
1

©Silberschatz, Korth and Sudarshan1

ARIES Recovery AlgorithmARIES Recovery Algorithm

ARIES: A Transaction Recovery Method
Supporting Fine Granularity Locking and Partial

Rollback Using Write-Ahead Logging
C. Mohan, D. Haderle, B. Lindsay,

H. Pirahesh, and P. Schwarz

ACM Transactions on Database Systems, 17(1), 1992

Slides prepared by
S. Sudarshan

©Silberschatz, Korth and Sudarshan2

Recovery Scheme MetricsRecovery Scheme Metrics

! Concurrency

! Functionality

! Complexity

! Overheads:
!Space and I/O (Seq and random) during

Normal processing and recovery

! Failure Modes:
! transaction/process, system and media/device

2

©Silberschatz, Korth and Sudarshan3

Key Features of AriesKey Features of Aries

! Physical Logging, and

! Operation logging
! e.g. Add 5 to A, or insert K in B-tree B

! Page oriented redo
! recovery independence amongst objects

! Logical undo (may span multiple pages)

! WAL + Inplace Updates

©Silberschatz, Korth and Sudarshan4

Key Aries Features (Key Aries Features (contdcontd))

! Transaction Rollback
! Total vs partial (up to a savepoint)

!Nested rollback - partial rollback followed by another
(partial/total) rollback

! Fine-grain concurrency control
! supports tuple level locks on records, and key value locks on

indices

3

©Silberschatz, Korth and Sudarshan5

More Aries FeaturesMore Aries Features

! Flexible storage management
!Physiological redo logging:

" logical operation within a single page
" no need to log intra-page data movement for compaction
" LSN used to avoid repeated redos (more on LSNs later)

! Recovery independence
! can recover some pages separately from others

! Fast recovery and parallelism

©Silberschatz, Korth and Sudarshan6

Latches and LocksLatches and Locks

! Latches
! used to guarantee physical consistency

! short duration

! no deadlock detection

! direct addressing (unlike hash table for locks)
" often using atomic instructions
" latch acquisition/release is much faster than lock

acquisition/release

! Lock requests
! conditional, instant duration, manual duration, commit duration

4

©Silberschatz, Korth and Sudarshan7

Buffer Manager Buffer Manager

! Fix, unfix and fix_new (allocate and fix new pg)

! Aries uses steal policy - uncommitted writes may be
output to disk (contrast with no-steal policy)

! Aries uses no-force policy (updated pages need not
be forced to disk before commit)

! dirty page: buffer version has updated not yet reflected
on disk
! dirty pages written out in a continuous manner to disk

©Silberschatz, Korth and Sudarshan8

Buffer Manager (Buffer Manager (ContdContd))

! BCB: buffer control blocks
! stores page ID, dirty status, latch, fix-count

! Latching of pages = latch on buffer slot
! limits number of latches required

! but page must be fixed before latching

5

©Silberschatz, Korth and Sudarshan9

Some NotationSome Notation

! LSN: Log Sequence Number
! = logical address of record in the log

! Page LSN: stored in page
! LSN of most recent update to page

! PrevLSN: stored in log record
! identifies previous log record for that transaction

! Forward processing (normal operation)

! Normal undo vs. restart undo

©Silberschatz, Korth and Sudarshan10

Compensation Log RecordsCompensation Log Records

! CLRs: redo only log records

! Used to record actions performed during transaction
rollback
! one CLR for each normal log record which is undone

! CLRs have a field UndoNxtLSN indicating which log
record is to be undone next

" avoids repeated undos by bypassing already undo records
– needed in case of restarts during transaction rollback)

" in contrast, IBM IMS may repeat undos, and AS400 may even
undo undos, then redo the undos

6

©Silberschatz, Korth and Sudarshan11

Normal ProcessingNormal Processing

! Transactions add log records

! Checkpoints are performed periodically
! contains

" Active transaction list,
" LSN of most recent log records of transaction, and
" List of dirty pages in the buffer (and their recLSNs)

– to determine where redo should start

©Silberschatz, Korth and Sudarshan12

Recovery PhasesRecovery Phases

! Analysis pass
! forward from last checkpoint

! Redo pass
! forward from RedoLSN, which is determined in analysis pass

! Undo pass
! backwards from end of log, undoing incomplete transactions

7

©Silberschatz, Korth and Sudarshan13

Analysis PassAnalysis Pass

! RedoLSN = min(LSNs of dirty pages recorded
in checkpoint)
! if no dirty pages, RedoLSN = LSN of checkpoint

! pages dirtied later will have higher LSNs)

! scan log forwards from last checkpoint
! find transactions to be rolled back (``loser'' transactions)

! find LSN of last record written by each such transaction

©Silberschatz, Korth and Sudarshan14

Redo PassRedo Pass

! Repeat history, scanning forward from RedoLSN
! for all transactions, even those to be undone

