
Data Cube Technology

Erwin M. Bakker & Stefan Manegold

https://homepages.cwi.nl/~manegold/DBDM/
http://liacs.leidenuniv.nl/~bakkerem2/dbdm/

s.manegold@liacs.leidenuniv.nl
e.m.bakker@liacs.leidenuniv.nl

Databases and Data Mining 2018

http://liacs.leidenuniv.nl/~bakkerem2/dbdm/
mailto:s.manegold@liacs.leidenuniv.nl

3

Chapter 5: Data Cube Technology

 Data Cube Computation: Basic Concepts

 Data Cube Computation Methods

 Processing Advanced Queries with Data Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

4

Data Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplierc

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid

5

Data Cube: A Lattice of Cuboids

 Base vs. aggregate cells

 Ancestor vs. descendant
cells

 Parent vs. child cells

 (*,*,*)

 (*, milk, *, *)

 (*, milk, Urbana, *)

 (*, milk, Chicago, *)

 (9/15, milk, Urbana, *)

 (9/15, milk, Urbana,
Dairy_land)

all

time,item

time,item,location

time, item, location,

supplier

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid

6

Cube Materialization: Full Cube vs. Iceberg Cube
 Full cube vs. iceberg cube

compute cube sales iceberg as

select month, city, customer group, count(*)

from salesInfo

cube by month, city, customer group

having count(*) >= min support

 Compute only the cells whose measure satisfies the iceberg
condition

 Only a small portion of cells may be “above the water’’ in a
sparse cube

 Ex.: Show only those cells whose count is no less than 100

iceberg
condition

7

Why Iceberg Cube?
 Advantages of computing iceberg cubes

 No need to save nor show those cells whose value is below the threshold
(iceberg condition)

 Efficient methods may even avoid computing the un-needed, intermediate cells

 Avoid explosive growth

 Example: A cube with 100 dimensions

 Suppose it contains only 2 base cells: {(a1, a2, a3, …., a100), (a1, a2, b3, …, b100)}

 How many aggregate cells if “having count >= 1”?

 Answer: 2101 ─ 4 (Why?!)

 What about the iceberg cells, (i,e., with condition: “having count >= 2”)?

 Answer: 4 (Why?!)

�

8

Is Iceberg Cube Good Enough? Closed Cube & Cube Shell

 Let cube P have only 2 base cells: {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

 How many cells will the iceberg cube contain if “having count(*) ≥ 10”?

 Answer: 2101 ─ 4 (still too big!)

 Close cube:

 A cell c is closed if there exists no cell d, such that d is a descendant of c, and d has
the same measure value as c

Ex. P has only 3 closed cells: {(*,*): 20, (a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

 A closed cube is a cube consisting of only closed cells

 Cube Shell

 Cube Shell: The cuboids involving a small # of dimensions, e.g., 3

 Idea: Only compute cube shells, other dimension combinations can be computed on
the fly

Q: For (A1, A2, … A10), how many combinations to compute?

�E��E���������

9

Chapter 5: Data Cube Technology

 Data Cube Computation: Basic Concepts

 Data Cube Computation Methods

 Processing Advanced Queries with Data Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

10

Roadmap for Efficient Computation
 General computation heuristics (Agarwal et al.’96)

 Computing full/iceberg cubes: 3 methodologies

 Bottom-Up: Multi-Way array aggregation

(Zhao, Deshpande & Naughton, SIGMOD’97)

 Top-down:

 BUC (Beyer & Ramarkrishnan, SIGMOD’99)

 Integrating Top-Down and Bottom-Up:

 Star-cubing algorithm (Xin, Han, Li & Wah: VLDB’03)

 High-dimensional OLAP:

 A Shell-Fragment Approach (Li, et al. VLDB’04)

 Computing alternative kinds of cubes:

 Partial cube, closed cube, approximate cube, ……

11

Efficient Data Cube Computation: General Heuristics
 Sorting, hashing, and grouping operations are applied to the dimension attributes

in order to reorder and cluster related tuples

S. Agarwal, R. Agrawal, P. M.
Deshpande, A. Gupta, J. F.
Naughton, R. Ramakrishnan, S.
Sarawagi. On the computation
of multidimensional aggregates.
VLDB’96

