
©Silberschatz, Korth and SudarshanA.1Database System Concepts

Chapter A: Network ModelChapter A: Network Model

� Basic Concepts

� Data-Structure Diagrams

� The DBTG CODASYL Model

� DBTG Data-Retrieval Facility

� DBTG Update Facility

� DBTG Set-Processing Facility

� Mapping of Networks to Files

©Silberschatz, Korth and SudarshanA.2Database System Concepts

Basic ConceptsBasic Concepts

� Data are represented by collections of records.

� similar to an entity in the E-R model

� Records and their fields are represented as record type

type customer = record type account = record
customer-name: string; account-number: integer;
customer-street: string; balance: integer;
customer-city: string;

end end

� Relationships among data are represented by links

� similar to a restricted (binary) form of an E-R relationship

� restrictions on links depend on whether the relationship is many-
many, many-to-one, or one-to-one.

©Silberschatz, Korth and SudarshanA.3Database System Concepts

Data-Structure DiagramsData-Structure Diagrams

� Schema representing the design of a network database.

� A data-structure diagram consists of two basic components:

� Boxes, which correspond to record types.

� Lines, which correspond to links.

� Specifies the overall logical structure of the database.

©Silberschatz, Korth and SudarshanA.4Database System Concepts

Data-Structure Diagrams (Data-Structure Diagrams (ContCont.).)

� For every E-R diagram, there is a corresponding data-structure
diagram.

©Silberschatz, Korth and SudarshanA.5Database System Concepts

Data-Structure Diagrams (Data-Structure Diagrams (ContCont.).)

� Since a link cannot contain any data value, represent an E-R
relationship with attributes with a new record type and links.

©Silberschatz, Korth and SudarshanA.6Database System Concepts

General RelationshipsGeneral Relationships

� To represent an E-R relationship of degree 3 or higher, connect
the participating record types through a new record type that is
linked directly to each of the original record types.

1. Replace entity sets account, customer, and branch with record
types account, customer, and branch, respectively.

2. Create a new record type Rlink (referred to as a dummy record
type).

3. Create the following many-to-one links:

� CustRlink from Rlink record type to customer record type

� AcctRlnk from Rlink record type to account record type

� BrncRlnk from Rlink record type to branch record type

©Silberschatz, Korth and SudarshanA.7Database System Concepts

Network Representation of Ternary RelationshipNetwork Representation of Ternary Relationship

©Silberschatz, Korth and SudarshanA.8Database System Concepts

The DBTG CODASYL ModelThe DBTG CODASYL Model

� All links are treated as many-to-one relationships.

� To model many-to-many relationships, a record type is defined to
represent the relationship and two links are used.

©Silberschatz, Korth and SudarshanA.9Database System Concepts

DBTG SetsDBTG Sets

� The structure consisting of two record types that are linked
together is referred to in the DBTG model as a DBTG set

� In each DBTG set, one record type is designated as the owner,
and the other is designated as the member, of the set.

� Each DBTG set can have any number of set occurrences (actual
instances of linked records).

� Since many-to-many links are disallowed, each set occurrence
has precisely one owner, and has zero or more member records.

� No member record of a set can participate in more than one
occurrence of the set at any point.

� A member record can participate simultaneously in several set
occurrences of different DBTG sets.

©Silberschatz, Korth and SudarshanA.10Database System Concepts

Repeating GroupsRepeating Groups

� Provide a mechanism for a field to have a set of values rather
than a single value.

� Alternative representation of weak entities from the E-R model

� Example: Two sets.

� customer (customer-name)

� customer-address (customer-street, customer-city)

� The following diagrams represent these sets without the
repeating-group construct.

©Silberschatz, Korth and SudarshanA.11Database System Concepts

Repeating Groups (Repeating Groups (ContCont.).)

� With the repeating-group construct, the data-structure diagram
consists of the single record type customer.

©Silberschatz, Korth and SudarshanA.12Database System Concepts

DBTG Data-Retrieval FacilityDBTG Data-Retrieval Facility

� The DBTG data manipulation language consists of a number of
commands that are embedded in a host language.

