Appendix C: Advanced Normalization Theory

- Reasoning with MVDs
- Higher normal forms
 - Join dependencies and PJNF
 - DKNF

Theory of Multivalued Dependencies (Cont.)

4. Complementation rule. If $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ holds.
5. Multivalued augmentation rule. If $\alpha \rightarrow \beta \gamma$ holds and $\gamma \subseteq \delta$, then $\gamma \rightarrow \delta \beta \gamma$ holds.
6. Multivalued transitivity rule. If $\alpha \rightarrow \beta$ holds and $\beta \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma$ holds.
7. Coalescence rule. If $\alpha \rightarrow \beta$ holds, then $\alpha \rightarrow \beta$.
8. Replication rule. If $\alpha \rightarrow \beta$ holds, then $\alpha \rightarrow \beta$.

Example

- $D = \{A \rightarrow B, B \rightarrow HI, CG \rightarrow H\}$
- Some members of D^+:
 - $A \rightarrow CGHI$. Since $A \rightarrow B$, the complementation rule (4) implies that $A \rightarrow R = B \rightarrow A$. Since $R - B = A \rightarrow CGHI$, so $A \rightarrow CGHI$.
 - $A \rightarrow HI$. Since $A \rightarrow B \rightarrow HI$, the multivalued transitivity rule (6) implies that $B \rightarrow HI \rightarrow B$. Since $HI \rightarrow B = HI, A \rightarrow HI$.

Normalization Using Join Dependencies

- Join dependencies constrain the set of legal relations over a schema R to those relations for which a given decomposition is a lossless-join decomposition.
- Let R be a relation schema and R_1, R_2, \ldots, R_n be a decomposition of R. If $R = R_1 \cup R_2 \cup \ldots \cup R_n$, we say that a relation $r(R)$ satisfies the join dependency $\gamma(R_1, R_2, \ldots, R_n)$ if:

 $r = \Pi_{\gamma_1}(r) \cap \Pi_{\gamma_2}(r) \cap \ldots \cap \Pi_{\gamma_n}(r)$

 A join dependency is trivial if one of the R_i is R itself.
- A join dependency $\gamma(R_1, R_2)$ is equivalent to the multivalued dependency $R_1 \cap R_2 \rightarrow R_2$. Conversely, $\alpha \rightarrow \beta$ is equivalent to $\gamma(\alpha \subseteq (R - \beta), \alpha \subseteq \beta)$.
- However, there are join dependencies that are not equivalent to any multivalued dependency.

Project-Join Normal Form (PJNF)

- A relation schema R is in PJNF with respect to a set D of functional, multivalued, and join dependencies if for all join dependencies in D^+ of the form $\gamma(R_1, R_2, \ldots, R_n)$ where each $R_i \subseteq R$ and $R = R_1 \cup R_2 \cup \ldots \cup R_n$ at least one of the following holds:
 - $\gamma(R_1, R_2, \ldots, R_n)$ is a trivial join dependency.
 - Every R_i is a superkey for R.
- Since every multivalued dependency is also a join dependency, every PJNF schema is also in 4NF.
Example

- Consider Loan-info-schema = \{(branch-name, customer-name, loan-number, amount)\}.
- Each loan has one or more customers, in one or more branches and has a loan amount; these relationships are independent, hence we have the join dependency
- *(loan-number, branch-name), (loan-number, customer-name), (loan-number, amount)*
- Loan-info-schema is not in PJNF with respect to the set of dependencies containing the above join dependency. To put Loan-info-schema into PJNF, we must decompose it into the three schemas specified by the join dependency:
 - (loan-number, branch-name)
 - (loan-number, customer-name)
 - (loan-number, amount)

Domain-Key Normal Form (DKNF)

- Domain declaration. Let A be an attribute, and let dom be a set of values. The domain declaration \(A \subseteq \text{dom}\) requires that the A value of all tuples be values in \text{dom}.
- Key declaration. Let R be a relation schema with \(K \subseteq R\). The key declaration \(\text{key}(K)\) requires that K be a superkey for schema \(R (K \rightarrow R)\). All key declarations are functional dependencies but not all functional dependencies are key declarations.
- General constraint. A general constraint is a predicate on the set of all relations on a given schema.
- Let D be a set of domain constraints and let K be a set of key constraints for a relation schema R. Let G denote the general constraints for R. Schema R is in DKNF if \(D \cup K\) logically imply G.

Example

- Accounts whose account-number begins with the digit 9 are special high-interest accounts with a minimum balance of 2500.
- General constraint: "If the first digit of \(t[\text{account-number}]\) is 9, then \(t[\text{balance}] \geq 2500."
- DKNF design:
 - Regular-acct-schema = (branch-name, account-number, balance)
 - Special-acct-schema = (branch-name, account-number, balance)
- Domain constraints for \{Special-acct-schema\} require that for each account:
 - The account number begins with 9.
 - The balance is greater than 2500.

DKNF rephrasing of PJNF Definition

- Let \(R = (A_1, A_2, \ldots, A_n)\) be a relation schema. Let \(\text{dom}(A_i)\) denote the domain of attribute \(A_i\), and let all these domains be infinite. Then all domain constraints D are of the form \(A_i \subseteq \text{dom}(A_i)\).
- Let the general constraints be a set G of functional, multivalued, or join dependencies. If F is the set of functional dependencies in G, let the set K of key constraints be those nontrivial functional dependencies in \(F^+\) of the form \(\alpha \rightarrow R\).
- Schema R is in PJNF if and only if it is in DKNF with respect to D, K, and G.