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Data Cube: A Lattice of Cuboids
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Data Cube: A Lattice of Cuboids

 Base vs. aggregate cells

 Ancestor vs. descendant 
cells

 Parent vs. child cells
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Cube Materialization: Full Cube vs. Iceberg Cube
 Full cube vs. iceberg cube

compute cube sales iceberg as

select month, city, customer group, count(*)

from salesInfo

cube by month, city, customer group

having count(*) >= min support

 Compute only the cells whose measure satisfies the iceberg 
condition 

 Only a small portion of cells may be “above the water’’ in a 
sparse cube

 Ex.:  Show only those cells whose count is no less than 100 

iceberg 
condition
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Why Iceberg Cube?
 Advantages of computing iceberg cubes 

 No need to save nor show those cells whose value is below the threshold 
(iceberg condition)

 Efficient methods may even avoid computing the un-needed, intermediate cells

 Avoid explosive growth

 Example:  A cube with 100 dimensions

 Suppose it contains only 2 base cells: {(a1, a2, a3, …., a100), (a1, a2, b3, …, b100)}  

 How many aggregate cells if “having count >= 1”? 

 Answer: 2101 ─ 4  (Why?!)

 What about the iceberg cells, (i,e., with condition: “having count >= 2”)?

 Answer: 4  (Why?!)

�
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Is Iceberg Cube Good Enough? Closed Cube & Cube Shell

 Let cube P have only 2 base cells:  {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

 How many cells will the iceberg cube contain if “having count(*) ≥ 10”?

 Answer: 2101 ─ 4 (still too big!)

 Close cube:

 A cell c is closed if there exists no cell d, such that d is a descendant of c, and d has 
the same measure value as c

Ex. P has only 3 closed cells: {(*,*): 20, (a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

 A closed cube is a cube consisting of only closed cells

 Cube Shell

 Cube Shell: The cuboids involving a small # of dimensions, e.g., 3

 Idea: Only compute cube shells, other dimension combinations can be computed on 
the fly

Q:  For (A1, A2, … A10), how many combinations to compute?

�E��E���������
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Roadmap for Efficient Computation
 General computation heuristics (Agarwal et al.’96)

 Computing full/iceberg cubes: 3 methodologies 

 Bottom-Up: Multi-Way array aggregation 

(Zhao, Deshpande & Naughton, SIGMOD’97) 

 Top-down: 

 BUC (Beyer & Ramarkrishnan, SIGMOD’99)

 Integrating Top-Down and Bottom-Up: 

 Star-cubing algorithm (Xin, Han, Li & Wah: VLDB’03)

 High-dimensional OLAP: 

 A Shell-Fragment Approach (Li, et al. VLDB’04)

 Computing alternative kinds of cubes: 

 Partial cube, closed cube, approximate cube, ……
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Efficient Data Cube Computation: General Heuristics
 Sorting, hashing, and grouping operations are applied to the dimension attributes 

in order to reorder and cluster related tuples

S. Agarwal, R. Agrawal, P. M. 
Deshpande, A. Gupta, J. F. 
Naughton, R. Ramakrishnan, S. 
Sarawagi.  On the computation 
of multidimensional aggregates. 
VLDB’96

 Aggregates may be computed from previously computed 
aggregates, rather than from the base fact table

 Smallest-child: computing a cuboid from the smallest, 
previously computed cuboid

 Cache-results: caching results of a cuboid from which other 
cuboids are computed to reduce disk I/Os

 Amortize-scans: computing as many as possible cuboids at the 
same time to amortize disk reads

 Share-sorts: sharing sorting costs cross multiple cuboids when 
sort-based method is used

 Share-partitions: sharing the partitioning cost across multiple 
cuboids when hash-based algorithms are used

all

product date country

prod,date prod,country

date, country

prod, date, country
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Multi-Way Array Aggregation
 Array-based “bottom-up” algorithm (from ABC to AB,…)

 Using multi-dimensional chunks

 Simultaneous aggregation on multiple dimensions

 Intermediate aggregate values are re-used for computing 

ancestor cuboids

 Cannot do Apriori pruning: No iceberg optimization

 Comments on the method

 Efficient for computing the full cube for a small number of dimensions

 If there are a large number of dimensions, “top-down” computation and 

iceberg cube computation methods (e.g., BUC) should be used
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Cube Computation: Multi-Way Array Aggregation (MOLAP)

 Partition arrays into chunks (a small subcube which fits in memory). 