� Run unit — system application program consisting of a sequence
of host language and DBTG command statements. Statements
access and manipulate database items as well as locally
declared variables.

� Program work-area (or user work area) — a buffer storage area
the system maintains for each application program

©Silberschatz, Korth and SudarshanA.13Database System Concepts

DBTG VariablesDBTG Variables

� Record Templates

� Currency pointers

� Current of record type

� Current of set type

� Current of run unit

� Status flags

� DB-status is most frequently used

� Additional variables: DB-set-name, DB-record-name, and
DB-data-name

©Silberschatz, Korth and SudarshanA.14Database System Concepts

Example SchemaExample Schema

©Silberschatz, Korth and SudarshanA.15Database System Concepts

Example Program Work AreaExample Program Work Area

� Templates for three record types: customer, account, and
branch.

� Six currency pointers

� Three pointers for record types: one each tot he most recently
accessed customer, account, and branch record

� Two pointers for set types: one to the most recently accessed
record in an occurrence of the set depositor, one to the most
recently accessed record in an occurrence of the set account-
branch

� One run-unit pointer.

� Status flags: four variables defined previously

� Following diagram shows an example program work area state.

©Silberschatz, Korth and SudarshanA.16Database System Concepts

©Silberschatz, Korth and SudarshanA.17Database System Concepts

The Find and Get CommandsThe Find and Get Commands

� find locates a record in the database and sets the appropriate
currency pointers

� get copies of the record to which the current of run-unit points
from the database to the appropriate program work area
template

� Example: Executing a find command to locate the customer
record belonging to Johnson causes the following changes to
occur in the state of the program work area.

� The current of the record type customer now points to the record of
Johnson.

� The current of set type depositor now points to the set owned by
Johnson

� The current of run unit now points to customer record Johnson.

©Silberschatz, Korth and SudarshanA.18Database System Concepts

Access of Individual RecordsAccess of Individual Records

� find any <record type> using <record-field>
Locates a record of type <record type> whose <record-field>
value is the same as the value of <record-field> in the
<record type> template in the program work area.

� Once such a record is found, the following currency pointers are
set to point to that record:

� The current of run-unit pointer

� The record-type currency pointer for <record type>

� For each set in which that record belongs, the appropriate set
currency pointer

� find duplicate <record type> using <record-field>
Locates (according to a system-dependent ordering) the next
record that matches the <record-field>

©Silberschatz, Korth and SudarshanA.19Database System Concepts

Access of Records Within a SetAccess of Records Within a Set

� Other find commands locate records in the DBTG set that is
pointed to by the <set-type> currency pointer.

� find first <record type> within <set-type>
Locates the first database record of type <record type>
belonging to the current <set-type>.

� To locate the other members of a set,k we use

find next <record type> within <set-type>

which finds the next element in the set <set-type>.

� find owner within <set-type>
Locates the owner of a particular DBTG set

©Silberschatz, Korth and SudarshanA.20Database System Concepts

PredicatesPredicates

� For queries in which a field value must be matched with a
specified range of values, rather than to only one, we need to:

� get the appropriate records into memory

� examine each one separately for a match

� determine whether each is the; target of our find statement

©Silberschatz, Korth and SudarshanA.21Database System Concepts

Example DBTG QueryExample DBTG Query

� Print the total number of accounts in the Perryridge branch with a
balance greater than $10,000.

count := 0;
branch.branch-name := “Perryridge”;
find any branch using branch-name;
find first account within account-branch;
while DB-status = 0 do

begin
get account
if account.balance > 10000 then count := count + 1;
find next account within account-branch;

end
print (count);

©Silberschatz, Korth and SudarshanA.22Database System Concepts

DBTG Update FacilityDBTG Update Facility

� DBTG mechanisms are available to update information in the
database.

� To create a new record of type <record type>

� insert the appropriate values in the corresponding
<record type> template

� add this new record to the database by executing

store <record type>

� Can create and add new records only one at a time

©Silberschatz, Korth and SudarshanA.23Database System Concepts

DBTG Update Facility (DBTG Update Facility (ContCont.).)

