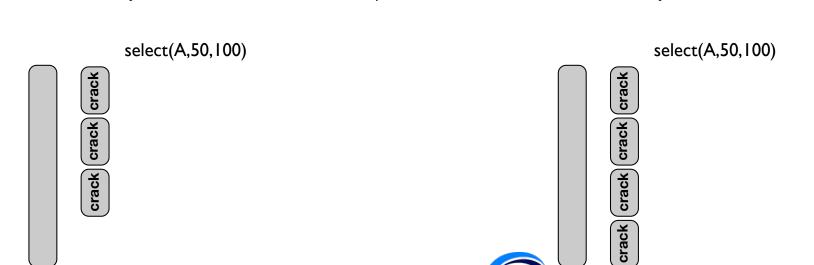
Crack-Crack

vary initialization and incremental steps taken

monetat

Crack-Crack

vary initialization and incremental steps taken

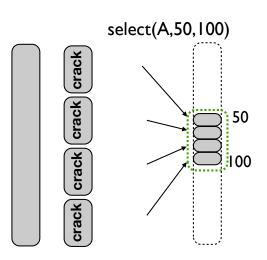


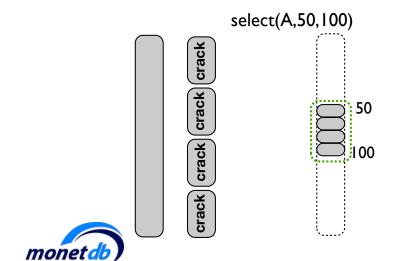
Hybrids PVLDB 2011 C

Crack-Crack

vary initialization and incremental steps taken

vary initialization and incremental steps taken





Hybrids PVLDB 2011

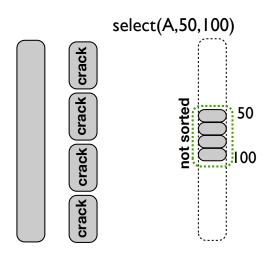
Crack-Crack

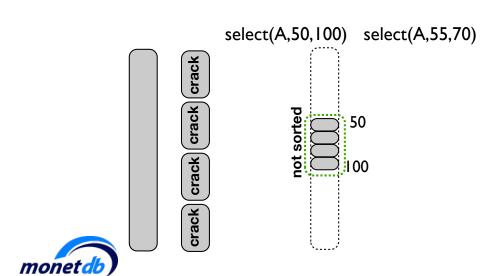
Crack-Crack

Hybrids PVLDB 2011

vary initialization and incremental steps taken

vary initialization and incremental steps taken



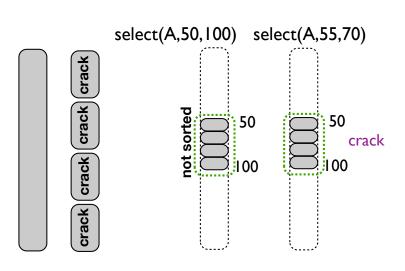


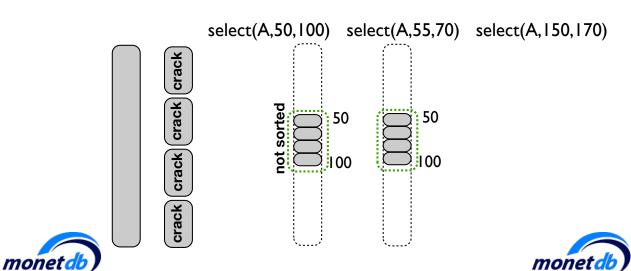
Hybrids PVLDB 2011

Crack-Crack

vary initialization and incremental steps taken

vary initialization and incremental steps taken





CWI

Crack-Crack

Hybrids PVLDB 2011

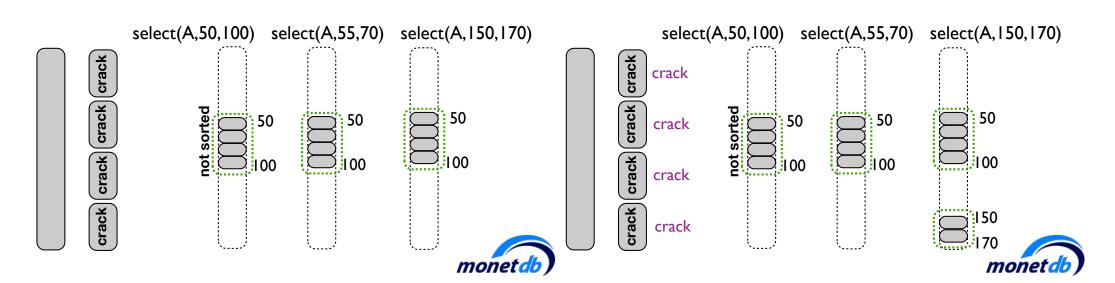
Crack-Crack

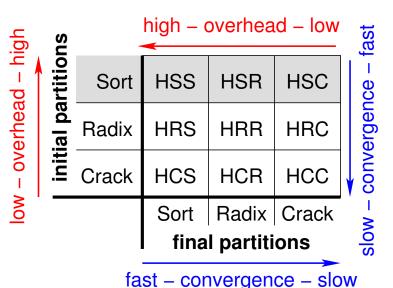
Hybrids PVLDB 2011

Hybrids PVLDB 2011

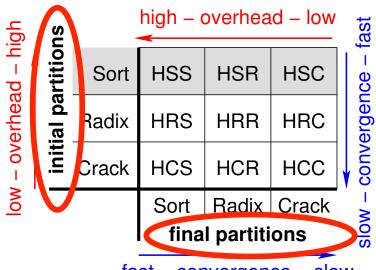
vary initialization and incremental steps taken

