Data Warehousing & On-Line Analytical Processing

Erwin M. Bakker & Stefan Manegold

https://homepages.cwi.nl/~manegold/DBDM/
http://liacs.leidenuniv.nl/~bakkerem2/dbdm/

s.manegold@liacs.leidenuniv.nl
e.m.bakker@liacs.leidenuniv.nl
Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary
What is a Data Warehouse?

- Defined in many different ways, but not rigorously
- A decision support database that is maintained separately from the organization’s operational database
- Support information processing by providing a solid platform of consolidated, historical data for analysis
- “A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management’s decision-making process.” — W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses
Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process
Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - Ex. Hotel price: differences on currency, tax, breakfast covered, and parking
- When data is moved to the warehouse, it is converted
Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain “time element”
Data Warehouse—Nonvolatile

- Independence
 - A physically separate store of data transformed from the operational environment
- Static: Operational update of data does not occur in the data warehouse environment
- Does not require transaction processing, recovery, and concurrency control mechanisms
- Requires only two operations in data accessing:
 - initial loading of data and access of data
OLTP vs. OLAP

<table>
<thead>
<tr>
<th></th>
<th>OLTP</th>
<th>OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>users</td>
<td>clerk, IT professional</td>
<td>knowledge worker</td>
</tr>
<tr>
<td>function</td>
<td>day to day operations</td>
<td>decision support</td>
</tr>
<tr>
<td>DB design</td>
<td>application-oriented</td>
<td>subject-oriented</td>
</tr>
<tr>
<td>data</td>
<td>current, up-to-date</td>
<td>historical, summarizied,</td>
</tr>
<tr>
<td></td>
<td>detailed, flat relational</td>
<td>multidimensional</td>
</tr>
<tr>
<td></td>
<td>isolated</td>
<td>integrated, consolidated</td>
</tr>
<tr>
<td>usage</td>
<td>repetitive</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>access</td>
<td>read/write</td>
<td>lots of scans</td>
</tr>
<tr>
<td></td>
<td>index/hash on prim. key</td>
<td></td>
</tr>
<tr>
<td>unit of work</td>
<td>short, simple</td>
<td>complex query</td>
</tr>
<tr>
<td></td>
<td>transaction</td>
<td></td>
</tr>
<tr>
<td># records accessed</td>
<td>tens</td>
<td>millions</td>
</tr>
<tr>
<td>#users</td>
<td>thousands</td>
<td>hundreds</td>
</tr>
<tr>
<td>DB size</td>
<td>100MB-GB</td>
<td>100GB-TB</td>
</tr>
<tr>
<td>metric</td>
<td>transaction throughput</td>
<td>query throughput, response</td>
</tr>
</tbody>
</table>

- **OLTP**: Online transactional processing
- **OLAP**: Online analytical processing
- **DBMS operations**
- **Query and transactional processing**
- **Data warehouse operations**
- **Drilling, slicing, dicing, etc.**
Why a Separate Data Warehouse?

- High performance for both systems
 - DBMS—tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation
- Different functions and different data:
 - **missing data**: Decision support requires historical data which operational DBs do not typically maintain
 - **data consolidation**: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - **data quality**: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
- Note: There are more and more systems which perform OLAP analysis directly on relational databases
Data Warehouse: A Multi-Tiered Architecture

- Top Tier: Front-End Tools
- Middle Tier: OLAP Server
- Bottom Tier: Data Warehouse Server
- Data
Three Data Warehouse Models

- Enterprise warehouse
 - Collects all of the information about subjects spanning the entire organization

- Data Mart
 - A subset of corporate-wide data that is of value to a specific groups of users
 - Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart

- Virtual warehouse
 - A set of views over operational databases
 - Only some of the possible summary views may be materialized
Extraction, Transformation, and Loading (ETL)

- **Data extraction**
 - get data from multiple, heterogeneous, and external sources

- **Data cleaning**
 - detect errors in the data and rectify them when possible

- **Data transformation**
 - convert data from legacy or host format to warehouse format

- **Load**
 - sort, summarize, consolidate, compute views, check integrity, and build indices and partitions

- **Refresh**
 - propagate the updates from the data sources to the warehouse
Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary
From Tables and Spreadsheets to Data Cubes

- A **data warehouse** is based on a multidimensional data model which views data in the form of a data cube.

- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions:
 - **Dimension tables**, such as item (item_name, brand, type), or time (day, week, month, quarter, year).
 - **Fact table** contains **measures** (such as dollars_sold) and keys to each of the related dimension tables.

- **Data cube**: A lattice of cuboids.
 - In data warehousing literature, an n-D base cube is called a **base cuboid**.
 - The top most 0-D cuboid, which holds the highest-level of summarization, is called the **apex cuboid**.
 - The lattice of cuboids forms a **data cube**.
Data Cube: A Lattice of Cuboids

0-D \textit{(apex)} cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D \textit{(base)} cuboid
Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - **Star schema**: A fact table in the middle connected to a set of dimension tables
 - **Snowflake schema**: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - **Fact constellations**: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation
Star Schema: An Example

- **time**
 - time_key
 - day
 - day_of_the_week
 - month
 - quarter
 - year

- **location**
 - location_key
 - street
 - city
 - state_or_province
 - country

- **branch**
 - branch_key
 - branch_name
 - branch_type

- **item**
 - item_key
 - item_name
 - brand
 - type
 - supplier_type

- **Sales Fact Table**
 - time_key
 - item_key
 - branch_key
 - location_key
 - units_sold
 - dollars_sold
 - avg_sales

- **Measures**
Snowflake Schema: An Example

Time
- time_key
- day
- day_of_the_week
- month
- quarter
- year

Branch
- branch_key
- branch_name
- branch_type

Location
- location_key
- street
- city_key
- location
- city
- state_or_province
- country

Item
- item_key
- item_name
- brand
- type
- supplier_key

Supplier
- supplier_key
- supplier_type

Measures
- units_sold
- dollars_sold
- avg_sales

Sales Fact Table
- time_key
- item_key
- branch_key
- location_key
- supplier_key
Fact Constellation: An Example

Sales Fact Table
- time_key
- item_key
- branch_key
- location_key
- units_sold
- dollars_sold
- avg_sales

Measures

Branch
- branch_key
- branch_name
- branch_type

Item
- item_key
- item_name
- brand
- type
- supplier_type

Time
- day
- day_of_the_week
- month
- quarter
- year

Location
- location_key
- street
- city
- province_or_state
- country

Shipping Fact Table
- time_key
- item_key
- shipper_key
- from_location
- to_location
- dollars_cost
- units_shipped

Shipper
- shipper_key
- shipper_name
- location_key
- shipper_type
A Concept Hierarchy for a Dimension (location)
Data Cube Measures: Three Categories

- **Distributive**: if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning
 - E.g., count(), sum(), min(), max()

- **Algebraic**: if it can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - $\text{avg}(x) = \frac{\text{sum}(x)}{\text{count}(x)}$
 - Is $\text{min}_N()$ an algebraic measure? How about $\text{standard_deviation}()$?

- **Holistic**: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., median(), mode(), rank()
Multidimensional Data

- Sales volume as a function of product, month, and region

Dimensions: Product, Location, Time
Hierarchical summarization paths

Industry → Region → Year
Category → Country → Quarter
Product → City → Month → Week
Office → Day
Total annual sales of TVs in U.S.A.