� To modify an existing record of type <record type>

� find that record in the database

� get that record into memory

� change the desired fields in the template of <record type>

� reflect the changes to the record to which the currency point of
<record type> points by executing

modify <record type>

©Silberschatz, Korth and SudarshanA.24Database System Concepts

DBTG Update Facility (DBTG Update Facility (ContCont.).)

� To delete an existing record of type <record type>

� make the currency pointer of that type point to the record in the
database to be deleted

� delete that record by executing

erase <record type>

� Delete an entire set occurrence by finding the owner of the set
and executing

erase all <record type>

� Deletes the owner of the set, as well as all the set’s members.

� If a member of the set is an owner of another set, the members of
that second set also will be deleted.

� erase all is recursive.

©Silberschatz, Korth and SudarshanA.25Database System Concepts

DBTG Set-Processing FacilityDBTG Set-Processing Facility

� Mechanisms are provided for inserting records into and removing
records from a particular set occurrence

� Insert a new record into a set by executing the connect
statement.

connect <record type> to <set-type>

� Remove a record from a set by executing the disconnect
statement.

disconnect <record type> from <set-type>

©Silberschatz, Korth and SudarshanA.26Database System Concepts

Example Example disconnectdisconnect Query Query

� Close account A-201, that is, delete the relationship between
account A-201 and its customer, but archive the record of
account A-201.

� The following program removes account A-201 from the set
occurrence of type depositor.
The account will still be accessible in the database for record-
keeping purposes.

account.account-number := “A-201”;
find for update any account using account-number.
get account,
find owner within depositor,
disconnect account from depositor.

©Silberschatz, Korth and SudarshanA.27Database System Concepts

DBTG Set-Processing Facility (DBTG Set-Processing Facility (ContCont.).)

� To move a record of type <record type> from one set occurrence
to another set occurrence of type <set-type>

� Find the appropriate record and the owner of the set occurrences to
which that record is to be moved.

� Move the record by executing

reconnect <record type> to <set-type>

� Example: Move all accounts of Hayes that are currently at the
Perryridge branch to the Downtown branch.

©Silberschatz, Korth and SudarshanA.28Database System Concepts

Example Example reconnect Query Query

customer.customer-name := “Hayes”;
find any customer using customer-name;
find first account within depositor;
while DB-status = 0 do

begin
find owner within account-branch;
get branch;
if branch.branch-name = “Perryridge” then

begin
branch.branch-name := “Downtown”;
find any branch using branch-name;
reconnect account to account-branch;

end
find next account within depositor,

end

©Silberschatz, Korth and SudarshanA.29Database System Concepts

DBTG Set-Processing Facility (DBTG Set-Processing Facility (ContCont.).)

� A newly created member record of type <record type> of a set
type <set-type> can be added to a set occurrence either explicitly
(manually) or implicitly (automatically).

� Specify the insert mode at set-definition time via

insertion is <insert mode>

� manual: connect <record type> to <set-type>

� automatic: store <record type>

©Silberschatz, Korth and SudarshanA.30Database System Concepts

Set Insertion ExampleSet Insertion Example

� Create account A535 for customer Hayes at the Downtown
branch.

� Set insertion is manual for set type depositor and is automatic
for set type account-branch.

branch.branch-name := “Downtown”;
find any branch using branch-name;
account.account-number := “A-535”;
account.balance := 0;
store account;
customer.customer-name := “Hayes”;
find any customer using customer-name;
connect account to depositor;

©Silberschatz, Korth and SudarshanA.31Database System Concepts

DBTG Set-Processing Facility (DBTG Set-Processing Facility (ContCont.).)

� Restrictions on how and when a member record can be removed
from a set occurrence are specified at set-definition time via

retention is <retention-mode>

� <retention-mode> can take one of the three forms:

1. fixed — a member record cannot be removed. To reconnect a
record to another set, we must erase that record, recreate it, and
then insert it into the new set occurrence.