vary initialization and incremental steps taken





Adaptive Indexing

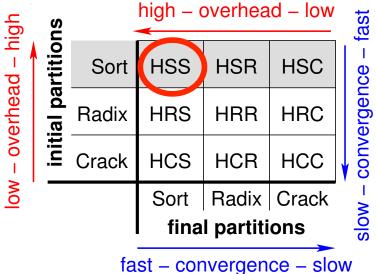


fast - convergence - slow

monetdb

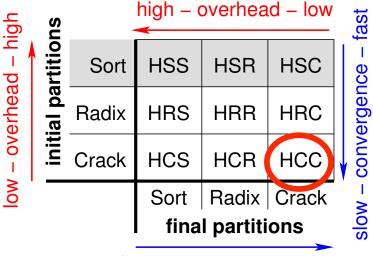
Hybrids PVLDB 2011

Adaptive Indexing



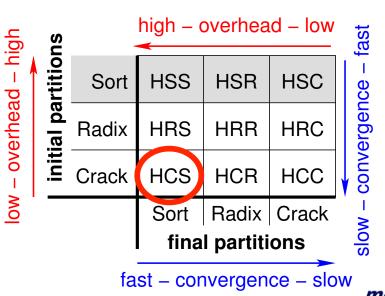
monetdb

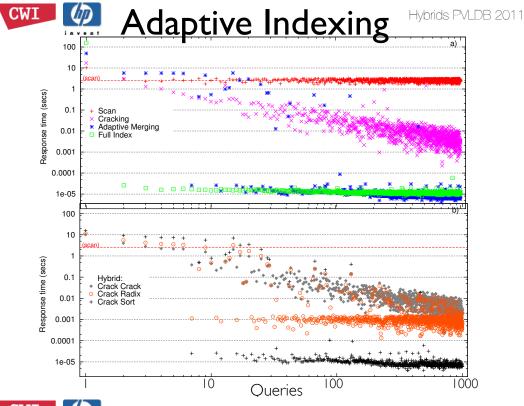
Adaptive Indexing

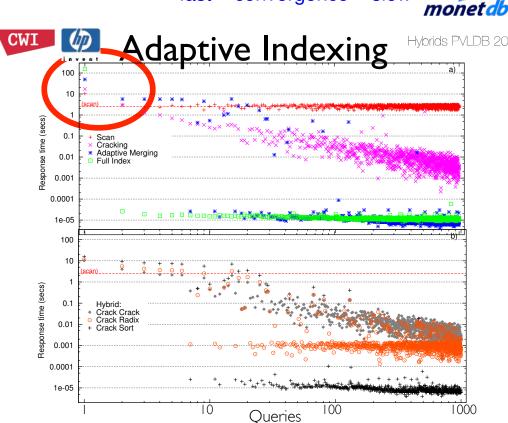


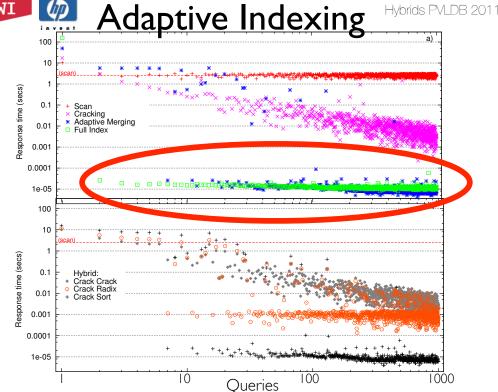
fast - convergence - slow

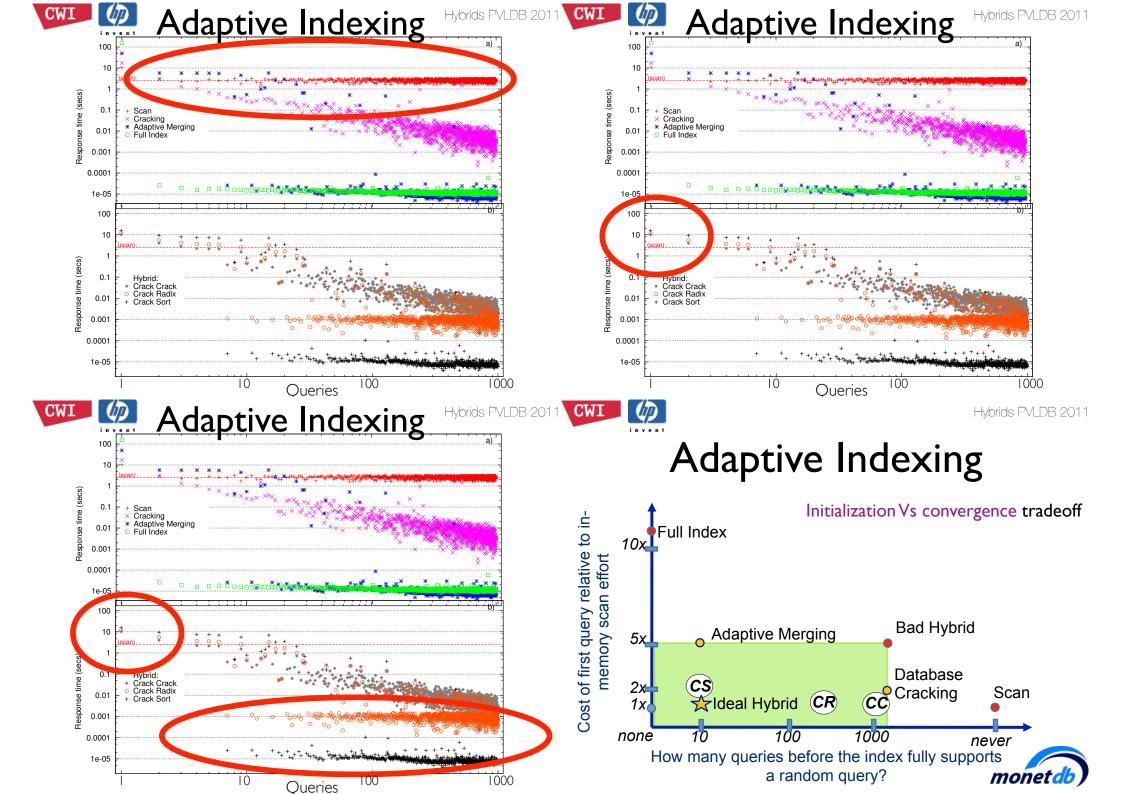
Hybrids PVLDB 2011

