ParaTimer: A Progress Indicator for MapReduce DAGs

Kristi Morton, Magdalena Balazinska, and Dan Grossman
Computer Science and Engineering Department, University of Washington
Seattle, Washington, USA
{kmorton, magda, djg}@cs.washington.edu

ABSTRACT
Time-oriented progress estimation for parallel queries is a challenging problem that has received only limited attention. In this paper, we present ParaTimer, a new type of time-remaining indicator for parallel queries. Several parallel data processing systems exist. ParaTimer targets environments where declarative queries are translated into ensembles of MapReduce jobs. ParaTimer builds on previous techniques and makes two key contributions. First, it estimates the progress of queries that translate into directed acyclic graphs of MapReduce jobs, where jobs on different paths can execute concurrently (unlike prior work that looked at sequences only). For such queries, we use a new type of critical-path-based progress-estimation approach. Second, ParaTimer handles a variety of real systems challenges such as failures and data skew. To handle unexpected changes in query execution times due to runtime condition changes, ParaTimer provides users with not only one but with a set of time-remaining estimates, each one corresponding to a different carefully selected scenario. We implement our estimator in the Pig system and demonstrate its performance on experiments running on a real, small-scale cluster.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—parallel databases

General Terms
Algorithms, Design, Experimentation

1. INTRODUCTION
Whether in industry or in the sciences, users today need to store, archive, and most importantly analyze increasingly large datasets. For example, the upcoming Large Synoptic Survey Telescope [17] is predicted to generate on the order of 30 TB of data every day.

Parallel database management systems [1, 11, 14, 27, 29] and other parallel data processing platforms [6, 8, 12, 15] are designed to process such massive-scale datasets: they enable users to submit declarative queries over the data and they execute these queries in clusters of shared-nothing servers. Although parallelism speeds up query execution, query times in these shared-nothing platforms can still exhibit large intra-query and inter-query variance.

In such an environment, accurate, time-remaining progress estimation for queries can be helpful both for users and for the system. Indeed, the latter can use time-remaining information to improve resource allocation [30], enable query debugging, or tune the cluster configuration (such as in response to unexpected query runtimes).

Accurate progress estimation for parallel queries is a challenging problem because, in addition to the challenges shared with single-site progress estimators [3, 2, 19, 18, 21, 22], parallel environments introduce distribution, concurrency, failures, data skew, and other issues that must be accounted for. This difficult problem has received only limited attention. Our preliminary prior work [23], which we called Parallax, provided accurate estimates, but only for the limited class of parallel queries that translated into sequences of MapReduce jobs. We also previously assumed uniform data distribution and the absence of node failures, two assumptions that are unreasonable in practice.

To address these limitations, we have developed ParaTimer, a time-remaining indicator for a much broader class of queries and runtime conditions. Many parallel processing systems exist. Similar to Parallax, we developed ParaTimer for Pig queries [24] running in a Hadoop cluster [12], an environment that is a popular open-source parallel data-processing engine under active development. Within this context, ParaTimer builds on previous techniques and makes two key contributions. First, ParaTimer estimates the progress of parallel queries expressed as Pig scripts that translate into directed acyclic graphs (DAGs) of MapReduce jobs where jobs on different branches of the DAG can execute concurrently. DAGs require a radically different approach than our prior work for sequences of jobs. As a direct result, unlike Parallax, ParaTimer can handle, for example, Pig scripts with join operators.

Second, ParaTimer includes techniques for handling several real system challenges including failures and data skew. To handle unexpected changes in query execution times such as those due to failures, ParaTimer provides users with a set of time-remaining estimates that correspond to the predicted query execution times in different scenarios (i.e., a
single worst-case failure, or data skew at an operator). We call ParaTimer a comprehensive indicator because it provides this set of estimates instead of a single best guess as the other indicators do. Each of ParaTimer’s indicators can be annotated with the scenario that it corresponds to, giving users a detailed picture of possible expected behaviors.

While many of the ideas presented in this paper could be adapted to other parallel data processing systems, the Pig/Hadoop environment poses several unique challenges that have informed our design and shaped our implementation. Most notable, a MapReduce-style scheduler requires intermediate result materialization, schedules small pieces of work at a time, and restarts small query fragments when failures occur (rather than restarting entire queries). All three properties affect query progress and its estimates.

ParaTimer is designed to be accurate while remaining simple and addressing the above challenges. At a high level, ParaTimer works as follows. For basic progress estimation, ParaTimer builds on our prior system Parallax [23]. Parallax estimates time-remaining by breaking queries into pipelines. It estimates time-remaining for each pipeline by considering the work to be done and the speed at which that work will be performed, taking (time-varying) parallelism into account. To get processing speeds, Parallax relies on earlier debug runs of the same query on input data samples generated by the user.

To support Pig scripts that translate into MapReduce DAGs where multiple jobs may execute concurrently (such as scripts with join operators), ParaTimer includes a method to identify the critical path in a query plan. It then estimates progress along that path, effectively ignoring other paths.

ParaTimer also provides support for a variety of practical challenges, including failures and data skew. For data skew that can be predicted and planned for, ParaTimer takes it into account upfront. For failures and data skew that are not planned, ParaTimer outputs a set of estimates, rather than a single “best guess,” that bound the expected query execution time within given possible variations in runtime conditions. An interesting side-benefit of this approach is that when a query time goes outside ParaTimer’s initial bounds, a user knows that there is a problem with either his query or the cluster. ParaTimer’s output can thus aid in performance debugging.

Today, parallel systems are being deployed at all scales and each scale raises new challenges. In this paper, we focus on smaller-scale systems with tens of servers because many consumers of parallel data management engines today run at this scale.\(^1\) We evaluate ParaTimer’s performance through experiments on an eight-node cluster (set to a maximum degree of parallelism of 32 divided into 16 maps and 16 reduces). We compare ParaTimer’s performance against Parallax [23], other state-of-the-art single-node progress indicators from the literature [3, 19], and Pig’s current progress indicator [25]. We show that ParaTimer is more accurate than all these alternatives on a variety of types of queries and system configurations. For all queries that we evaluated, ParaTimer’s average accuracy is within 5% of an ideal indicator, when given accurate cardinality estimates.

The rest of this paper is organized as follows. The next section provides background on MapReduce, Hadoop, and our prior work. Section 3 presents ParaTimer’s approach and key algorithms. Section 4 presents empirical results. Section 5 discusses related work. Section 6 concludes.

2. BACKGROUND

In this section, we present an overview of MapReduce [6], Pig [24], the naive progress indicator that currently ships with Pig, and our recent work on the Parallax progress indicator for Pig [23].