 Aggregates may be computed from previously computed
aggregates, rather than from the base fact table

 Smallest-child: computing a cuboid from the smallest,
previously computed cuboid

 Cache-results: caching results of a cuboid from which other
cuboids are computed to reduce disk I/Os

 Amortize-scans: computing as many as possible cuboids at the
same time to amortize disk reads

 Share-sorts: sharing sorting costs cross multiple cuboids when
sort-based method is used

 Share-partitions: sharing the partitioning cost across multiple
cuboids when hash-based algorithms are used

all

product date country

prod,date prod,country

date, country

prod, date, country

12

Multi-Way Array Aggregation
 Array-based “bottom-up” algorithm (from ABC to AB,…)

 Using multi-dimensional chunks

 Simultaneous aggregation on multiple dimensions

 Intermediate aggregate values are re-used for computing

ancestor cuboids

 Cannot do Apriori pruning: No iceberg optimization

 Comments on the method

 Efficient for computing the full cube for a small number of dimensions

 If there are a large number of dimensions, “top-down” computation and

iceberg cube computation methods (e.g., BUC) should be used

13

Cube Computation: Multi-Way Array Aggregation (MOLAP)

 Partition arrays into chunks (a small subcube which fits in memory).

 Compressed sparse array addressing: (chunk_id, offset)

 Compute aggregates in “multiway” by visiting cube cells in the order which

minimizes the # of times to visit each cell, and reduces memory access and

storage cost

What is the best

traversing order to do

multi-way

aggregation?

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

B

44
28 56

40
24 52

36
20

60

14

Multi-way Array Aggregation (3-D to 2-D)

all

A B

AB

ABC

AC BC

C

 Keep the smallest plane in main

memory, fetch and compute only one

chunk at a time for the largest plane

 The planes should be sorted and

computed according to their size in

ascending order

 How to minimizes the memory
requirement and reduced I/Os?

Entire AB plane

One column
of AC plane

One chunk
of BC plane

4x4x4 chunks
A: 40, B: 400, C: 4000

15
15

Multi-Way Array Aggregation (2-D to 1-D)

 Same methodology for computing

2-D and 1-D planes

16

Cube Computation: Computing in Reverse Order

 BUC (Beyer & Ramakrishnan, SIGMOD’99)

BUC: acronym of Bottom-Up (cube) Computation

(Note: It is “top-down” in our view since we put
Apex cuboid on the top!)

 Divides dimensions into partitions and facilitates
iceberg pruning

 If a partition does not satisfy min_sup, its
descendants can be pruned

 If minsup = 1 Þ compute full CUBE!

 No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB

17

BUC: Partitioning and Aggregating
 Usually, entire data set cannot fit in main memory

 Sort distinct values

 partition into blocks that fit

 Continue processing

 Optimizations

 Partitioning

 External Sorting, Hashing, Counting Sort

 Ordering dimensions to encourage pruning

 Cardinality, Skew, Correlation

 Collapsing duplicates

 Cannot do holistic aggregates anymore!

18

High-Dimensional OLAP?—The Curse of Dimensionality

 High-D OLAP: Needed in many applications

 Science and engineering analysis

 Bio-data analysis: thousands of genes

 Statistical surveys: hundreds of variables

 None of the previous cubing method can handle
high dimensionality!

 Iceberg cube and compressed cubes: only
delay the inevitable explosion

 Full materialization: still significant overhead
in accessing results on disk

 A shell-fragment approach: X. Li, J. Han, and H.
Gonzalez, High-Dimensional OLAP: A Minimal
Cubing Approach, VLDB'04

A curse of dimensionality: A database of
600k tuples. Each dimension has
cardinality of 100 and zipf of 2.

