]

ARIES Recovery Algorithm

ARIES: A Transaction Recovery Method
Supporting Fine Granularity Locking and Partial
Rollback Using Write-Ahead Logging

LN
AV

Q Key Features of Aries

®m Physical Logging, and
®m Operation logging
*eg.Add5to A, or insertKin B-tree B

_alang =

Q Recovery Scheme Metrics

® Concurrency
® Functionality

m Complexity

I\
iy

Q Key Aries Features (contd)

B Transaction Rollback

* Total vs partial (up to a savepoint)

* Nested rollback - partial rollback followed by another
(partial/total) rollback

®m Fine-grain concurrency control

ORIV

More Aries Features
\/

m Flexible storage management

* Physiological redo logging:
> logical operation within a single page
> no need to log intra-page data movement for compaction
> LSN used to avoid repeated redos (more on LSNs later)

®m Recovery independence
* can recover some pages separately from others

m Fast recovery and parallelism

\

§ A

5 ©Si|berschm

W Buffer Manager

®m Fix, unfix and fix_new (allocate and fix new pg)

® Aries uses steal policy - uncommitted writes may be
output to disk (contrast with no-steal policy)

®m Aries uses no-force policy (updated pages need not
be forced to disk before commit)

m dirty page: buffer version has updated not yet reflected
on disk

* dirty pages written out in a continuous manner to disk

f=A

7 il , KO

A Latches and Locks

m Latches

* used to guarantee physical consistency

* short duration

* no deadlock detection

* direct addressing (unlike hash table for locks)

> often using atomic instructions

> latch acquisition/release is much faster than lock
acquisition/release

® Lock requests

#* conditional, instant duration, manual duration, commit duration . |

e
el
6 ©Silberschatz, Ko an
Buffer Manager (Contd)
~
® BCB: buffer control blocks
* stores page ID, dirty status, latch, fix-count
® Latching of pages = latch on buffer slot
* limits number of latches required
* but page must be fixed before latching
. \
==y

8 @Silberschm

Some Notation

B LSN: Log Sequence Number
* = logical address of record in the log
® Page LSN: stored in page
* LSN of most recent update to page
® PrevLSN: stored in log record
* identifies previous log record for that transaction

®m Forward processing (normal operation)

® Normal undo vs. restart undo 4 k
1A

9 ©Si|berschm

Normal Processing
\/

® Transactions add log records

® Checkpoints are performed periodically

* contains
> Active transaction list,
> LSN of most recent log records of transaction, and
> List of dirty pages in the buffer (and their recLSNs)
to determine where redo should start

Compensation Log Records
\/

® CLRs: redo only log records

®m Used to record actions performed during transaction
rollback

* one CLR for each normal log record which is undone

® CLRs have a field UndoNxtLSN indicating which log
record is to be undone next

> avoids repeated undos by bypassing already undo records

needed in case of restarts during transaction rollback)

> in contrast, IBM IMS may repeat undos, and AS400 may even
undo undos, then redo the undos

it \

HL—A

10 ©Si|berschm

Recovery Phases
\/

® Analysis pass

* forward from last checkpoint
® Redo pass

* forward from RedoLSN, which is determined in analysis pass
®m Undo pass

* backwards from end of log, undoing incomplete transactions

. \

H-EA

12 ©Si|berschm

Q Analysis Pass Q Redo Pass

B RedoLSN = min(LSNs of dirty pages recorded
in checkpoint)

* if no dirty pages, RedoLSN = LSN of checkpoint
* pages dirtied later will have higher LSNs

®m Repeat history, scanning forward from RedoLSN

* for all transactions, even those to be undone

3 Iﬂl‘-ﬂn-...

> Zﬂl‘-ﬂn-...

Q Undo Pass

m Single scan backwards in log, undoing actions of
“loser" transactions

* for each transaction, when a log record is found, use prev_LSN
fields to find next record to be undone

A Zﬂ.‘t‘-ﬂn-...

1 Zﬂ.‘t‘-ﬂx-..-

Q Log Record Structure Q Transaction Table

B Log records contain following fields
* LSN
* Type (CLR, update, special)

m Stores for each transaction:
* TransID, State

A A
il il

Q Q Dirty Page Table (contd)
Dirty Pages Table .
®m During recovery
® During normal processing: * load dirty page table from checkpoint
* When page is fixed with intention to update * updatec: duging analysis pass as update log records are
encountere

> Let L = current end-of-log LSN (the LSN of next log record to be

gy g

‘/ '/ Updates

®m Page latch held in X mode until log record is logged

* so updates on same page are logged in correct order

* page latch held in S mode during reads since records may get
moved around by update

Q Updates (Contd.) Q Split Log Records

®m Protocol to avoid deadlock involving latches = Canisplitallogreccrdintolundoiandiredapants

* '
* deadlocks involving latches and locks were a major problem in () B It e St

System R and SQL/DS * page_LSN is set to LSN of redo part

* transaction may hold at most two latches at-a-time

gy g

Savepoints
\/

® Simply notes LSN of last record written by transaction
(up to that point) - denoted by SaveLSN