2.1 MapReduce

MapReduce [6] (with its open-source variant Hadoop [12]) is a programming model and an implementation for processing large data sets. The input data takes the form of a file that contains key/value pairs. Users specify a map function that iterates over this input file and generates, for each key/value pair, a set of intermediate key/value pairs. For this, the map function must parse the value field associated with each key to extract any required attributes. Users also specify a reduce function that, similar to a relational aggregate operator, merges or aggregates all values associated with the same key.

MapReduce jobs are automatically parallelized and executed on a cluster of commodity machines: the map stage is partitioned into multiple map tasks and the reduce stage is partitioned into multiple reduce tasks. Each map task reads and processes a distinct chunk of the partitioned and distributed input data. The degree of parallelism in the map stage depends on the input data size. The output of the map stage is hash partitioned across a configurable number of reduce tasks. Data between the map and reduce stages is always materialized. As discussed below, a higher-level query may require multiple MapReduce jobs, each of which has map tasks followed by reduce tasks. Data between consecutive jobs is also always materialized.

2.2 Pig

To extend the MapReduce framework beyond the simple one-input, two-stage data-flow model and to provide a declarative interface to MapReduce, Olston et. al developed the Pig system [24]. In Pig, queries are written in Pig Latin, a language combining the high-level declarative style of SQL with the low-level procedural programming model of MapReduce. Pig compiles these queries into ensembles of MapReduce jobs and submits them to a MapReduce cluster.

For example, consider the following SQL query that processes a search log. This query filters the data by applying a user-defined function, clean. It then counts the number of remaining entries in the log for each hour.

```sql
SELECT S.time, count(*) AS total
FROM SearchLogs S
WHERE Clean(S.query) = 1
GROUP BY S.time
```

In Pig Latin, this example could be written as:

```pig
raw = LOAD 'SearchLogs.txt' AS (seqnum, user, time, query);
filtered = FILTER raw BY Clean(query);
groups = GROUP filtered BY time;
output = FOREACH groups GENERATE $0 AS time, count($1) AS total;
STORE output INTO 'Result.txt' USING PigStorage();
```

This Pig script compiles into a single MapReduce job with the map phase performing the user-defined filter and produces tuples of the form (time, searchlog-entry). The reduce phase would then count the searchlog entries for each distinct time value.

\(^1\)http://wiki.apache.org/hadoop/PoweredBy
Because Pig scripts can contain multiple filters, aggregations, and other operations in various orders, in general a query will not execute as a single MapReduce job but rather as a directed acyclic graph (DAG) of jobs. For example, one of the two sample scripts (script1) distributed with the Pig system compiles into a sequence of five MapReduce jobs.

2.3 MapReduce Details

Each MapReduce job contains seven phases of execution, as Figure 1 illustrates. These are the split, record reader, map runner, combine, copy, sort, and reduce phases. The split phase does minimal work as it only generates byte offsets at which the data should be partitioned. For the purpose of progress computation, this phase can be ignored due to the negligible amount of work that it performs. The next three phases (record reader, map runner, and combine) are components of the map and the last three (the copy, sort, and reduce phases) are part of the reduce.

The record reader phase iterates through its assigned data partition and generates key/value pairs from the input data. These records are passed into the map runner and processed by the appropriate operators running within the map function. As records are output from the map runner, they are passed to the combine phase which, if enabled, sorts and pre-aggregates the data and writes the records locally. If the combine phase is not enabled, the records are sorted and written locally without any aggregation.

Once a map task completes, a message is sent to waiting reduce tasks informing them of the location of the map task’s output. The copy phase of the reduce task then copies the relevant data from the node where the map executed onto the local nodes where the reduces are running. Once all outputs have been copied, the sort phase of each reduce task merges all the files and passes the data to the reduce phase, which executes the appropriate Pig operators. The output records from the reduce phase are written to disk as they are created.

2.4 Pig’s Progress Indicator

The existing Pig/Hadoop query progress estimator provides limited accuracy (see Section 4). This estimator considers only the record reader, copy, and reduce phases for its computation. The record reader phase progress is computed as the percentage of bytes read from the assigned data partition. The copy phase progress is computed as the number of map output files that have been completely copied divided by the total number of files that need to be copied. Finally, the reducer progress is computed as the percentage of bytes that have been read so far. The progress of a MapReduce job is computed as the average of the percent complete of these three phases. The progress of a Pig Latin query is then just the average of the percent complete of all of the jobs in the query.

The Pig progress indicator is representative of other indicators that report progress at the granularity of completed and executing operators. This approach yields limited accuracy because it assumes that all operators (within and across jobs) perform the same amount of work. This, however, is rarely the case since operators at different points in the query plan can have widely different input cardinalities and can spend a different amount of time processing each input tuple. This approach also ignores how the degree of parallelism will vary between operators.

2.5 Parallax Progress Estimator

Our prior work on the Parallax progress estimator [23] is significantly more accurate than Pig’s original estimator, but Parallax is designed to be accurate only for very simple parallel queries. It adapts and extends related work on single-site SQL query progress estimation [3, 19] to parallel settings.

Like in single-site estimators [3, 19], Parallax breaks queries into pipelines, which are groups of interconnected operators that execute simultaneously. From the seven phases of a MapReduce job, Parallax ignores two and constructs three pipelines from the remaining five: (1) the record reader, map runner, and combiner operations taken together, (2) the copy, and (3) the reducer. In our experiments, however, we found that the sort phase can impose a significant overhead and, hence, ParaTimer accounts for it as a fourth pipeline.

Given a sequence of pipelines, similar to prior work [19], Parallax estimates their time remaining as the sum of time remaining for the currently executing and future pipelines. The time remaining for each pipeline is the product of the amount of work that the pipeline must still perform and the speed at which that work will be done. Parallax defines the remaining work as the number of input tuples that a pipeline must still process. If N is the number of tuples that a pipeline must process in total and K the number of tuples processed so far, the work remaining is simply $N - K$.

For a pipeline p, given N_p, K_p, and an estimated processing cost α_p (expressed in mSec/tuple and discussed below), the time-remaining for the pipeline is $\alpha_p(N_p - K_p)$. The time-remaining for a computation is the sum of the time-remainings for all the jobs and pipelines. Of course, N_p and α_p must be estimated for each future pipeline.

Estimating Execution Costs and Work Remaining

An important contribution and innovation of Parallax is its estimation of pipeline per-tuple processing costs (the α_p for each pipeline). Previous techniques ignore these costs [3, 2], assume constant processing costs [19], or combine measured processing cost with optimizer cost estimates to better weight different pipelines [18]. In contrast, Parallax estimates the per-tuple execution time of each pipeline by observing the current cost for pipelines that have already started and using information from earlier (e.g., debug) runs for pipelines that have not started. This approach is especially well-suited for query plans with user-defined functions.
Debug runs can be done on small samples and are common in cluster-computing environments.

Additionally, Parallax dynamically reacts to changes in runtime conditions by applying a slowdown factor, \(s_p \) to current and future pipelines of the same type.

