Q Recovery Scheme Metrics

]

ARIES Recovery Algorithm

m Concurrency

ARIES: A Transaction Recovery Method ® Functionality
Supporting Fine Granularity Locking and Partial

Rollback Using Write-Ahead Logging

m Complexity

ot 'MA\—M i

Q Key Features of Aries Q Key Aries Features (contd)

B Transaction Rollback

. . * Total vs partial (up to a savepoint
m Physical Logging, and P (up point)
* Nested rollback - partial rollback followed by another

m Operation logging (partial/total) rollback

*eg.Add5to A, or insertKinB-tree B ® Fine-grain concurrency control

ot MA‘—JA i

Q IO Q Latches and Locks

m Flexible storage management

#* Physiological redo logging: H Latches
> logical operation within a single page * used to guarantee physical consistency
> no need to log intra-page data movement for compaction °- ol ettt

> LSN used to avoid repeated redos (more on LSNs later)

N D
L Ly S

Q Buffer Manager Q Buffer Manager (Contd)

m Fix, unfix and fix_new (allocate and fix new pg) ® BCB: buffer control blocks

B Aries uses steal policy - uncommitted writes may be * stores page D, dirty status, latch, fix-count

output to disk (contrast with no-steal policy) m Latching of pages = latch on buffer slot

H Aries uses no-force policy (updated pages need not * limits number of latches required

N D
AN il




Q Some Notation Q Compensation Log Records

m CLRs: redo only log records

m LSN: Log Sequence Number m Used to record actions performed during transaction
rollback

* = |ogical address of record in the log

ot 'MA\—M i

Q Normal Processing Q Recovery Phases
B Transactions add log records B Analysis pass
m Checkpoints are performed periodically * forward from last checkpoint
* contains ® Redo pass
> Active transaction list, * forward from RedoLSN, which is determined in analysis pass

~ L(LL‘-m -0 ~ MA‘-M -0

Q Analysis Pass . Redo Pass

m RedoLSN = min(LSNs of dirty pages recorded
in checkpoint)

* if no dirty pages, RedoLSN = LSN of checkpoint
* pages dirtied later will have higher LSNs)

B Repeat history, scanning forward from RedoLSN

* for all transactions, even those to be undone

Q Undo Pass

m Single scan backwards in log, undoing actions of
“loser" transactions

* for each transaction, when a log record is found, use prev_LSN
fields to find next record to be undone

Data Structures Used in Aries

* can skip parts of the log with no records from loser transactions

— MA‘-A‘A -




Q Log Record Structure Q Transaction Table

B |og records contain following fields
* LSN
* Type (CLR, update, special)

m Stores for each transaction:
* TransID, State

41([.‘1‘-."1_... AMAHM_...

Q Dirty Page Table (contd)

]

Dirty Pages Table .
B During recovery
® During normal processing: * load dirty page table from checkpoint
* When page is fixed with intention to update * :ﬁgsti(i;:gng analysis pass as update log records are

> Let L = current end-of-log LSN (the LSN of next log record to be

411‘.0"“-...

. Updates

B Page latch held in X mode until log record is logged

* so updates on same page are logged in correct order

* page latch held in S mode during reads since records may get
moved around by update

Q Updates (Contd.) Q Split Log Records

m Can split a log record into undo and redo parts

B Protocol to avoid deadlock involving latches

* )
* deadlocks involving latches and locks were a major problem in CHE TS

System R and SQL/DS * page_LSN is set to LSN of redo part

* transaction may hold at most two latches at-a-time

Alﬂl‘-ﬂu-... A'M.‘thm_...




- Savepoints -~ Rollback

~ ~
m Simply notes LSN of last record written by transaction B Scan backwards from last log record of txn

(up to that pomt) - denoted by SavelLSN > (last log record of txn = transTable[TransID].UndoNxtLSN
® can have multiple savepoints, and rollback to any of * if log record is an update log record

them > undo it and add a CLR to the log

m deadlocks can be resolved by rollback to appropriate * iflog record is a CLR

savepoint, releasing locks acquired after that savepoint > then UndoNxt = LogRec.UnxoNxtLSN
> else UndoNxt = LogRec.PrevLSN

* next record to process is UndoNxt; stop at SaveLSN or
beginning of transaction as required

