Appendix C: Advanced Normalization Theory

- Reasoning with MVDs
- Higher normal forms
 - Join dependencies and PJNF
 - > DKNF

atabase System Concep

Theory of Multivalued Dependencies (Cont.)

- 4. Complementation rule. If $\alpha \rightarrow \beta$ holds, then $\alpha \rightarrow R \beta \alpha$ holds.
- 5. Multivalued augmentation rule. If $\alpha \rightarrow \beta$ holds and $\gamma \subseteq R$ and $\delta \subseteq R$ γ , then $\gamma \alpha \longrightarrow \delta \beta$ holds.
- 6. Multivalued transitivity rule. If $\alpha \rightarrow \beta$ holds and $\beta \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma - \beta$ holds.
- 7. **Replication rule.** If $\alpha \rightarrow \beta$ holds, then $\alpha \rightarrow \beta$.
- 8. **Coalescence rule.** If $\alpha \rightarrow \beta$ holds and $\gamma \subseteq \beta$ and there is a δ such that $\delta \subseteq R$ and $\delta \cap \beta = \emptyset$ and $\delta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ holds.

Theory of Multivalued Dependencies

- Let D denote a set of functional and multivalued dependencies. The closure D^+ of D is the set of all functional and multivalued dependencies logically implied by D.
- Sound and complete inference rules for functional and multivalued dependencies:
- **1.** Reflexivity rule. If α is a set of attributes and $\beta \subset \alpha$, then $\alpha \rightarrow \beta$ holds.
- **2.** Augmentation rule. If $\alpha \rightarrow \beta$ holds and γ is a set of attributes, then $\gamma \alpha \rightarrow \gamma \beta$ holds.
- **3. Transitivity rule**. If $\alpha \rightarrow \beta$ holds and $\gamma \alpha \rightarrow \gamma \beta$ holds, then $\alpha \rightarrow \gamma$ holds.

atabase System Conce

Simplification of the Computation of D⁺

- We can simplify the computation of the closure of *D* by using the following rules (proved using rules 1-8).
 - > Multivalued union rule. If $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta \gamma$ holds.
 - > Intersection rule. If $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta \cap \gamma$ holds.
 - **Difference rule.** If If $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta \gamma$ holds and $\alpha \rightarrow \gamma - \beta$ holds.

Example R = (A, B, C, G, H, I) $D = \{A \rightarrow B \}$ $B \rightarrow HI$ $CG \rightarrow H$ Some members of D⁺: \rightarrow A \rightarrow >CGHI. Since $A \rightarrow B$, the complementation rule (4) implies that $A \rightarrow R - B - A$. Since R - B - A = CGHI, so $A \rightarrow CGHI$. $> A \rightarrow HI$ Since $A \rightarrow B$ and $B \rightarrow HI$, the multivalued transitivity rule (6) implies that $B \rightarrow HI - B$.

Since HI - B = HI, $A \rightarrow HI$.

atabase System Concept

Normalization Using Join Dependencies

- Join dependencies constrain the set of legal relations over a schema R to those relations for which a given decomposition is a lossless-join decomposition.
- Let R be a relation schema and R_1 , R_2 ,..., R_n be a decomposition of *R*. If $R = R_1 \cup R_2 \cup \ldots \cup R_n$, we say that a relation r(R) satisfies the join dependency $*(R_1, R_2, ..., R_n)$ if:
 - $r = \prod_{R_1} (r) \qquad \prod_{R_2} (r) \qquad \dots \qquad \prod_{R_n} (r)$
 - A join dependency is *trivial* if one of the *R_i* is *R* itself.
- A join dependency (R_1, R_2) is equivalent to the multivalued dependency $R_1 \cap R_2 \rightarrow R_2$. Conversely, $\alpha \rightarrow \beta$ is equivalent to *($\alpha \cup (R - \beta), \alpha \cup \beta$)
- However, there are join dependencies that are not equivalent to any multivalued dependency.

Example (Cont.)

- Some members of *D*⁺ (cont.):
 - $> B \rightarrow H$

Apply the coalescence rule (8); $B \rightarrow HI$ holds. Since $H \subset HI$ and $CG \rightarrow H$ and $CG \cap HI = \emptyset$, the coalescence rule is satisfied with α being B, β being HI, δ being CG. and γ being *H*. We conclude that $B \rightarrow H$.

 \succ A \rightarrow CG.

 $A \rightarrow CGHI$ and $A \rightarrow HI$. By the difference rule, $A \rightarrow CGHI - HI$. Since $CGHI - HI = CG, A \rightarrow CG$.

atabase System Concer

Project-Join Normal Form (PJNF)

- A relation schema R is in PJNF with respect to a set D of functional, multivalued, and join dependencies if for all join dependencies in D^+ of the form
 - *(R_1 , R_2 ,..., R_n) where each $R_i \subseteq R$
 - and $R = R_1 \cup R_2 \cup ... \cup R_n$

at least one of the following holds:

- > *(R_1 , R_2 ,..., R_n) is a trivial join dependency.
- > Every R_i is a superkey for R_i .
- Since every multivalued dependency is also a join dependency. every PJNF schema is also in 4NF.

Example

- Consider Loan-info-schema = (branch-name, customer-name, loannumber, amount).
- Each loan has one or more customers, is in one or more branches and has a loan amount; these relationships are independent, hence we have the join dependency
- *(=(loan-number, branch-name), (loan-number, customer-name), (loan-number, amount))
- Loan-info-schema is not in PJNF with respect to the set of dependencies containing the above join dependency. To put Loaninfo-schema into PJNF, we must decompose it into the three schemas specified by the join dependency:
 - > (loan-number, branch-name)
 - > (loan-number, customer-name)
 - > (loan-number, amount)

Domain-Key Normal Form (DKNY)

- Domain declaration. Let A be an attribute, and let dom be a set of values. The domain declaration A ⊆ dom requires that the A value of all tuples be values in dom.
- Key declaration. Let *R* be a relation schema with $K \subseteq R$. The key declaration key (*K*) requires that *K* be a superkey for schema *R* (*K* → *R*). All key declarations are functional dependencies but not all functional dependencies are key declarations.
- General constraint. A general constraint is a predicate on the set of all relations on a given schema.
- Let D be a set of domain constraints and let K be a set of key constraints for a relation schema R. Let G denote the general constraints for R. Schema R is in DKNF if D ∪ K logically imply G.

atabase System Concepts

7.10

Example

- Accounts whose account-number begins with the digit 9 are special high-interest accounts with a minimum balance of 2500.
- General constraint: ``If the first digit of t [account-number] is 9, then t [balance] ≥ 2500."
- DKNF design:

atabase System Concepts

Regular-acct-schema = (branch-name, account-number, balance) Special-acct-schema = (branch-name, account-number, balance)

- Domain constraints for {Special-acct-schema} require that for each account:
 - > The account number begins with 9.
 - > The balance is greater than 2500.

DKNF rephrasing of PJNF Definition

- Let R = (A₁, A₂,..., A_n) be a relation schema. Let dom(A_i) denote the domain of attribute A_i, and let all these domains be infinite. Then all domain constraints **D** are of the form A_i ⊆ **dom** (A_i).
- Let the general constraints be a set **G** of functional, multivalued, or join dependencies. If *F* is the set of functional dependencies in **G**, let the set **K** of key constraints be those nontrivial functional dependencies in F^* of the form $\alpha \rightarrow R$.
- Schema *R* is in PJNF if and only if it is in DKNF with respect to D, K, and G.

tabase System Concepts