For cardinality estimates, \(N_p \), Parallax relies on standard techniques from the query optimization literature [28]. For pre-defined operators such as joins, aggregates, or filters, cardinalities can be estimated using cost formulas. For user-defined functions and to refine pre-computed estimates, Parallax can leverage the same debug runs as above.

We adopt the same strategy in this paper: we do not study cardinality estimation and assume they are derived using one of the above techniques. We also use \(\alpha \) processing costs computed from debug runs of the same query fragment.

Accounting for Dynamically Changing Parallelism

The second key contribution of Parallax is how it handles parallelism, i.e., multiple nodes simultaneously processing a map or a reduce. Parallelism affects computation progress by changing the speed with which a pipeline processes input data. The speedup is proportional to the number of partitions, which we call the pipeline width.

Given \(J \), the set of all MapReduce jobs, and \(P_j \), the set of all pipelines within job \(j \in J \), the progress of a computation is thus given by the following formula, where \(N_{jp} \) and \(K_{jp} \) values are aggregated across all partitions of the same pipeline and \(Setup\text{remaining} \) is the overhead for the unscheduled map and reduce tasks.

\[
T\text{remaining} = Setup\text{remaining} + \sum_{j \in J} \sum_{p \in P_j} s_{jp} \alpha_{jp} (N_{jp} - K_{jp}) \frac{\text{pipeline width}_{jp}}{\text{pipeline width}_{jp}}
\]

When estimating pipeline width, Parallax takes into account the cluster capacity and the (estimated) dataset sizes. In a MapReduce system, the number of map tasks depends on the size of the input data, not the capacity of the cluster. The number of reduce tasks is a configurable parameter. The cluster capacity determines how many map or reduce tasks can execute simultaneously. In particular, if the number of map (or reduce) tasks is not a multiple of cluster capacity, the number of tasks can decrease at the end of execution of a pipeline, causing the pipeline width to decrease, and the pipeline to slow down. For example, a 5 GB file, in a system with a 256 MB chunk size (a recommended value that we also use in our experiments) and enough capacity to execute 16 map tasks simultaneously, would be processed by a round of 16 map tasks followed by a round with only 4 map tasks. Parallax takes this slowdown into account by computing, at any time, the average pipeline width for the remainder of the job.

Finally, given \(T\text{remaining} \), ParaTimer also outputs the percent query completed, computed as a fraction of expected runtime:

\[
P\text{complete} = \frac{T\text{remaining}}{T\text{complete} + T\text{remaining}}
\]

where \(T\text{complete} \) is the total query processing time so far.

3. ParaTimer

In this section, we present ParaTimer: a progress indicator for parallel queries that take the form of directed acyclic graphs (DAGs) of MapReduce jobs. ParaTimer builds on Parallax but takes a radically different strategy for progress estimation. First, to support complex DAG-shaped queries where multiple MapReduce jobs execute concurrently - such as those produced by Pig Latin scripts with joins— ParaTimer adopts a critical-path-based progress estimation technique: ParaTimer identifies and tracks only those map and reduce tasks on the query’s critical path (Section 3.1). Interestingly, when the critical path includes many tasks executing in parallel, ParaTimer can monitor more of the tasks to smooth its estimates or fewer of them to reduce monitoring overhead. Additionally, ParaTimer is designed to work well under a variety of adverse scenarios including failures (Section 3.2) and data skew (Section 3.3). For this, ParaTimer introduces the idea of providing users with a set of estimated query runtimes. Each estimate assumes different execution scenarios (e.g., with and without failures or worst-case and best-case schedule) and can thus be annotated with a description of that scenario. Additionally, because each execution scenario could be associated with a probability (i.e., probability of a single failure, probability of two failures, etc.), these multiple estimators can be seen as samples from the query-time probability distribution function.

3.1 Critical-Path-Based Progress Estimation

To handle complex-shaped query plans in the form of trees or DAGs, ParaTimer adopts the strategy of identifying and tracking the critical path in a query plan. For this, ParaTimer proceeds in four steps. First, it pre-computes the expected task schedule for a query (Section 3.1.1). Second, it extracts path fragments from this schedule (Section 3.1.2). Third, it identifies the critical path in terms of these path fragments (Section 3.1.3). Finally, it tracks progress on this critical path (Section 3.1.4).

3.1.1 Computing the Task Schedule

To identify the critical path, ParaTimer first mimics the scheduler algorithm to pre-compute the expected schedule for all tasks and thus all pipelines in the query.

ParaTimer takes the scheduling algorithm as input. In this paper, we assume a FIFO scheduler, the default in Hadoop. With a FIFO scheduler, jobs are launched one after the other in sequence. All the tasks of a given job are scheduled before any tasks of the next job get any resources. Hence, the only possibility for concurrent execution of multiple jobs is when a job has fewer tasks remaining to run than the cluster capacity, \(C \). At that time, the remaining capacity is allocated to the next job (unless it must wait for the previous job to finish, as indicated by the DAG). Both map and reduce task scheduling follows this strategy. Reductions are further constrained by the map schedule. They can start copying data as soon as the first map task ends, but the last round of data copy as well as the sort and reduce pipelines must proceed in series with the maps from the same job.

Figure 2 shows an example query plan that includes a join and enables inter-MapReduce-job parallelism in addition to intra-job parallelism. Figure 3(a) shows a possible schedule for the resulting map and reduce tasks in a cluster with enough capacity for five concurrent map and five concurrent reduce tasks.\(^2\) For clarity, the figure omits the copy and sort

\(^2\)In Hadoop terminology, we say that the cluster has five map slots and five reduce slots.
pipelines but shows the map and reduce pipelines. In this example, we assume that Job 1 has two map tasks and one reduce task, Job 2 has six map tasks and one reduce task, and Job 3 has one map task and one reduce task. As the figure shows, the map tasks for Jobs 1 and 2 can execute concurrently before the map tasks for Job 3 run. Reduce tasks execute after their respective map tasks.

Given a DAG of MapReduce jobs, ParaTimer thus computes a schedule, S, such as the one shown in Figure 3(a) but including also copy and sort pipelines.

While pre-computing the schedule using a given scheduler algorithm, ParaTimer uses Parallax to estimate the time that each pipeline will take to run. Given a schedule, ParaTimer breaks the query plan into path fragments as we describe next.

3.1.2 Breaking A Schedule into Path Fragments

Given a FIFO scheduler, a MapReduce task schedule has a regular structure because, typically, batches of tasks are scheduled at the same time. If all tasks in the batch process approximately the same amount of data and do so at approximately the same speed, they all end around the same time and a new batch of tasks can begin. For example, in Figure 3(a), m_{11} and m_{12} form one such batch. When this batch ends, another batch comprising tasks m_{24} and m_{25} begins. Tasks m_{21}, m_{22}, and m_{23} form yet another batch. We call each such batch a round of tasks. A round of tasks can be as small as one task. For example r_1 forms its own round of tasks. A round of tasks can be no larger than the cluster capacity, C, which is five tasks in the example. More precisely:

Definition 3.1. Given a schedule S, a task round, T, is a set of tasks $t \in S$ that all begin within a time δ_1 of each other and end within a time δ_1 of each other.