® can have multiple savepoints, and rollback to any of
them

®m deadlocks can be resolved by rollback to appropriate
savepoint, releasing locks acquired after that savepoint

\

§ A

25 ©Si|berschm

More on Rollback
\/

m Extra logging during rollback is bounded

* make sure enough log space is available for rollback in case of
system crash, else BIG problem

m |In case of 2PC, if in-doubt txn needs to be aborted,
rollback record is written to log then rollback is carried
out

\

f=A

27 ©Si|berschm

~

Rollback

/

® Scan backwards from last log record of txn

> (last log record of txn = transTable[TransID].UndoNxtLSN
* if log record is an update log record

> undo it and add a CLR to the log
* if log record is a CLR

> then UndoNxt = LogRec.UnxoNxtLSN

> else UndoNxt = LogRec.PrevLSN

* next record to process is UndoNxt; stop at SaveL. SN or
beginning of transaction as required

\

§.o A

26 ©Si|bersch®

Transaction Termination

®m prepare record is written for 2PC
* locks are noted in prepare record
m prepare record also used to handle non-undoable
actions e.g. deleting file

> these pending actions are noted in prepare record and executed
only after actual commit

B end record written at commit time

* pending actions are then executed and logged using special

redo-only log records
\

B end record also written after rollback l; LA

28 ©Si|berschm

Checkpoints

~

B begin_chkpt record is written first

B transaction table, dirty_pages table and some other file
mgmt information are written out

®m end_chkpt record is then written out
* for simplicity all above are treated as part of end_chkpt record
®m LSN of begin_chkpt is then written to master record in
well known place on stable storage
® incomplete checkpoint

* if system crash before end_chkpt record is written

\

§ A

29 ©Si|berschm

Restart Processing
\/

Finds checkpoint begin using master record

Do restart_analysis

Do restart_redo

* ... some details of dirty page table here

Do restart_undo

reacquire locks for prepared transactions

checkpoint

\

f=A

2l ©Si|berschm

Checkpoint (contd)
—
®m Pages need not be flushed during checkpoint
* are flushed on a continuous basis
B Transactions may write log records during checkpoint

®m Can copy dirty_page table fuzzily (hold latch, copy
some entries out, release latch, repeat)

\

§.o A

30 ©Si|berschm

Result of Analysis Pass
\/

®m Qutput of analysis
* transaction table

> including UndoNxtLSN for each transaction in table

* dirty page table: pages that were potentially dirty at time of
crash/shutdown

* RedoLSN - where to start redo pass from

®m Entries added to dirty page table as log records are
encountered in forward scan

* also some special action to deal with OS file deletes

m This pass can be combined with redo pass!

\

A

82 ©Si|berschm

o Redo Pass ¥ More on Redo Pass

~ ~
®m Scan forward from RedoLSN m Dirty page table details
* If log record is an update log record, AND is in * dirty page table from end of analysis pass (restart dirty page
dirty_page_table AND LogRec.LSN >= RecLSN of the page in table) is used and set in redo pass (and later in undo pass)

dirt tabl Lo
irty_page_table ® Optimizations of redo

* then if pageLSN < LogRec.LSN then perform redo; else just
update RecLSN in dirty_page_table * Di(rjty page table info can be used to pre-read pages during

redo
®m Repeats history: redo even for loser transactions

. . . # QOut of order redo is also possible to reduce disk seeks
(some optimization possible)

\ if \

‘1-:, 5 i

33 ©Si|berschm 34 ©Si|berschm

Y Undo Pass Y Undo Optimizations
~ ~

® Rolls back loser transaction in reverse order in single

scan of log ®m Parallel undo

* stops when all losers have been fully undone * each txn undone separately, in parallel with others

* processing of log records is exactly as in single transaction
rollback

* can even generate CLRs and apply them separately , in
parallel for a single transaction

® New txns can run even as undo is going on:

* reacquire locks of loser txns before new txns begin

* can release locks as matching actions are undone

\ 1 ¢ \

l, \ i \

35! ©Si|berschm 36 ©Si|berschm

Q Undo Optimization (Contd)

m If pages are not available (e.g media failure)

* continue with redo recovery of other pages

» once pages are available again (from archival dump) redos of the
relevant pages must be done first, before any undo

LN
il

Q Checkpoints During Restart

®m Checkpoint during analysis/redo/undo pass

* reduces work in case of crash/restart during recovery
> (why is Mohan so worried about this!)
* can also flush pages during redo pass

gy

Q Transaction Recovery

B Loser transactions can be restarted in some cases

> e.g. Mini batch transactions which are part of a larger transaction

ARSI

Q Media Recovery

® For archival dump

* can dump pages directly from disk (bypass buffer, no latching
needed) or via buffer, as desired
> this is a fuzzy dump, not transaction consistent

* begin_chkpt location of most recent checkpoint completed

g

Q Media Recovery (Contd) Q Nested Top Actions

B Same idea as used in logical undo in our advanced

[ia fai :
To recover parts of DB from media failure recovery mechanism

* failed parts if DB are fetched from archival dump

* used also for other operations like creating a file (which can