! perform redo only if page_LSN < log records LSN

! no locking done in this pass

8

©Silberschatz, Korth and Sudarshan15

Undo PassUndo Pass

! Single scan backwards in log, undoing actions of
``loser'' transactions
! for each transaction, when a log record is found, use prev_LSN

fields to find next record to be undone

! can skip parts of the log with no records from loser transactions

! don't perform any undo for CLRs (note: UndoNxtLSN for CLR
indicates next record to be undone, can skip intermediate
records of that transactions)

©Silberschatz, Korth and Sudarshan16

Data Structures Used in AriesData Structures Used in Aries

9

©Silberschatz, Korth and Sudarshan17

Log Record StructureLog Record Structure

! Log records contain following fields
! LSN

! Type (CLR, update, special)

! TransID

!PrevLSN (LSN of prev record of this txn)

!PageID (for update/CLRs)

!UndoNxtLSN (for CLRs)
" indicates which log record is being compensated
" on later undos, log records upto UndoNxtLSN can be skipped

!Data (redo/undo data); can be physical or logical

©Silberschatz, Korth and Sudarshan18

Transaction TableTransaction Table

! Stores for each transaction:
! TransID, State

! LastLSN (LSN of last record written by txn)

!UndoNxtLSN (next record to be processed in rollback)

! During recovery:
! initialized during analysis pass from most recent checkpoint

!modified during analysis as log records are encountered, and
during undo

10

©Silberschatz, Korth and Sudarshan19

Dirty Pages TableDirty Pages Table

! During normal processing:
!When page is fixed with intention to update

" Let L = current end-of-log LSN (the LSN of next log record to be
generated)

" if page is not dirty, store L as RecLSN of the page in dirty pages
table

!When page is flushed to disk, delete from dirty page table

! dirty page table written out during checkpoint

! (Thus RecLSN is LSN of earliest log record whose effect is not
reflected in page on disk)

©Silberschatz, Korth and Sudarshan20

Dirty Page Table (Dirty Page Table (contdcontd))

! During recovery
! load dirty page table from checkpoint

! updated during analysis pass as update log records are
encountered

11

©Silberschatz, Korth and Sudarshan21

Normal Processing DetailsNormal Processing Details

©Silberschatz, Korth and Sudarshan22

UpdatesUpdates

! Page latch held in X mode until log record is logged
! so updates on same page are logged in correct order

! page latch held in S mode during reads since records may get
moved around by update

! latch required even with page locking if dirty reads are allowed

! Log latch acquired when inserting in log

12

©Silberschatz, Korth and Sudarshan23

Updates (Contd.)Updates (Contd.)

! Protocol to avoid deadlock involving latches
! deadlocks involving latches and locks were a major problem in

System R and SQL/DS

! transaction may hold at most two latches at-a-time

!must never wait for lock while holding latch
" if both are needed (e.g. Record found after latching page):
" release latch before requesting lock and then reacquire latch (and

recheck conditions in case page has changed inbetween).
Optimization: conditional lock request

! page latch released before updating indices
" data update and index update may be out of order

©Silberschatz, Korth and Sudarshan24

Split Log RecordsSplit Log Records

! Can split a log record into undo and redo parts
! undo part must go first

! page_LSN is set to LSN of redo part

13

©Silberschatz, Korth and Sudarshan25

SavepointsSavepoints

! Simply notes LSN of last record written by transaction
(up to that point) - denoted by SaveLSN

! can have multiple savepoints, and rollback to any of
them

! deadlocks can be resolved by rollback to appropriate
savepoint, releasing locks acquired after that savepoint

©Silberschatz, Korth and Sudarshan26

RollbackRollback

! Scan backwards from last log record of txn
" (last log record of txn = transTable[TransID].UndoNxtLSN

! if log record is an update log record
" undo it and add a CLR to the log

! if log record is a CLR
" then UndoNxt = LogRec.UnxoNxtLSN
" else UndoNxt = LogRec.PrevLSN

! next record to process is UndoNxt; stop at SaveLSN or
beginning of transaction as required

14

©Silberschatz, Korth and Sudarshan27

More on RollbackMore on Rollback

! Extra logging during rollback is bounded
!make sure enough log space is available for rollback in case of

system crash, else BIG problem

! In case of 2PC, if in-doubt txn needs to be aborted,
rollback record is written to log then rollback is carried
out

©Silberschatz, Korth and Sudarshan28

Transaction TerminationTransaction Termination

! prepare record is written for 2PC
! locks are noted in prepare record

! prepare record also used to handle non-undoable
actions e.g. deleting file

" these pending actions are noted in prepare record and executed
only after actual commit

! end record written at commit time
! pending actions are then executed and logged using special

redo-only log records

! end record also written after rollback

15

©Silberschatz, Korth and Sudarshan29

CheckpointsCheckpoints

! begin_chkpt record is written first

! transaction table, dirty_pages table and some other file
mgmt information are written out

! end_chkpt record is then written out
! for simplicity all above are treated as part of end_chkpt record