δ_1 defines how much skew is tolerable while still considering tasks to belong to the same round. This is a configurable parameter. We discuss skew further in Section 3.3.

In MapReduce systems, task rounds are typically scheduled one after the other in sequence. More precisely, we say that two rounds are consecutive if the delay between the end of one round (the end of the last task in the round) and the beginning of the next round (start time of the first task in the new round) is no more than the setup overhead, δ_2, of the system (δ_1 and δ_2 are independent of each other).

Given the notion of consecutive path rounds, we define a path fragment as follows:

Definition 3.2. A path fragment is a set of tasks all of the same type (i.e., either maps or reduces) that execute in consecutive rounds. In a path fragment, all rounds have the same width (i.e., same number of parallel tasks) except the last round, which can be either full or not.

Note that each task belongs to exactly one path fragment, i.e., path fragments partition the tasks. Given the above definition, the schedule in Figure 3(a) comprises the following six path fragments: $p_1 = \{m_{11}, m_{12}, m_{24}, m_{25}\}$, $p_2 = \{m_{21}, m_{22}, m_{23}, m_{26}\}$, $p_3 = \{r_1\}$, $p_4 = \{r_2\}$, $p_5 = \{m_{3}\}$, and $p_6 = \{r_3\}$.

It is worth noting that the map path fragments comprise only map pipelines. Reduce path fragments, however, comprise copy, sort, and reduce pipelines.

To understand how these path fragments represent parallel query execution, it is worth considering three job configurations:

Sequence of MapReduce Jobs. If a query comprises only a sequence of MapReduce jobs, the tasks for different jobs never overlap and we simply get one path fragment for each job’s map tasks and a second one for each job’s reduce tasks. The critical path is the sequence of all these path fragments and our algorithm implicitly becomes equivalent to Parallax.

Parallel Map Tasks. In the absence of inter-job parallelism, a query is thus a series of path fragments, all of the same width equal to the cluster capacity (or less once fewer tasks remain). The effect of inter-job parallelism is to divide the concurrently executing tasks into multiple “thinner” path fragments because tasks from different jobs have different runtimes and violate the “time difference $< \delta_1$” rule. Hence, when two jobs execute concurrently, there are two path fragments operating simultaneously as in Figure 3(a). In our example, we know the cluster will first execute $m_{11}, m_{12}, m_{21}, m_{22}, m_{23}$ because map tasks belong to two different jobs and are thus likely to take different amounts of time, they are divided into two path fragments $p_1 = \{m_{11}, m_{12}, m_{24}, m_{25}\}$ and $p_2 = \{m_{21}, m_{22}, m_{23}, m_{26}\}$. Conversely, if Parallax estimated Job 1’s map tasks to take longer than Job 2’s map tasks, the fragments would be $\{m_{11}, m_{12}\}$ and $\{m_{21}, m_{22}, m_{23}, m_{24}, m_{25}, m_{26}\}$. Similarly, when N queries execute in parallel (for any $N \leq C$), there are N path fragments operating simultaneously.

Parallel Reduce Tasks. When parallel jobs comprise both map and reduce tasks, the number of path fragments further increases. Path fragments that involve map tasks are identified as described above. We now discuss path fragments in the reduce phases. We assume no data skew. We discuss data skew in Section 3.3.

There are three cases for reduce tasks:

- **Case 1:** Reduces run far apart from each other. This is the case in the example in Figure 3(a). Reduces run after their respective maps, but they are much shorter than the maps and thus create long gaps between themselves. In this scenario, ParaTimer places the reduces for different jobs in different path fragments.

- **Case 2:** Reduces overlap. Let’s imagine that the reduce for Job 1 stretches all the way past the end of Job 2’s map tasks. In this case, however, this reduce still remains in its own path fragment because Job 2’s reduce can run right after Job 2’s map tasks end in another available slot. Hence, the path fragments are the same as in Case 1.

- **Case 3:** Reduces run in sequence. Imagine case 2 but
with more reduce tasks for Job 1, enough to fill the entire cluster capacity or more. In this last case, Job 2 reduces will run directly after Job 1 reduces, forming either one path fragment (if Job 1 reduces were a multiple of cluster capacity) or two (otherwise).

Once again, these reduce path fragments comprise the copy, sort, and reduce pipelines. Early copies are ignored for the purpose of path fragment identification; reduces are assumed to run entirely after the corresponding map path fragments end.

3.1.3 Identifying the Critical Path Fragments

Given a schedule and an assignment of tasks to path fragments, it is easy to derive a schedule in terms of path fragments where each path fragment is accompanied by a start time and a duration. The start time of a path fragment is simply the lowest start time of all tasks in the fragment. The duration of the path fragment is the sum of the durations of all the rounds (recall that by definition all tasks within a path fragment have approximately the same duration, given by Parallax).

Given a schedule expressed in terms of path fragments, ParaTimer identifies the fragments on the critical path using the following simple algorithm.

ParaTimer starts with the entire path-fragment schedule. As long as there exist overlapping-in-time path fragments in the schedule, perform the following substitutions:

- **Case 1:** If two overlapping path fragments start at the same time, keep only the one expected to take longer. In the example, p1 and p2 execute in parallel. Hence, the shorter p1 fragment can be ignored.
- **Case 2:** If two overlapping path fragments start at different times, keep the one that starts earlier. Remove the other one, but add back its extra time. In our example, p2 and p3 overlap. Because the overlap is total, p3’s time can be ignored. However, if r1 stretched past the end of m26, the extra time would be taken into account on the critical path.

The end-result is a schedule in the form of a series, and this is the critical path.

3.1.4 Estimating Time Remaining at Runtime

In the absence of changes in runtime conditions, path fragments and the critical path can be identified once prior to query execution. The path fragments on the critical path are then monitored at runtime and their time-remaining is computed using Parallax. The time-remaining for the critical path is the sum of these per-path-fragment time-remaining. For path fragments that partly overlap, only their extra, non-overlapping time is added.

Instead of monitoring all tasks in a path fragment on the critical path, ParaTimer could monitor only a thread of tasks within the path fragment (or some subset of these threads), where a thread is a sequence of tasks from the beginning to the end of a path fragment. This opportunity enables ParaTimer to offer a flexible trade-off between overhead and progress estimation smoothness: wider path fragments can smooth away progress estimation blips due to small inaccuracies and variations in task completion times. Thinner path fragments, however, can reduce monitoring overhead. Furthermore, when tasks are grouped into path fragments, ParaTimer can easily change which tasks it tracks at runtime to better balance the monitoring load yet still track the critical path. We experimented with both alternatives, which produced similar estimates, and show results using the wide path-fragments.