2. mandatory — a member record of a particular set
occurrence can be reconnected to another set occurrence of only
type <set-type>.

3. optional — no restrictions on how and when a member record
can be removed from a set occurrence.

©Silberschatz, Korth and SudarshanA.32Database System Concepts

DBTG Set-Processing Facility (DBTG Set-Processing Facility (ContCont.).)

� The best way to delete a record that is the owner of set
occurrence of type <set-type> depends on the specification of
the set retention of <set-type>.

� optional — the record will be deleted and every member of the
set that it owns will be disconnected. These records, however,
will be in the database.

� fixed — the record and all its owned members will be deleted; a
member record cannot be removed from the set occurrence
without being deleted.

� mandatory — the record cannot be erased, because the
mandatory status indicates that a member record must belong to
a set occurrence. The record cannot be disconnected from that
set.

©Silberschatz, Korth and SudarshanA.33Database System Concepts

Set OrderingSet Ordering

order is <order-mode>

� first. A new record is inserted in the first position; the set is in
reverse chronological ordering.

� last. A new record is inserted in the final position; the set is in
chronological ordering.

� next. Suppose that the currency pointer or <set-type> points to
record X.

� If X is a member type, a new record is inserted in the next position
following X.

� If X is an owner type, a new record is inserted in the first position.

Set ordering is specified by a programmer when the set is defined:

©Silberschatz, Korth and SudarshanA.34Database System Concepts

Set Ordering (Set Ordering (ContCont.).)

� prior. If X is a member type, a new record is inserted in the
position just prior to X. If X is an owner type, a new record is
inserted in the last position.

� system default. A new record is inserted in an arbitrary position
determined by the system.

� sorted. A new record is inserted in a position that ensures that
the set will remain sorted. The sorting order is specified by a
particular key value when a programmer defines the set.

� Example: Consider the set occurrence of type depositor with the
owner-record customer Turner and member-record accounts
A-305, A-402, and A-408 ordered as indicated in our example
schema (page A.14).

©Silberschatz, Korth and SudarshanA.35Database System Concepts

Set Ordering ExampleSet Ordering Example

� Add a new account A-125. For each <order-mode> option, the
new set ordering is as follows:

� first: {A-125,A-305,A-402,A-408}

� last: {A-305,A-402,A-408,A-125}

� next: Suppose that the currency pointer points to record
“Turner”; then the new set order is {A-125,A-305,A-402,A-408}

� prior: Suppose that the currency pointer points to record A-402;
then the new set order is {A-305,A-125,A-402,A-408}

� system default: Any arbitrary order is acceptable; thus,
{A-305,A-402,A-125,A-408} is a valid set ordering

� sorted: The set must be ordered in ascending order with
account number being the key; thus, the ordering must be
{A-125,A-305,A-402,A-408}

©Silberschatz, Korth and SudarshanA.36Database System Concepts

Mapping of Networks to FilesMapping of Networks to Files

� We implement links by adding pointer fields to records that are
associated via a link

� Each record must have one pointer field for each link with which
it is associated.

� Example data-structure diagram and corresponding database.

Figure missing

©Silberschatz, Korth and SudarshanA.37Database System Concepts

Mapping of Networks to Files (Mapping of Networks to Files (ContCont.).)

� Diagram showing the sample instance with pointer fields to
represent the links. Each link is replaced by two pointers.

©Silberschatz, Korth and SudarshanA.38Database System Concepts

Mapping of Networks to Files (Mapping of Networks to Files (ContCont.).)

� Since the depositor link is many to many, each record can be
associated with an arbitrary number of records (e.g., the account
record would have a pointer to the customer record for each
customer who has that account).

� Direct implementation of many-to-many relationships requires
the use of variable length records.

� The DBTG model restricts links to be either one to one or one to
many; the number of pointers needed is reduced, and it is
possible to retain fixed-length records.

©Silberschatz, Korth and SudarshanA.39Database System Concepts

Mapping of Networks to Files (Mapping of Networks to Files (ContCont.).)