<table>
<thead>
<tr>
<th>Country</th>
<th>1Qtr</th>
<th>2Qtr</th>
<th>3Qtr</th>
<th>4Qtr</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A.</td>
<td>TV</td>
<td>PC</td>
<td>VCR</td>
<td>sum</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cuboids Corresponding to the Cube

0-D (*apex*) cuboid

1-D cuboids

2-D cuboids

3-D (*base*) cuboid
Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - Drill across: involving (across) more than one fact table
 - Drill through: through the bottom level of the cube to its back-end relational tables (using SQL)
Typical OLAP Operations
Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary
Design of Data Warehouse: A Business Analysis Framework

- Four views regarding the design of a data warehouse
 - Top-down view
 - allows selection of the relevant information necessary for the data warehouse
 - Data source view
 - exposes the information being captured, stored, and managed by operational systems
 - Data warehouse view
 - consists of fact tables and dimension tables
 - Business query view
 - sees the perspectives of data in the warehouse from the view of end-user
Data Warehouse Design Process

- Top-down, bottom-up approaches or a combination of both
 - **Top-down**: Starts with overall design and planning (mature)
 - **Bottom-up**: Starts with experiments and prototypes (rapid)

- From software engineering point of view
 - **Waterfall**: structured and systematic analysis at each step before proceeding to the next
 - **Spiral**: rapid generation of increasingly functional systems, short turn around time, quick turn around

- Typical data warehouse design process
 - Choose a business process to model, e.g., orders, invoices, etc.
 - Choose the **grain** *(atomic level of data)* of the business process
 - Choose the dimensions that will apply to each fact table record
 - Choose the measure that will populate each fact table record
Data Warehouse Usage

- Three kinds of data warehouse applications
 - Information processing
 - supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
 - Analytical processing
 - multidimensional analysis of data warehouse data
 - supports basic OLAP operations, slice-dice, drilling, pivoting
 - Data mining
 - knowledge discovery from hidden patterns
 - supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools
From On-Line Analytical Processing (OLAP) to On Line Analytical Mining (OLAM)

- Why online analytical mining?
 - High quality of data in data warehouses
 - DW contains integrated, consistent, cleaned data
 - Available information processing structure surrounding data warehouses
 - ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools
 - OLAP-based exploratory data analysis
 - Mining with drilling, dicing, pivoting, etc.
 - On-line selection of data mining functions
 - Integration and swapping of multiple mining functions, algorithms, and tasks
Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary
Efficient Data Cube Computation

- Data cube can be viewed as a lattice of cuboids
- The bottom-most cuboid is the base cuboid
- The top-most cuboid (apex) contains only one cell
- How many cuboids in an n-dimensional cube with L levels?
- Materialization of data cube
 - **Full materialization**: Materialize **every** (cuboid)
 - **No materialization**: Materialize **none** (cuboid)
 - **Partial materialization**: Materialize **some** cuboids
 - Which cuboids to materialize?
 - Selection based on size, sharing, access frequency, etc.

\[
T = \prod_{i=1}^{n} (L_i + 1)
\]

Why this formula?

<table>
<thead>
<tr>
<th>Industry</th>
<th>Region</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Country</td>
<td>Quarter</td>
</tr>
<tr>
<td>Product</td>
<td>City</td>
<td>Month</td>
</tr>
<tr>
<td>Office</td>
<td>Day</td>
<td></td>
</tr>
</tbody>
</table>
The “Compute Cube” Operator

- Cube definition and computation in DMQL

define cube sales [item, city, year]: sum (sales_in_dollars)
 compute cube sales

- Transform it into a SQL-like language (with a new operator cube by, introduced by Gray et al.’96)
 SELECT item, city, year, SUM (amount)
 FROM SALES
 CUBE BY item, city, year

- Need compute the following Group-Bys
 (date, product, customer),
 (date, product), (date, customer), (product, customer),
 (date), (product), (customer)
 ()
Indexing OLAP Data: Bitmap Index

- Index on a particular column
- Each value in the column has a bit vector: bit-op is fast
- The length of the bit vector: # of records in the base table
- The i-th bit is set if the i-th row of the base table has the value for the indexed column
- not suitable for high cardinality domains
- A recent bit compression technique, Word-Aligned Hybrid (WAH), makes it work for high cardinality domain as well [Wu, et al. TODS’06]