Alternatively, ParaTimer could also monitor all pipelines in an ongoing query (not just the critical path) and could recompute the schedule at each time tick. This choice represents the maximum overhead and maximum accuracy monitoring solution. In fact, when runtime conditions change, the schedule and critical path must be recomputed dynamically as we discuss next.

3.2 Handling Failures

MapReduce [6] is designed to provide intra-query fault-tolerance. As a query executes, MapReduce materializes the output of each map and reduce task. If a task fails, the system simply restarts the failed task, possibly on a different node. The task reprocesses its materialized input data and materializes its output again from the beginning.3

Failures can significantly affect progress estimation. As an example, Figure 3(b) and (c) shows two schedules for the query from Figure 3(a) for two different failure scenarios. Depending when the failure occurs, it may or may not affect the query time and it may affect it by a different amount.

The challenge with handling failures is that the system, of course, does not know ahead of time what failures, if any, will occur. As a result, there is no way to predict the running time for a query accurately. The best answer that

3MapReduce also uses a form of task replication: when an operation is close to completion, backup tasks for the remaining in-progress tasks are launched. In this paper, however, we consider the simpler configuration where this feature is disabled.
the system can provide about remaining query time is, “It depends.”

To address this challenge, we take an approach that we call comprehensive progress estimation. Instead of seeing only one, best guess about the remaining query time, the user should be shown multiple guesses. Ideally, one would like to give the user a probability distribution function of the remaining query time. However, such a function would be difficult to estimate with accuracy. Instead, we take the approach of outputting select points on that curve. For scenarios with failures, we study one specific such point in this paper, which assumes that a single worst-case failure will occur before the end of execution. We introduce additional indicators when we discuss data skew in Section 3.3.

3.2.1 Comprehensive Progress Estimation

For clarity of exposition, we refer to the standard ParaTimer approach described in previous sections as the StdEstimator. We now describe possible additional estimates that ParaTimer can output assuming that failures occur during query execution.

One important estimator in the presence of failures is what we call the PessimisticFailureEstimator. This estimator assumes a single task execution will fail but that the failure will have worst-case impact on overall query execution time. This estimator is useful because single-failures are likely to take place and the estimator provides an upper bound on the query time in case they arise. The upper bound is also useful because it approximates the time of an execution with a single failure that could actually occur. An example of upper bound that would be less useful would be to assume the entire query is re-executed upon a failure and to return as possible time-remaining the same value as StdEstimator plus the value of StdEstimator at time zero (basically the time-remaining plus the estimated total time without failure). In most cases, PessimisticFailureEstimator will return a much tighter upper bound.

Consider again the example in Figure 3. The StdEstimator would output the time remaining for the schedule shown in Figure 3(a), while PessimisticFailureEstimator would show the time for the schedule shown in Figure 3(b). Even though the failure is worst-case, the query time is extended by only a small fraction.

Three conditions make a failure a worst-case failure. First, the longest remaining task must be the one to fail. In the example, the map tasks of Job 2 are the longest tasks to run. Second, the task must fail right before finishing as this adds the greatest delay. Third, the task must have been scheduled in the last round of tasks for the given job and phase. Indeed, if one of tasks m21 through m23 fails, the query latency would not be affected.

PessimisticFailureEstimator assumes such a worst-case scenario. For simplicity, however, instead of examining the schedule carefully to determine the exact worst-case scenario that is possible, PessimisticFailureEstimator approximates that scenario by simply assuming the longest upcoming pipeline will fail right before finishing and will fail at a time when nothing else can run in parallel. As a result, PessimisticFailureEstimator produces the following time-remaining value for a query Q comprising a set of pipelines P partitioned into P_{done}, $P_{scheduled}$, and $P_{blocked}$:

$$PessimisticFailureEstimator(Q) =$$

$$= \text{StdEstimator}(Q) + \max_{p \in P_{scheduled}} P_{\text{blocked}}(\text{Parallax}(p))$$

In addition to PessimisticFailureEstimator, ParaTimer could output additional query time estimates. In particular, as the scale of a query grows and multiple failures become likely, ParaTimer could output estimates that allow for multiple failures. Going in the other direction, if users want tighter bounds than PessimisticFailureEstimator, ParaTimer could output time-remaining assuming failures that are not necessarily worst-case failures. ParaTimer’s goal is to enable users to select from a battery of such additional query time bounds, depending on their system configuration and monitoring needs. However, we currently support and evaluate only the PessimisticFailureEstimator.

3.2.2 Adjusting Estimates after Failures

After a failure occurs, it is crucial to recompute all estimators. There is no sense in the StdEstimator reporting zero-failure execution time when we know a failure has occurred. Just as the StdEstimator should account for one past failure and no future failures, the PessimisticFailureEstimator should account for one past failure and another worst-case future failure. Otherwise, this second estimator would become redundant once a failure occurred. Of course, when indicators are adjusted in this fashion, the user should be notified that a failure occurred and that all estimators have been adjusted. In the example, as soon as task $m26$ fails and $m26′$ starts, StdEstimator updates its schedule and recomputes time remaining. Similarly, PessimisticFailureEstimator leverages the new StdEstimator and assumes that $m26′$ will fail before finishing. Once $m26′$ ends, PessimisticFailureEstimator will start returning a time-remaining that assumes $r2$, the new longest remaining task, will fail.

In general, a failure can affect all not-completed path fragments and the identity of the critical path, so it is necessary to recompute these entities from the revised schedule. For example, when a failure occurs, as illustrated in Figure 3(c), the failure can stagger the tasks inside a path fragment by more than value δ, which requires separating these tasks into two path fragments (e.g., $m11$, $m12'$ and $m24$ form two path fragments after the failure). As the figure shows, a failure can also cause some tasks to move to different path fragments (e.g., $m25'$), possibly splitting them in two (not shown in the figure). In other cases, such as when $m26$ fails, path fragments remain the same. To correctly handle all these cases, when a failure occurs, ParaTimer examines all currently scheduled tasks and re-runs the scheduler forward to get the correct new schedule, path fragments, and critical path.

This process repeats every time a failure occurs.

3.3 Handling Data Skew

So far, we assumed uniform data distribution and approximately constant per-tuple processing times. Under these assumptions, all partitions of a pipeline process the same amount of data and end at approximately the same time. Frequently, however, data and processing times are not distributed in such a uniform fashion but instead are skewed. In this section, we address the problem of data skew, when the imbalance comes from an uneven distribution of data to
partitions. We leave the problem of the imbalance in tuple processing times for future work.

In a MapReduce system, skew due to uneven data distribution can occur only in reduce tasks. It cannot arise for map tasks because each map task processes exactly one data chunk and all chunks (except possibly the last one) are of the same size. We thus focus on the case of data skew in reduce pipelines.