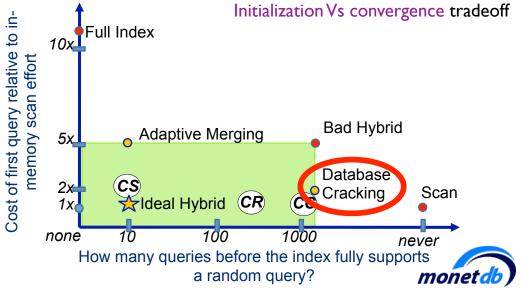




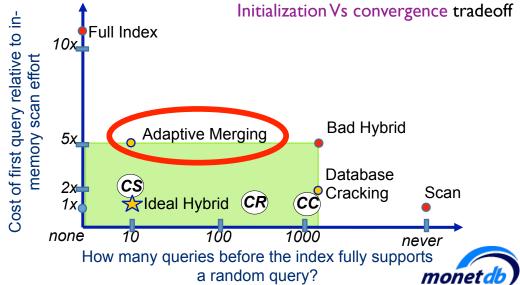


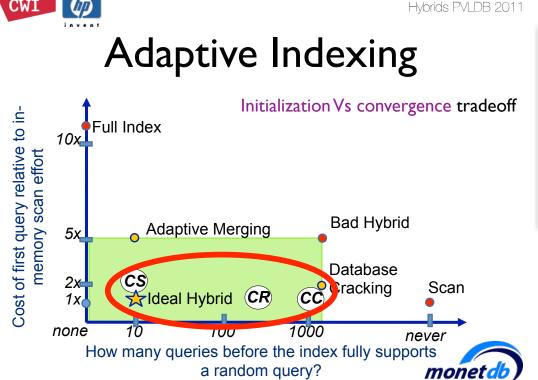






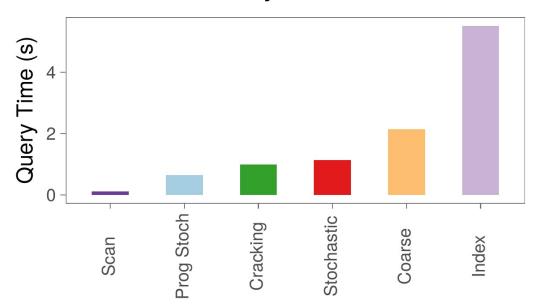
Adaptive Indexing





Adaptive Indexing: 1st Query Costs

Progressive Indexing



Can we / how to:

- Reduce / limit 1st query cost / overhead?
- Improve query performance predictability and robustness?
- Ensure convergence towards full index?

Yet unexplored "dimensions":

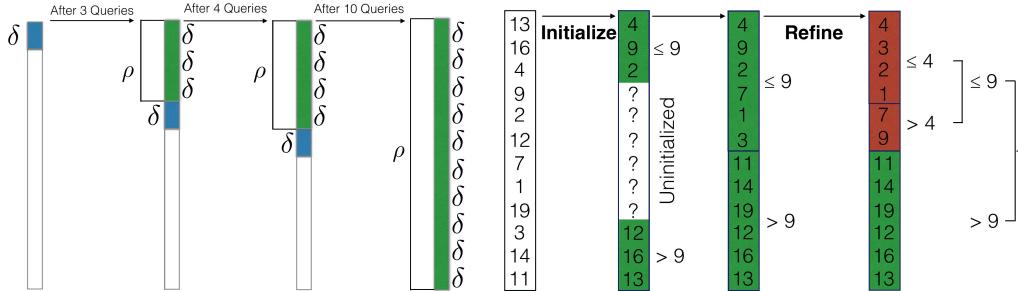
• Other sorting algorithms than quick-sort