<table>
<thead>
<tr>
<th>Cust</th>
<th>Region</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Asia</td>
<td>Retail</td>
</tr>
<tr>
<td>C2</td>
<td>Europe</td>
<td>Dealer</td>
</tr>
<tr>
<td>C3</td>
<td>Asia</td>
<td>Dealer</td>
</tr>
<tr>
<td>C4</td>
<td>America</td>
<td>Retail</td>
</tr>
<tr>
<td>C5</td>
<td>Europe</td>
<td>Dealer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cust</th>
<th>Region</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Asia</td>
<td>Retail</td>
</tr>
<tr>
<td>C2</td>
<td>Europe</td>
<td>Dealer</td>
</tr>
<tr>
<td>C3</td>
<td>Asia</td>
<td>Dealer</td>
</tr>
<tr>
<td>C4</td>
<td>America</td>
<td>Retail</td>
</tr>
<tr>
<td>C5</td>
<td>Europe</td>
<td>Dealer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RecID</th>
<th>Asia</th>
<th>Europe</th>
<th>America</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RecID</th>
<th>Retail</th>
<th>Dealer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Indexing OLAP Data: Join Indices

- Join index: JI(R-id, S-id) where R (R-id, ...) \(\bowtie \bowtie \) S (S-id, ...)
- Traditional indices map the values to a list of record ids
 - It materializes relational join in JI file and speeds up relational join
- In data warehouses, join index relates the values of the dimensions of a start schema to rows in the fact table.
 - E.g., fact table: Sales and two dimensions city and product
- A join index on city maintains for each distinct city a list of R-IDs of the tuples recording the Sales in the city
- Join indices can span multiple dimensions
Efficient Processing OLAP Queries

- **Determine which operations** should be performed on the available cuboids
 - Transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g., dice = selection + projection

- **Determine which materialized cuboid(s)** should be selected for OLAP op.
 - Let the query to be processed be on \{brand, province_or_state\} with the condition “\(year = 2004\)”, and there are 4 materialized cuboids available:
 1) \{year, item_name, city\}
 2) \{year, brand, country\}
 3) \{year, brand, province_or_state\}
 4) \{item_name, province_or_state\} where \(year = 2004\)
 - Which should be selected to process the query?

- Explore indexing structures and compressed vs. dense array structs in MOLAP
Relational OLAP (ROLAP)
- Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middleware
- Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
- Greater scalability

Multidimensional OLAP (MOLAP)
- Sparse array-based multidimensional storage engine
- Fast indexing to pre-computed summarized data

Hybrid OLAP (HOLAP) (e.g., Microsoft SQLServer)
- Flexibility, e.g., low level: relational, high-level: array
- Specialized SQL servers (e.g., Redbricks)
- Specialized support for SQL queries over star/snowflake schemas
Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary
Data warehousing: A multi-dimensional model of a data warehouse
- A data cube consists of dimensions & measures
- Star schema, snowflake schema, fact constellations
- OLAP operations: drilling, rolling, slicing, dicing and pivoting

Data Warehouse Architecture, Design, and Usage
- Multi-tiered architecture
- Business analysis design framework
- Information processing, analytical processing, data mining, OLAM

Implementation: Efficient computation of data cubes
- Partial vs. full vs. no materialization
- Indexing OLAP data: Bitmap index and join index
- OLAP query processing
- OLAP servers: ROLAP, MOLAP, HOLAP
References (I)

- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB’96
- D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD’97
- J. Han. Towards on-line analytical mining in large databases. SIGMOD Record, 1998
- V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. SIGMOD’96
References (II)

- P. O'Neil and D. Quass. Improved query performance with variant indexes. SIGMOD'97
- S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays. ICDE'94
- J. Widom. Research problems in data warehousing. CIKM’95.