A possible schedule for a set of reduce tasks, where each task processes a different amount of data could be as follows:

<table>
<thead>
<tr>
<th>Job1</th>
<th>Job2</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>26</td>
</tr>
<tr>
<td>122</td>
<td>24</td>
</tr>
<tr>
<td>22</td>
<td>225</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
</tr>
</tbody>
</table>

When data skew occurs, we no longer have the nice, wide path fragments that we had before. Instead, each slot in the cluster becomes its own path fragment.

If the MapReduce scheduler is deterministic, ParaTimer can pre-compute the expected task schedule for a query. It can then use it to estimate the time on all path fragments and identify the critical path.

The challenge is when the scheduler is not completely deterministic. In particular, the challenge arises when ParaTimer does not know how tasks within a job will be scheduled exactly. As a consequence, ParaTimer cannot be certain of the query time because the schedule will affect that time. To address this challenge, we also adopt the comprehensive estimation approach. That is, ParaTimer outputs multiple estimates for the query. Each estimate gives the expected query time under a different scenario.

For data skew, different estimates could be useful. We propose to show users two estimates: an upper bound and a lower bound on the expected query time. For a set of reduce tasks, the approach works as follows:

Given a set of reduce tasks R and a cluster capacity C, expressed in terms of number of slots, if cardinality estimates point to data skew, ParaTimer considers that there are C parallel path fragments for both the copy and reduce pipelines. The expected number ofreduce tasks in each of these path fragments is given by: $n = \lceil \frac{n}{C} \rceil$. Before the tasks in R start executing, ParaTimer reports the time of chaining together either the n longest tasks (UpperBoundEstimate) or n shortest tasks (LowerBoundEstimate).

Once the tasks start executing, we take R to contain just the not-yet-completed tasks. We then partition R into two disjoint sets $R_{\text{scheduled}}$ and R_{blocked}, where $R_{\text{scheduled}} \cap R_{\text{blocked}} = \emptyset$, $R_{\text{scheduled}} \cup R_{\text{blocked}} = R$, and $R_{\text{scheduled}}$ refers to tasks that have started. We update n to be $\lceil \frac{n}{R_{\text{blocked}}} \rceil$. We then report an as an upper bound the time of chaining together the longest currently executing task followed by the n longest unexecuted tasks and similar for the lower bound as shown in Algorithm 1.

When multiple jobs are chained together, time-remaining estimation errors accumulate and ParaTimer reports the sum of all upper bounds as the upper bound. It reports the sum of all lower bounds as the lower bound.

Other upper and lower bounds are possible. In particular, one could examine the current schedule more carefully to make the bounds tighter. However, our current choices yield useful results as we show next.

Algorithm 1 Estimates in presence of data skew

| Input: $R_{\text{scheduled}}$: Set of scheduled reduce tasks |
| Input: R_{blocked}: Set of blocked reduce tasks |
| Input: n: Expected number of rounds |
| Output: UpperBoundEstimate and LowerBoundEstimate |

1. \[\text{// Compute time of } r \text{ using Parallax} \]
2. \[\forall r \in R_{\text{scheduled}} \text{, } \text{Time}_{\text{scheduled}}[r] = \text{Parallax}(r) \]
3. \[\forall r \in R_{\text{blocked}} \text{, Time}_{\text{blocked}}[r] = \text{Parallax}(r) \]
4. Sort(Time$_{\text{scheduled}}$) descending
5. Sort(Time$_{\text{blocked}}$) descending
6. UpperBoundEstimate = \text{Time}_{\text{scheduled}}[0] + \sum_{i=1}^{n-1} \text{Time}_{\text{blocked}}[i]
7. \[RS = |R_{\text{scheduled}}| \]
8. \[RB = |R_{\text{blocked}}| \]
9. LowerBoundEstimate = \text{Time}_{\text{scheduled}}[RS - 1] + \sum_{i=1}^{RB-1} \text{Time}_{\text{blocked}}[i]

4. EVALUATION

In this section, we evaluate the ParaTimer estimator through a set of microbenchmarks. In each experiment, we run a Pig Latin query in a real small-scale cluster. The input data is synthetic with sizes up to 8GB and either uniform or Zipfian data distribution.

We compare the performance of ParaTimer against that of Parallax [23], Pig’s original progress estimator [25], and previous techniques for single-site progress estimation, in particular GNM [3], DNE [3], and Luo [19]. We reimplemented the GNM, DNE, and Luo estimators in Pig/Hadoop. We demonstrate that ParaTimer outperforms all these earlier proposals on queries with concurrent MapReduce jobs. We also show ParaTimer’s performance in the presence of failures and data skew and, for the latter, compare again against Parallax.

4.1 Experimental Setup and Assumptions

All experiments were run on an eight-node cluster configured with the Hadoop-17 release and Pig Latin trunk from February 12, 2009. Each node contains a 2.00GHz dual quad-core Intel Xeon CPU with 16GB of RAM. The cluster was configured to a maximum degree of parallelism of 16 concurrent map tasks and 16 concurrent reduce tasks.

As discussed in Section 2.5, for a given query plan, Parallax and thus ParaTimer take as input cardinality estimates, N, and processing rate estimates, α, for each pipeline. In all experiments and for all progress estimators, we use perfect cardinality estimates (N values) in order to isolate the other sources of errors in progress estimation. Both Parallax and ParaTimer are demonstrated in two forms: Perfect, which uses a value from a prior run over the entire data set; and a $\%$ which uses a collected from a single prior run over a 1% sampled subset (other sample sizes yielded similar results).

4.2 Concurrent MapReduce Jobs

In this section, we investigate how well ParaTimer handles Pig Latin scripts that contain a join operator and yield a query plan with concurrent MapReduce jobs. We use the following Pig Latin script:

```pig
a0 = LOAD 'synthetic' AS (user, action);
a1 = FOREACH a0 GENERATE ToLower2(user) AS user;
a2 = DISTINCT a1 PARALLEL 16;
b0 = LOAD 'synthetic2-1GB' AS (user, action);
b2 = FOREACH b0 GENERATE user;
b3 = DISTINCT b2 PARALLEL 16;
c0 = JOIN a2 BY user, b3 BY user PARALLEL 16;
STORE c0 into 'join-parallels2out';
```
This script performs an equi-join of two uniformly-distributed data sets without duplicates. It compiles into three jobs: the first two perform the DISTINCT operations in parallel on the two different datasets. The third performs the equi-join of the outputs (as in Figure 2). We run two experiments with different critical path configurations. The schedule of the first join experiment is depicted in Figure 4. This experiment runs for approximately 28 minutes. Job 1 processes 1 GB of data through four parallel maps and 16 reduces. Job 2 processes 4.2 GB of data through 17 map tasks and 16 reduces.