Mark Raasveldt, Pedro Holanda, Hannes Mühleisen

• Suspend/resume steps / iterations

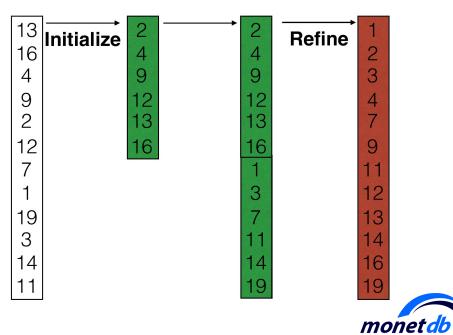
Progressive Indexing

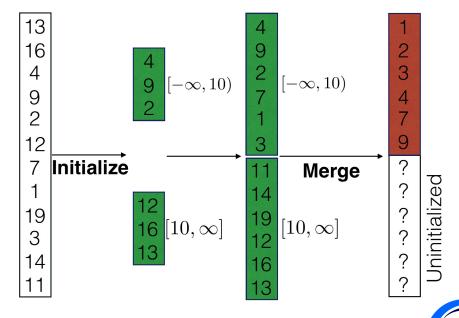
Progressive Quick-Sort



Progressive Merge-Sort

Progressive Bucket-Sort





13

Progressive Radix-Sort

Experimental Setup

- 16

 4

 9

 12

 11

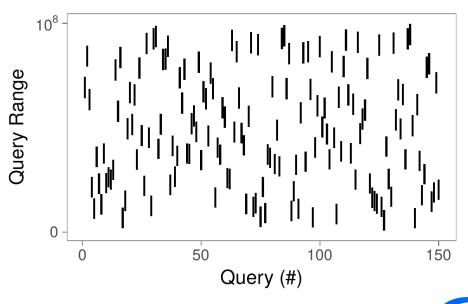
 2

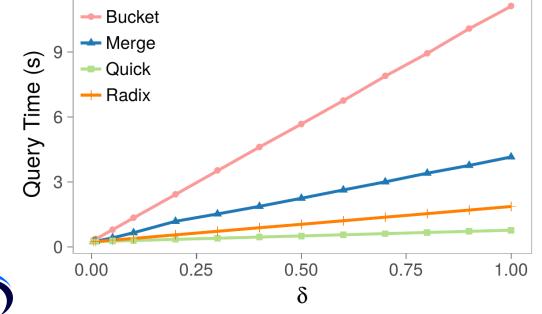
 12

- Software:
 - stand-alone C++ program, g++ -O3
 - Fedora 26
- Hardware:
 - Intel Core i7-2600K CPU @ 3.40 GHz, 8 cores, 8 MB L3 cache
 - 16 GB main memory
- Data:
 - 8-byte integers
 - 10^8 uniformly distributed values
- Queries:
 - SELECT SUM(R.A) FROM R WHERE R.A BETWEEN V1 AND V2
- Experiments:
- repeat entire workload 10 times
- report median runtime per query
- Default: 1000 queries, 10% selectivity, random workload

