‘ Introduction

m XML: Extensible Markup Language
m Defined by the WWW Consortium (W3C)

B Originally intended as a document markup language not a
database language

‘ XML Introduction (Cont.)

B The ability to specify new tags, and to create nested tag structures
made XML a great way to exchange data, not just documents.

¥ Much of the use of XML has been in data exchange applications, not as a
replacement for HTML

B Tags make data (relatively) self-documenting

‘ XML: Motivation

m Data interchange is critical in today’s networked world
? Examples:
Banking: funds transfer

Order processing (especially inter-company orders)

‘ XML Motivation (Cont.)

m Earlier generation formats were based on plain text with line
headers indicating the meaning of fields

? Similar in concept to email headers
? Does not allow for nested structures, no standard “type” language
? Tied too closely to low level document structure (lines, spaces, etc)

‘ Structure of XML Data

B Tag: label for a section of data

® Element: section of data beginning with <tagname> and ending
with matching </tagname>

B Elements must be properly nested

‘ Example of Nested Elements

<bank-1>
<customer>
<customer-name> Hayes </customer-name>
<customer-street> Main </customer-street>
<customer-city> Harrison </customer-city>

‘ Motivation for Nesting

m Nesting of data is useful in data transfer

? Example: elements representing customer-id, customer name, and
address nested within an order element

®m Nesting is not supported, or discouraged, in relational databases

‘ Structure of XML Data (Cont.)

B Mixture of text with sub-elements is legal in XML.
? Example:
<account>

‘ Attributes

B Elements can have attributes

4 <account acct-type = “checking” >
<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>

‘ Attributes Vs. Subelements

m Distinction between subelement and attribute

¥ In the context of documents, attributes are part of markup, while
subelement contents are part of the basic document contents

‘ More on XML Syntax

B Elements without subelements or text content can be abbreviated
by ending the start tag with a /> and deleting the end tag

? <account number="A-101" branch=“Perryridge” balance="200 />

‘ Namespaces

m XML data has to be exchanged between organizations

B Same tag name may have different meaning in different
organizations, causing confusion on exchanged documents

B Specifying a unique string as an element name avoids confusion

‘ XML Document Schema

B Database schemas constrain what information can be stored,
and the data types of stored values

m XML documents are not required to have an associated schema

B However, schemas are very important for XML data exchange

‘ Document Type Definition (DTD)

® The type of an XML document can be specified using a DTD
B DTD constraints structure of XML data
? What elements can occur

? What attributes can/must an element have

‘ Element Specification in DTD

B Subelements can be specified as
? names of elements, or
? #PCDATA (parsed character data), i.e., character strings
¥ EMPTY (no subelements) or ANY (anything can be a subelement)

‘ Bank DTD

<IDOCTYPE bank [
<IELEMENT bank ((account | customer | depositor)+)>
<IELEMENT account (account-number branch-name balance)>

‘ Attribute Specification in DTD

m Attribute specification : for each attribute
? Name
¥ Type of attribute

CDATA

‘ IDs and IDREFs

B An element can have at most one attribute of type 1D

B The ID attribute value of each element in an XML document must
be distinct

Thus the ID attribute value is an object identifier

‘ Bank DTD with Attributes

m Bank DTD with ID and IDREF attribute types.
<IDOCTYPE bank-2[
<IELEMENT account (branch, balance)>
<IATTLIST account

‘ XML data with ID and IDREF attributes

<bank-2>
<account account-number=“A-401" owners=“C100 C102">
<branch-name> Downtown </branch-name>
<balance> 500 </balance>
</account>

‘ Limitations of DTDs

m No typing of text elements and attributes
? All values are strings, no integers, reals, etc.

m Difficult to specify unordered sets of subelements
? Order is usually irrelevant in databases

‘ XML Schema

m XML Schema is a more sophisticated schema language which
addresses the drawbacks of DTDs. Supports

¥ Typing of values
E.g. integer, string, etc

‘ XML Schema Version of Bank DTD

<xsd:schema xmlns:xsd=http://www.w3.0rg/2001/XMLSchema>
<xsd:element name="bank” type="BankType"/>

<xsd:element name="account”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="account-number” type="xsd:string"/>
<xsd:element name="branch-name” type="xsd:string”/>

12

‘Querying and Transforming XML Data

Translation of information from one XML schema to another
Querying on XML data
Above two are closely related, and handled by the same tools
Standard XML querying/translation languages

¥ XPath

‘ Tree Model of XML Data

B Query and transformation languages are based on a tree model of
XML data

® An XML document is modeled as a tree, with nodes corresponding
to elements and attributes

Element nodes have children nodes, which can be attributes or
subelements

‘ XPath

m XPath is used to address (select) parts of documents using
path expressions

B A path expression is a sequence of steps separated by “/”
¥ Think of file names in a directory hierarchy

‘ XPath (Cont.)

® The initial “/” denotes root of the document (above the top-level tag)
B Path expressions are evaluated left to right
Each step operates on the set of instances produced by the previous step

B Selection predicates may follow any step in a path, in

14

‘ Functions in XPath

m XPath provides several functions

? The function count() at the end of a path counts the number of
elements in the set generated by the path

E.g. /bank-2/account[customer/count() > 2]
— Returns accounts with > 2 customers

‘ More XPath Features

B Operator “|” used to implement union
P E.g. /bank-2/account/id(@owner) | /bank-2/loan/id(@borrower)
gives customers with either accounts or loans
However, “|” cannot be nested inside other operators.

m “/[” can be used to skip multiple levels of nodes

‘ XSLT

m A stylesheet stores formatting options for a document, usually
separately from document

¥ E.g. HTML style sheet may specify font colors and sizes for
headings, etc.