Figures 5 and 6 show the results for ParaTimer, Parallax, Pig’s existing indicator, and the other single-site indicators from the literature (GNM [3], DNE [3], and Luo [19]). In these figures, the x-axis shows the real percent-time remaining for the query and the y-axis shows the estimated percent-time remaining. Hence, the closer a curve is to the x = y trend-line, the smaller the estimation error.

We report both the average and maximum across the instantaneous errors for all experiments in this section. The instantaneous error is computed as in [3]:

\[
error = \left| 100 \times \left(\frac{t_i - t_0}{t_{c} - t_0} \right) - f_i \right|
\]

where \(f_i \) is the reported percent-time done estimate, \(t_i \) is the current time, \(t_0 \) is the time when the query completes, and \((t_i - t_0)/(t_c - t_0) \) represents the actual percent-time done.

Overall, ParaTimer does very well with average error under 1.1% and maximum error under 4.6%. The error is mostly concentrated at the end of the execution of the final round of map tasks in job 2. In this case optimistic estimates are reported but only for a brief amount of time. ParaTimer assumes that, in the absence of changes to external conditions, a pipeline will process data at constant speed. ParaTimer does not account for an extra blocking combine phase that is sometimes performed at the end of a map pipeline.4 A more refined model could improve these estimates, but would complicate the implementation.

Parallax has good average error (7-8%), but has high maximum error (19-20%). Since Parallax assumes a serial schedule of jobs consisting of job 1 followed by jobs 2 and 3, it incorrectly assumes that each job will execute with access to full cluster resources and will run one after the other. Assuming serial execution leads to pessimistic estimates. Assuming access to full cluster capacity leads to optimistic estimates. In this configuration, the serial assumption weighs more heavily and the estimate is pessimistic.

Figure 5 demonstrates that, as expected, indicators from the literature that are designed for single-site systems cannot be directly applied to a parallel setting. All of them have average errors > 11% and maximum errors > 28%.

The next join experiment uses the same Pig Latin script as before, but this time job 2 processes a 4GB input data set, which creates 16 map tasks. The schedule of tasks for this experiment is similar to Figure 4, except \(m217 \) is omit-
ted. However, the critical path has changed and is computed through the first job’s map tasks and the second job’s map tasks m213 through m216. Figure 7 shows the results. The experiment ran for approximately 25 minutes.

ParaTimer performs similarly well to the previous join experiment, with average errors under 0.6% and maximum errors under 4.2%. Parallax’s average errors are in the 3-5% range and maximum errors are as high as 20%. Parallax’s errors are due to the incorrect assumption that the second job’s map tasks will be running at full cluster capacity. It expects the pipeline width to be close to 16 for the execution of these maps, when in fact the pipeline width starts as 12 and drops to 4 after the first job’s maps complete. Because of this assumption, the estimates trend optimistic.

Overall, in these experiments, ParaTimer thus significantly outperforms Parallax, reducing maximum errors from 20% to 5% approximately.

4.3 Failures

In this section, we examine the robustness of ParaTimer through four single-task failure scenarios. We start with the query schedule from Figure 4 and test different configurations of failures on or off the critical path and either changing or not that critical path. The following table summarizes the experimental configurations:

<table>
<thead>
<tr>
<th>Changes critical path</th>
<th>Where failure occurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Other path</td>
</tr>
<tr>
<td>Yes</td>
<td>Critical path</td>
</tr>
</tbody>
</table>

Given the schedule from Figure 4, to obtain case A, we fail map task m104 at 195 seconds into its execution (around 35% complete). The scheduler selects the next available map task (here: m213) and schedules it in place of the failed one resulting in a schedule analogous to that in Figure 3(c). Experiment C is similar to A except that we fail m201 around 59 seconds into its execution. m201 then gets rescheduled alongside m217. In both cases, the query time before and after failure remains the same as the latency for the extra tasks can be hidden by the execution of m217. Since both graphs look almost the same, due to space constraints, we show only results for one experiment.

Figure 8 shows the results for experiment C. As discussed in Section 3.2, ParaTimer produces multiple estimates in the case of failures: StdEstimate and PessimisticFailureEstimate (StdEstimate is represented as Perfect and 1% ParaTimer in the figures). We also present an additional estimate, referred in this section as FailureEstimate, which provides an estimate in between StdEstimate and PessimisticEstimate. Before a failure occurs, FailureEstimate (like PessimisticFailureEstimate) is cautious and accounts for a failure of the longest-running task among all current and future pipelines. However, once a failure occurs, it assumes that no more failures will occur for the remainder of that job’s pipeline. At this point, its time-remaining estimate is equivalent to StdEstimate but only until the end of that pipeline at which time, FailureEstimate assumes that a failure will occur again.

In the case of experiments A and C, since the query time is not affected by the failure, StdEstimate shows the correct percent-done throughout query execution with an average error below 2% in both experiments. The PessimisticFailureEstimate over-estimates the time throughout most of the execution. At time 1500 seconds, once the long-running map tasks from Job 2 end, PessimisticFailureEstimate correctly updates itself by assuming only one of the remaining short tasks can fail. Finally, FailureEstimate correctly follows PessimisticFailureEstimate before failure and StdEstimate after the failure and until the end of the map tasks. It then follows PessimisticFailureEstimate again. The overestimation of the query-time by PessimisticFailureEstimate is 15% on average. It is a bit high at 30% right before the job2 map tasks end because of the large difference in execution times for the two types of tasks.

To obtain Case B, we fill-up the path fragment comprising tasks \{m201, \ldots, m212, m217\} to form a new path fragment with tasks \{m201, \ldots, m212, m217, \ldots, m228\}. With this setup, there is no more room to hide any restarted tasks. We then fail task m104 after 296 seconds (at 53% complete). For case D, we use the same setup but fail task m201, which is on the critical path, at 676 seconds into its execution (at 93% complete). In both cases, the critical path changes and the time-remaining increases after the failure. Figure 9 shows the time-remaining curve for experiment D (experiment B has similar shape). As expected, before the failure happens, StdEstimate provides a lower-bound on query execution while PessimisticFailureEstimate and FailureEstimate are providing an upper-bound on query execution. This is exactly the desired behavior. The gap between the two is small. The upper bound over-estimates query time on average by 13% (at most by 30%) while the lower-bound underestimates it by at most 6%. After the failure, all estimators adjust their predictions as expected.

Overall, the ParaTimer approach to handling failures thus works well for all four failure configurations.
4.4 Data Skew

The goal of the experiments in this section is to measure how well ParaTimer handles data skew, which results from an imbalance in the distribution of the data processed per task or partition. Recall from Section 3.3 that such skew arises only in reduce pipelines.

We run two experiments. Each one comprises a Pig Latin script that performs a GROUP-BY operation through a single MapReduce job. Moreover, the script loads an 8 GB data set with a Zipfian distribution on the key used by the GROUP-BY operator, which results in data skew in the reduce pipeline.