Random Workload

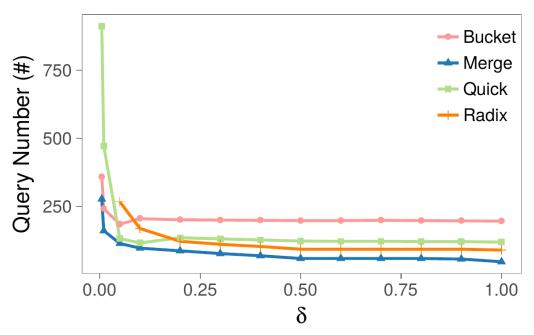
Varying δ: 1st Query Cost

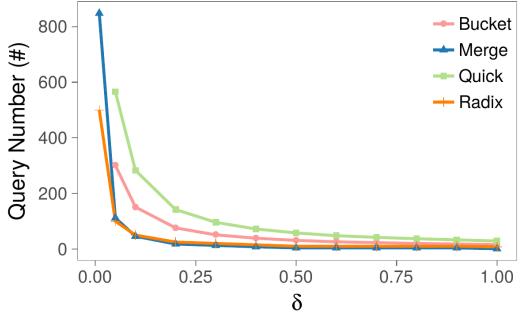




Varying δ: # Queries until Pay-off

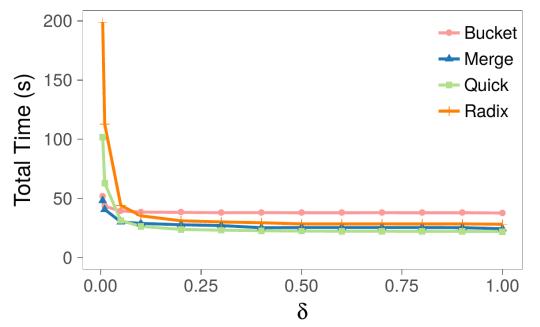
Varying δ: # Queries until Convergence





Varying δ: Entire Workload Cost

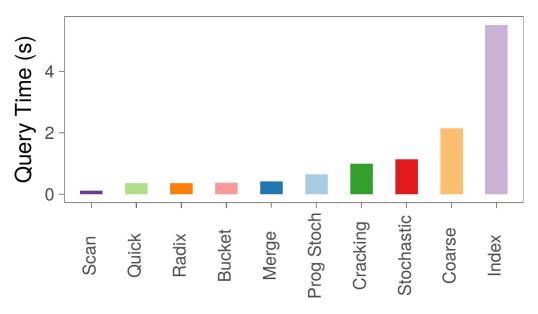
Chosen δ: 1st Query ~= 2x Scan

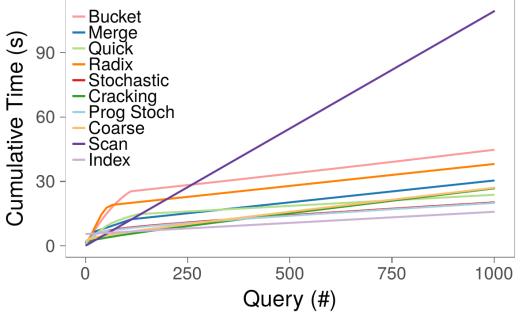


Indexing Method	δ
Bucketsort	0.009
Mergesort	0.05
Quicksort	0.22
Radixsort	0.08

Comparison: 1st Query

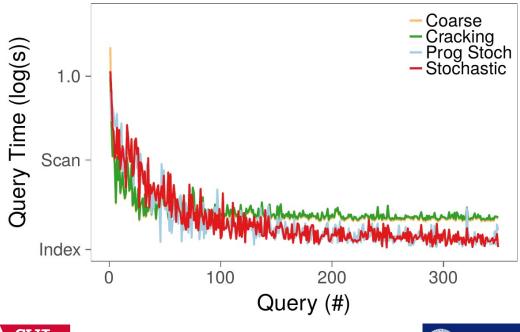
Comparison: Entire Workload

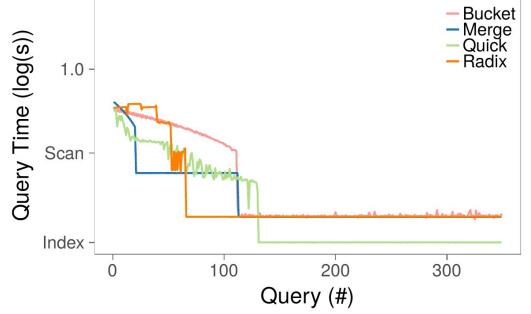




Comparison: Adaptive Indexing

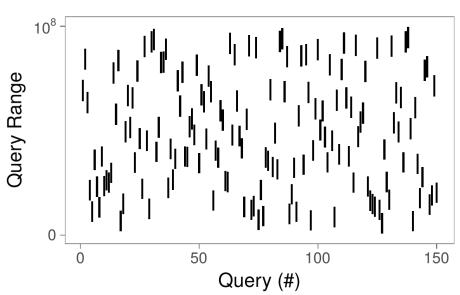
Comparison: Progressive Indexing

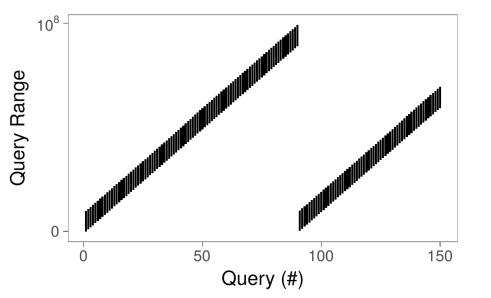