25 @SiIhersch\;t/z,\’G:\\l-;_m:d*s«;iam‘bﬁ‘;< 26 ©Si|bersch‘:l/x,\'(a‘nund5uéau?ﬁ§\
- More on Rollback - Transaction Termination
~ ~

m Extra logging during rollback is bounded

* make sure enough log space is available for rollback in case of
system crash, else BIG problem B prepare record is written for 2PC
B |n case of 2PC, if in-doubt txn needs to be aborted, * locks are noted in prepare record

rollback record is written to log then rollback is carried ® prepare record also used to handle non-undoable

out actions e.g. deleting file

> these pending actions are noted in prepare record and executed
only after actual commit

B end record written at commit time

* pending actions are then executed and logged using special
redo-only log records

®m end record also written after rollback

27 @Silhersch:;z,\(mhjndsm 28 ©Si|bersch:x,\ﬁ:‘nuu&5u;amh)ain
~ Checkpoints ~ Checkpoint (contd)
~ ~
® begin_chkpt record is written first B Pages need not be flushed during checkpoint
® transaction table, dirty_pages table and some other file paelcedieiicontipuonsibass
mgmt information are written out B Transactions may write log records during checkpoint
m end_chkpt record is then written out m Can copy dirty_page table fuzzily (hold latch, copy

* for simplicity all above are treated as part of end_chkpt record some entries out, release latch, repeat)

m LSN of begin_chkpt is then written to master record in
well known place on stable storage

m incomplete checkpoint

* if system crash before end_chkpt record is written

il i
29 @Silhers:h\;;x,\(mhjnﬁm 30 ©Si|berschM
~ Restart Processing ~ Result of Analysis Pass
~ ~
B Finds checkpoint begin using master record

m Qutput of analysis

= Do reStart—analySiS * transaction table
m Do restart_redo > including UndoNxtLSN for each transaction in table
* ... some details of dirty page table here * dirty page table: pages that were potentially dirty at time of
crash/shutdown
RRColes ishnag * RedoLSN - where to start redo pass from
= reacquire locks for prepared transactions ® Entries added to dirty page table as log records are
m checkpoint encountered in forward scan

#* also some special action to deal with OS file deletes

m This pass can be combined with redo pass!

AR A
B /CE ]
3 @Sllhersch\;z.\('mh_anﬁm 32 ©Silberschata) Konth.andSudarstan



Q Redo Pass

m Scan forward from RedoLSN

* |f log record is an update log record, AND is in
dirty_page_table AND LogRec.LSN >= RecLSN of the page in
dirty_page_table

* then if pageLSN < LogRec.LSN then perform redo; else just

Q Undo Pass

B Rolls back loser transaction in reverse order in single
scan of log

* stops when all losers have been fully undone

* processing of log records is exactly as in single transaction
rollback

~ L(LL‘-m -0

Q Undo Optimization (Contd)

m |f pages are not available (e.g media failure)

* continue with redo recovery of other pages

> once pages are available again (from archival dump) redos of the
relevant pages must be done first, before any undo

Q Checkpoints During Restart

B Checkpoint during analysis/redo/undo pass

* reduces work in case of crash/restart during recovery
> (why is Mohan so worried about this!)
* can also flush pages during redo pass

Q More on Redo Pass

m Dirty page table details

* dirty page table from end of analysis pass (restart dirty page
table) is used and set in redo pass (and later in undo pass)

m Optimizations of redo

ot 'MA\—M i

Q Undo Optimizations

m Parallel undo

* each txn undone separately, in parallel with others
* can even generate CLRs and apply them separately , in

AMA‘-M-...

. Transaction Recovery

B Loser transactions can be restarted in some cases

> e.g. Mini batch transactions which are part of a larger transaction

ot MA‘-M SR

Q Media Recovery

m For archival dump

* can dump pages directly from disk (bypass buffer, no latching
needed) or via buffer, as desired

> this is a fuzzy dump, not transaction consistent
* begin_chkpt location of most recent checkpoint completed

— MA‘-A‘A -



Q Media Recovery (Contd) Q Nested Top Actions

B Same idea as used in logical undo in our advanced
recovery mechanism

B To recover parts of DB from media failure

* failed parts if DB are fetched from archival dump

* used also for other operations like creating a file (which can