For the first experiment, we manually configured the Pig Latin script to produce a single round of 16 reduce tasks. In that case, ParaTimer can predict the schedule with certainty: all reduce tasks will be scheduled concurrently. It can thus reliably identify and follow the critical path. It produces a “best guess” estimate from this offline, pre-computed critical path. For the second experiment, we double the number of reduce tasks. In this scenario, ParaTimer may not know exactly how tasks will be scheduled and must thus output an upper- and lower-bound estimate. The first experiment ran in 49 minutes and the second in 45 minutes. Since the results from the first experiment were similar to the second, we omit it to conserve space and only report that ParaTimer’s “best guess” estimate is indeed accurate in such a configuration with average errors at 3.5% for Perfect ParaTimer and 4.3% for 1% ParaTimer.

The results for the second experiment can be found in Figure 10. Here “best guess” was within 4% average error for 1% ParaTimer and within 1.5% for Perfect ParaTimer. As expected, Figure 10, shows the “best guess” estimates between the upper and lower bound curves. Furthermore, the bounds provide reasonable estimates: lower bound underestimates the query time on average by 6% while the upper bound overestimates it by at most 17%. There is a temporary spike when the query is 60% complete that affects the quality of both Perfect ParaTimer and Parallax, and this occurs around the time that the sort pipeline starts processing tuples. Because this pipeline is bursty, and, here, the bursts exceed the window that we use to estimate processing rates, it causes the slowdown factor to vary wildly, but only for a short period of time. The slowdown factor recovers once the sort is complete. This is an implementation limitation.

In both data skew experiments, Parallax produces less accurate estimates with an average error within 11% and high maximum errors around 40%. Parallax’s accuracy suffers because it assumes that each reduce partition processes a uniform amount of data. Since it does not take this skew into account, it produces overly-optimistic estimates for both experiments.

4.5 Future Work

ParaTimer is one of the first steps toward providing an accurate, time-remaining progress estimator for parallel queries and the above experiments demonstrate that it can provide accurate information in a variety of important and challenging circumstances. ParaTimer, however, does not solve all problems. In particular, in this paper, we did not study the impact of wrong cardinality estimates on ParaTimer, which affect predicted times for pipelines and could also cause ParaTimer to compute the wrong critical path. It would also be interesting to exercise ParaTimer in a variety of additional conditions including more complex queries, larger clusters, clusters where competing workloads use the same physical machines, and scenarios where failures, skew, and other problems arise simultaneously.

5. RELATED WORK

Several relational DBMSs, including parallel DBMSs, provide coarse-grained progress indicators for running queries. Most systems simply maintain and display a variety of statistics about (ongoing) query execution [4, 5, 7, 10] (e.g., elapsed time, number of tuples output so far). Some systems [7, 10] further break a query plan into steps (e.g., operators), show which of the steps are currently executing, and how evenly the processing is distributed across processors. Some systems further provide time-remaining estimates for long-running operations by assuming that these operations process data at constant speed [26], which is not always the case. Pig/Hadoop’s existing progress estimator [25] takes a similar approach. It shows a percent-remaining estimate but has low accuracy (Figure 5) because it assumes all operators take the same amount of time to complete. Our approach strives to estimate time remaining with significantly more accuracy.

There has been significant recent work on developing progress indicators for SQL queries executing within single-node DBMSs [3, 2, 18, 19, 21, 22], possibly with concurrent workloads [20]. In contrast, ParaTimer focuses on the challenges specific to parallel queries: distribution across multiple nodes, concurrent execution, failures, and data skew.

Chaudhuri et al. [3] maintain upper and lower bounds on operator cardinalities to refine their estimates at runtime. These bounds are not analogous to ParaTimer’s bounds. Chaudhuri et al. use bounds only to correct their single best-guess estimate of query progress when original cardinality estimates are incorrect or to produce approximate estimates with provable guarantees in the presence of join skew [2]. In contrast, ParaTimer focuses on producing multiple useful guesses on query times. Further, ParaTimer’s guesses are also not necessarily absolute upper and lower bounds but rather additional estimates for different possible conditions.

In follow-on work, Chaudhuri et al. [2] study the problem of join skew in single-node estimators, where different input tuples contribute to very different numbers of output tuples. In contrast, we focus on data skew across partitions of an operator and do not consider join skew.
In preliminary prior work, we developed Parallax [23], the first non-trivial time-based progress estimator for parallel queries. However, Parallax only works for very simple queries in mostly static runtime conditions. In contrast, ParaTimer’s approach works for parallel queries with joins and in the presence of data skew and failures.

Query progress is related to the cardinality estimation problem. There exists significant work in the cardinality estimation area including recent techniques [21, 22] that continuously refine cardinality estimates using online feedback from query execution. These techniques can help improve the accuracy of progress indicators. They are orthogonal to our approach since we do not address the cardinality estimation problem in this paper.

Query optimizers have a model of query cost and compute that cost when selecting query plans. These costs, however, are designed for selecting plans rather than computing the most accurate time-remaining estimates. As such, optimizer’s estimates can be inaccurate time-remaining indicators [9, 19]. Ganapathi et al. [9] use machine learning to predict query times before execution. In contrast, we focus on providing continuously updated time-remaining estimates during query execution taking runtime conditions such as failures into account.

Work on online aggregation [13, 16] also strives to provide continuous feedback to users during query execution. The feedback, however, takes the form of confidence bounds on result accuracy rather than estimated completion times. Additionally, these techniques use special operators to avoid any blocking in the query plans.

Finally, query schedulers can use estimates of query completion times to improve resource allocation. Existing techniques for time-remaining estimates in this domain [30], however, currently use only heuristics based on Hadoop’s progress counters, which leads to similar limitations as in Pig’s current estimator.

6. CONCLUSION

We presented ParaTimer, a system for estimating the time-remaining for parallel queries consisting of multiple MapReduce jobs running on a cluster. We leveraged our earlier work that determines operator speed via runtime measurements and statistics from earlier runs on data samples. Unlike this prior work, we support queries where multiple MapReduce jobs operate in parallel (as occurs with join queries), where nodes fail at runtime, and where data skew exists. The essential techniques involve identifying the critical path for the entire query and producing multiple time estimates for different assumptions about future dynamic conditions. We have implemented our approach in the Pig/Hadoop system and demonstrated that for a range of queries and dynamic conditions it produces quality time estimates that are more accurate than existing alternatives.

7. ACKNOWLEDGEMENTS

We thank Dan Suciu and the anonymous reviewers for their helpful feedback on earlier versions of this paper. The ParaTimer project is partially supported by NSF CAREER award IIS-0845397, NSF CRI grant CNS-0454425, gifts from Microsoft Research and Yahoo!, and Balazinska’s Microsoft Research New Faculty Fellowship. Kristi Morton is supported in part by an AT&T Labs Fellowship.

8. REFERENCES