 Compressed sparse array addressing: (chunk_id, offset)

 Compute aggregates in “multiway” by visiting cube cells in the order which 

minimizes the # of times to visit each cell, and reduces memory access and 

storage cost

What is the best 

traversing order to do 

multi-way 

aggregation?
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Multi-way Array Aggregation (3-D to 2-D)

all

A B

AB

ABC

AC BC

C

 Keep the smallest plane in main 

memory, fetch and compute only one 

chunk at a time for the largest plane

 The planes should be sorted and 

computed according to their size in 

ascending order

 How to minimizes the memory 
requirement and reduced I/Os?

Entire AB plane

One column 
of AC plane

One chunk 
of BC plane

4x4x4 chunks
A: 40, B: 400, C: 4000
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Multi-Way Array Aggregation (2-D to 1-D)

 Same methodology for computing 

2-D and 1-D planes
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Cube Computation: Computing in Reverse Order

 BUC (Beyer & Ramakrishnan, SIGMOD’99) 

BUC: acronym of Bottom-Up (cube) Computation 

(Note: It is “top-down” in our view since we put 
Apex cuboid on the top!)

 Divides dimensions into partitions and facilitates 
iceberg pruning

 If a partition does not satisfy min_sup, its 
descendants can be pruned

 If minsup = 1 Þ compute full CUBE!

 No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB
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BUC: Partitioning and Aggregating
 Usually, entire data set cannot fit in main memory

 Sort distinct values

 partition into blocks that fit

 Continue processing

 Optimizations

 Partitioning

 External Sorting, Hashing, Counting Sort

 Ordering dimensions to encourage pruning

 Cardinality, Skew, Correlation

 Collapsing duplicates

 Cannot do holistic aggregates anymore!
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High-Dimensional OLAP?—The Curse of Dimensionality

 High-D OLAP: Needed in many applications

 Science and engineering analysis

 Bio-data analysis: thousands of genes

 Statistical surveys: hundreds of variables

 None of the previous cubing method can handle 
high dimensionality!

 Iceberg cube and compressed cubes: only 
delay the inevitable explosion

 Full materialization: still significant overhead 
in accessing results on disk

 A shell-fragment approach:  X. Li, J. Han, and H. 
Gonzalez, High-Dimensional OLAP: A Minimal 
Cubing Approach, VLDB'04

A curse of dimensionality:  A database of 
600k tuples.  Each dimension has 
cardinality of 100 and zipf of 2.



19

Fast High-D OLAP with Minimal Cubing
 Observation: OLAP occurs only on a small subset of dimensions at a time

 Semi-Online Computational Model

 Partition the set of dimensions into shell fragments

 Compute data cubes for each shell fragment while retaining inverted indices or 
value-list indices

 Given the pre-computed fragment cubes, dynamically compute cube cells of 
the high-dimensional data cube online

 Major idea:  Tradeoff between the amount of pre-computation and the speed of 
online computation

 Reducing computing high-dimensional cube into precomputing a set of lower 
dimensional cubes

 Online re-construction of original high-dimensional space

 Lossless reduction
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Computing a 5-D Cube with 2-Shell Fragments

 Example: Let the cube aggregation function 
be count

 Divide the 5-D table into 2 shell fragments: 

 (A, B, C) and (D, E)

 Build traditional invert index or RID list

tid A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

Attribute 
Value

TID List List 
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1
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Shell Fragment Cubes: Ideas
 Generalize the 1-D inverted indices to multi-

dimensional ones in the data cube sense

 Compute all cuboids for data cubes ABC and DE while 
retaining the inverted indices

 Ex. shell fragment cube ABC contains 7 cuboids:

 A, B, C; AB, AC, BC; ABC

 This completes the offline computation

Attribute 
Value

TID List List 
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

Cell Intersection TID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩ 1 4 5 4 5 2

a2 b2 4 5 ∩  2 3 φ 0

tid count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30

 ID_Measure Table

 If measures other than 
count are present, store in 
ID_measure table separate 
from the shell fragments

Shell-fragment AB



22

Shell Fragment Cubes: Size and Design

 Given a database of T tuples, D dimensions, and F 

shell fragment size, the fragment cubes’ space 

requirement is:

 For F < 5, the growth is sub-linear

 Shell fragments do not have to be disjoint

 Fragment groupings can be arbitrary to allow for 

maximum online performance

 Known common combinations (e.g.,<city, state>) 

should be grouped together

 Shell fragment sizes can be adjusted for optimal 

balance between offline and online computation
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Attribute 
Value

TID List List 
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

Cell Intersection TID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩ 1 4 5 4 5 2

a2 b2 4 5 ∩  2 3 φ 0
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Use Frag-Shells for Online OLAP Query Computation

A B C D E F …

ABC Cube DEF Cube

D Cuboid
EF Cuboid

DE Cuboid
Cell Tuple-ID List

d1 e1 {1, 3, 8, 9}

d1 e2 {2, 4, 6, 7}

d2 e1 {5, 10}

… …

Dimensions

A B C D E F G H I J K L M N …

Online

Cube

Instantiated 

Base Table
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Online Query Computation with Shell-Fragments
 A query has the general form:  <a1, a2, …, an: M>

 Each ai has 3 possible values (e.g., <3, ?, ?, *, 1: count>  returns a 2-D data cube) 

 Instantiated value

 Aggregate * function

 Inquire ? Function

 Method: Given the fragment cubes, process a query as follows

 Divide the query into fragment, same as the shell-fragment

 Fetch the corresponding TID list for each fragment from the fragment cube

 Intersect the TID lists from each fragment to construct instantiated base table

 Compute the data cube using the base table with any cubing algorithm
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Experiment: Size vs. Dimensionality (50 and 100 cardinality)

 (50-C): 106 tuples, 0 skew, 50 cardinality, fragment size 3

 (100-C): 106 tuples, 2 skew, 100 cardinality, fragment size 2

Experiments on real-world data

 UCI Forest CoverType data set

 54 dimensions, 581K tuples

 Shell fragments of size 2 took 33 
seconds and 325MB to compute

 3-D subquery with 1 instantiate 
D: 85ms~1.4 sec.

 Longitudinal Study of Vocational 
Rehab. 

 Data: 24 dimensions, 8818 tuples

 Shell fragments of size 3 took 0.9 
seconds and 60MB to compute

 5-D query with 0 instantiated D: 
227ms~2.6 sec.
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Data Mining in Cube Space
 Data cube greatly increases the analysis bandwidth 

 Four ways to interact OLAP-styled analysis and data mining

 Using cube space to define data space for mining 

 Using OLAP queries to generate features and targets for mining, e.g., multi-feature 
cube

 Using data-mining models as building blocks in a multi-step mining process, e.g., 
prediction cube

 Using data-cube computation techniques to speed up repeated model construction

 Cube-space data mining may require building a model for each candidate data 
space

 Sharing computation across model-construction for different candidates may lead 
to efficient mining
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Complex Aggregation at Multiple Granularities: 
Multi-Feature Cubes

 Multi-feature cubes (Ross, et al. 1998): Compute complex queries involving multiple 
dependent aggregates at multiple granularities

 Ex. Grouping by all subsets of {item, region, month}, find the maximum price in 2010 
for each group, and the total sales among all maximum price tuples

select item, region, month, max(price), sum(R.sales)

from purchases

where year = 2010

cube by item, region, month: R

such that R.price = max(price)

 Continuing the last example, among the max price tuples, find the  min and max 
shelf live, and find the fraction of the total sales due to tuple that have min shelf life 
within the set of all max price tuples
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Discovery-Driven Exploration of Data Cubes
 Discovery-driven exploration of huge cube space (Sarawagi, et al.’98)

 Effective navigation of large OLAP data cubes

 pre-compute measures indicating exceptions, guide user in the data analysis, at 
all levels of aggregation

 Exception: significantly different from the value anticipated, based on a statistical 
model

 Visual cues such as background color are used to reflect the degree of exception 
of each cell

 Kinds of exceptions

 SelfExp: surprise of cell relative to other cells at same level of aggregation

 InExp: surprise beneath the cell

 PathExp: surprise beneath cell for each drill-down path

 Computation of exception indicator can be overlapped with cube construction

 Exceptions can be stored, indexed and retrieved like precomputed aggregates
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Examples: Discovery-Driven Data Cubes
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