~

ARIES Recovery Algorithm

ARIES A Transaction Recovery Method
Supporting Fine Granularity Locking and Partial
Rollback Using Write-Ahead Logging
C. Mohan, D. Haderle, B. Lindsay,

H. Pirahesh, and P. Schwarz

ACM Transactions on Database Systems, 17(1), 1992

Slides prepared by
S. Sudarshan

1 ©Silberschatz, Ko

. Recovery Scheme Metrics

m Concurrency
® Functionality

m Complexity

Key Features of Aries

® Physical Logging, and
®m Operation logging
*e.g.Add5to A, or insertKin B-tree B
m Page oriented redo
* recovery independence amongst objects
® Logical undo (may span multiple pages)

® WAL + Inplace Updates

3 ©Silberschatz, Ko

Key Aries Features (contd)
~

® Transaction Rollback

* Total vs partial (up to a savepoint)

* Nested rollback - partial rollback followed by another
(partial/total) rollback

® Fine-grain concurrency control

¥ supports tuple level locks on records, and key value locks on
indices

4 ©Silberschatz, Ko

- More Aries Features
~

B Flexible storage management

Physiological redo logging:
> logical operation within a single page
> Nno need to log intra-page data movement for compaction
> LSN used to avoid repeated redos (more on LSNs later)

® Recovery independence
can recover some pages separately from others

®m Fast recovery and parallelism

5 ©Silberschatz, Ko

Y Latches and Locks

B Latches

used to guarantee physical consistency
short duration
no deadlock detection

direct addressing (unlike hash table for locks)

> often using atomic instructions

> latch acquisition/release is much faster than lock
acquisition/release

B Lock requests

conditional, instant duration, manual duration, commit duration .

6 ©Silberschatz, Ko

Yy Buffer Manager

®m Fix, unfix and fix_new (allocate and fix new pg)

®m Aries uses steal policy - uncommitted writes may be
output to disk (contrast with no-steal policy)

B Aries uses no-force policy (updated pages need not
be forced to disk before commit)

m dirty page: buffer version has updated not yet reflected
on disk

dirty pages written out in a continuous manner to disk

7 ©Silberschatz, Ko

Q Buffer Manager (Contd)

B BCB: buffer control blocks

* stores page ID, dirty status, latch, fix-count

® Latching of pages = latch on buffer slot

Some Notation

LSN: Log Sequence Number
= |logical address of record in the log
Page LSN: stored in page
LSN of most recent update to page
PrevLSN: stored in log record
identifies previous log record for that transaction

Forward processing (normal operation)

Normal undo vs. restart undo

9 ©Silberschatz, Ko

~

Compensation Log Records
~

B CLRs: redo only log records

®m Used to record actions performed during transaction
rollback

one CLR for each normal log record which is undone

® CLRs have a field UndoNxtLSN indicating which log
record is to be undone next

> avoids repeated undos by bypassing already undo records

needed in case of restarts during transaction rollback)

> In contrast, IBM IMS may repeat undos, and AS400 may even
undo undos, then redo the undos

10 ©Silberschatz, Ko

. Normal Processing

B Transactions add log records

®m Checkpoints are performed periodically

contains

» Active transaction list,

. Recovery Phases

® Analysis pass

* forward from last checkpoint

® Redo pass

* forward from RedoLSN, which is determined in analysis pass

~ Analysis Pass
~

B RedoLSN = min(LSNs of dirty pages recorded
In checkpoint)

If no dirty pages, RedoLSN = LSN of checkpoint
pages dirtied later will have higher LSNSs)
® scan log forwards from last checkpoint

find transactions to be rolled back (" loser" transactions)

find LSN of last record written by each such transaction

13 ©Silberschatz, Ko

Q Redo Pass

®m Repeat history, scanning forward from RedoLSN

W for all transactions, even those to be undone

- Undo Pass
~

B Single scan backwards in log, undoing actions of
“loser" transactions

for each transaction, when a log record is found, use prev_LSN
fields to find next record to be undone

can skip parts of the log with no records from loser transactions

don't perform any undo for CLRs (note: UndoNxtLSN for CLR
indicates next record to be undone, can skip intermediate
records of that transactions)