B The XML Stylesheet Language (XSL) was originally designed

‘ XSLT Templates

m Example of XSLT template with match and select part
<xsl:template match="/bank-2/customer”>
<xsl:value-of select="customer-name”/>
</xsl:template>
<xsl:template match="*"/>
® The match attribute of xsl:template specifies a pattern in XPath

16

‘ XSLT Templates (Cont.)

m If an element matches several templates, only one is used

¥ Which one depends on a complex priority scheme/user-defined
priorities

¥ We assume only one template matches any element

‘ Creating XML Output

B Any text or tag in the XSL stylesheet that is not in the xsl
namespace is output as is

B E.g.to wrap results in new XML elements.
<xsl:template match="/bank-2/customer”>

17

‘ Creating XML Output (Cont.)

m Note: Cannot directly insert a xsl:value-of tag inside another tag

¥ E.g. cannot create an attribute for <customer> in the previous example
by directly using xsl:value-of

XSLT provides a construct xsl:attribute to handle this situation
g xsl:attribute adds attribute to the preceding element

‘ Structural Recursion

m Action of a template can be to recursively apply templates to the
contents of a matched element

m Eg.
<xsl:template match="/bank”>
<customers>

18

‘ Joins in XSLT

B XSLT keys allow elements to be looked up (indexed) by values of
subelements or attributes

m Keys must be declared (with a name) and, the key() function can then
be used for lookup. E.g.

m <xsl:key name="acctno” match="account”
use="account-number”/>

‘ Sorting in XSLT

m Using an xsl:sort directive inside a template causes all elements
matching the template to be sorted

¥ Sorting is done before applying other templates

m Eg.
<xsl:template match="/bank”>

19

‘ XQuery

m XQuery is a general purpose query language for XML data

m Currently being standardized by the World Wide Web Consortium
(W3C)

¥ The textbook description is based on a March 2001 draft of the standard.
The final version may differ, but major features likely to stay unchanged.

‘ FLWR Syntax in XQuery

B For clause uses XPath expressions, and variable in for clause
ranges over values in the set returned by XPath

B Simple FLWR expression in XQuery

¥ find all accounts with balance > 400, with each result enclosed in

20

‘ Path Expressions and Functions

m Path expressions are used to bind variables in the for clause, but
can also be used in other places

E.g. path expressions can be used in let clause, to bind variables to
results of path expressions

= The function distinct() can be used to removed duplicates in

‘ Joins

®m Joins are specified in a manner very similar to SQL

for $a in /bank/account,
$c in /bank/customer,
$d in /bank/depositor

where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name

21

‘ Changing Nesting Structure

m The following query converts data from the flat structure for bank
information into the nested structure used in bank-1

<bank-1>
for $c in /bank/customer
return

‘ XQuery Path Expressions

B S$c/text() gives text content of an element without any
subelements/tags

m XQuery path expressions support the “—>" operator for
dereferencing IDREFs

22

‘ Sorting in XQuery

B Sortby clause can be used at the end of any expression. E.g. to
return customers sorted by name
for $c in /bank/customer
return <customer> $c/* </customer> sortby(name)

B Can sort at multiple levels of nesting (sort by customer-name, and by

‘Functions and Other XQuery Features

m User defined functions with the type system of XMLSchema
function balances(xsd:string $c) returns list(xsd:numeric) {
for $d in /bank/depositor[customer-name = $c],
$a in /bank/account[account-number=$d/account-number]

23

‘ Application Program Interface

B There are two standard application program interfaces to XML
data:

¥ SAX (Simple API for XML)

Based on parser model, user provides event handlers for
parsing events

‘ Storage of XML Data

® XML data can be stored in

¥ Non-relational data stores
Flat files
— Natural for storing XML

‘Storage of XML in Relational Databases

m Alternatives:
¥ String Representation
Tree Representation

@

‘ String Representation

m Store each top level element as a string field of a tuple in a
relational database

? Use a single relation to store all elements, or
. :

25

‘ String Representation (Cont.)

B Benefits:
¥ Can store any XML data even without DTD

? As long as there are many top-level elements in a document, strings
are small compared to full document

‘ Tree Representation

B Treerepresentation: model XML data as tree and store using
relations
nodes(id, type, label, value)
child (child-id, parent-id) bank (id:1)

‘ Tree Representation (Cont.)

B Benefit: Can store any XML data, even without DTD
® Drawbacks:
? Data is broken up into too many pieces, increasing space overheads

‘ Mapping XML Data to Relations

B Map to relations
1f DTD of document is known, can map data to relations
Arelation is created for each element type

Elements (of type #PCDATA), and attributes are mapped to

‘Mapping XML Data to Relations (Cont.)

B Relation created for each element type contains
An id attribute to store a unique id for each element
A relation attribute corresponding to each element attribute

A parent-id attribute to keep track of parent element

‘Mapping XML Data to Relations (Cont.)

m E.g. For bank-1 DTD with account elements nested within customer
elements, create relations

? customer(id, parent-id, customer-name, customer-stret, customer-city)
parent-id can be dropped here since parent is the sole root element

28