19

Fast High-D OLAP with Minimal Cubing
 Observation: OLAP occurs only on a small subset of dimensions at a time

 Semi-Online Computational Model

 Partition the set of dimensions into shell fragments

 Compute data cubes for each shell fragment while retaining inverted indices or
value-list indices

 Given the pre-computed fragment cubes, dynamically compute cube cells of
the high-dimensional data cube online

 Major idea: Tradeoff between the amount of pre-computation and the speed of
online computation

 Reducing computing high-dimensional cube into precomputing a set of lower
dimensional cubes

 Online re-construction of original high-dimensional space

 Lossless reduction

20

Computing a 5-D Cube with 2-Shell Fragments

 Example: Let the cube aggregation function
be count

 Divide the 5-D table into 2 shell fragments:

 (A, B, C) and (D, E)

 Build traditional invert index or RID list

tid A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

Attribute
Value

TID List List
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

21

Shell Fragment Cubes: Ideas
 Generalize the 1-D inverted indices to multi-

dimensional ones in the data cube sense

 Compute all cuboids for data cubes ABC and DE while
retaining the inverted indices

 Ex. shell fragment cube ABC contains 7 cuboids:

 A, B, C; AB, AC, BC; ABC

 This completes the offline computation

Attribute
Value

TID List List
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

Cell Intersection TID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩ 1 4 5 4 5 2

a2 b2 4 5 ∩ 2 3 φ 0

tid count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30

 ID_Measure Table

 If measures other than
count are present, store in
ID_measure table separate
from the shell fragments

Shell-fragment AB

22

Shell Fragment Cubes: Size and Design

 Given a database of T tuples, D dimensions, and F

shell fragment size, the fragment cubes’ space

requirement is:

 For F < 5, the growth is sub-linear

 Shell fragments do not have to be disjoint

 Fragment groupings can be arbitrary to allow for

maximum online performance

 Known common combinations (e.g.,<city, state>)

should be grouped together

 Shell fragment sizes can be adjusted for optimal

balance between offline and online computation

O T
D

F

(2F 1)

Attribute
Value

TID List List
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

Cell Intersection TID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩ 1 4 5 4 5 2

a2 b2 4 5 ∩ 2 3 φ 0

23

Use Frag-Shells for Online OLAP Query Computation

A B C D E F …

ABC Cube DEF Cube

D Cuboid
EF Cuboid

DE Cuboid
Cell Tuple-ID List

d1 e1 {1, 3, 8, 9}

d1 e2 {2, 4, 6, 7}

d2 e1 {5, 10}

… …

Dimensions

A B C D E F G H I J K L M N …

Online

Cube

Instantiated

Base Table

24

Online Query Computation with Shell-Fragments
 A query has the general form: <a1, a2, …, an: M>

 Each ai has 3 possible values (e.g., <3, ?, ?, *, 1: count> returns a 2-D data cube)

 Instantiated value

 Aggregate * function

 Inquire ? Function

 Method: Given the fragment cubes, process a query as follows

 Divide the query into fragment, same as the shell-fragment

 Fetch the corresponding TID list for each fragment from the fragment cube

 Intersect the TID lists from each fragment to construct instantiated base table

 Compute the data cube using the base table with any cubing algorithm

25

Experiment: Size vs. Dimensionality (50 and 100 cardinality)

 (50-C): 106 tuples, 0 skew, 50 cardinality, fragment size 3

 (100-C): 106 tuples, 2 skew, 100 cardinality, fragment size 2

Experiments on real-world data

 UCI Forest CoverType data set

 54 dimensions, 581K tuples

 Shell fragments of size 2 took 33
seconds and 325MB to compute

 3-D subquery with 1 instantiate
D: 85ms~1.4 sec.

 Longitudinal Study of Vocational
Rehab.

 Data: 24 dimensions, 8818 tuples

 Shell fragments of size 3 took 0.9
seconds and 60MB to compute

 5-D query with 0 instantiated D:
227ms~2.6 sec.