15 ©Silberschatz, Ko

Log Record Structure

® Log records contain following fields

LSN

Type (CLR, update, special)

TranslID

PrevLSN (LSN of prev record of this txn)
PagelD (for update/CLRS)

UndoNxtLSN (for CLRS)

> indicates which log record is being compensated
> on later undos, log records upto UndoNxtLSN can be skipped

Data (redo/undo data); can be physical or logical

17 ©Silberschatz, Ko

Transaction Table

B Stores for each transaction:

TranslID, State
LastLSN (LSN of last record written by txn)

UndoNxtLSN (next record to be processed in rollback)
® During recovery:

Initialized during analysis pass from most recent checkpoint

modified during analysis as log records are encountered, and
during undo

18 ©Silberschatz, Ko

Dirty Pages Table

® During normal processing:

When page is fixed with intention to update

> Let L = current end-of-log LSN (the LSN of next log record to be
generated)

> If page is not dirty, store L as RecLSN of the page in dirty pages
table

When page is flushed to disk, delete from dirty page table
dirty page table written out during checkpoint

(Thus RecLSN is LSN of earliest log record whose effect is not
reflected in page on disk)

19 ©Silberschatz, Ko

Q Dirty Page Table (contd)

®m During recovery

* |load dirty page table from checkpoint

* updated during analysis pass as update log records are
encountered

£ Updates

~

®m Page latch held in X mode until log record is logged

S0 updates on same page are logged in correct order

page latch held in S mode during reads since records may get
moved around by update

latch required even with page locking if dirty reads are allowed

®m Log latch acquired when inserting in log

22 ©Silberschatz, Ko

- Updates (Contd.)

~

B Protocol to avoid deadlock involving latches

deadlocks involving latches and locks were a major problem in
System R and SQL/DS

transaction may hold at most two latches at-a-time

must never walit for lock while holding latch

> If both are needed (e.g. Record found after latching page):

> release latch before requesting lock and then reacquire latch (and
recheck conditions in case page has changed inbetween).
Optimization: conditional lock request

page latch released before updating indices

> data update and index update may be out of order

23 ©Silberschatz, Ko

. Split Log Records

m Can split a log record into undo and redo parts

* undo part must go first

* page_LSN is set to LSN of redo part

Savepoints
~

® Simply notes LSN of last record written by transaction
(up to that point) - denoted by SavelLSN

B can have multiple savepoints, and rollback to any of
them

®m deadlocks can be resolved by rollback to appropriate
savepoint, releasing locks acquired after that savepoint

25 ©Silberschatz, Ko

- Rollback

~

®m Scan backwards from last log record of txn

> (last log record of txn = transTable[TransID].UndoNxtLSN
If log record is an update log record

> undo it and add a CLR to the log
If log record is a CLR

> then UndoNxt = LogRec.UnxoNxtLSN

> else UndoNxt = LogRec.PrevLSN

next record to process is UndoNxt; stop at SaveLSN or
beginning of transaction as required

26 ©Silberschatz, Ko

- More on Rollback
~

®m Extra logging during rollback is bounded

make sure enough log space is available for rollback in case of
system crash, else BIG problem

B In case of 2PC, if in-doubt txn needs to be aborted,
rollback record is written to log then rollback is carried
out

27 ©Silberschatz, Ko

Transaction Termination

® prepare record is written for 2PC
locks are noted in prepare record

® prepare record also used to handle non-undoable
actions e.g. deleting file

> these pending actions are noted in prepare record and executed
only after actual commit

® end record written at commit time

pending actions are then executed and logged using speC|aI
redo-only log records —

® end record also written after rollback

28 ©Silberschatz, Ko

Checkpoints

~

B begin_chkpt record is written first

B transaction table, dirty pages table and some other file
mgmt information are written out

B end_chkpt record is then written out
for simplicity all above are treated as part of end_chkpt record

® LSN of begin_chkpt is then written to master record in
well known place on stable storage