� Assume that the depositor link is one to many and is represented
by the DBTG set depositor and this corresponding sample
database.

set name is depositor
owner is customer
member is account

©Silberschatz, Korth and SudarshanA.40Database System Concepts

Mapping of Networks to Files (Mapping of Networks to Files (ContCont.).)

� Because an account record can be associated with only one
customer record, we need only one pointer in the account record
to represent the depositor relationship.

� A customer record can be associated with many account
records.

� Rather ant using multiple pointers in the customer record, we can
use a ring structure to represent the entire occurrence of the
DBTG set depositor.

� In a ring structure, the records of both the owner an member
types for a set occurrence are organized into a circular list.

� There is one circular list for each set occurrence (that is, for each
record of the owner type).

©Silberschatz, Korth and SudarshanA.41Database System Concepts

Example Ring StructureExample Ring Structure

©Silberschatz, Korth and SudarshanA.42Database System Concepts

Modified Ring StructuresModified Ring Structures

� Execute find owner via a ring structure in which every member-
type record contains a second pointer which points to the owner
record.

©Silberschatz, Korth and SudarshanA.43Database System Concepts

Physical Placement of RecordsPhysical Placement of Records

� To specify the storage strategy for DBTG set, add a placement
clause to the definition of the member record type.

� The clause

placement clustered via depositor

will store members of each set occurrence close to one another
physically on disk, if possible, in the same block.

� Store owner and member records close to one another physically
on disk by adding the clause near owner.

placement clustered via depositor near owner

©Silberschatz, Korth and SudarshanA.44Database System Concepts

Physical Placement of Records (Physical Placement of Records (ContCont.).)

� Storing member records in the same block as the owner reduces
the number of block accesses required to read an entire set
occurrence.

©Silberschatz, Korth and SudarshanA.45Database System Concepts

Sample DatabaseSample Database

©Silberschatz, Korth and SudarshanA.46Database System Concepts

Two Data-Structure DiagramsTwo Data-Structure Diagrams

©Silberschatz, Korth and SudarshanA.47Database System Concepts

Sample Database Corresponding toSample Database Corresponding to
Diagram of Figure A.3bDiagram of Figure A.3b

©Silberschatz, Korth and SudarshanA.48Database System Concepts

Sample Database Corresponding toSample Database Corresponding to
Diagram of Figure A.6bDiagram of Figure A.6b

©Silberschatz, Korth and SudarshanA.49Database System Concepts

Sample Database Corresponding toSample Database Corresponding to
Diagram of Figure A.8bDiagram of Figure A.8b

©Silberschatz, Korth and SudarshanA.50Database System Concepts

Two Data-Structure DiagramsTwo Data-Structure Diagrams

©Silberschatz, Korth and SudarshanA.51Database System Concepts

Sample Database Corresponding to theSample Database Corresponding to the
Diagram of Figure A.11Diagram of Figure A.11

©Silberschatz, Korth and SudarshanA.52Database System Concepts

DBTG SetDBTG Set

©Silberschatz, Korth and SudarshanA.53Database System Concepts

Three Set OccurrencesThree Set Occurrences

©Silberschatz, Korth and SudarshanA.54Database System Concepts

Data-Structure and E-R DiagramData-Structure and E-R Diagram

©Silberschatz, Korth and SudarshanA.55Database System Concepts

A A customer customer RecordRecord

©Silberschatz, Korth and SudarshanA.56Database System Concepts

Clustered Record Placement forClustered Record Placement for
Instance for Figure A.1Instance for Figure A.1

©Silberschatz, Korth and SudarshanA.57Database System Concepts

Class Enrollment E-R DiagramClass Enrollment E-R Diagram

©Silberschatz, Korth and SudarshanA.58Database System Concepts

Parent—Child E-R DiagramParent—Child E-R Diagram

©Silberschatz, Korth and SudarshanA.59Database System Concepts

Car-Insurance E-R DiagramCar-Insurance E-R Diagram