26

Chapter 5: Data Cube Technology

 Data Cube Computation: Basic Concepts

 Data Cube Computation Methods

 Processing Advanced Queries with Data Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

27

Chapter 5: Data Cube Technology

 Data Cube Computation: Basic Concepts

 Data Cube Computation Methods

 Processing Advanced Queries with Data Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

28

Data Mining in Cube Space
 Data cube greatly increases the analysis bandwidth

 Four ways to interact OLAP-styled analysis and data mining

 Using cube space to define data space for mining

 Using OLAP queries to generate features and targets for mining, e.g., multi-feature
cube

 Using data-mining models as building blocks in a multi-step mining process, e.g.,
prediction cube

 Using data-cube computation techniques to speed up repeated model construction

 Cube-space data mining may require building a model for each candidate data
space

 Sharing computation across model-construction for different candidates may lead
to efficient mining

29

Complex Aggregation at Multiple Granularities:
Multi-Feature Cubes

 Multi-feature cubes (Ross, et al. 1998): Compute complex queries involving multiple
dependent aggregates at multiple granularities

 Ex. Grouping by all subsets of {item, region, month}, find the maximum price in 2010
for each group, and the total sales among all maximum price tuples

select item, region, month, max(price), sum(R.sales)

from purchases

where year = 2010

cube by item, region, month: R

such that R.price = max(price)

 Continuing the last example, among the max price tuples, find the min and max
shelf live, and find the fraction of the total sales due to tuple that have min shelf life
within the set of all max price tuples

30

Discovery-Driven Exploration of Data Cubes
 Discovery-driven exploration of huge cube space (Sarawagi, et al.’98)

 Effective navigation of large OLAP data cubes

 pre-compute measures indicating exceptions, guide user in the data analysis, at
all levels of aggregation

 Exception: significantly different from the value anticipated, based on a statistical
model

 Visual cues such as background color are used to reflect the degree of exception
of each cell

 Kinds of exceptions

 SelfExp: surprise of cell relative to other cells at same level of aggregation

 InExp: surprise beneath the cell

 PathExp: surprise beneath cell for each drill-down path

 Computation of exception indicator can be overlapped with cube construction

 Exceptions can be stored, indexed and retrieved like precomputed aggregates

31
31

31

Examples: Discovery-Driven Data Cubes

32

Chapter 5: Data Cube Technology

 Data Cube Computation: Basic Concepts

 Data Cube Computation Methods

 Processing Advanced Queries with Data Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

33

Data Cube Technology: Summary

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 MultiWay Array Aggregation

 BUC

 High-Dimensional OLAP with Shell-Fragments

 Multidimensional Data Analysis in Cube Space

 Multi-feature Cubes

 Discovery-Driven Exploration of Data Cubes

34

Data Cube Technology: References (I)
 S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi.

On the computation of multidimensional aggregates. VLDB’96
 K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs.. SIGMOD’99
 J. Han, J. Pei, G. Dong, K. Wang. Efficient Computation of Iceberg Cubes With Complex Measures.

SIGMOD’01
 L. V. S. Lakshmanan, J. Pei, and J. Han, Quotient Cube: How to Summarize the Semantics of a Data

Cube, VLDB'02
 X. Li, J. Han, and H. Gonzalez, High-Dimensional OLAP: A Minimal Cubing Approach, VLDB'04

 X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling Cube: A Framework for Statistical OLAP over Sampling
Data”, SIGMOD’08

 K. Ross and D. Srivastava. Fast computation of sparse datacubes. VLDB’97
 D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up

Integration, VLDB'03
 Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous

multidimensional aggregates. SIGMOD’97

 D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan. OLAP over uncertain
and imprecise data. VLDB’05

35

Data Cube Technology: References (II)
 R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE’97

 B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan. Prediction cubes. VLDB’05

 B.-C. Chen, R. Ramakrishnan, J.W. Shavlik, and P. Tamma. Bellwether analysis: Predicting global
aggregates from local regions. VLDB’06

 Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, Multi-Dimensional Regression Analysis of Time-Series
Data Streams, VLDB'02

 R. Fagin, R. V. Guha, R. Kumar, J. Novak, D. Sivakumar, and A. Tomkins. Multi-structural databases.
PODS’05

 J. Han. Towards on-line analytical mining in large databases. SIGMOD Record, 27:97–107, 1998

 T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing association rules. Data Mining
& Knowledge Discovery, 6:219–258, 2002.

 R. Ramakrishnan and B.-C. Chen. Exploratory mining in cube space. Data Mining and Knowledge
Discovery, 15:29–54, 2007.

 K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple granularities. EDBT'98

 S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data cubes. EDBT'98

 G. Sathe and S. Sarawagi. Intelligent Rollups in Multidimensional OLAP Data. VLDB'01