® incomplete checkpoint

If system crash before end_chkpt record is written

29 ©Silberschatz, Ko

- Checkpoint (contd)

~

® Pages need not be flushed during checkpoint
are flushed on a continuous basis

® Transactions may write log records during checkpoint

m Can copy dirty page table fuzzily (hold latch, copy
some entries out, release latch, repeat)

30

. Restart Processing

® Finds checkpoint begin using master record

®m Do restart_analysis

® Do restart_redo

* ... some details of dirty page table here

- Result of Analysis Pass
~

® Output of analysis

transaction table
> Including UndoNxtLSN for each transaction in table

dirty page table: pages that were potentially dirty at time of
crash/shutdown

RedoLSN - where to start redo pass from

m Entries added to dirty page table as log records are
encountered in forward scan

also some special action to deal with OS file deletes

® This pass can be combined with redo pass!

32 ©Silberschatz, Ko

- Redo Pass
~

B Scan forward from RedoLSN

If log record is an update log record, AND is in
dirty_page table AND LogRec.LSN >= RecLSN of the page in

dirty _page_table
then if pageLSN < LogRec.LSN then perform redo; else just
update RecLSN in dirty_page_table
®m Repeats history: redo even for loser transactions
(some optimization possible)

33 ©Silberschatz, Ko

- More on Redo Pass
~

® Dirty page table details

dirty page table from end of analysis pass (restart dirty page
table) is used and set in redo pass (and later in undo pass)

® Optimizations of redo

Dirty page table info can be used to pre-read pages during
redo

Out of order redo is also possible to reduce disk seeks

34 ©Silberschatz, Ko

. Undo Pass

® Rolls back loser transaction in reverse order in single
scan of log

* stops when all losers have been fully undone

* processing of log records is exactly as in single transaction
rollback

Undo Optimizations

B Parallel undo

each txn undone separately, in parallel with others

can even generate CLRs and apply them separately , in
parallel for a single transaction

® New txns can run even as undo is going on:

reacquire locks of loser txns before new txns begin

can release locks as matching actions are undone

36 ©Silberschatz, Ko

~

~ Undo Optimization (Contd)

® [f pages are not available (e.g media failure)

continue with redo recovery of other pages

> once pages are available again (from archival dump) redos of the
relevant pages must be done first, before any undo

for physical undos in undo pass

> we can generate CLRs and apply later; new txns can run on other
pages

for logical undos in undo pass

> postpone undos of loser txns if the undo needs to access these
pages - stopped transaction”

> undo of other txns can proceed; new txns can start prowded
appropriate locks are first acquired for loser txns

37 ©Silberschatz, Ko

Q Transaction Recovery

B Loser transactions can be restarted in some cases

> e.g. Mini batch transactions which are part of a larger transaction

. Checkpoints During Restart

® Checkpoint during analysis/redo/undo pass

* reduces work in case of crash/restart during recovery
> (why is Mohan so worried about this!)
* can also flush pages during redo pass

- Media Recovery
~

®m For archival dump

can dump pages directly from disk (bypass buffer, no latching
needed) or via buffer, as desired

> this is a fuzzy dump, not transaction consistent

begin_chkpt location of most recent checkpoint completed
before archival dump starts is noted

> called image copy checkpoint

> redoLSN computed for this checkpoint and noted as media
recovery redo point

40 ©Silberschatz, Ko

- Media Recovery (Contd)

~

B To recover parts of DB from media failure

failed parts if DB are fetched from archival dump

only log records for failed part of DB are reapplied in a redo
pass

Inprogress transactions that accessed the failed parts of the
DB are rolled back

B Same idea can be used to recover from page
corruption

e.g. Application program with direct access to buffer crashes
before writing undo log record

41 ©Silberschatz, Ko

- Nested Top Actions
~

B Same idea as used in logical undo in our advanced
recovery mechanism

used also for other operations like creating a file (which can
then be used by other txns, before the creater commits)

updates of nested top action commit early and should not be
undone

B Use dummy CLR to indicate actions should be skipped
during undo

42 ©Silberschatz, Ko