Random Workload

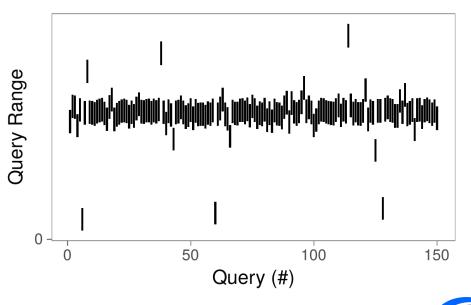
Sequential Workload

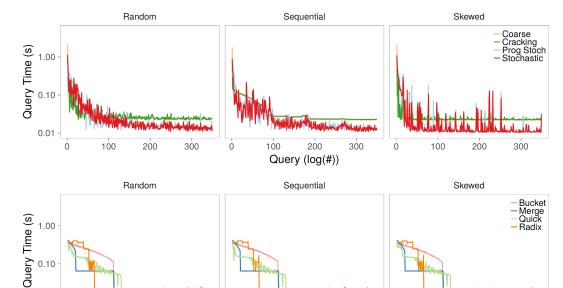




Skewed Workload

Different Workloads





Queries until Pay-off

0.01

Progressive Indexing

200

Query (log(#))

300

300

200

100

Indexing Method	Random	Sequential	Skewed
Full Index	56	56	56
Standard Cracking	28	63	22
Stochastic Cracking	69	40	49
Progressive Stochastic	67	47	48
Coarse Granular Index	42	76	38
Bucketsort	258	261	257
Mergesort	113	114	114
Quicksort	136	128	139
Radixsort	200	200	200

- Robust & predictable query performance under various workloads
- Balance between

100

200

300

- Fast convergence to full index
- Small overhead for 1st query
- Various basic sorting algorithms
 - Quick-sort
 - Merge-sort
 - Bucket-sort
 - Radix-sort