! LSN of begin_chkpt is then written to master record in
well known place on stable storage

! incomplete checkpoint
! if system crash before end_chkpt record is written

©Silberschatz, Korth and Sudarshan30

Checkpoint (Checkpoint (contdcontd))

! Pages need not be flushed during checkpoint
! are flushed on a continuous basis

! Transactions may write log records during checkpoint

! Can copy dirty_page table fuzzily (hold latch, copy
some entries out, release latch, repeat)

16

©Silberschatz, Korth and Sudarshan31

Restart ProcessingRestart Processing

! Finds checkpoint begin using master record

! Do restart_analysis

! Do restart_redo
! ... some details of dirty page table here

! Do restart_undo

! reacquire locks for prepared transactions

! checkpoint

©Silberschatz, Korth and Sudarshan32

Result of Analysis PassResult of Analysis Pass

! Output of analysis
! transaction table

" including UndoNxtLSN for each transaction in table

! dirty page table: pages that were potentially dirty at time of
crash/shutdown

!RedoLSN - where to start redo pass from

! Entries added to dirty page table as log records are
encountered in forward scan
! also some special action to deal with OS file deletes

! This pass can be combined with redo pass!

17

©Silberschatz, Korth and Sudarshan33

Redo PassRedo Pass

! Scan forward from RedoLSN
! If log record is an update log record, AND is in

dirty_page_table AND LogRec.LSN >= RecLSN of the page in
dirty_page_table

! then if pageLSN < LogRec.LSN then perform redo; else just
update RecLSN in dirty_page_table

! Repeats history: redo even for loser transactions
(some optimization possible)

©Silberschatz, Korth and Sudarshan34

More on Redo PassMore on Redo Pass

! Dirty page table details
! dirty page table from end of analysis pass (restart dirty page

table) is used and set in redo pass (and later in undo pass)

! Optimizations of redo
!Dirty page table info can be used to pre-read pages during

redo

!Out of order redo is also possible to reduce disk seeks

18

©Silberschatz, Korth and Sudarshan35

Undo PassUndo Pass

! Rolls back loser transaction in reverse order in single
scan of log
! stops when all losers have been fully undone

! processing of log records is exactly as in single transaction
rollback

1 2 3 4 4' 3' 5 6 5' 2' 1'6'

©Silberschatz, Korth and Sudarshan36

Undo Undo OptimizationsOptimizations

! Parallel undo
! each txn undone separately, in parallel with others

! can even generate CLRs and apply them separately , in
parallel for a single transaction

! New txns can run even as undo is going on:
! reacquire locks of loser txns before new txns begin

! can release locks as matching actions are undone

19

©Silberschatz, Korth and Sudarshan37

Undo Undo OptimizationOptimization ((ContdContd))

! If pages are not available (e.g media failure)
! continue with redo recovery of other pages

" once pages are available again (from archival dump) redos of the
relevant pages must be done first, before any undo

! for physical undos in undo pass
" we can generate CLRs and apply later; new txns can run on other

pages

! for logical undos in undo pass
" postpone undos of loser txns if the undo needs to access these

pages - ``stopped transaction''
" undo of other txns can proceed; new txns can start provided

appropriate locks are first acquired for loser txns

©Silberschatz, Korth and Sudarshan38

Transaction RecoveryTransaction Recovery

! Loser transactions can be restarted in some cases
" e.g. Mini batch transactions which are part of a larger transaction

20

©Silberschatz, Korth and Sudarshan39

Checkpoints During RestartCheckpoints During Restart

! Checkpoint during analysis/redo/undo pass
! reduces work in case of crash/restart during recovery

" (why is Mohan so worried about this!)

! can also flush pages during redo pass
" RecLSN in dirty page table set to current last-processed-record

©Silberschatz, Korth and Sudarshan40

Media RecoveryMedia Recovery

! For archival dump
! can dump pages directly from disk (bypass buffer, no latching

needed) or via buffer, as desired
" this is a fuzzy dump, not transaction consistent

! begin_chkpt location of most recent checkpoint completed
before archival dump starts is noted
" called image copy checkpoint
" redoLSN computed for this checkpoint and noted as media

recovery redo point

21

©Silberschatz, Korth and Sudarshan41

Media Recovery (Media Recovery (ContdContd))

! To recover parts of DB from media failure
! failed parts if DB are fetched from archival dump

! only log records for failed part of DB are reapplied in a redo
pass

! inprogress transactions that accessed the failed parts of the
DB are rolled back

! Same idea can be used to recover from page
corruption
! e.g. Application program with direct access to buffer crashes

before writing undo log record

©Silberschatz, Korth and Sudarshan42

Nested Top ActionsNested Top Actions

! Same idea as used in logical undo in our advanced
recovery mechanism
! used also for other operations like creating a file (which can

then be used by other txns, before the creater commits)

! updates of nested top action commit early and should not be
undone

! Use dummy CLR to indicate actions should be skipped
during undo

